PME 3100 • Mecânica I • Módulo 1.1

Diagrama de corpo livre (DCL) Vínculos, fios e polias, barras de treliça Sistemas de forças: resultante e momento

Prof. Dr. Renato Maia Matarazzo Orsino

- 1 Introdução ao curso
- 2 Leis de Newton
- 3 Modelos para sistemas de forças
- 4 Vínculos ideais e reações
- 5 Diagramas de corpo livre
- 6 Sistemas de forças: resultante e momento

- 1 Introdução ao curso
- 2 Leis de Newton
- 3 Modelos para sistemas de forças
- 4 Vínculos ideais e reações
- 5 Diagramas de corpo livre
- 6 Sistemas de forças: resultante e momento

PME 3100 • Mecânica I Renato Maia Matarazzo Orsino Módulo 1.1 3/30

Introdução ao curso

Programa resumido

- Sistemas de forças e momentos:
 - resultante e momentos;
 - sistemas equivalentes.
- Estática em duas e três dimensões.
- Cinemática do ponto.
- Dinâmica da partícula.
- Cinemática de corpos rígidos:
 - campos de velocidades e acelerações;
 - composição de movimentos.
- Dinâmica de corpos rígidos:
 - distribuição de massa;
 - teorema do movimento do baricentro;
 - momento angular e teorema do momento angular;
 - energia cinética e teorema da energia cinética.

Introdução ao curso

Objetivos

Revisar conceitos de mecânica clássica e desenvolver a compreensão da mecânica de corpos rígidos, com ênfase na cinemática e dinâmica de corpos rígidos.

O aluno deve desenvolver as competências fundamentais para a *modelagem matemática* de sistemas mecânicos, considerando de forma consistente:

- as leis físicas que regem o comportamento de sistemas materiais;
- os modelos físicos constitutivos propostos para os corpos envolvidos, em particular para a descrição de interações e movimentos;
- as hipóteses simplificadoras adotadas;
- as propriedades algébricas da geometria analítica vetorial.

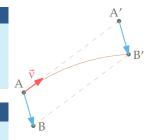
PME 3100 • Mecânica I Renato Maia Matarazzo Orsino Módulo 1.1 5/30

Introdução ao curso

O aluno deve acessar o ambiente Moodle para ter acesso a:

- Avisos (sobre aulas, atividades, provas e divulgação de notas)
- Registro de presença (durante as aulas presenciais)
- Programa completo da disciplina
- · Provas anteriores resolvidas
- Listas de exercícios
- Regulamento das turmas semi-presenciais
 - Regulamento geral
 - Critérios de aprovação
 - Regras para a realização das atividades remotas
- Bibliografia
- Slides de aula
- Atividades remotas (submissão e correção)
- Material didático extra

- 1 Introdução ao curso
- 2 Leis de Newton
- 3 Modelos para sistemas de forças
- 4 Vínculos ideais e reações
- 5 Diagramas de corpo livre
- 6 Sistemas de forças: resultante e momento

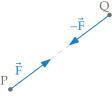

Leis de Newton

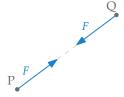
Primeira Lei

Todo *corpo* continua em seu estado de *repouso* ou de *movimento uniforme em uma linha reta*, a menos que seja compelido a mudar aquele estado por *forças* aplicadas sobre ele.

Segunda Lei

A mudança de movimento é proporcional à força motora impressa, e é produzida na direção de linha reta na qual aquela força é aplicada.




Leis de Newton

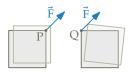
Terceira Lei - Princípio da Ação e Reação

A toda ação há sempre uma reação oposta e de igual intensidade: as ações mútuas de dois corpos um sobre o outro são sempre iguais e dirigidas em sentidos opostos.

(a) Notação com símbolo do vetor ao lado do segmento orientado.

(b) Notação com o símbolo da intensidade ao lado do segmento orientado.

- 1 Introdução ao curso
- 2 Leis de Newton
- 3 Modelos para sistemas de forças
- 4 Vínculos ideais e reações
- 5 Diagramas de corpo livre
- 6 Sistemas de forças: resultante e momento



PME 3100 • Mecânica I Renato Maia Matarazzo Orsino Módulo 1.1 10/30

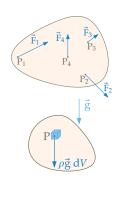
Modelo de força como vetor aplicado

Força

Modelo para a descrição qualitativa e quantitativa das interações entre dois corpos materiais.

A partir de observações experimentais, para obter uma descrição consistente e unívoca de uma força, é necessário especificar:

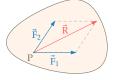
- Sua intensidade: $F = |\vec{F}|$
 - número real positivo
 - unidade de medida (no SI: N)
- Sua direção e orientação:
 - versor $\hat{\mathbf{u}} = \frac{\vec{\mathbf{F}}}{F}$, adimensional e de intensidade 1.
- Seu ponto de aplicação P.


Modelo de vetor aplicado: força representada por um par ordenado (\vec{F}, P) .

Sistemas de forças

- Sistemas de forças concentradas conjunto finito de vetores aplicados.
- Sistemas de forças distribuídas volumétricas interação distribuída ao longo do volume do corpo.

 Sistemas de forças distribuídas superficiais – interações que se distribuem ao longo de superfícies de interface.



Equivalência entre forças aplicadas em um mesmo ponto

Postulado

A aplicação *simultânea* de duas forças (\vec{F}_1, P) e (\vec{F}_2, P) é *equivalente* à aplicação de uma única força (\vec{R}, P) se, e somente se, $\vec{R} = \vec{F}_1 + \vec{F}_2$.

O postulado estabelece *equivalência* por meio da *composição* (soma) ou *decomposição* de vetores apenas se forem consideradas forças aplicadas de forma *simultânea* em um *mesmo ponto*.

Por indução, estende-se tal regra de *equivalência* (~) para um sistema de múltiplas forças aplicadas em um mesmo ponto P:

$$\{(\vec{F}_1, P), (\vec{F}_2, P), \dots, (\vec{F}_n, P)\} \sim \{(\vec{R}, P)\} \iff \vec{R} = \vec{F}_1 + \vec{F}_2 + \dots + \vec{F}_n = \sum_{k=1}^n \vec{F}_k$$

Linha de ação de uma força

Definição

A *linha de ação* de uma força (\vec{F},P) é definida como a reta passante por P e que tem a direção do vetor \vec{F} .

Se X é um ponto da linha de ação da força $(\vec{F},P),$ existe um escalar real λ tal que:

$$(X - P) = \lambda \vec{F} \iff X = P + \lambda \vec{F}$$

Efeitos da aplicação de duas forças de mesmas intensidade, direção, orientação e linha de ação, porém em pontos distintos de um corpo deformável.

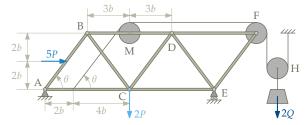
Modelo de força como vetor deslizante

Modelo de Vetores Deslizantes

São equivalentes duas forças que têm mesmas intensidade, direção, orientação e linha de ação se aplicadas sobre um mesmo corpo rígido, ou seja:

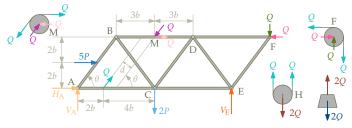
$$(\vec{F},P) \sim (\vec{F},Q) \ \Leftrightarrow \ \exists \lambda \in \mathbb{R}: \ (P-Q) = \lambda \vec{F}$$

Efeitos da aplicação de duas forças de mesmas intensidade, direção, orientação e linha de ação, porém em pontos distintos de um corpo rígido.



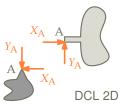
- 1 Introdução ao curso
- 2 Leis de Newton
- 3 Modelos para sistemas de forças
- 4 Vínculos ideais e reações
- 5 Diagramas de corpo livre
- 6 Sistemas de forças: resultante e momento

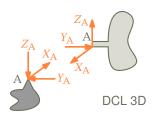
Vínculos ideais e reações


- Modelos idealizados para elementos de vinculação usados para restringir alguns movimento de um corpo.
- Reações esforços, a priori incógnitos, associados às restrições de movimento impostas pelos vínculos.
- Em um primeiro momento, iremos focar em elementos de vínculo idealizados cujo efeito pode ser modelado com um par de ação e reação de forças concentradas.

Vínculos ideais e reações

- Basicamente, se um vínculo restringe o movimento de um ponto A em uma dada direção, há uma componente de força de reação aplicada em A nesta direção.
- Por outro lado, se não há qualquer restrição ao movimento de A em uma dada direção, o elemento de vínculo idealizado não terá componente de força nesta direção.
- Na concepção idealizada uma componente de reação terá o valor que for necessário para impedir o movimento em questão.





(a) Articulação

Vincula um ponto A de um corpo a um ponto A de outro corpo, garantindo que eles sempre tenham uma posição comum. Fornece uma reação de:

- direção desconhecida;
- orientação desconhecida;
- intensidade desconhecida.

Diagramas de corpo livre para elementos de articulação em problemas 2D e 3D.

(b) Anel (ou guia)

Vincula um ponto A de um corpo a um eixo definido em outro corpo. Fornece uma reação de:

- direção normal ao eixo (parcialmente conhecida);
- orientação desconhecida;
- intensidade desconhecida.

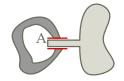
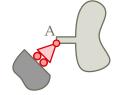


Diagrama de corpo livre para um elemento de anel em problemas 2D e 3D.



PME 3100 • Mecânica I Renato Maia Matarazzo Orsino Módulo 1.1 20/30

(c) Apoio bilateral

Vincula um ponto A de um corpo a uma superfície definida em outro corpo. Fornece uma reação de:

- direção normal à superfície (conhecida);
- orientação desconhecida;
- intensidade desconhecida.

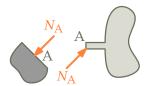
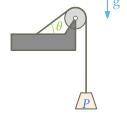
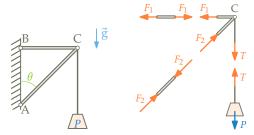



Diagrama de corpo livre para elementos de apoio bilateral sem atrito em problemas 2D e 3D.

(d) Polias e cabos ideais

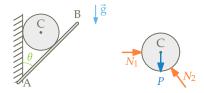
- Cabo inextensível e de massa desprezível.
- Polia rígida, de massa desprezível, que pode girar livremente, sem atrito em torno de seu centro.
- Tração T no cabo se mantém constante ao longo de seu comprimento.
- As reações aplicadas à polia pela articulação devem ser exatamente opostas às componentes de tração aplicadas ao cabo nos cortes.



DCLs

(e) Barra de treliça

- Barra rígida, de massa desprezível, cujas extremidades são montadas em articulações ideais.
- Interações desta barra com os demais corpos se dá exclusivamente por meio de forças aplicadas em suas extremidades.
- Considerando cortes que isolem qualquer porção material da barra, tal porção estará em equilíbrio sujeita a um par de forças opostas aplicadas sobre a linha definida por seu eixo longitudinal.



PME 3100 • Mecânica I Renato Maia Matarazzo Orsino Módulo 1.1 23/30

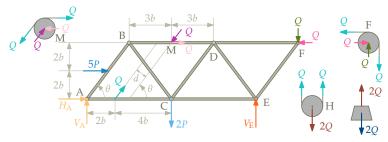
(f) Contatos sem atrito entre sólidos

- Contatos sem atrito entre sólidos podem ser modelados por meio de forças aplicadas nos pontos de contato, ortogonais às respectivas superfícies.
- Diferentemente dos apoios bilaterais, estas reações devem ser obrigatoriamente orientadas no sentido de afastamento das superfícies.

O modelo de Coulomb para contato com atrito será tratado no Módulo 1.3.

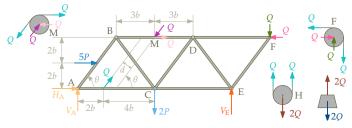
- 1 Introdução ao curso
- 2 Leis de Newton
- 3 Modelos para sistemas de forças
- 4 Vínculos ideais e reações
- 5 Diagramas de corpo livre
- 6 Sistemas de forças: resultante e momento

Diagramas de corpo livre



Diagramas de corpo livre

Ao isolarmos um corpo ou uma parte de uma estrutura para esboçar um diagrama de corpo livre (DCL), devemos substituir o símbolo do elemento de cada vínculo recortado pelas respectivas componentes de reações a ele associadas.


No caso de **vínculos internos**, a representação das componentes de reação deve ser consistente com o **princípio da ação e reação**.

Diagramas de corpo livre

- Para elementos simples como polias ideais e blocos sustentados por fios, por exemplo, temos casos elementares de equilíbrio, sendo trivial a determinação dos valores das componentes de reações. Tais valores, portanto, podem ser representados diretamente no DCL.
- Para reações cuja determinação é não trivial, indique o nome da respectiva incógnita ao lado do símbolo da componente.
- No caso de vínculos bilaterais, não é necessário saber a priori a orientação da componente (adote a convenção de sua preferência).

- 1 Introdução ao curso
- 2 Leis de Newton
- 3 Modelos para sistemas de forças
- 4 Vínculos ideais e reações
- 5 Diagramas de corpo livre
- 6 Sistemas de forças: resultante e momento

Resultante e momento de um sistema de forças concentradas

Considere um sistema de forças concentradas:

$$\mathcal{F} = \{(\vec{F}_i, P_i) : i = 1, 2, ..., n\}$$

O vetor resultante do sistema de forças é definido pela expressão:

$$\vec{R} = \vec{F}_1 + \vec{F}_2 + \dots + \vec{F}_n = \sum_{k=1}^n \vec{F}_k$$

O vetor momento do sistema de forças com respeito ao um polo O é definido pela expressão:

$$\vec{\mathbf{M}}_{\mathcal{O}} = \sum_{k=1}^{n} (\mathbf{P}_k - \mathbf{O}) \wedge \vec{\mathbf{F}}_k$$

Produto vetorial

Definição

O *produto vetorial* $\vec{a} \wedge \vec{b}$ entre dois vetores \vec{a} e \vec{b} definidos em um espaço euclidiano tridimensional e que formam entre si um ângulo $\theta \in [0, \pi]$ é:

- um vetor nulo, se \vec{a} e \vec{b} são paralelos (ou seja, se $\theta = 0$ ou $\theta = \pi$);
- um vetor de intensidade $|\vec{a}||\vec{b}|\sin\theta$, direção mutuamente ortogonal a \vec{a} e \vec{b} e orientação definida pela *regra da mão direita*, se $0 < \theta < \pi$.

Exemplo – cálculo de uma parcela genérica do vetor momento usando a propriedade distributiva:

$$(P_r - O) = x_r \hat{\mathbf{i}} + y_r \hat{\mathbf{j}} + z_r \hat{\mathbf{k}}$$
$$\vec{F}_r = X_r \hat{\mathbf{i}} + Y_r \hat{\mathbf{j}} + Z_r \hat{\mathbf{k}}$$

$$(P_r - O) \wedge \vec{F}_r = (y_r Z_k - z_r Y_r) \hat{\mathbf{1}} + (z_r X_r - x_r Z_r) \hat{\mathbf{j}} + (x_r Y_r - y_r X_r) \hat{\mathbf{k}}$$

Perguntas? reorsino@usp.br

