PME2100 Gabarito da 2^{a} Prova

Escola Politécnica da USP

1 Questão (3,0 pontos)

Uma força F é aplicada na peça em forma de U. Esta peça pode deslizar ao longo da guia. No ponto de contato em A o coeficiente de atrito é nulo, e no ponto de contato em B o coeficiente de atrito é μ.
a) Desenhe o diagrama de corpo livre da peça em forma de U.
b) Em função de a, F e μ, determine o intervalo dos valores de b compatível com o equilíbrio.

Figura 1: Peça em forma de U

1.1 Solução

Figura 2: Diagrama de Corpo Livre $(1,0)$
Equações do equilíbrio da peça em forma de U: $(1,0)$

$$
\begin{aligned}
& \text { vertical: } \quad T_{B}=F \\
& \text { horizontal: } \quad N_{A}=N_{B}
\end{aligned}
$$

Atrito sem escorregamento:

$$
\begin{equation*}
T_{B} \leq \mu N_{B} \quad(0,5) \quad \Rightarrow \quad F \leq \mu \frac{a}{b} F \quad \Rightarrow \quad b \leq \mu a \tag{0,5}
\end{equation*}
$$

2 Questão (3,5 pontos)

Figura 3: Sistema composto de uma barra $A B$ e dois discos

Os discos de raios R_{1} e R_{2} rolam sem escorregar e o disco de raio R_{2} está sempre em contato com a parede. É conhecida a velocidade angular ω_{1} (constante) do disco de raio R_{1}. Em função de $\omega_{1}, \theta, L, R_{1}$ e R_{2}, calcule:
a) A velocidade \vec{v}_{B} do ponto B.
b) A velocidade angular $\omega_{B C}$ da barra $B C$ e a velocidade \vec{v}_{C} do ponto C.
c) A velocidade angular ω_{2} e a aceleração angular $\dot{\omega}_{2}$ do disco de raio R_{2}.
d) As acelerações \vec{a}_{C} do ponto C e $\vec{a}_{C I R}$ do $C I R$ do disco de raio R_{2}.

2.1 Solução

Figura 4: Movimento dos três sólidos
a) Disco B

$$
\begin{equation*}
\vec{v}_{B}=\underbrace{\vec{v}_{A}}_{\overrightarrow{0}}+\underbrace{\vec{\omega}_{1}}_{-\omega_{1} \vec{k}} \wedge \underbrace{(B-A)}_{R_{1} \vec{j}} \Rightarrow \vec{v}_{B}=\omega_{1} R_{1} \vec{i} \tag{0,5}
\end{equation*}
$$

b) Barra AB

$$
\begin{gather*}
\vec{v}_{C}=\vec{v}_{B}+\vec{\omega}_{B C} \wedge(C-B) \quad \Rightarrow \quad v_{C} \vec{j}=\omega_{1} R_{1} \vec{i}+\omega_{B C} \vec{k} \wedge L(\cos \theta \vec{i}+\sin \theta \vec{j}) \\
\left\{\begin{array}{l}
0=\omega_{1} R_{1}-\omega_{B C} L \sin \theta \\
v_{C}=\omega_{B C} L \cos \theta
\end{array} \quad \Rightarrow \quad \omega_{B C}=\frac{\omega_{1} R_{1}}{L \sin \theta} \quad(0,5)\right. \tag{0,5}\\
v_{C}=\frac{\omega_{1} R_{1} \cos \theta}{\sin \theta} \quad(0,5) \tag{0,5}
\end{gather*}
$$

c) Disco C

$$
\begin{gathered}
\vec{v}_{C}=\underbrace{\vec{v}_{D}}_{\overrightarrow{0}}+\underbrace{\vec{\omega}_{2}}_{-\omega_{2} \vec{k}} \wedge \underbrace{(C-D)}_{-R_{2} \vec{i}} \Rightarrow \omega_{2}=\frac{\omega_{1} R_{1} \cos \theta}{R_{2} \sin \theta} \\
\dot{\omega}_{2}=\frac{d \omega_{2}}{d t}=\frac{-\omega_{1} R_{1} \dot{\theta}}{R_{2} \sin ^{2} \theta}
\end{gathered}
$$

como

$$
\begin{equation*}
\dot{\theta}=\omega_{B C} \quad \Rightarrow \quad \dot{\omega}_{2}=\frac{-\omega_{1}^{2} R_{1}^{2}}{R_{2} L \sin ^{3} \theta} \tag{0,5}
\end{equation*}
$$

d) Disco C

$$
\begin{equation*}
\vec{a}_{C}=\frac{d \vec{v}_{C}}{d t}=\frac{-\omega_{1}^{2} R_{1}^{2}}{L \sin ^{3} \theta} \vec{j} \tag{0,5}
\end{equation*}
$$

e

$$
\begin{gather*}
\vec{a}_{D}=\vec{a}_{C}+\dot{\vec{\omega}}_{2} \wedge(D-C)+\vec{\omega}_{2} \wedge\left[\vec{\omega}_{2} \wedge(D-C)\right] \\
\vec{a}_{D}=\frac{-\omega_{1}^{2} R_{1}^{2}}{L \sin ^{3} \theta} \vec{j}+\frac{\omega_{1}^{2} R_{1}^{2}}{R_{2} L \sin ^{3} \theta} \vec{k} \wedge R_{2} \vec{i}+\frac{\omega_{1} R_{1} \cos \theta}{R_{2} \sin \theta} \vec{k} \wedge\left[\frac{\omega_{1} R_{1} \cos \theta}{R_{2} \sin \theta} \vec{k} \wedge R_{2} \vec{i}\right] \\
\quad \vec{a}_{D}=-\frac{\omega_{1}^{2} R_{1}^{2} \cos ^{2} \theta}{R_{2} \sin ^{2} \theta} \vec{i} \tag{0,5}
\end{gather*}
$$

3 Questão (3,5 pontos)

A placa $A B C D$ pode girar em torno do eixo $O x$, e sua velocidade angular em relação ao garfo é ω_{2} (constante). O garfo (referencial móvel) gira em torno do eixo $O z$ com velocidade angular ω_{1} (constante) em relação ao solo (referencial fixo). No instante em que a placa $A B C D$ está na vertical, conforme mostra a figura, determine, em função de $\omega_{1}, \omega_{2}, a$ e b, e na base $(\vec{i}, \vec{j}, \vec{k})$ que orienta o sistema de coordenadas $O x y z$ (solidária ao garfo):
a) As velocidades relativa $\vec{v}_{A, \text { rel }}$, de arrastamento $\vec{v}_{A, \text { arr }}$ e absoluta $\vec{v}_{A, a b s}$ do ponto A.
b) As acelerações relativa $\vec{a}_{A, \text { rel }}$, de Coriolis $\vec{a}_{A, \text { cor }}$ e absoluta $\vec{a}_{A, a b s}$ do ponto A.
c) O vetor velocidade angular absoluta $\vec{\omega}_{a b s}$ da placa $A B C D$, e seu vetor aceleração angular absoluta $\dot{\vec{\omega}}_{\text {abs }}$.

Figura 5: Composição de movimentos de rotação

3.1 Solução

a) Item (a):

$$
\begin{equation*}
\vec{v}_{A, \text { rel }}=\vec{v}_{0, \text { rel }}+\vec{\omega}_{2} \wedge(A-O)=\overrightarrow{0}+\omega_{2} \vec{i} \wedge(b \vec{i}+a \vec{k})=-\omega_{2} a \vec{j} \quad \Rightarrow \quad \vec{v}_{A, \text { rel }}=-\omega_{2} a \vec{j} \tag{0,4}
\end{equation*}
$$

$$
\begin{align*}
& \vec{v}_{A, a r r}=\vec{v}_{0, a r r}+\vec{\omega}_{1} \wedge(A-O)=\overrightarrow{0}+\omega_{1} \vec{k} \wedge(b \vec{i}+a \vec{k})=\omega_{1} b \vec{j} \Rightarrow \vec{v}_{A, a r r}=\omega_{1} b \vec{j} \tag{0,4}\\
& \vec{v}_{A, a b s}=\vec{v}_{A, r e l}+\vec{v}_{A, a r r}=-\omega_{2} a \vec{j}+\omega_{1} b \vec{j} \Rightarrow \vec{v}_{A, a b s}=\left(\omega_{1} b-\omega_{2} a\right) \vec{j}
\end{align*}
$$

b) Item (b):

$$
\begin{align*}
\vec{a}_{A, \text { rel }} & =\vec{a}_{0, \text { rel }}+\left(\dot{\vec{\omega}}_{2}\right)_{\text {rel }} \wedge(A-O)+\vec{\omega}_{2} \wedge\left[\vec{\omega}_{2} \wedge(A-0)\right] \\
& =\overrightarrow{0}+\overrightarrow{0} \wedge(b \vec{i}+a \vec{k})+\omega_{2} \vec{i} \wedge\left[\omega_{2} \vec{i} \wedge(b \vec{i}+a \vec{k})\right] \\
\vec{a}_{A, \text { rel }} & =\omega_{2} \vec{i} \wedge\left[-\omega_{2} a \vec{j}\right] \\
& =-\omega_{2}^{2} a \vec{k} \Rightarrow \vec{a}_{A, \text { rel }}=-\omega_{2}^{2} a \vec{k} \tag{0,4}\\
\vec{a}_{A, a r r} & =\vec{a}_{0, a r r}+\dot{\vec{\omega}}_{1} \wedge(A-O)+\vec{\omega}_{1} \wedge\left[\vec{\omega}_{1} \wedge(A-0)\right] \\
& =\overrightarrow{0}+\overrightarrow{0} \wedge(b \vec{i}+a \vec{k})+\omega_{1} \vec{k} \wedge\left[\omega_{1} \vec{k} \wedge(b \vec{i}+a \vec{k})\right] \\
\vec{a}_{A, a r r} & =\omega_{1} \vec{k} \wedge\left[-\omega_{1} b \vec{j}\right] \\
& =-\omega_{1}^{2} b \vec{i} \Rightarrow \vec{a}_{A, a r r}=-\omega_{1}^{2} b \vec{i} \tag{0,4}\\
& =2 \omega_{1} \omega_{2} a \vec{i} \Rightarrow \vec{\omega}_{A} \wedge \vec{v}_{A, \text { rel }}=2 \omega_{1} \vec{k} \wedge\left(-\omega_{2} a \vec{j}\right) \\
\vec{a}_{A, \text { cor }} & =2 \vec{a}_{A, c o r}=2 \omega_{1} \omega_{2} a \vec{i} \tag{0,4}\\
\vec{a}_{A, a b s} & =\vec{a}_{A, \text { rel }}+\vec{a}_{A, a r r}+\vec{a}_{A, \text { cor }}=-\omega_{2}^{2} a \vec{k}-\omega_{1}^{2} b \vec{i}+2 \omega_{1} \omega_{2} a \vec{i} \\
& \vec{a}_{A, a b s}=\left(2 \omega_{1} \omega_{2} a-\omega_{1}^{2} b\right) \vec{i}-\omega_{2}^{2} a \vec{k} \tag{0,4}
\end{align*}
$$

c) Item (c):

$$
\begin{equation*}
\vec{\omega}_{a b s}=\vec{\omega}_{r e l}+\vec{\omega}_{a r r}=\omega_{2} \vec{i}+\omega_{1} \vec{k} \quad \Rightarrow \quad \vec{\omega}_{a b s}=\omega_{2} \vec{i}+\omega_{1} \vec{k} \tag{0,4}
\end{equation*}
$$

$$
\begin{equation*}
\dot{\vec{\omega}}_{a b s}=\left(\dot{\vec{\omega}}_{r e l}\right)_{r e l}+\dot{\vec{\omega}}_{a r r}+\vec{\omega}_{a r r} \wedge \vec{\omega}_{r e l}=\overrightarrow{0}+\overrightarrow{0}+\omega_{1} \vec{k} \wedge \omega_{2} \vec{i}=\omega_{2} \omega_{1} \vec{j} \quad \Rightarrow \quad \dot{\vec{\omega}}_{a b s}=\omega_{2} \omega_{1} \vec{j} \tag{0,4}
\end{equation*}
$$

