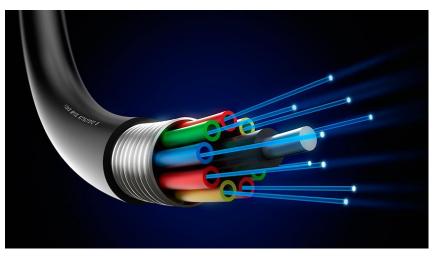
FIBRAS ÓPTICAS

PSI3483 – Ondas Eletromagnéticas em meios guiados

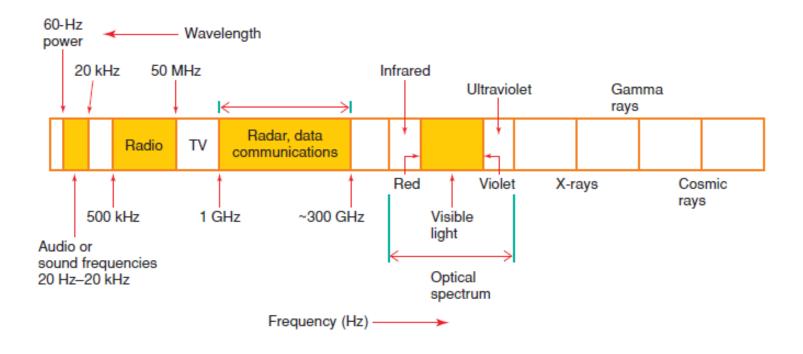
Eng. Antonio Sandro Verri


Profa. Fatima Salete Correra

Prof. José Kleber da Cunha Pinto

Fibras Ópticas

- Introdução (histórico e aplicações)
- Princípios básicos
- Propagação em fibras ópticas
 - Tipos de fibras
 - Modos propagantes
- Dispersão em fibras ópticas
- Atenuação Tipos de perdas
- Cabos e conectores


Fibras Ópticas

Uma definição: são guias de onda cilíndricos feitos de vidro ou plástico, utilizados como meio para a transmissão de luz.

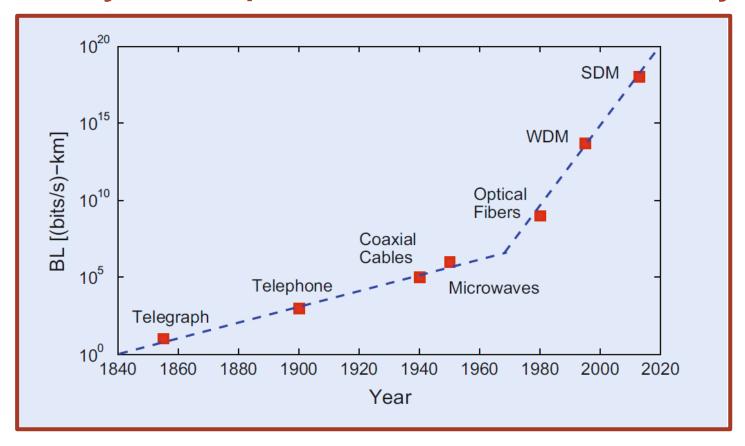
- Elemento fundamental na comunicação óptica, que permitiu uma revolução nas telecomunicações mundial.
- Atualmente, as pessoas se conectam, acessam informação e controlam equipamentos remotamente utilizando redes de internet que operam em alta velocidade
- O mundo está conectado através de cabos ópticos submarinos e dutos subterrâneos

Espectro de Frequências de Ondas Eletromagnéticas

Faixa de comunicação óptica 185 THz (1625 nm) → 375 THz (800 nm) *

* É muito comum citarmos a luz em termos de seu comprimento de onda em nm

Grande capacidade de transmitir informação

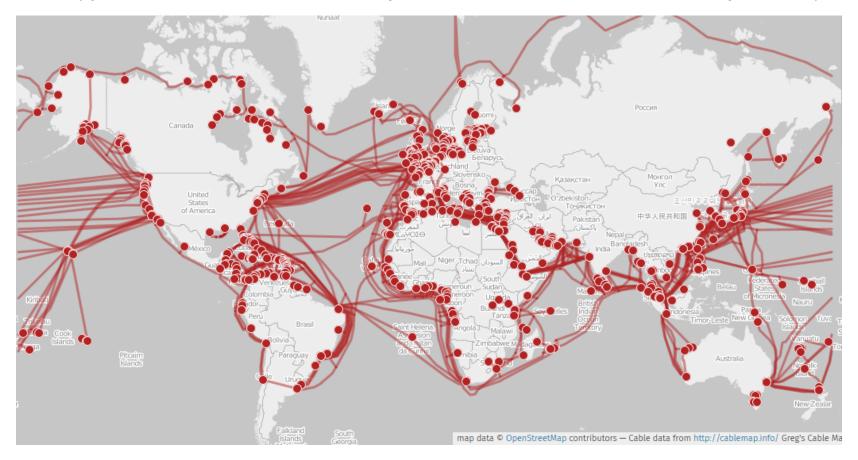

Qual o número de canais de TV, ocupando 6 MHz de banda, seria possível transmitir em 1% de banda de uma portadora de 3 GHz?

$$N = \frac{3x10^9.0,01}{6x10^6} = 5 \text{ canais}$$

Repita o cálculo utilizando 1% de banda de uma portadora de 187 THz da faixa de comunicação óptica?

$$N = \frac{187x10^{12}.0,01}{6x10^6} = 311.666 \text{ canais}$$

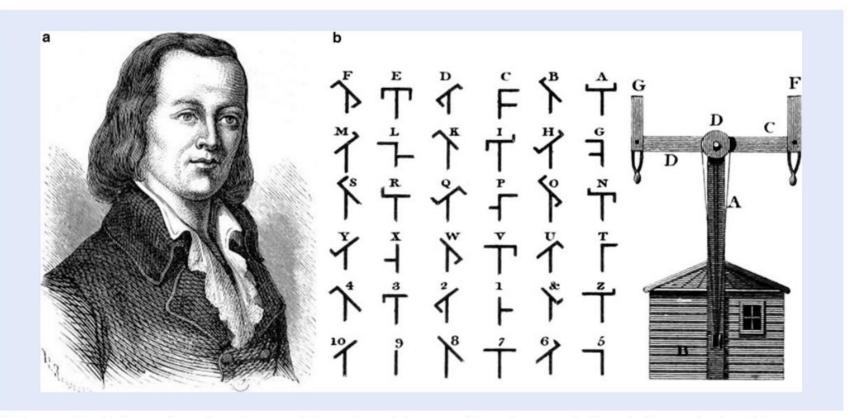
Evolução da capacidade de transmitir informação


Onde: **B** é a taxa de bits

L é a distância entre repetidores em km

Distribuição de Cabos Ópticos pelo Mundo

Comunicação por cabos submarinos de fibra óptica


(para detalhes acesse: https://www.submarinecablemap.com/)

Aplicações de fibras ópticas

- Comunicações
 - Meio de transmissão (curtas e longas distâncias)
 - Construção de novos componentes (Acopladores e multiplexadores)
- Área médica
 - Iluminação
 - Cauterização e quebra de pedras nos rins (LASER)
- Sensores
 - Petróleo (Sensores de temperatura, pressão e vibração)
 - Aviação (Monitoramento da estrutura da aeronave)
 - Potência e Energia (Medida de altas tensões e correntes)

• 1791 – Claude Chappe inventou o telégrafo óptico

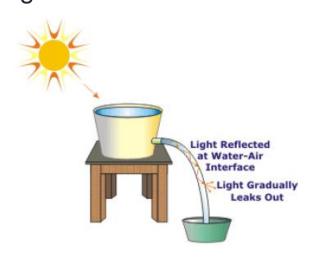

• Fig. 8.1 Claude Chappe, his coding scheme, and the mechanical device used for making optical telegraphs (licensed under Public Domain via Wikimedia Commons)

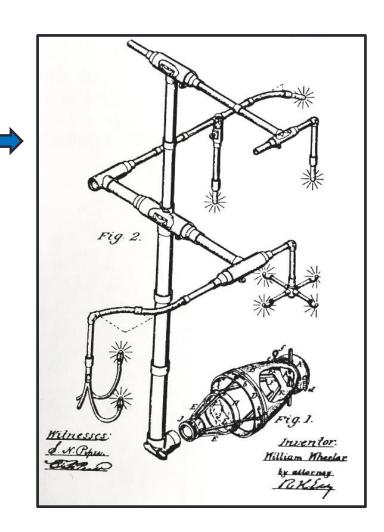
Foto de uma torre com telégrafo óptico de Chappe

https://commons.wikimedia.org/w/index.php?curid=784410

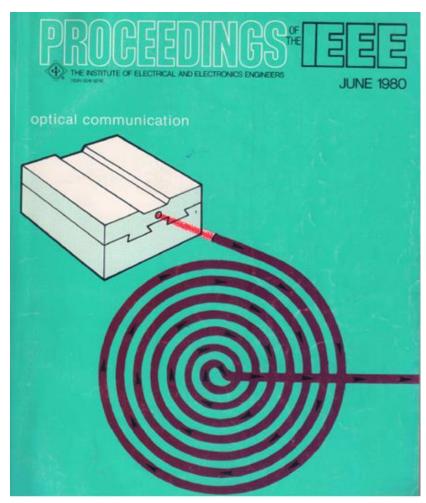
 1841 – Tyndall-Colladon demonstraram que a luz do sol poderia ser transmitida por um fluxo curvilíneo de água

Veja o vídeo do link abaixo:

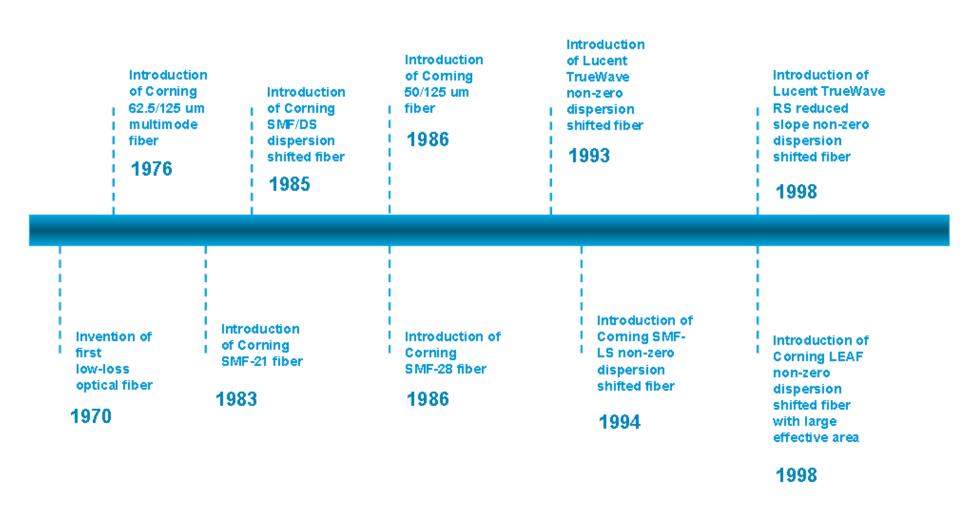
www.youtube.com/watch?v=ifbCsha7Syc


- 1853 A idéia de Tyndall-Colladon foi utilizada pelo Paris
 Opera para criar efeitos especiais durante uma apresentação da ópera-ballet Fausto de Gounod
- Exemplo de propagação de luz por feixes de água

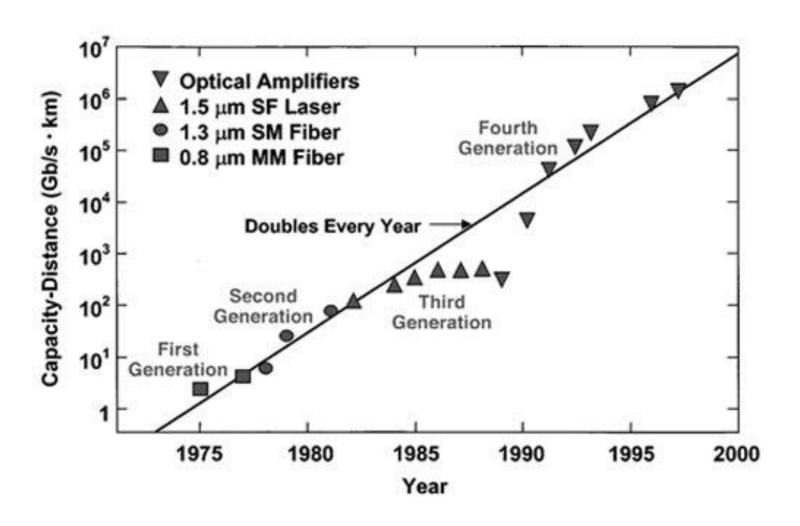
 1881 – Willian Wheeler patenteou a idéia de que um ambiente interno poderia ser iluminado utilizando uma única fonte de luz e canos espelhados



 1959 – Gordon Gould inventou o diodo Laser


- 1966 Apresentada a primeira proposta de fibra óptica para fins de comunicação óptica (perdas de 1000 dB/km)
- 1970 A empresa Corning Glass Works fabrica a primeira fibra óptica com perdas abaixo de 20 dB/km.
- 1970 Desenvolvimento de LASERs em GaAs (Arseneto de Gálio) adequados para transmissão de luz em grandes distâncias.
- 1975 Lançado o primeiro sistema de comunicação óptico comercial operando em comprimento de onda de 800 nm, com Laser a semicondutor GaAs. Operavam com taxas de 45 Mbits/s com repetidores a cada 10 km.

- 1980 Revistas científicas dedicavam cada vez mais espaço à nova tecnologia
- 1987 2ª geração de sistema de comunicação óptico operando em 1300 nm com fibra monomodo. Taxas de 1,7 Gbits/s e repetidores a cada 50 km.
- 1988 Primeiro cabo óptico transatlântico
- 1987 3ª geração de sistema de comunicação óptico (λ=1550 nm) com taxas de 2,5 Gbits/s. As perdas de 0,2 dB/km permitiram o uso de repetidores a cada 100 km.


FIBRAS ÓPTICAS

Desenvolvimento das fibras ópticas comerciais

Sistemas com Fibras Ópticas

Evolução de quatro gerações de sistemas ópticos

Detalhes de 4 gerações de Sistemas Ópticos

<u>Primeira Geração</u> (Fibras de Índice-Gradual)

- Ano implementado: 1980
- Taxa de bits: 45 Mb/s
- Repeater spacing: 10 km
- λ de operação: 0.8 um
- Semiconductor: GaAs

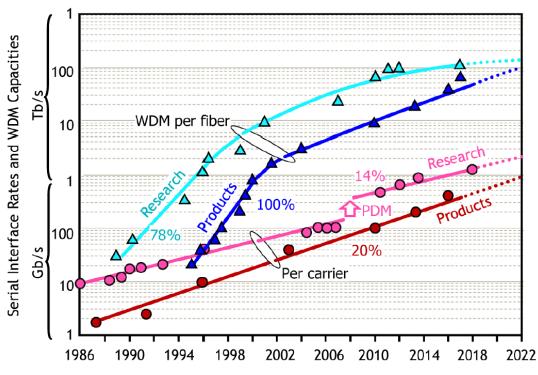
<u>Terceira Geração</u> (Lasers Monomodos)

- Ano implementado: 1990
- Taxa de bits: 10 Gb/s
- Repeater spacing: 100 km
- λ de operação: 1.55 um

Segunda Geração (Fibras Monomodos)

- Ano implementado: 1985
- Taxa de bits: 100 Mb/s to 1.7 Gb/s
- Repeater spacing: 50 km
- λ de operação: 1.3 um
- Semiconductor: In GaAsP

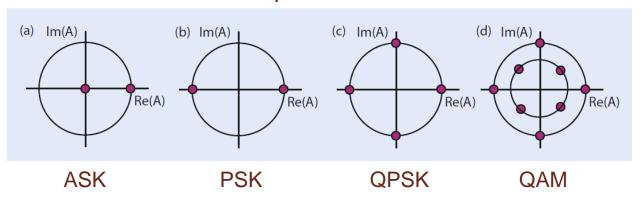
Quarta Geração (Amplificadores Ópticos)

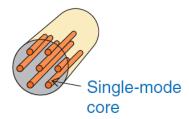

- Ano implementado: 1996
- Taxa de bits: 10 Tb/s
- Repeater spacing: > 400 km
- λ de operação: 1.45 um to 1.62 um

Sistemas de comunicação por fibras ópticas

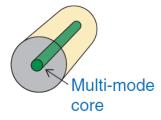
Vantagens

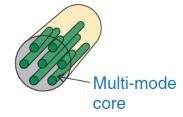
- Banda mais largas
- Altas taxas de transmissão
- Transmissão a longas distâncias com baixas perdas (0,1 dB/km)
- Imunidade a interferência eletromagnética

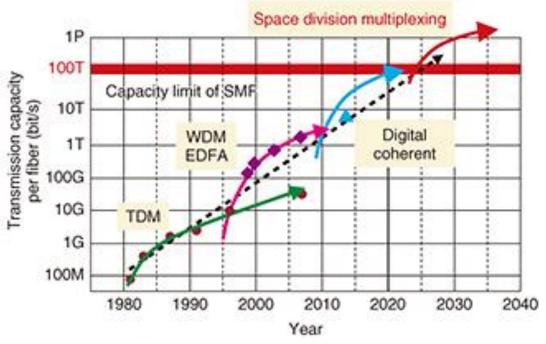

Evolução dos sistemas ópticos


Capacidades de transmissão (bits/s) obtidas por produtos comerciais e em pesquisa, considerando resultados obtidos por portadora e em sistemas WDM.

Quinta Geração de Sistemas Ópticos


- Desenvolvimento de sistemas DWDM mais eficientes
- Utilização de sistemas de detecção coerente
- Aumento da eficiência espectral


SDM (Space Division Multiplexing)

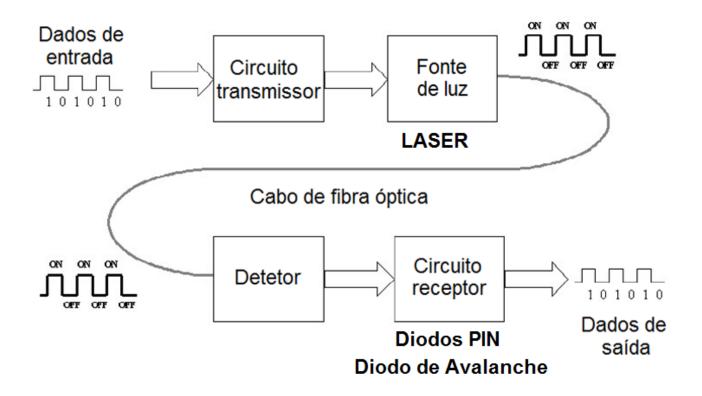


(b) Multi-mode fiber

(c) Multi-mode multi-core fiber Ex: 6 modos por núcleo

Evolução e Previsão dos Sistemas Ópticos Comerciais

EDFA: erbium-doped fiber amplifier


TDM: time division multiplexing

WDM: wavelength division multiplexing

Figura do artigo "World's Highest Density Optical Fiber for Space Division Multiplexing with Deployable Reliability" NTT Technical Review, Feb 2017.

Detalhes sobre SDM – Space-Division Multiplexing (ver artigo "Space Division Multiplexing in Optical Fibres" Nature Photonics, Apr 2013)

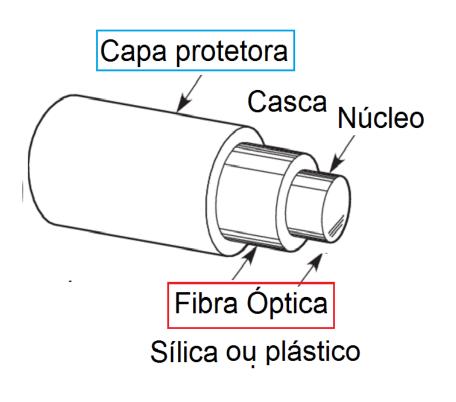
Exemplo de um sistema de comunicação por fibra óptica

- Fibra óptica → meio guiado
- Fibra óptica conduz o sinal luminoso, com amplitude modulada pela informação

Instalação de cabos submarinos de fibra óptica

A instalação de cabos
 ópticos submarinos é feita
 por navios (cableship)
 construídos exclusivamente
 para esta função.

Veja vídeo ilustrativo

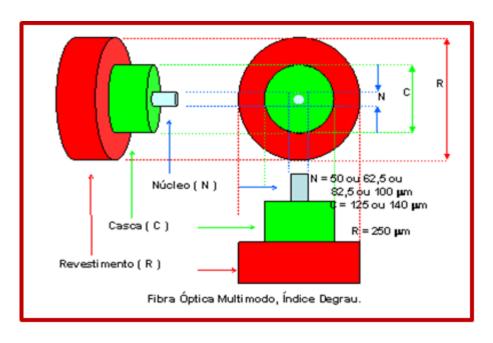

https://youtu.be/_T-wlLgB1zM

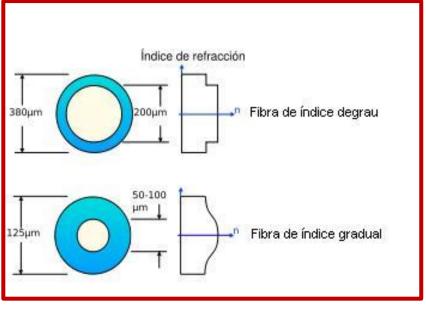
Cableship "Sir Erik Sharp"

FIBRAS ÓPTICAS

Estrutura e exemplos de fibras ópticas

Estrutura da fibra óptica

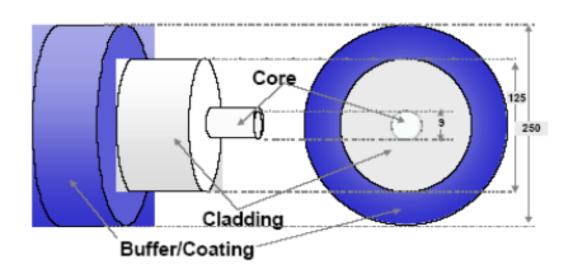

Fibras ópticas



Tipos de fibra óptica

- Fibras ópticas multimodo
 - Aplicações de curta distância, que exigem baixo custo
 - Distribuição de TV de alta definição para assinantes
 - Distribuição de Internet com taxas de 500 Mb/s (2020)
- Fibras ópticas monomodo
 - Transmissão de dados, voz e imagem a longa distância
 - Transmissão de altas taxas de bits
 - Sistemas DWDM Dense Wavelength Division Multiplexing, usando vários comprimentos de onda, com taxas de Tb/s

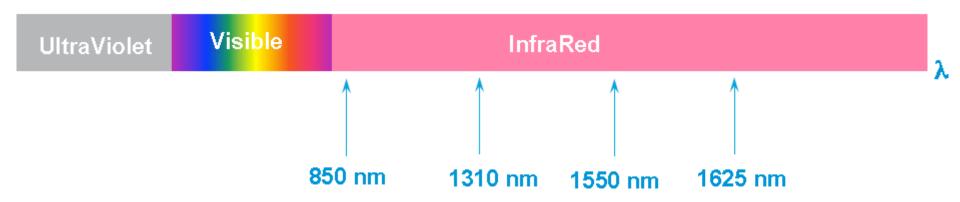
Fibra Óptica Multimodo - Dimensões e geometria


- Diâmetro da Casca
 Varia de 140 a 400 um
- Diâmentro do núcleo
 Varia de 50 a 200 um

- Índice refração do núcleo
 - a) Índice-degrau
 - b) Índice-gradual

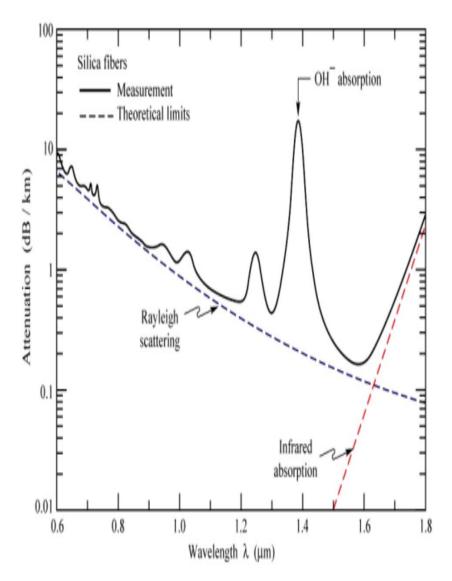
Fibra Óptica Monomodo Dimensões e geometria

A fibra óptica monomodo é composta por 3 partes:


- O núcleo (Core) que é responsável pela transmissão da luz (diâmetro ~9 um)
- O índice de refração entre o núcleo e casca (cladding) que mantém a luz no interior da fibra (diâmetro ~125 um)

A capa externa (coating)
 para a proteção da fibra
 (diâmetro ~250 um)

FIBRAS ÓPTICAS

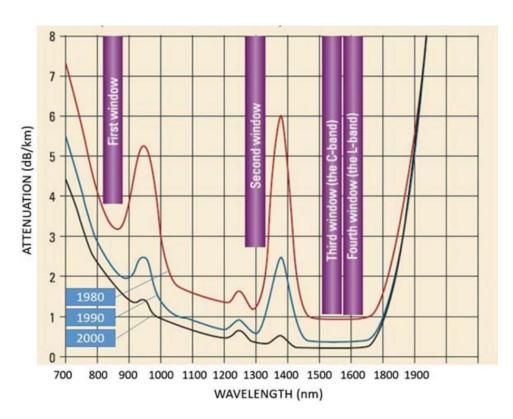

Região de operação → frequências de infravermelho

- 850 nm sobre fibra multimodo
- 1310 nm sobre fibra monomodo
- Banda-C: 1550 nm sobre fibra monomodo
- Banda-L: 1625 nm sobre fibra monomodo

Regiões com atenuação reduzida em fibras ópticas comerciais

ATENUAÇÃO DAS FIBRAS ÓPTICAS

Principais mecanismos de atenuação em função do comprimento de onda:


- Absorção (α): que depende do material e do comprimento de onda.
- Espalhamento de Rayleigh (S): A luz choca-se com partículas do material, que é desviada para outra direção. A perda por este efeito é dada por:

$$S = A_0 \cdot (\frac{\lambda_0}{\lambda})^4 \text{ (dB/km)}$$

 A_0 é uma constante que depende do material.

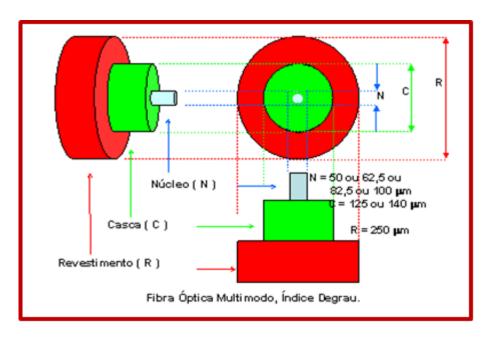
EVOLUÇÃO NA ATENUAÇÃO DAS FIBRAS ÓPTICAS

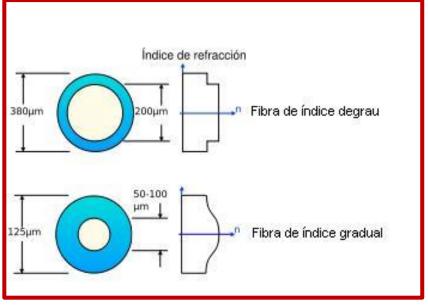
Atenuação da fibra óptica em função do comprimento de onda

Fiber optic	attenuation spectrum
with the	telecom windows

Year	Record Attenuation [⁺] (dB/km)	Attenuation of G.652 at 1550 nm (dB/km)
1970	20*	
1973	5**	
1976	0.47***	
1979	0.20	
1986	0.154	0.26
2001	0.152	0.20
2002	0.1495	0.20
2004		0.19
2007		0.18
2013	0.1480	0.17
2015	0.1460	

*In 1550nm-1600nm window unless wavelength is designated * 632.8 nm, ** 850 nm *** 1200nm

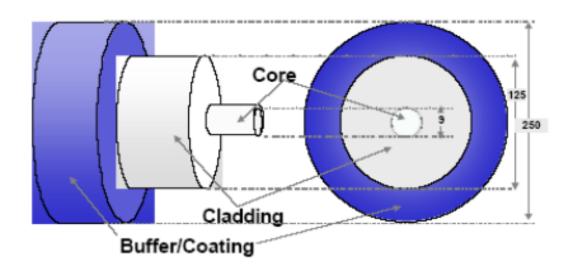

FIBRAS ÓPTICAS – Bandas de Utilização


Designação	Banda (nm)	Tipo de fibra	Aplicações
_	820-900	Multimodal	LAN, Ethernet Ex: 1000 Base-Sx
0	1260-1360	Monomodal	Mono –λ PON, Ethernet
С	1530-1565	Monomodal	Mono –λ e WDM
L	1565-1625	Monomodal	WDM
E	1350-1450	Monomodal	WDM
S	1460-1530	Monomodal	WDM, LAN PON
U	1625-1675	Monomodal	WDM

Tipos de fibra óptica

- Fibras ópticas multimodo
 - Aplicações de curta distância, que exigem baixo custo
 - Distribuição de TV de alta definição para assinantes
 - Distribuição de Internet com taxas de 500 Mb/s (2020)
- Fibras ópticas monomodo
 - Transmissão de dados, voz e imagem a longa distância
 - Transmissão de altas taxas de bits
 - Sistemas DWDM Dense Wavelength Division Multiplexing, usando vários comprimentos de onda, com taxas de Tb/s

Fibra Óptica Multimodo - Dimensões e geometria


- Diâmetro da Casca
 Varia de 140 a 400 um
- Diâmentro do núcleo
 Varia de 50 a 200 um

- Índice refração do núcleo
 - a) Índice-degrau
 - b) Índice-gradual

Fibra Óptica Monomodo Dimensões e geometria

A fibra óptica monomodo é composta por 3 partes:

- O núcleo (Core) que é responsável pela transmissão da luz (diâmetro ~9 um)
- O índice de refração entre o núcleo e casca (cladding) que mantém a luz no interior da fibra (diâmetro ~125 um)

A capa externa (coating)
 para a proteção da fibra
 (diâmetro ~250 um)

Algumas leis básicas da óptica

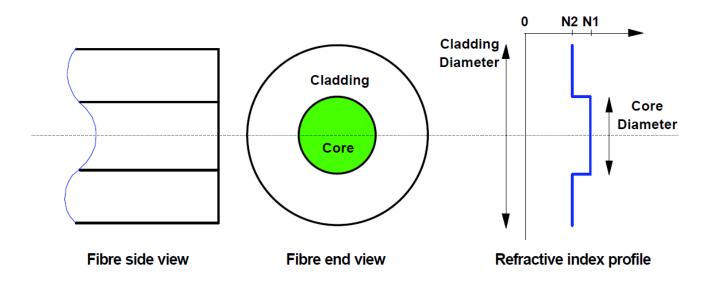
Índice de Refração

$$n = \frac{c}{v} = \sqrt{\frac{\varepsilon \mu}{\varepsilon_o \mu_o}} = \sqrt{\varepsilon_r \mu_r}$$

$$c = \text{speed of light in vacuum} \ (\approx 3 \times 10^8 \text{ m/s})$$
 $v = \text{speed of light in medium}$

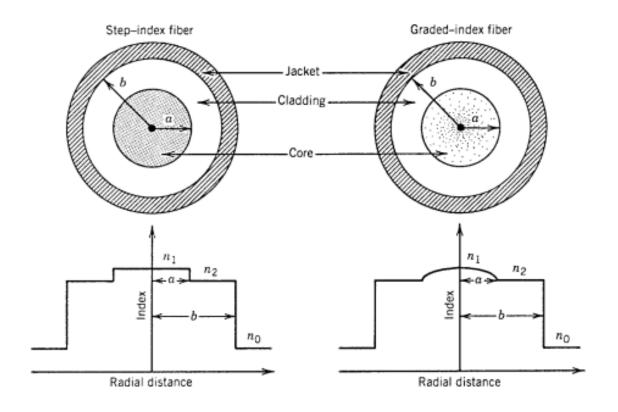
$$v = \text{speed of light in medium}$$

$$v = \text{speed of light in medium}$$


$$v = 4\pi \times 10^{-7} \text{ N s}^2/\text{C}^2$$

$$v = \frac{1}{\sqrt{\varepsilon_o \mu_o}} \left(\frac{1}{\sqrt{\varepsilon_o \mu_o}} \right)$$
Permitivity in vacuum
$$v = 8.854 \times 10^{-12} \text{ C}^2/\text{N m}^2$$

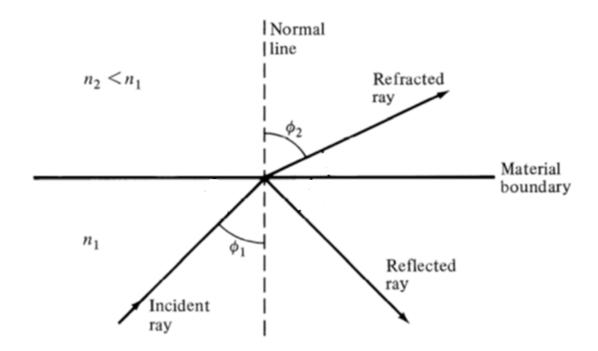
For most materials in the optical region: $\mu_r \approx 1 \implies n \approx \sqrt{\varepsilon_r}$


Meio material	Índice de refração (n)	
ar	1,00	
água	1,33	
vidro	1,50 1,90 1,36 2,42	
glicerina		
álcool etílico		
diamante		
acrílico	1,49	

Índice de refração no perfil da fibra óptica

- Fibra óptica com índice de refração em degrau
- O primeiro e mais simples perfil de fibra
- Índice de refração do núcleo é N1 e da casca é N2

Perfil da Fibra Óptica Multimodos


Perfil de índice de refração em degrau (step)

Perfil de índice de refração gradual para redução da dispersão

Algumas leis básicas da óptica

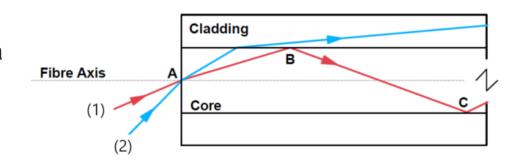
Lei de Snell-Descartes

$$n_1 \sin \phi_1 = n_2 \sin \phi_2$$

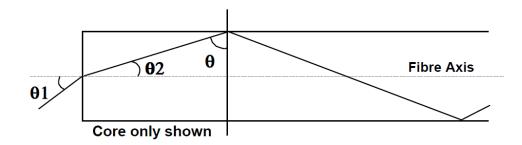
Algumas leis básicas da óptica

Reflexão Interna Total

Luz propagando-se numa fibra


Ângulo Crítico

$$\sin \phi_c = \frac{\mathbf{n}_2}{\mathbf{n}_1}$$



Propagação na fibra óptica - ângulo máximo

- Lembrar que o índice de refração do núcleo é maior que o da casca
- O raio (1) sofre reflexão total e o raio (2) não sofre.

- O ângulo θ precisa ser maior que o ângulo crítico para reflexão total.
- Apenas os raios de luz que entram na fibra com um ângulo θ₁ menor que o ângulo máximo irão se propagar pela fibra

Cálculo do ângulo máximo

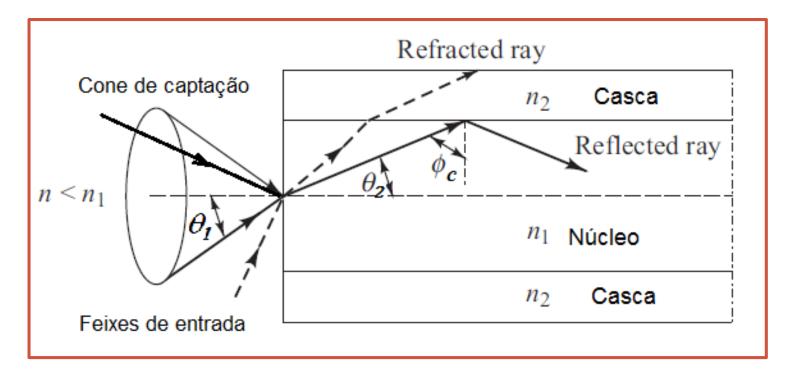
Utilizando trigonometria

$$\theta_1 = \sin^{-1}(n_1 \sin(90^\circ - \theta_c))$$

$$\theta_1 = \sin^{-1} \left[n_1 \sqrt{\cos^2 \theta_0} \right]$$

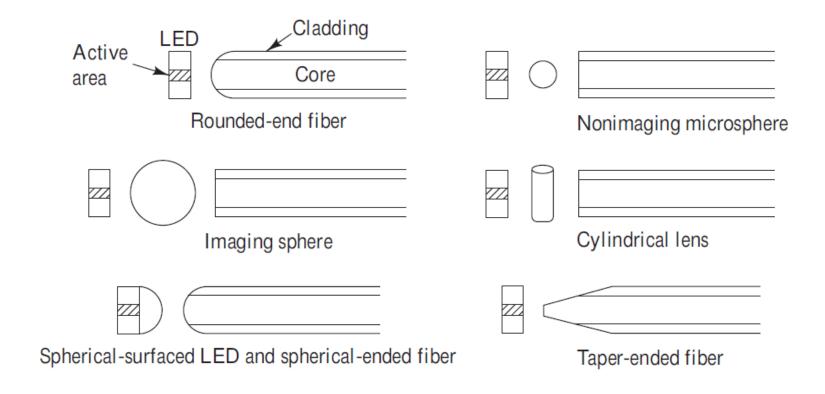
$$\theta_1 = \sin^{-1} \left[n_1 \sqrt{1 - \frac{n_2^2}{n_1^2}} \right]$$

$$\theta_1 = \sin^{-1} \left[\sqrt{n_1^2 - n_2^2} \right]$$


O seno deste ângulo θ_1 é conhecido como Abertura Numérica da fibra ou simplesmente NA.

Portanto:

$$NA = \sqrt{(n_1^2 - n_2^2)}$$


O ângulo θ_1 é conhecido como **Ângulo de Aceitação Máximo**

Propagação na Fibra Óptica - Ângulo Máximo

- Aceitável para propagação
- ----- Não aceitável para propagação

Esquemas de Lentes para Melhoria de Acoplamento de Luz

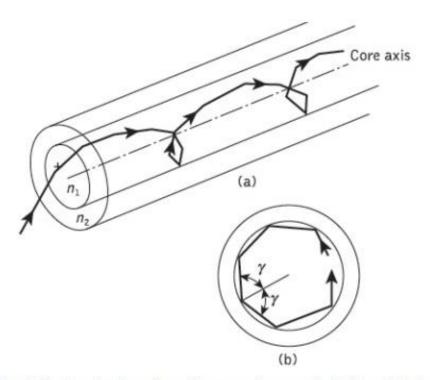
Um dos métodos mais eficientes é a utilização de uma microesfera de imagem nula (Nonimaging microsphere)

Exercício

Dada uma fibra óptica com perfil de índice de refração em degrau, cujo núcleo apresenta valor de índice de refração de 1,50 e a casca de 1,48, calcule a abertura numérica e o máximo ângulo de aceitação desta fibra.

Exercício

Dada uma fibra óptica com perfil de índice de refração em degrau, cujo núcleo apresenta valor de índice de refração de 1,50 e a casca de 1,48, calcule a abertura numérica e o máximo ângulo de aceitação desta fibra.

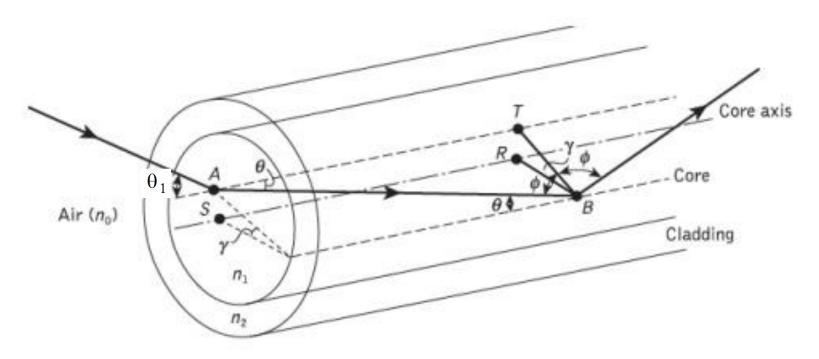

$$NA = \sqrt{(n_1^2 - n_2^2)} = \sqrt{(1,50^2 - 1,48^2)}$$

$$NA = 0.244$$

$$\theta_1 = sen^{-1}(0.244) = 14.13^{\circ}$$

Propagação helicoidal na fibra (Skew Propagation)

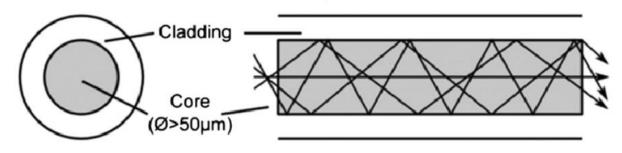
- Os raios de luz não passam pelo eixo central da fibra
- A luz tem um comportamento helicoidal na propagação


The helical path taken by a skew ray in an optical fiber: (a) skew ray path down the fiber; (b) cross-sectional view of the fiber

Propagação helicoidal na fibra (Skew Propagation)

A análise para propagação helicoidal é um pouco mais complexa.

O máximo ângulo de aceitação será calculado a partir da expressão:


$$\theta_1 = \operatorname{Sin}^{-1} \left[\frac{\sqrt{(n_1^2 - n_2^2)}}{\operatorname{Cos} \ \gamma} \right]$$

Modos de Propagação na Fibra Óptica

 Assim como em guias metálicos cilíndricos, as fibras ópticas podem apresentar um grande número de modos de propagação.

Multimode Step Index Fibre

OBS: A solução das equações de Maxwell para guias ópticos envolve muita álgebra e trabalho. O desenvolvimento matemático pode ser visto na seguinte referência:

E. Snitzer, "Cylindric dielectric waveguide modes", J. Opt. Soc. Am., 51, p. 491, 1961.

1) Fibra de Índice em Degrau

Frequência Normalizada para uma Fibra Óptica

- Trata-se de um parâmetro adimensional que combina várias variáveis da fibra.
- A frequência normalizada "V" é definida pela equação:

$$V = \frac{2\pi a}{\lambda} \cdot \sqrt{n_1^2 - n_2^2}$$

onde "a" é o raio do núcleo da fibra e λ é o comprimento de onda de operação.

 Pode ser usada também a seguinte definição:

$$V = \frac{2\pi}{\lambda}$$
 a.NA

 Podemos calcular V em função parâmetro do ∆, conhecido como diferença relativa entre os índices de refração, dado pela equação
 ,
 ,

$$\Delta = \frac{n_1^2 - n_2^2}{2n_1^2}$$

Se Δ for <<1, então Δ é dado por:

$$\Delta = \frac{n_1 - n_2}{n_1}$$

Intervalos de valores típicos para Δ :

- 1% a 3% para fibras multimodos
- 0,2% a 1% para fibras monomodo

Com isso a equação de V pode ser reescrita como:

$$V = \frac{2\pi}{\lambda} a.n_1 \sqrt{2\Delta}$$

O parâmetro V também é chamado de número V.

A dedução de "V" é apresentada no artigo . "Asymptotic Expressions for Eigenfunctions and Eigen Values of a Dielectric or Optical Waveguide" Dec, 1969. IEEE Transactions on Microwave Theory and Techniques

Número de modos de uma Fibra Índice em Degrau

- O parâmetro V também é chamado de número V.
- O número de modos propagando-se por uma fibra com índice em degrau multimodo é dependente das dimensões da fibra, da relação ∆ e do comprimento de onda da fonte de luz utilizada.
- Este número de modos M em função da frequência normalizada pode ser calculado pela expressão abaixo:

$$M \approx \frac{1}{2} \left(\frac{2\pi a}{\lambda} \right)^2 \left(n_1^2 - n_2^2 \right) = \frac{V^2}{2}$$

Número de modos em função do diâmetro do núcleo e de λ

Exercício: Uma fibra índice em degrau com diâmetro do núcleo de 80 μ m tem uma diferença relativa entre os índices de refração de 1,5% (Δ =0,015), índice de refração do núcleo de 1,48 e opera com 850 nm. Calcule a Frequência Normalizada e o número de modos propagando-se pela fibra. (Resposta: V=75,8 e M=2873)

$$V = \frac{2\pi}{\lambda} a.n_1 \sqrt{2\Delta}$$

$$V = \frac{2\pi}{850}.40.10^3.1,48.\sqrt{2.0,015} = 75,8$$

$$M \approx \frac{V^2}{2} \longrightarrow M = \frac{75.8^2}{2} = 2873$$

Número de modos em função do diâmetro do núcleo e de λ

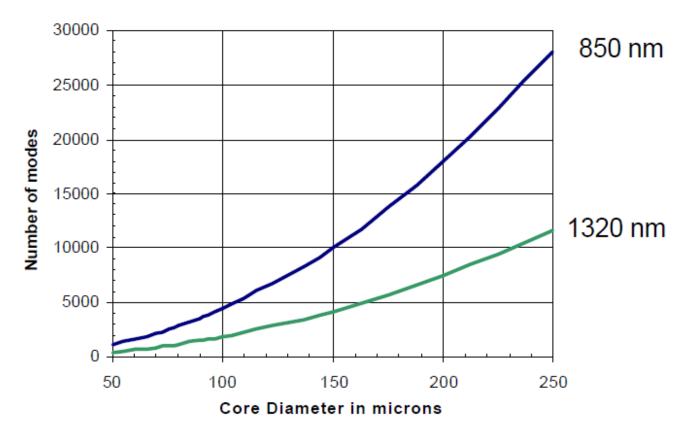
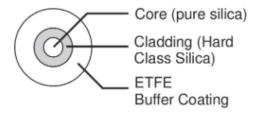


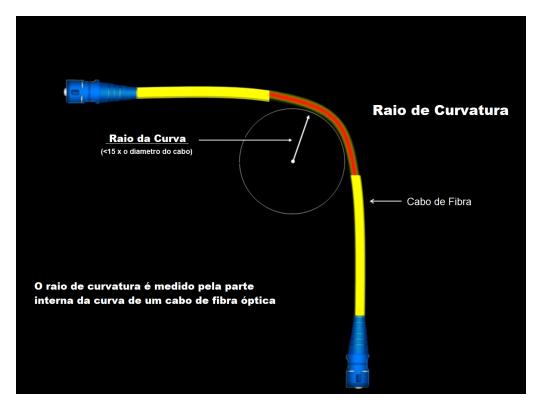
Gráfico mostra a variação do número de em função do diâmetro do núcleo da fibra óptica para fontes de luz com comprimentos de onda de 820 nm e 1320 nm


Multimode Fiber, Step Index, 500-1100 nm, 0.37 NA, 200 µm Core

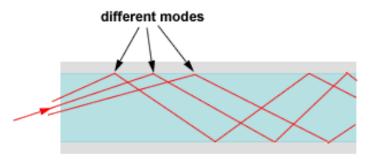
MODEL: F-MBB

Technical Specs

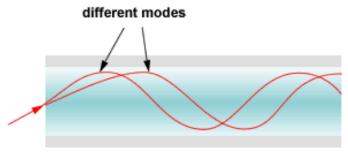
Index Profile	Step	Buffer Coat
Fiber Type	Multimode	Bandwidth
Core Diameter	200 ±4 μm	Bend Radiu
Cladding Diameter	230 +0/-10 μm	Numerical A
Coating Diameter	500 ±30 μm	Proof Test
Operating Wavelength	500-1100 nm	


Buffer Coating Material	Dual Acrylate
Bandwidth	20 MHz/km
Bend Radius 60 min./20 yrs.	10/16 mm
Numerical Aperture	0.37
Proof Test	100 kpsi

Fibra comercializada pela Newport Corporation


Raio Mínimo de Curvatura de uma Fibra Óptica

As fibras ópticas podem ser dobradas, mas existe um Raio Mínimo de Curvatura que deve ser respeitado para que não haja vazamento de luz e/ou a fibra não seja danificada.



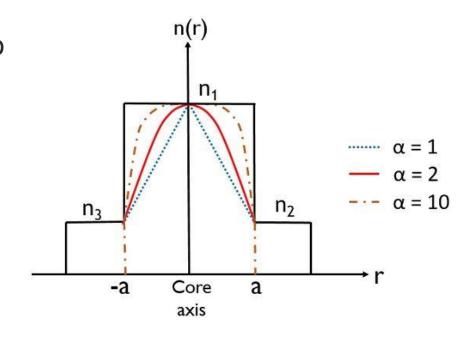
2) Fibra de Índice Gradual

Step-Index Multimode Fiber

- Diâmetro do núcleo varia de 50 a 120 um
- Os raios de luz seguem caminhos curvos dentro da fibra

Graded-Index Multimode Fiber

Principais vantagens


- Reduz o número de modos
- Capacidade de transmissão de dados é maior

2) Fibra de Índice Gradual

A variação do índice de refração n(r) pode ser representado pela expressão abaixo:

$$n(r) = n_1 \sqrt{(1-2\Delta (r/a)^{\alpha})}$$
for r < a (core)

$$n(r) = n_1 \sqrt{(1-2\Delta)} = n_2$$

for r > a (cladding)

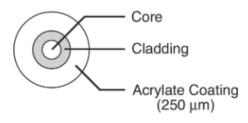
O valor parâmetro de perfil mais comum é α =2, conhecido como perfil parabólico.

2) Fibra de Índice Gradual

O número de modos em uma fibra de índice gradual pode ser obtido de forma aproximada pela expressão abaixo:

$$M = \left(\frac{\alpha}{\alpha + 2}\right) \frac{v^2}{2}$$

Utilizando o valor de parâmetro de perfil α =2, verifica-se o número de modos que se propagam na fibra de índice gradual será a metade dos modos na fibra de índice em degrau.


Multimode Fiber, Graded Index, 850/1300 nm, 0.275 NA, 62.5 µm Core

MODEL: F-MFD

Technical Specs

Index Profile	Graded
Fiber Type	Multimode
Core Diameter	62.5 ±2.5 μm
Cladding Diameter	125 ±1 μm
Coating Diameter	245 ±10 μm
Operating Wavelength	850/1300 nm

Buffer Coating Material	Dual Acrylate	
Maximum Attenuation	2.9/0.6 dB/km @850/1300 nm	
Bandwidth	200/500 MHz-km @850/1300 nm	
Numerical Aperture	0.275	
Proof Test	100 kpsi	

Fibra comercializada pela Newport Corporation

Modos de Propagação na Fibra Óptica

- 1) Modos TE (Transverse Electric)
- 2) Modos TM (Transverse Magnetic)
- 3) Modo TEM (Transverse ElectroMagnetic)
- 4) Modos HE e EH (Helical or Skew) Neste caso, há componentes de campo elétrico e magnético na direção de propagação. São chamados de HE ou EH dependendo da maior componente de campo na direção de propagação.
- 5) Modos LP (Linearly Polarised)

 A superposição de modos TE, TM, HE e EH com mesma constante de propagação corresponde a um modo LP independentemente da configuração de campos de cada modo.

Modos de Propagação na Fibra Óptica

Mode Effective Index vs Normalized Frequency

Small
$$\Delta n = n_1 - n_2 = 0.03$$

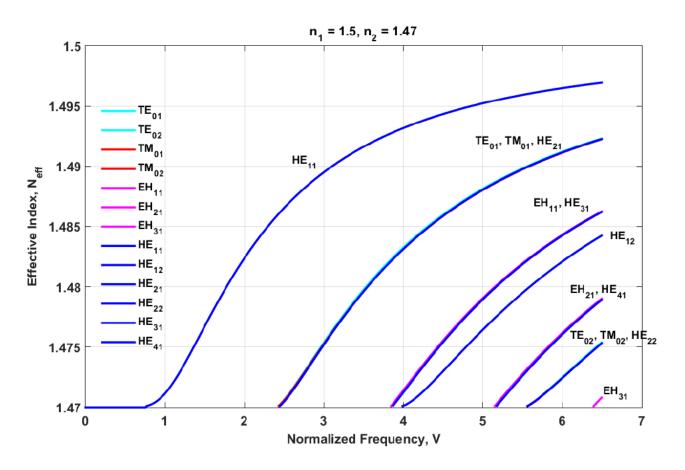


Imagem publicada em transparências de aula do Prof. Elias N. Glytsis, School of ECE, NTUA

Denominação dos Modos de Propagação

TE e TM

(Transverse Electric e Magnetic)

TEM

(Transverse

ElectroMagnetic)

HE ou EH

(Helical "Skew")

• LP

(Linearly Polarised)

Linearly polarized mode	Hybrid modes	Field distribution	$\begin{array}{ c c c c c } \hline \text{Intensity} \\ \text{distribution of} & E_{\chi} \\ \hline \end{array}$
LP ₀₁	HE ₁₁	() () () () () () () () () ()	
LP ₁₁	TE ₀₁		
	TM ₀₁		1
	HE ₂₁	\bigcirc	1
LP ₂₁	EH ₁₁		
	HE ₃₁		

Formação dos Modos LP₁₁

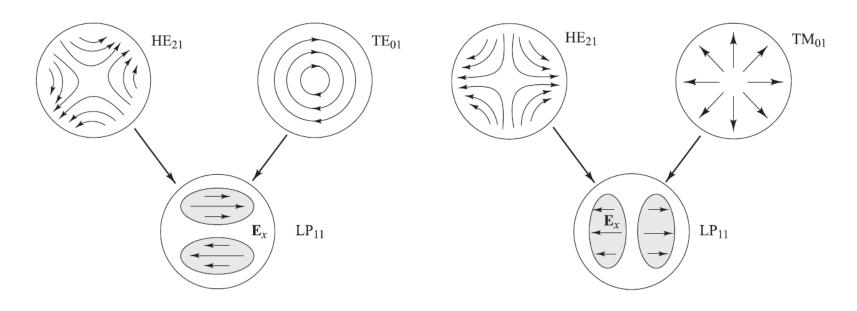
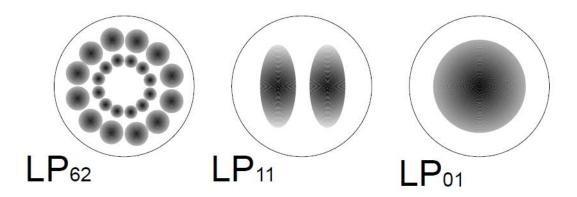



Imagem publicada no livro "Comunicações por Fibras Ópticas", Gerd Keiser, 4a edição. 2014

Composição dos dois modos LP₁₁ a partir dos modos TE₀₁, TM₀₁ e HE₂₁

Os modos TE_{01} , TM_{01} e HE_{21} possuem constante de propagação muito próximas na condição de n_1 - n_2 < 0,02

Distribuição de energia de alguns modos LP

- Os modos LP são chamados de LP_{lm} onde "m" é o número de máximos de energia ao longo do raio da fibra. "l" é a metade do número de máximos de energia ao longo da circunferência do núcleo.
- Na prática, TE e TM são utilizados quando trabalhamos com guias planares e LASERs. LP são usados quando estamos tratando de propagação em fibras multimodos.

Modos de Propagação na Fibra Óptica

 Exemplos de distribuição de radiação luminosa no feixe de saída de uma fibra multimodos.

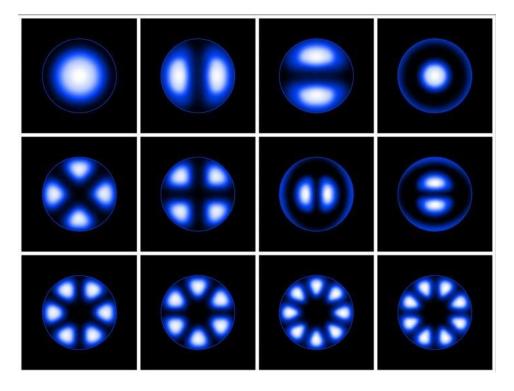
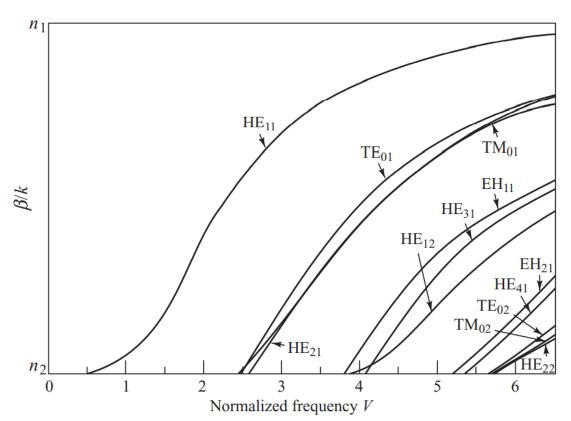



Imagem publicada no site photonics. "Large-Mode-Area Optical Fibers Maintain Polarization" Oct, 2017. Courtesy of MIPT (Moscow Institute of Physics and Technology) Press Office.

Frequência Normalizada para uma Fibra Óptica 3) Fibra Monomodo

A propagação de modos pode ser analisada pelo gráfico abaixo.

A operação em monomodo ocorrerá quando $V_c=2,405$

Constante de propagação normalizada *b*

$$b = \frac{(\beta/k)^2 - n_2^2}{n_1^2 - n_2^2}$$

Quando β/k < n₂ não haverá propagação de onda

Exercício: Um engenheiro de produção deseja construir uma fibra óptica com núcleo de índice de 1,480 e uma casca com índice de 1,478. Qual deve ser o raio do núcleo para uma operação monomodo em 1550 nm?

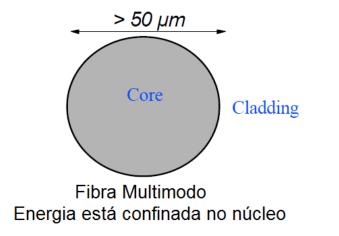
Considerando que a condição V≤ 2,405 deve ser satisfeita para uma operação monomodo, temos a seguinte solução:

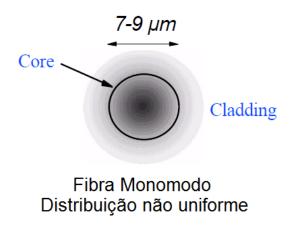
$$a = \frac{V\lambda}{2\pi} \frac{1}{\sqrt{n_1^2 - n_2^2}}$$

$$\leq \frac{2.405 \times 1.55 \mu \text{m}}{2\pi} \frac{1}{\sqrt{(1.480)^2 - (1.478)^2}} = 7.7 \mu \text{m}$$

Comprimento de Onda de Corte

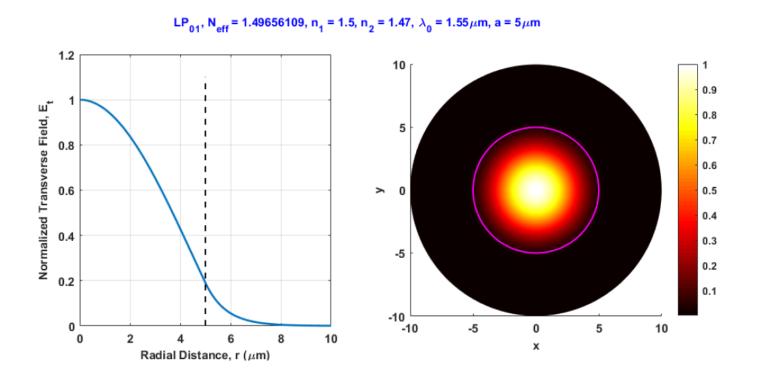
A operação em monomodo ocorrerá quando a fibra for excitada com comprimentos de onda abaixo do λ_c teórico, ou seja, para V < Vc = 2,405.


$$\lambda_c = \frac{2\pi}{V_c} \text{ a NA}$$

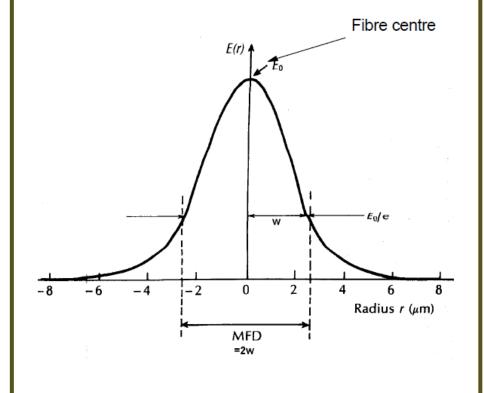

Exercício: Uma fibra monomodo tem um núcleo com índice de refração de 1,465 e índice de refração da casca de 1,46.

- a) Qual é o máximo diâmetro do núcleo se a fibra for utilizada com comprimento de onda de 1300 nm?
- b) Se o comprimento de onda utilizado for alterado para 1550 nm, qual o novo "V" da fibra?

Distribuição de energia em uma fibra monomodo

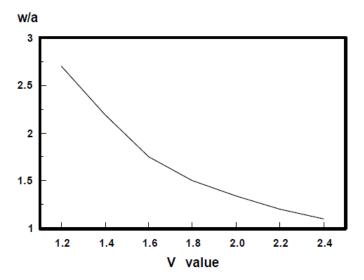

- Na fibra multimodos a energia fica concentrada dentro do núcleo (>99 %)
- Na fibra monomodo parte da energia propaga-se pela casca, o modelo de raio de luz já não funciona mais.

Distribuição de energia do modo HE₁₁ - Fibra Monomodo


Parameters: $n_1 = 1.50$, $n_2 = 1.47$, $a = 5\mu m$, $\lambda_0 = 1.55\mu m$

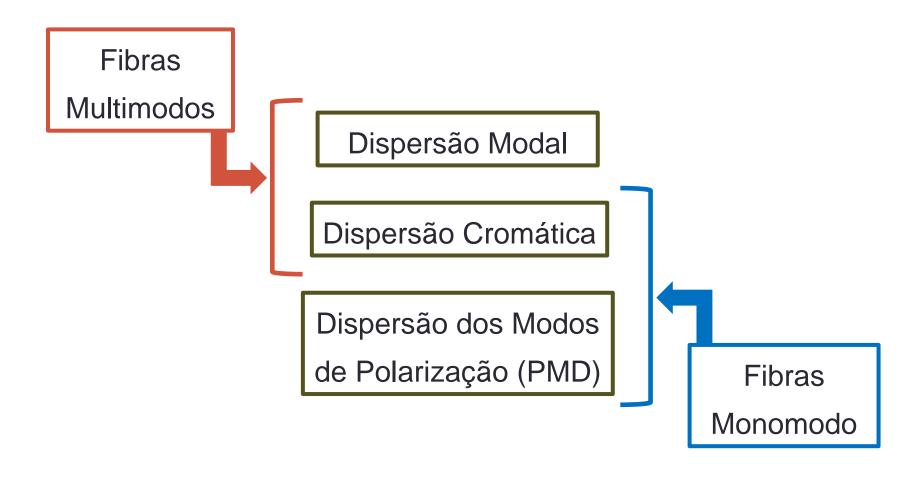
 Pureza da casca deve ser alta para manter propagação com baixas perdas.

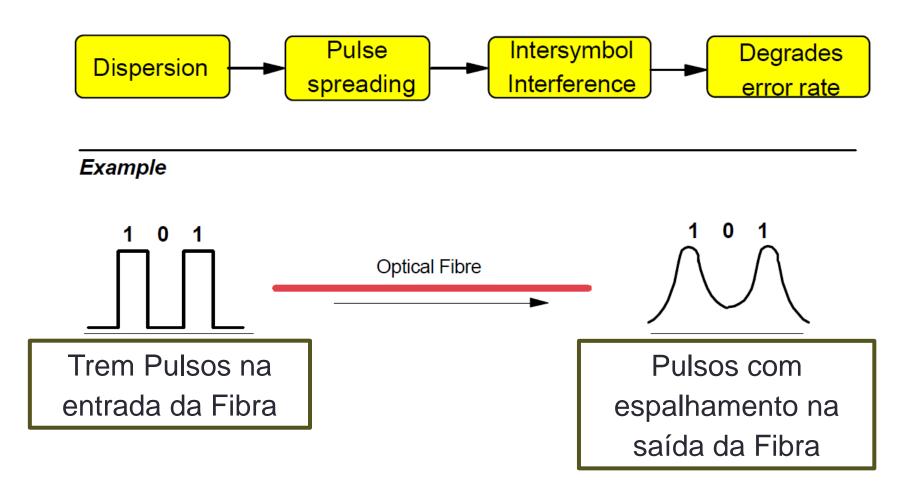
Diâmetro de Campo Modal – Modo HE₁₁

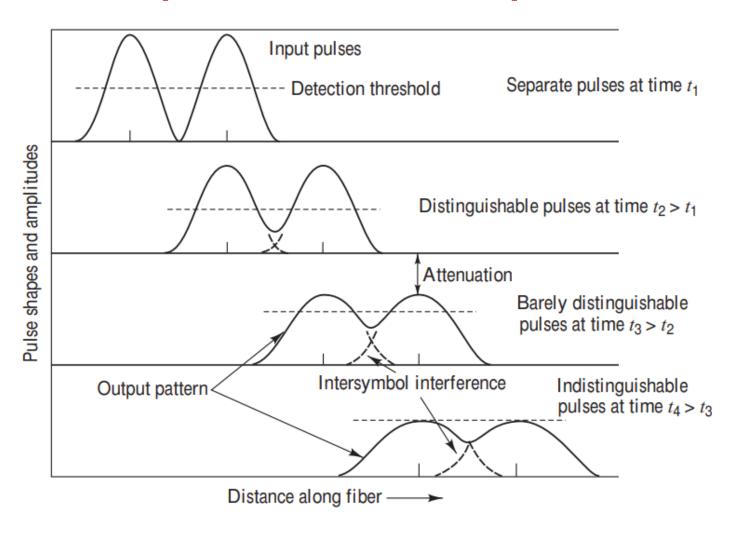

Diâmetro de Campo Modal (MFD) é definido como a largura do feixe de energia do modo HE₁₁

MFD relativo ao raio da fibra

$$\frac{W}{a}$$
 = 0.65 + 1.619 $V^{-3/2}$ + 2.879 V^{-6}

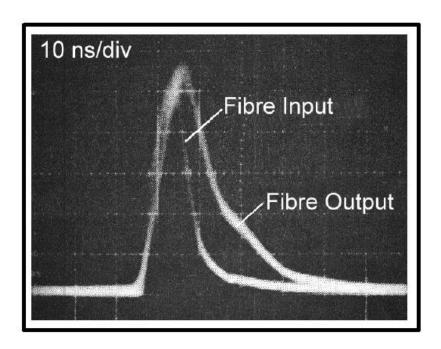

O valor de "V" deve ser entre 2,0 e 2,4, senão o MFD é muito maior que o núcleo da fibra.


Dispersão e Atenuação


São dois mecanismos importantes de distorção de sinais de luz que se propagam ao longo de uma fibra óptica.

- Dispersão → alarga os pulsos de luz na propagação
 - → limita a taxa máxima de bits transmitidos
- Atenuação → reduz a amplitude dos pulsos de luz
 - → limita a distância máxima de propagação
 - → necessidade de maior número de repetidores

Dispersão pode causar interferência intersimbólica



Dispersão ao longo da fibra óptica

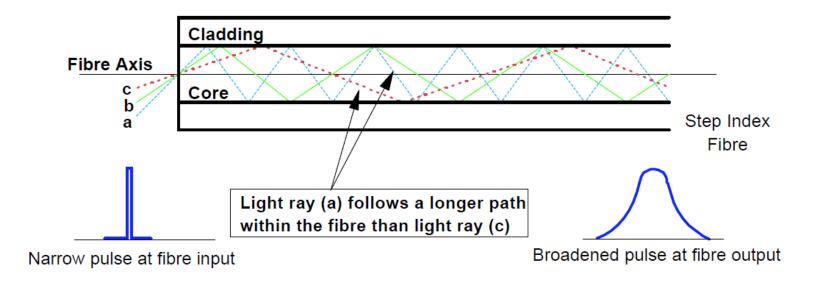
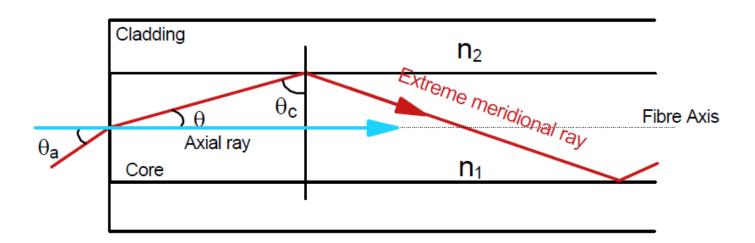

Importante: Quanto maior a dispersão menor será a taxa de bits trafegando na fibra

Foto de pulsos na entrada e na saída de uma fibra de vidro com 200µm de diâmetro de núcleo


Dispersão Modal

- Na fibra multimodos os diferentes modos propagam-se em diferentes velocidades
- Dispersão modal é maior em fibras multimodos com índice em degrau
- Fibras monomodo não apresentam dispersão modal

Dispersão Modal na Fibra Índice Degrau

- Na fibra multimodos com índice em degrau um impulso é aplicado na entrada da fibra.
- A energia é igualmente distribuída entre dois modos diferentes.
 O primeiro segue um caminho axial e o outro segue um caminho no ângulo crítico de incidência.
- Determina-se o atraso de um modo em relação ao outro.

Dispersão Modal na Fibra Índice Degrau

Define-se como:

- L, o comprimento total usado na transmissão
- T_{MAX} , o tempo de propagação do modo em θ_c
- T_{MIN}, o tempo de propagação no modo axial
- δ_t , a diferença de tempo de propagação entre os modos $\delta t = T_{max}$ T_{min}

$$\delta t = T_{\text{max}} - T_{\text{min}}$$

Sabe-se que:

$$T_{min} = \frac{L}{(c/n_1)}$$

$$T_{\text{max}} = \frac{Ln_1}{c \cos \theta}$$

Usando a lei da refração de

Snell-Descartes e trigonometria,

temos:

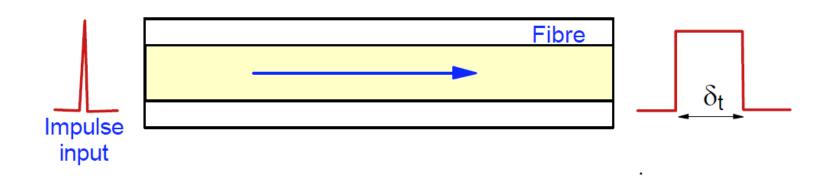
$$\operatorname{sen}\theta_{c} = \frac{n_{2}}{n_{1}} = \cos\theta$$

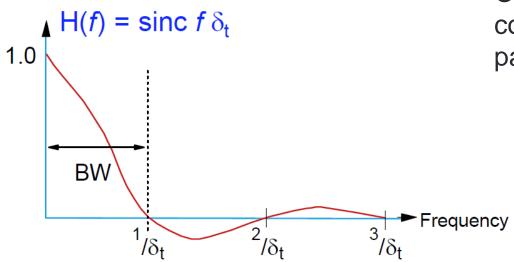
Com isso,
$$T_{max} = \frac{Ln_1^2}{cn_2}$$

Dispersão Modal na Fibra Índice Degrau

Como:
$$\delta t = T_{\text{max}} - T_{\text{min}}$$

Como:
$$\delta t = T_{\text{max}} - T_{\text{min}}$$
 Temos que: $\delta_t = \frac{Ln_1^2}{cn_2} - \frac{Ln_1}{c}$


$$\delta_t = \frac{Ln_1^2}{cn_2} \cdot \frac{n_1 - n_2}{n_1} = \frac{Ln_1^2 \cdot \Delta}{cn_2}$$


$$\delta_t = \frac{Ln_1}{c} \cdot \frac{n_1 - n_2}{n_2}$$

Para
$$\Delta \ll 1$$
: $\Delta \approx \frac{n_1 - n_2}{n_2} \longrightarrow \delta_t = \frac{Ln_1.\Delta}{c}$

Lembrando que:
$$\Delta = \frac{NA^2}{2n_1^2}$$
 \longrightarrow $\delta t = \frac{L(NA)^2}{2 c n_1}$

Resposta Impulsiva da Fibra Índice Degrau

O 1º zero de H(f) é definido como a Largura de Banda (BW) para o sistema. Com isso:

$$BW = \frac{2 c n_1}{L(NA)^2}$$

Como reduzir a Dispersão Modal?

Dispersão Modal da Fibra Índice Gradual

$$\delta t_{GI} = \frac{L \Delta^2 n}{c.8}$$

Dispersão Modal da Fibra Índice Degrau

$$\delta t_{SI} = L \Delta n_1^2$$
 cn_2

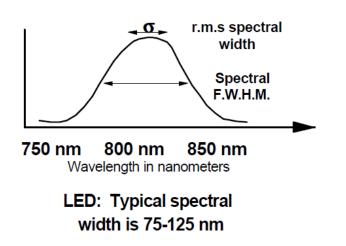
A dispersão da Fibra Índice Gradual é proporcional ao termo Δ^2 , o que causa uma dispersão muito menor em relação a Fibra Índice Degrau

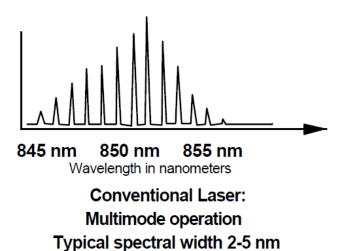
Dispersão Cromática

A dispersão cromática é a soma de 2 formas de dispersão:

Dispersão de Material

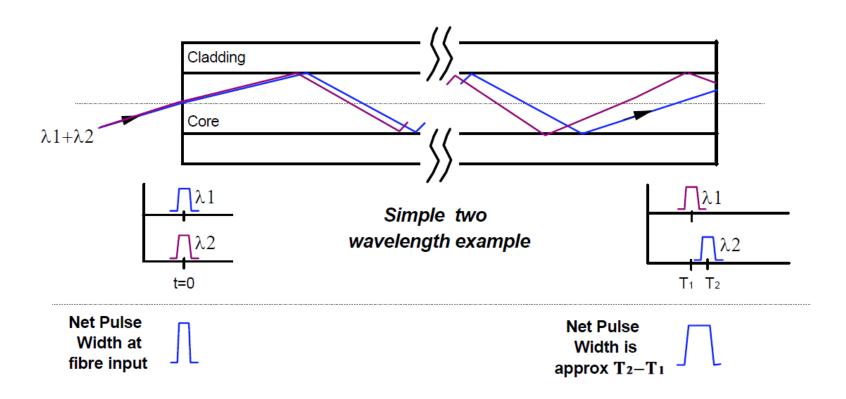
Gerada pela
variação do índice
de refração com o
comprimento de
onda


Dispersão de Guia de Onda


Gerada por um
espalhamento do
pulso que não se
propaga totalmente
dentro do núcleo

Dispersão
Cromática

- Também chamada de dispersão intramodal
- Resulta de diferentes velocidades de grupo de várias componentes espectrais que são aplicadas na fibra


Fontes Ópticas tipicamente utilizadas

FWHM: Full Width at Half Maximum

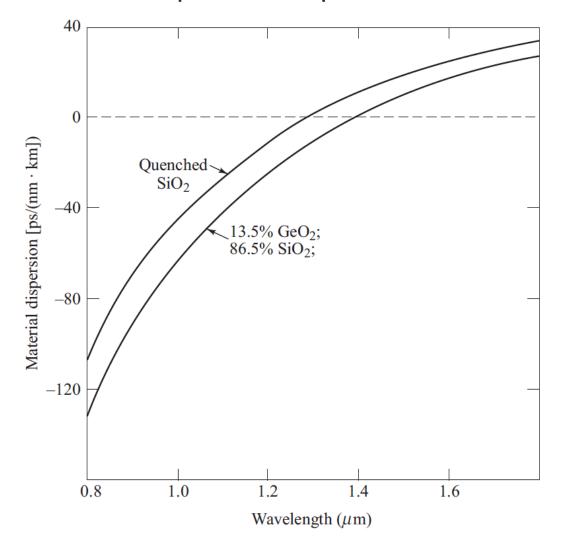
 Em uma fibra óptica a velocidade de propagação varia em função do comprimento de onda da luz.

O espalhamento do pulso σ_{mat} é dado pela expressão:

$$\sigma_{\text{mat}} \approx \left| \frac{d\tau_{\text{mat}}}{d\lambda} \right| \sigma_{\lambda} = \frac{\sigma_{\lambda} L}{c} \left| \lambda \frac{d^{2} n}{d\lambda^{2}} \right| = \sigma_{\lambda} L \left| D_{\text{mat}} (\lambda) \right|$$

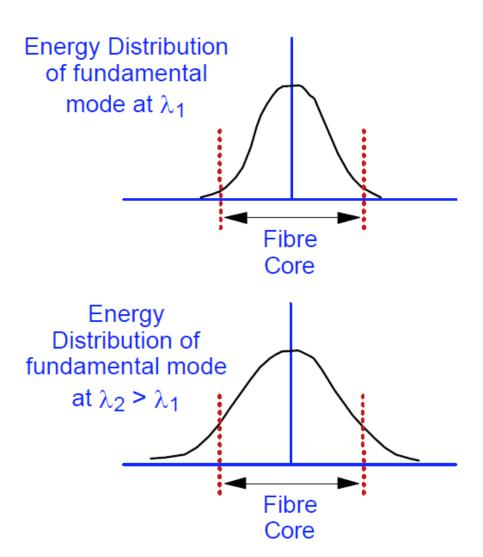
• $D_{mat}(\lambda)$ é o coeficiente de dispersão material, fornecidos pelos fabricantes de fibra e dados pela respectivas expressão: $\int_{0}^{\infty} \int_{0}^{\infty} d^{2}n_{1} d^{2}n_{2} d^{2}n_{3} d^{2}n_{4} d^{2}n_{5} d^{2$

expressao: $D_{mat} = \frac{-\lambda}{c} \left[\frac{d^2 n_1}{d \lambda^2} \right]$ Unidade ps/(km.nm)


- σ_{λ} é a largura espectral da fonte de luz
- L é o comprimento total da fibra

* A dedução da equação de σ_{mat} é apresentada no artigo:

D. Gloge, E.A.J. Marcatili, D. Marcuse, and S. D. Personick, "Dispersion properties of fibers," in *Optical Fiber Telecommunications*, S. E. Miller and A. G. Chynoweth, eds., Academic, New York, 1979.


Gráfico da dispersão material em função do comprimento de onda para dois tipos de fibra

Há uma redução da dispersão material com uma nova composição na fabricação da fibra óptica

Dispersão de Guia de Onda

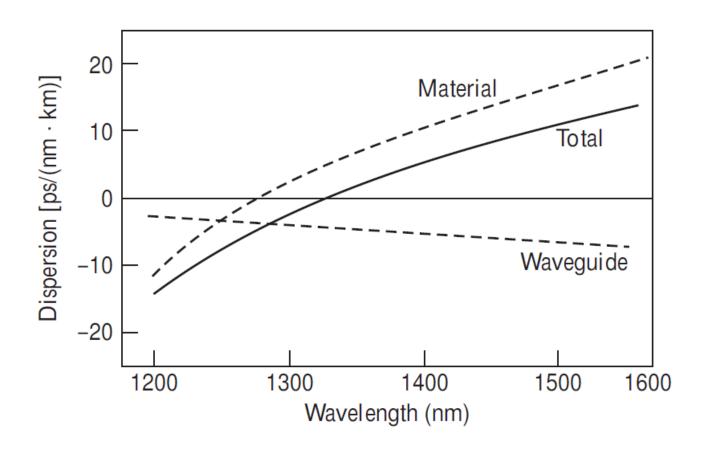
- Causado pela dependência da distribuição de energia do modo fundamental pelo comprimento de onda
- Em fibra multimodos é desprezível
- Com o aumento do comprimento de onda cresce a parcela de energia que se propaga na casca

*

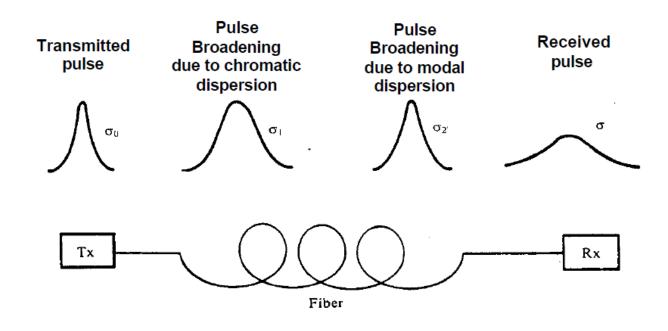
Dispersão de Guia de Onda

O espalhamento do pulso σ_{wq} é dado pela expressão:

$$\sigma_{\text{wg}} \approx L \mid D_{\text{wg}}(\lambda) \mid \sigma_{\lambda}$$


- $D_{wg}(\lambda)$ é o coeficiente de dispersão de guia de onda., fornecidos pelos fabricantes de fibra.
- σ_{λ} é a largura espectral da fonte de luz
- L é o comprimento total da fibra

^{*} A dedução da equação de σ_{wg} é apresentada no artigo:



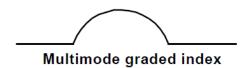
D. Gloge, "Weakly guiding fibers," *Appl. Opt.*, vol. 10, pp. 2252–2258, Oct. 1971; "Dispersion in weakly guiding fibers," *Appl. Opt.*, vol. 10, pp. 2442–2445, Nov. 1971.

Gráfico com as dispersões material e de guia de onda em função do comprimento de onda para uma fibra monomodo com núcleo de sílica.

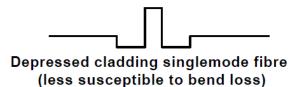
Dispersão Total

Received pulse width

$$\sigma = (\sigma_0^2 + \sigma_1^2 + \sigma_2^2)^{\frac{1}{2}}$$


Assumes uncorrelated dispersion mechanisms and gaussian pulse shapes

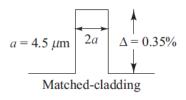
FIBRAS ÓPTICAS


Perfis de dopagem do core

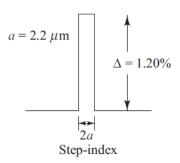
Multimodos

Conventional singlemode fibre (so called matched cladding)

Monomodo



Triangular profile singlemode fibre (used in dispersion shifted fibre)



Up-and-down profile singlemode fibre (used in dispersion flattened fibre) also called multicladding fibre

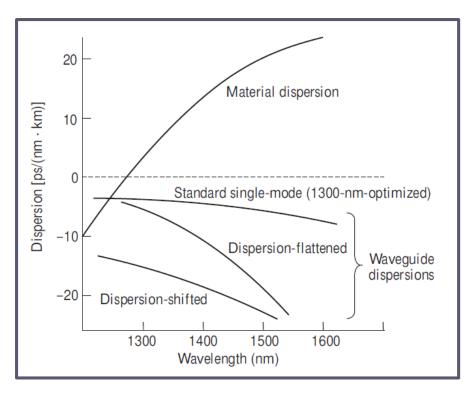
Perfis de Índice de Refração – Fibras Monomodo

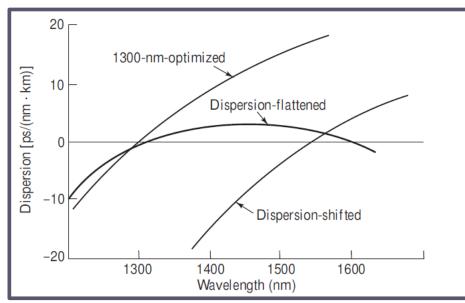
Triangular with annular ring

 $a_1 = 3 \mu \text{m}$ $a_2 = 4.7 \mu \text{m}$ $\Delta_1 = 0.76\%$ $\Delta_2 = 0.45\%$

Quadruple-clad profile

(c)

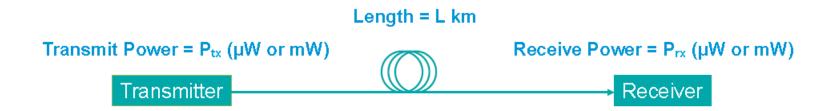

(b)


Perfis Normais

Double-clad or W profile

Perfis Otimizados

Resposta dos diferentes perfis de Índice de Refração em Fibras Monomodo



Perfis Normais

Perfis Otimizados

Atenuação em Fibra Óptica

A atenuação na fibra é expressa em dB/km calculado por:

$$A = (10.\log_{10}(P_{tx}/P_{rx}))/L$$

Exemplo:

Uma fibra de comprimento de 10 km tem $P_{in} = 10\mu W$ e $P_{out} = 6\mu W$

Este valor expresso em dB é:

Perda na fibra em 10 km \rightarrow 10 log (10/6) = 2.2dB

Expressa em dB/km = 0.22 dB/km

Tipos de Atenuação em Fibra Óptica

Perda por Absorção

Causadas por propriedades da própria fibra ou por impurezas na fibra, como água e metais.

Perdas por espalhamento

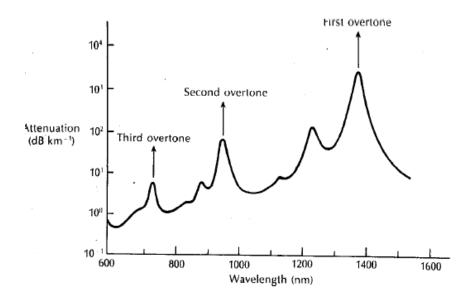
Mecanismos de perda intrínsecos causados pela interação de fótons com a sílica que compõe a fibra

Perdas por curvatura

Perdas induzidas por um "stress" físico na fibra.

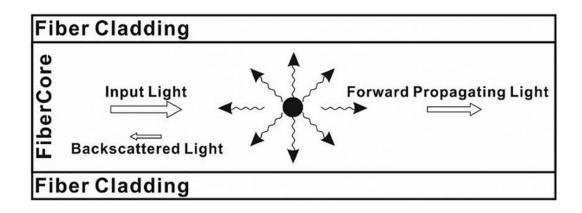
Perdas em junções (conectores e emendas por fusão)

Perda por Absorção no Material


- Causada por absorção de fótons dentro da fibra
- A potência óptica é convertida em dissipação de calor
- Existem dois tipos de absorção:

Absorção Intrínseca: causadas pela interação da luz (ultravioleta e infravermelho) com as moléculas da sílica.

Absorção Extrínseca: causada por impurezas na sílica, por exemplo a contaminação por íons OH, também conhecidos como hidroxílas.


Absorção Extrínseca (Íons OH)

- Causada por água dissolvida na sílica
- Estas impurezas causam picos de atenuação em 720 nm, 950 nm e 1380 nm.
- Geralmente, uma parte por milhão (1 ppm) de impureza causa 1 dB/km de atenuação em 950 nm.

Perda por Espalhamento

- Espalhamento é um processo pelo qual um sinal óptico incide em imperfeições da fibra gerando reflexões para diversas direções.
- O espalhamento causa atenuação, uma vez que a luz deixa de se propagar adequadamente.
- Normalmente, o sinal óptico vaza pela casca.

Perda por Espalhamento

- Existem dois tipos básicos de espalhamento:
 - **Espalhamento linear:** Espalhamentos de Rayleigh e Mie.
 - **Espalhamento Não-linear**: Raman e Brillouin Estimulados.
- Espalhamento Rayleigh é um mecanismo de perda dominante em fibras de vidro de baixas perdas, particularmente na janela entre 800 nm e 1700 nm.

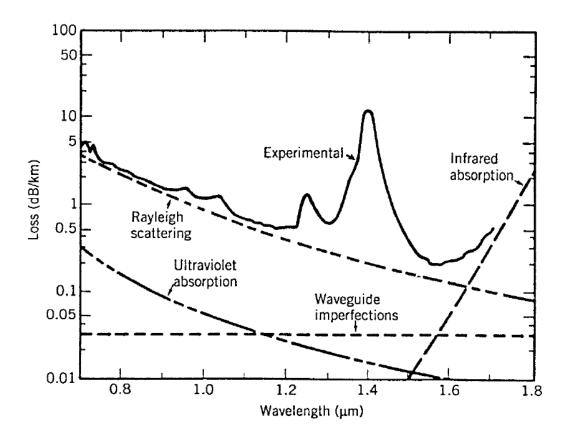
Perda por Espalhamento

Espalhamento Rayleigh:

Está sempre presente devido à existência de não homogeneidades microscópicas de dimensões menores do que o comprimento de onda, tais como flutuações de comprimento, flutuações térmicas, separação de fase, pressão e pequenas bolhas.

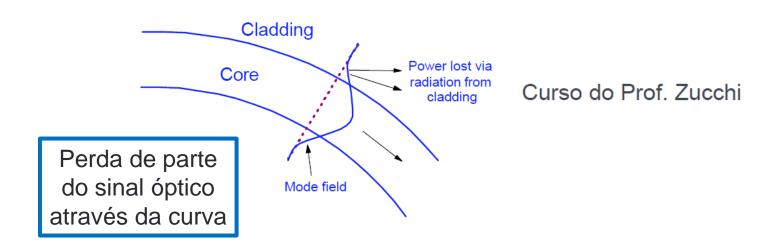
Espalhamento Mie:

Este espalhamento é verificado quando as imperfeições que causam o espalhamento citado anteriormente forem de dimensões comparáveis com o comprimento de onda guiado e principalmente quando houver sinuosamente do eixo da fibra


Espalhamento Raman e Brillouin Estimulados:

Estes espalhamentos são efeitos não lineares, causados quando a intensidade de campo na fibra for muito alta.

Curso do Prof. Zucchi


Atenuação total em uma fibra

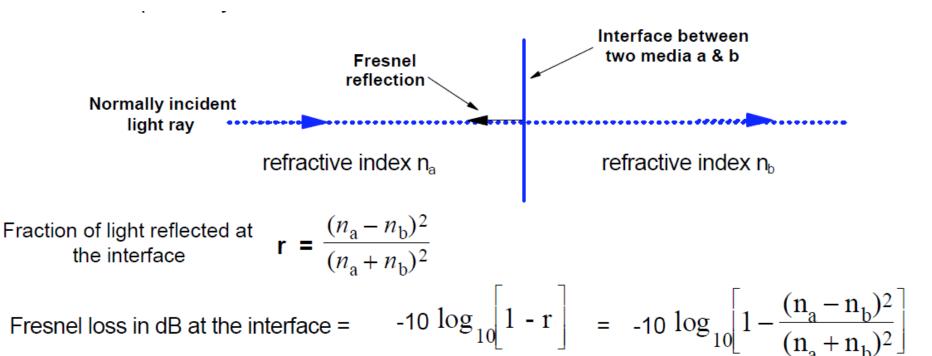
O gráfico abaixo mostra o espectro de alguns mecanismos de perda de uma fibra monomodo

Atenuação em curvatura

 Quando a luz na fibra óptica encontra curvas, sejam elas macroscópicas (curva de uma fibra numa quina, por exemplo) ou microscópicas (pequenas ondulações na interface entre a casca e o núcleo), alguns raios de luz podem formar um ângulo inferior ao ângulo crítico e saírem da fibra, causando perda de potência.

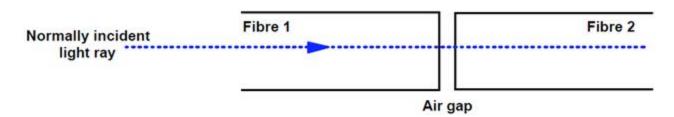
Atenuação em Junções

1. Perda de Fresnel


Desalinhamento entre núcleos Desalinhamento Angular

 Descasamento entre parâmetros Diâmetros de núcleos diferentes

Descasamento de NA


Concentricidade dos núcleos

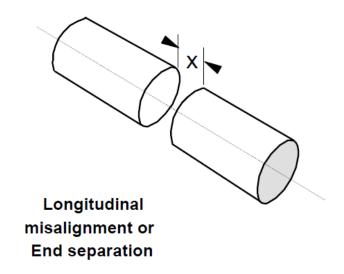
Perda de Fresnel na Interface das fibras

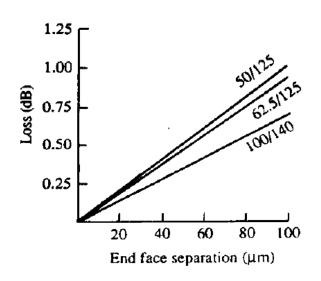
Perda de Fresnel na Interface das fibras

- A perda ou reflexão de Fresnel normalmente ocorre nas junções com espaçamentos de ar
- Para junções entre fibras a atenuação ocorre duas vezes (por isso temos a multiplicação por 20 na fórmula em dB).

n₁ core refractive index n₀ refractive index of air

Total Fresnel loss in dB = -20
$$\log_{10} \left[1 - \frac{(n_1 - n_0)^2}{(n_1 + n_0)^2} \right]$$


Perdas por separação entre as fibras

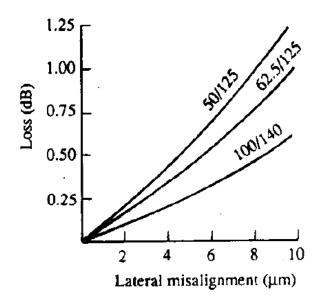

Ocorre por dois mecanismos:

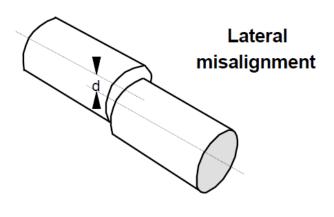
- Perda de Fresnel
- Espalhamento do feixe de luz a partir do núcleo da fibra

Total Fresnel loss = -20
$$\log_{10} \left[1 - \frac{(n_1 - n_0)^2}{(n_1 + n_0)^2} \right]$$

Beam spreading loss = -10 $\log_{10} \left[1 - \frac{x.(NA)}{2.d.n_0} \right]$

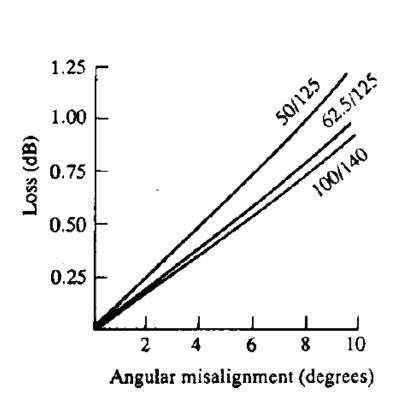
Onde: d é o diâmetro do núcleo da fibra n_0 é o índice de refração do ar

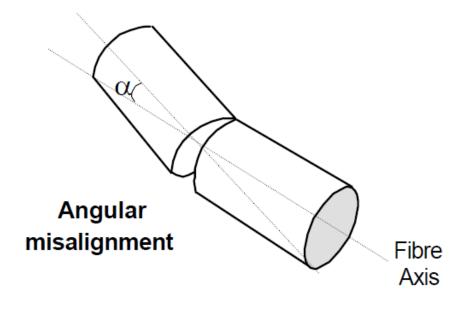



Perdas por desalinhamento lateral

A atenuação por desalinhamento lateral é dada pela equação:

Attenuation in dB = - 10.log[1 -
$$\binom{2d}{\pi a}$$
]


Onde "a" é o raio do núcleo da fibra óptica



Most problematic form of loss

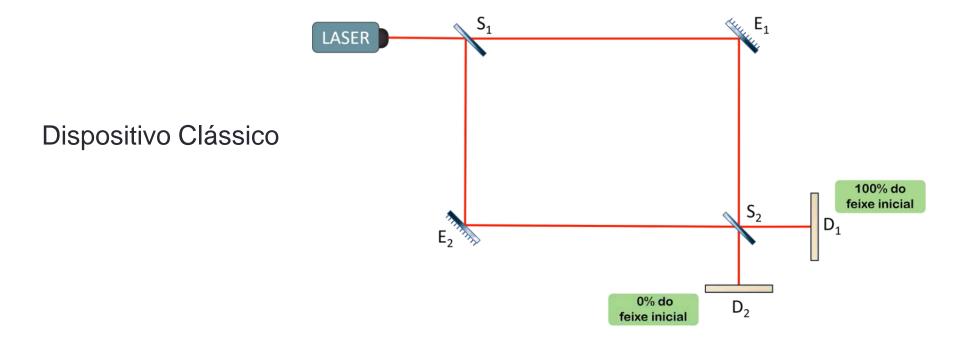
Perdas por desalinhamento angular

Insertion loss in dB =

- 10 log [1- $(n0.\alpha)/(180.NA)$]

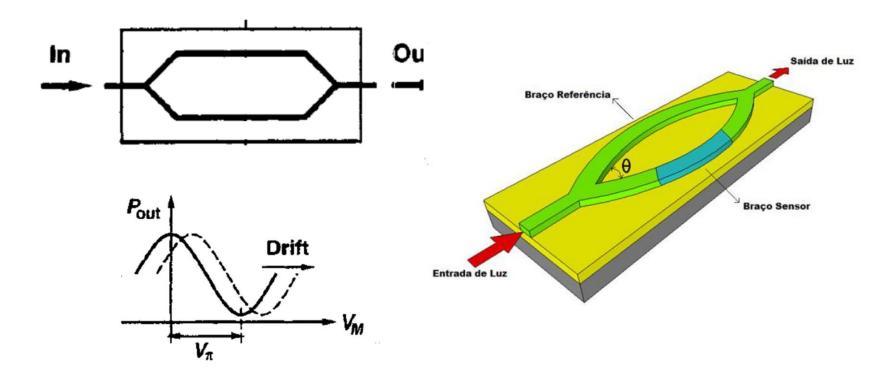
Onde o ângulo " α " é dado em graus

Perdas por diferença entre parâmetros

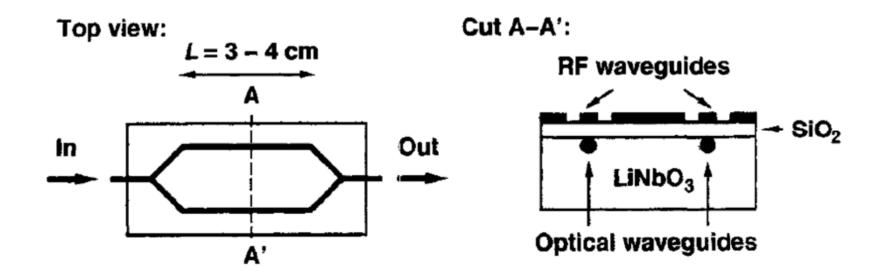

- Mesmo quando a junção é perfeita, descasamento entre qualquer parâmetro pode causar perdas
- Algumas destas diferenças são chamadas de diferenças paramétricas

	Cause	Calculation
Diâmetro dos núcleos	If the exit fibre core is smaller any mismatch will cause loss	attenuation in dB = - 20 log [d2 / d1], where d1is source fibre diameter and d2 is exit fibre diameter. d2 < d1
Abertura Numérica	If the exit fibre has a lower NA then loss will occur	attenuation in dB = - 20 log [NA2 / NA1], NA1 is the NA of source fibre and NA2 is the NA of the exit fibre and NA2 < NA1.
Concentricidade dos núcleos	Core is not centred within the cladding	Complex equation. A core concentricity of 2 microns for a 50 micron core fibre produces an attenuation of 0.47 dB

Anexo 1

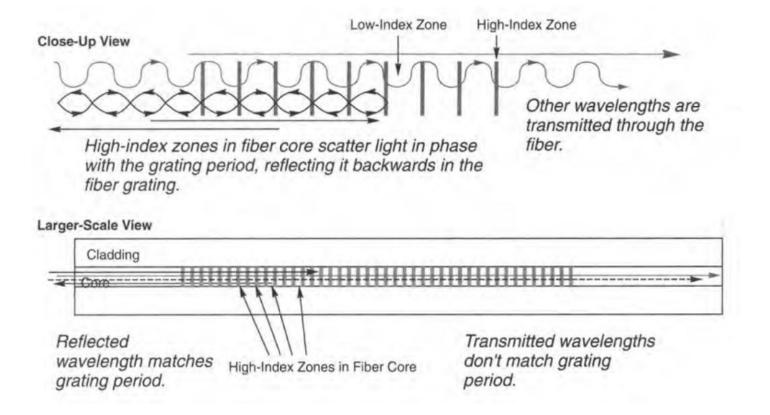

Interferômetro de Mach-Zehnder

O interferômetro de Mach-Zehnder é um arranjo de espelhos e semi-espelhos que demonstra o fenômeno da interferência da luz pela divisão de um feixe luminoso

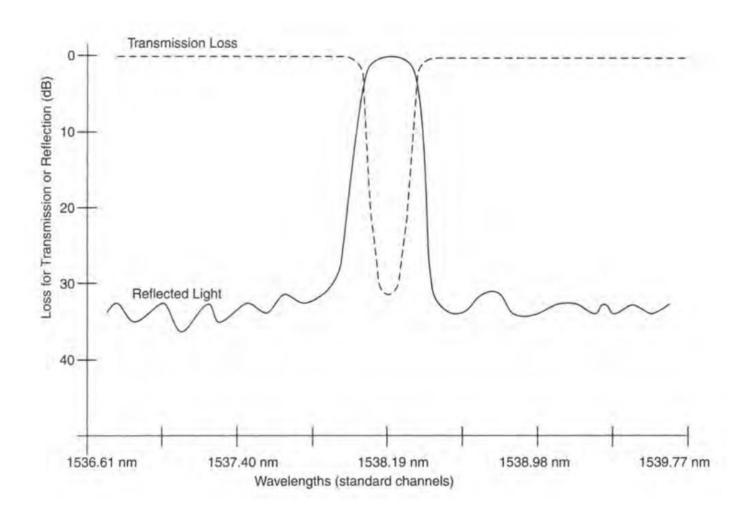

Interferômetro de Mach-Zehnder Planar

O interferômetro de Mach-Zehnder pode ser construído com um arranjo de espelhos, com a junção de fibras ópticas ou com tecnologia de planar usando microeletrônica, como mostram as figuras abaixo.

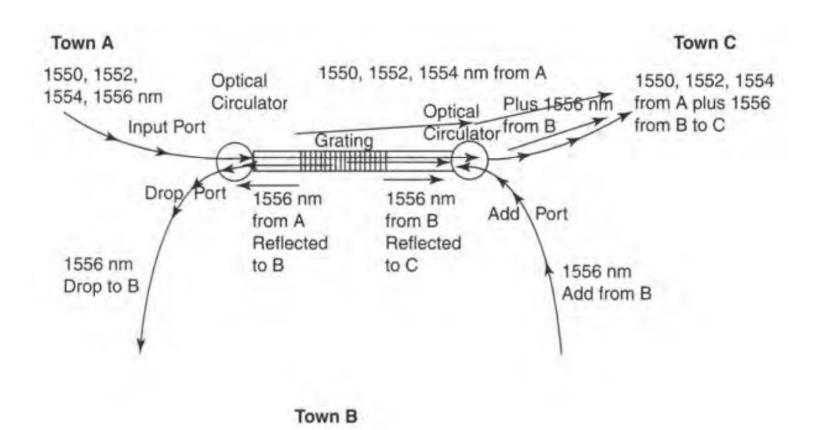
Aplicações do Interferômetro de Mach-Zehnder


- Visualização de fluxo em geral, nas áreas de aerodinâmica, física de plasma e transferência de calor.
- Demultiplexadores de canais ópticos.
- Moduladores Eletro-ópticos (mostrado na figura abaixo)

Anexo 2


Grades de Bragg em Fibras Ópticas

 As grades de Bragg em fibras ópticas são usadas para separar comprimentos de ondas de um sistema DWDM.


Grades de Bragg em Fibras Ópticas

Trata-se de um filtro de reflexão de banda estreita

Aplicação das Grades de Bragg em Fibras Ópticas

Sistemas de multiplexação e demultiplexação WDM

