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Estes slides: mix de partes de tutoriais recentes em eventos de
qualidade

e NeurlPS 2021 — Tutorial Self-Supervised Learning
Self-Prediction and Contrastive Learning

https://nips.cc/media/neurips-2021/Slides/21895.pdf

e ICML 2023 Self-Supervised Learning in Vision: from Research
Advances to Best Practices
https://icml.cc/virtual/2023/tutorial/21552

https://icml.cc/media/icml-2023/Slides/21652. pdf

® http://cs231n.stanford.edu/slides/2022/lecture_14_jiajun.pdf

e CVPR 2021 Tutorial on Leave Those Nets Alone: Advances in
Self-Supervised Learning

https://gidariss.github.io/self-supervised-learning-cvpr2021/

® https://project.inria.fr/paiss/files/2018/07/zisserman-self-supervised.pdf


https://nips.cc/media/neurips-2021/Slides/21895.pdf
https://icml.cc/virtual/2023/tutorial/21552
https://icml.cc/media/icml-2023/Slides/21552.pdf
http://cs231n.stanford.edu/slides/2022/lecture_14_jiajun.pdf
https://gidariss.github.io/self-supervised-learning-cvpr2021/
https://project.inria.fr/paiss/files/2018/07/zisserman-self-supervised.pdf

Self-supervised learning

Motivacao

e Temos uma abundancia de dados
e Treinamento de algoritmos de ML requer dados rotulados
e Rotular dados é trabalhoso, caro

o Self-supervised learning: ldeia central é aprender a partir de
dados n3o rotulados

e Informac3o aprendida dessa forma pode ser
aproveitada/transferida para diferentes tarefas
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Lembrar que as coisas mudam ao longo do tempo
Logo, o que valia antes pode nao valer mais

Rotular tudo de novo? NAOQ!




Antes, porém, um parénteses

Transfer Learning & Fine-tuning
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fazer o fine-tuning

(usar Ir menor)



Self-supervised learning

Como aprender a partir de dados nao rotulados?

Sabemos que os dados rotulados s3o importantes para calcular a
perda e a partir dela otimizar os parametros do modelo
Essa otimizacdo “guiada” é que leva o modelo a “aprender”

Abordagem: vamos ent3o criar tarefas que funcionem como
pretexto, um guia para o processo de aprendizado
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Recap: Pretext Tasks

Step 1: Pre-train a model for a pretext task Step 2: Transfer to applications
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Ja vimos tarefas pretexto!

e No caso de RNNs, treinamos ela para predizer o préximo
elemento da sequéncia.

Por exemplo, em NLP, textos existem aos montes, sem custo.
e No caso do GPT, idem

e No caso do BERT, vimos masking



O que GPT e/ou BERT aprendem?

e GPT — aprende a gerar texto

Ou seja, a distribui¢do dos dados ( p(x) )

e BERT - aprende uma representag¢ao dos dados
que possa ser util para diferentes downstream tasks

( masked auto-encoding )



Tipos de self-supervised tasks

e Self-prediction — intra-sample

e Contrastive-learning — inter-sample



Methods for Framing Self-Supervised Learning Tasks

Self-prediction: Given an individual data sample, the task is to predict one part of the
sample given the other part.

The part to be predicted pretends to be missing.

-

“Intra-sample” prediction



Self-Prediction

Self-prediction construct prediction tasks within every individual data sample: to
predict a part of the data from the rest while pretending we don't know that part.

» Predict any part of the input from any
other part.
» Predict the future from the past.

» Predict the future from the recent past.

A A |

» Predict the past from the present.
» Predict the top from the bottom.

» Predict the occluded from the visible
» Pretend there is a part of the input you « Past Future —

don’t know and predict that. Present slide: LeCun

(Famous illustration from Yann LeCun)



Methods for Framing Self-Supervised Learning Tasks

Contrastive learning: Given multiple data samples, the task is to predict the
relationship among them.

The multiple samples can be selected from the dataset based on some known logics
(e.g. the order of words / sentences), or fabricated by altering the original version.

relationship?

“Inter-sample” prediction
20



Contrastive Learning

The goal of contrastive representation learning is to learn such an embedding space in
which similar sample pairs stay close to each other while dissimilar ones are far apart.

e

29



Métodos de self-prediction



Self-Prediction: Autoregressive Generation

The autoregressive model predicts future behavior based on past behavior. Any data
that comes with an innate sequential order can be modeled with regression.

HEEEENE ;

Examples:
e Audio (WaveNet, WaveRNN)
e Autoregressive language modeling (GPT, XLNet)
e Images in raster scan (PixelCNN, PixelRNN, iGPT)
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Self-Prediction: Masked Generation

We mask a random portion of information and pretend it is missing, irrespective of the
natural sequence. The model learns to predict the missing portion given other
unmasked information.

HEECEEE

Examples:
e Masked language modeling (BERT)
e Images with masked patch (denoising autoencoder, context autoencoder,
colorization)
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Self-Prediction: Innate Relationship Prediction

Some transformation (e.g. segmentation, rotation) of one data sample should
maintain the original information or follow the desired innate logic.

_ ]
o8 [EEEE |gn

Examples:
e Order of image patches (e.g., relative position, jigsaw puzzle)
e |mage rotation
e Counting features across patches
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Contrastive learning

Inter-sample classification



Contrastive Learning: Inter-Sample Classification

Given both similar (“positive”) and dissimilar (“negative”) candidates, to identify which
ones are similar to the anchor data point is a classification task.

There are creative ways to construct a set of data point candidates:
1. The original input and its distorted version
2. Data that captures the same target from different views
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Contrastive Representation Learning

e
\

attract

¢

Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 14 - 52 May 17, 2022



Contrastive Representation Learning

e
\

attract

¢

Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 14 - 54 May 17, 2022



Contrastive Learning: Inter-Sample Classification

Common loss functions:

Contrastive loss (Chopra et al. 2005)

Triplet loss (Schroff et al. 2015; FaceNet)

Lifted structured loss (Song et al. 2015)

Multi-class n-pair loss (Sohn 2016)

Noise contrastive estimation (“NCE”; Gutmann & Hyvarinen 2010)
InfoNCE (van den Oord, et al. 2018)

Soft-nearest neighbors loss (Salakhutdinov & Hinton 2007,
Frosst et al. 2019)
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Contrastive Learning: Inter-Sample Classification
Contrastive loss (Chopra et al. 2005): Works with labelled dataset.

Encodes data into an embedding vector such that examples from the same class have
similar embeddings and samples from different classes have different ones.

Given two labeled data pairs (s, ¥:) and (xj,¥;):

Loon(Xi, Xj, 0) = 1[y; = y1llfo(x:) — fo&x)II3|+ 1y; # y;1 max(0, € — (Ilfy(x;) — fox)ll2)?

minimize maximize
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Contrastive Learning: Inter-Sample Classification
Triplet loss (Schroff et al. 2015): learns to minimize the distance between the anchor x
and positive x+ and maximize the distance between the anchor x and negative x- at the

same time.

Given a triplet input (x,x*,x7),

Loiptee(®, X7, x7) = Y max (0, () — F&xHI3 ~ IIf®) — fEOI +e)

xeX
Negative m
Anchor LEARNING
Negative
Anchor

Positive Positive (Schroff et al. 2015)
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Contrastive Learning: Inter-Sample Classification

N-pair loss (Sohn 2016) generalizes triplet loss to include comparison with multiple
negative samples.

Given one positive and N-1 negative samples, {x,x*,x],...,xy_;}

N-1
Lrpie (% X7, (X7 151 = log (14 ) exp(f®)f(x;) — F®)f(x*)))

i=1
. exp(f()Tf(x*))
exp(fX)TF(x+) + Ti' exp(f®)Tf(x)))
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Contrastive Learning: Inter-Sample Classification

Lifted structured loss (Song et al. 2015): utilizes all the pairwise edges within one
training batch for better computational efficiency.

tha=Dy+iog( 3 ewe-Du+ 3 expie=Dy)
N G:DeN
where Dy = |If(x;) — fFx)ll2
(i,j) € P
P set of positive pairs
X1 Xo X3 X4 X5 X6

(Song et al. 2015)

N set of negative pairs
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Contrastive Learning: Inter-Sample Classification

Noise Contrastive Estimation (NCE) (Gutmann & Hyvarinen 2010) runs logistic
regression to tell apart the target data from noise.

Given target sample distribution p and noise distribution g,

] & J
Lce =~ X, [log o(Zo(x) + log(l - o(Zo(K))] -~
i=1

ust cross entropy

where logit Ze(u) = log % = log pg(u) — log g(u)

1 Do

sigmoid 6(¥) = T+ axp() = o
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Contrastive Learning: Inter-Sample Classification

InfoNCE (van den Oord, et al. 2018): uses categorical cross-entropy loss to identify the
positive sample amongst a set of unrelated noise samples.

Given a context vector ¢, the positive sample should be drawn from the conditional
distribution p(x|c), while N-1 negative samples are drawn from the proposal
distribution p(x), independent from the context c.

The probability of detecting the positive sample correctly is:

p(x[c)

p(C = pos|X,c) = _FXp0s©) \here the density functionis f(x,¢) o o)

ZjN=1 f(xj7 C)
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Contrastive Learning: Inter-Sample Classification
Soft-Nearest Neighbors Loss (Frosst et al. 2019) extends the loss function to include

multiple positive samples given known labels.

Given a batch of samples {1.{,-,);,-)}?=1 ,

temperature term
19 Zi;éj,yi:yj,j:l,.,,,g exp(—f(Xi, Xj)/T(

1
Lo = _E 2 log

i=1 Yitki=t....n SXP(=f (Xi, Xp)/7)
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Hard Negative Mining

Hard negative samples are different to learn. They should have different labels from the
anchor sample, but the embedding features may be very close.

Hard negative mining is important for contrastive learning.

Challenging negative samples encourages the model to learn better representations
that can distinguish hard negatives from true positives.

93



Pretext tasks



Variational Autoencoders

Image Pretext Tasks

Auto-Encoding Variational Bayes (Kingma et al. 2014)
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Vision Pretext Tasks: Autoregressive Image Generation

e Neural autoregressive density estimation (NADE; Larochelle et al. 2011)
e PixelRNN, PixelCNN (Oord et al. 2016)
e Image GPT (Chen et al. 2020)

1 ’" 2 (a) Autoregressive
r v
v 000000000
000000000
000000000
v v
o IEE Bn EEE =
n Target
Raster scan order Image GPT (Chen et al. 2020)

48



Vision Pretext Tasks: Auteregressive Image Generation

Diffusion modeling: Follows a Markov chain of diffusion steps to slowly add random
noise to data and then learn to reverse the diffusion process to construct desired data
samples from the noise. (Sohl-Dickstein et al 2015; Yang & Ermon 2019; Ho et al. 2020;
Dhariwal & Nichol 2021)

Diffusion modeling

(Dhariwal & Nichol 2021)
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Vision Pretext Tasks: Masked Prediction

e Denoising autoencoder (Vincent et al. 2008)
o Add noise = Randomly mask some pixels
o Only reconstruction loss

e Context autoencoder (Pathak et al. 2016)
o Mask a random region in the image
o Reconstruction loss + adversarial loss
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How MAE Works?

Reconstruct



MAE Reconstruction Example

Masked input: 80% MAE'’s guess Ground truth



95% mask
original
9 85% mask

MAE Can Generalize




75% mask

95% mask

original

85% mask

MAE Can Generalize




f’ Large
| Language
‘ Models

Take-aways |

\\
» Self-supervised learning allows representation learning at scale
\
» Masked auto-encoders as a step toward scalable vision learners
N -

« Still need to close the gap with large language models

N

MAE |

4



Vision Pretext Tasks: Colorization and More

e Colorization (Zhang et al. 2016)
o Predict the binned CIE Lab color space
given a grayscale image.

e Split-brain autoencoder (Zhang et al. 2017)
o Predict a subset of color channels
from the rest of channels.
o Channels: luminosity, color, depth, etc.
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Image example II: colourization

Train network to predict pixel colour from a monochrome input

Colorful Image Colorization, Zhang et al., ECCV 2016



Learning features from colorization:
Split-brain Autoencoder

RGB channels HHA depth channels

-

Input P g Predicted
RGB-HHA RGB-HHA
image image
\ /'
-

HHA depth channels RGB channels
Source: Richard Zhang / Phillip Isola

Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 14 - 33 May 17, 2022



Vision Pretext Tasks: Innate Relationship Prediction

e Learn the relationship among image patches:
o Predict relative positions between patches (Doersch et al 2015)
o Jigsaw puzzle using patches (Noroozi & Favaro 2016)

Given a patch, predict which one of 8 Output a probability vector per patch index
neighboring locations another patch is in out of a predefined set of permutations
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Example: relative positioning

Train network to predict relative position of two regions in the same image

0 <& 8 possible locations

7 N

CNN CNN

¢ ,t Randoly Sample Patch
Sample Second Patch

Unsupervised visual representation learning by context prediction,
Carl Doersch, Abhinav Gupta, Alexei A. Efros, ICCV 2015



What is learned?

Input Relatlve-pos'tlonmg Random Initialization ImageNetAIexNet

7

CNN




Pretext task: solving “jigsaw puzzles’
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shuffled 5
2 -9 et S
¥,
; o=
%
; My =i=
5 - A e
é - E";E
Permutation Set i i 4 E
index permutation Reorder patches according to - &
the selected permutation 4 - M i E}Q’ﬁ
5
64 946832517 2 P » D o
9 ¥,
1x11x96  5x5x256 3x3x384 3x3x384

(Image source:

Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 14 - 21
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Noroozi & Favaro, 2016)

May 17, 2022




Vision Pretext Tasks: Innate Relationship Prediction

e RotNet: predict which rotation is applied (Gidaris et al. 2018)
o Rotation does not alter the semantic content of an image.

e Representation Learning by Learning to Count (Noroozi et al. 2017)
o Counting features across patches without labels, using equivariance of counts

(6| - -
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Type of hidden data/property

4

——900% Input: image rotated by
[0, 90, 180, 270]

Output: 4-way classification

2700

Gidaris et al., 2018, Predicting Image Rotations



Abordagens contrastivas



Vision Pretext Tasks: Contrastive Learning

The common approach is to make multiple views (e.g. data augmentation) to one
image and consider the image and its distorted version as similar pairs, while
different images are treated dissimilar.

“View" 1

similar

“View" 2

\ L
1 dissimilar
7
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SimCLR: generating positive samples from
data augmentation
—N '— k

(f) Rotate {90°,180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering
Source: Chen et al., 2020

Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 14 - 63 May 17, 2022



Image example Ill: exemplar networks

Exemplar Networks (Dosovitskiy et al., 2014)
Perturb/distort image patches, e.g. by cropping and affine transformations

Train to classify these exemplars as same class

- P
L aks

e
1Y

l:‘ "'X‘h ‘



Vision Pretext Tasks: Combining with Supervised Loss

e Combine supervised loss + self-supervised learning
o Self-supervised semi-supervised learning (S4L; Zhai et al 2019)
o Unsupervised data augmentation (UDA; Xie et al 2019)

e Use known labels for contrastive learning
o Supervised Contrastive Loss (SupCon; Khosla et al. 2021)

Anchor Negatives Anchor Negatives
Posilives/
£ e

e

(Khosla et al. 2021)

Self Supervised Contrastive Supervised Contrastive
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Pseudolabel Generation Processes

= -REB

Transformation Prediction Masked Prediction Instance Discrimination
z=90° :
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FIGURE 3. lllustrative of the way are in the four families of pretext tasks of our taxonomy: TP, masked prediction,
instance discrimination, and clustering. An additional depiction is included of the popular version of instance discrimination using contrastive losses. The
squares represent inputs x, while circles portray the feature vectors of those inputs, /e(x).
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Videos



Video Pretext Tasks: Optical Flow

Tracking object movement tracking in time

e Tracking movement of image patches
(Wang & Gupta 2016)

() Unsupervised Tracking in Videos

g5 & @)
fam Ee

Query Tatked Negative D:: istance in deep feature space
(FistFrame) (Last Frame) (Random)

(b) Siamese-triplet Network (c) Ranking Objective

Segmenting based on motion
(Pathak et al. 2017)
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Video Pretext Tasks: Sequence Ordering

Temporal order verification (Misra et al. 2016, Fernando et al. 2017)

Temporally Correct order —\
Predicted odd Y=2 )

element

<
/ [ o8

fe7
° Fusion Layer
3 e (] 18
% Coonvs ) [oonvs [oonvs |
B Cconvt ] oot ] [convt]
© Video-clip Encoder Video-clip Encoder l [ Video-clip Encoder ‘

'3 B o o

Correct order

X

Correct order M Wrong order v

(Fernando et al. 2017)

Temporally Incorrect order v

(Misra et al. 2016)

Predict the arrow of time, forward or backward (Wei et al. 2018)
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Pretext task: video coloring
Idea: model the temporal coherence of colors in videos

reference frame how should | color these frames?

Hypothesis: learning to color video frames should allow model to

learn to track regions or objects without labels!
Source: Vondrick et al., 2018

Fei-Fei Li, Jiajun Wu, Ruohan Gao Lecture 14 - 38 May 17, 2022



Video Pretext Tasks: Colorization

Tracking emerges by colorizing videos (Vondrick et al. 2018)
e Copy colors from a reference frame to another target frame in grayscale by
leveraging the natural temporal coherence of colors across video frames.

Reference Frame

Input Frame

Reference Colors Target Colors

(Vondrick et al. 2018) 71



Video Pretext Tasks: Colorization

Tracking emerges by colorizing videos (Vondrick et al. 2018)
e Used for video segmentation or human pose estimation without fine-tuning!

Predicted &gmenmhons

(Vondrick et al. 201 8)
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Video Pretext Tasks: Contrastive Multi-View Learning

TCN (Sermanet et al. 2017)
e Usetriplet loss
e Different viewpoints at the same
timestep of the same scene should share
the same embedding, while embedding
should vary in time, even of the same
camera viewpoint.

Multi-frame TCN (Dwibedi et al. 2019)
e Use n-pairs loss
e Multiple frames are aggregated into one
embedding.

metric loss
attraction  repuision

negahve?

TCN embedding
—

anchor | positive

imitation

Views
(and modalities)

A

View
1 -

View
2 -

Tt Thegative " Time

(Sermanet et al. 2017)
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Audio-Visual Correspondence
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Audio-Visual Correspondence
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To embed or not to embed?

Concatenation Embedding

Corresponds: yes/no? Corresponds: yes/no?

Features
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Audio subnetwork

f log-spectrogram

1 second 48kHz audio

1 second 48kHz audio
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