UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA DE TRANSPORTES

Curva de demanda e elasticidade de demanda

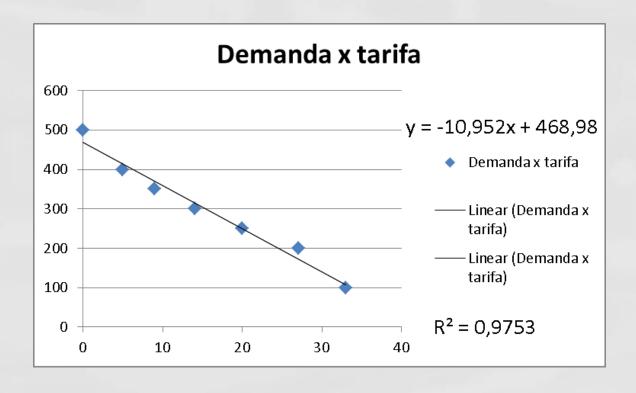
Docente: Cira Souza Pitombo STT405 - PLANEJAMENTO E ANÁLISE DE SISTEMAS DE TRANSPORTES

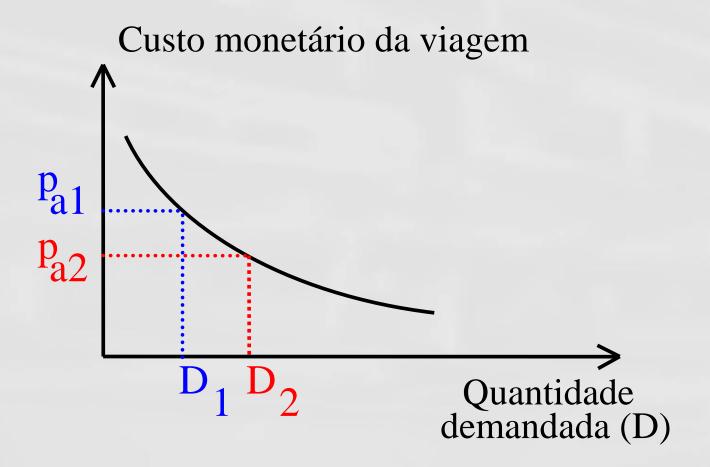
Kahoot

ORIGEM????

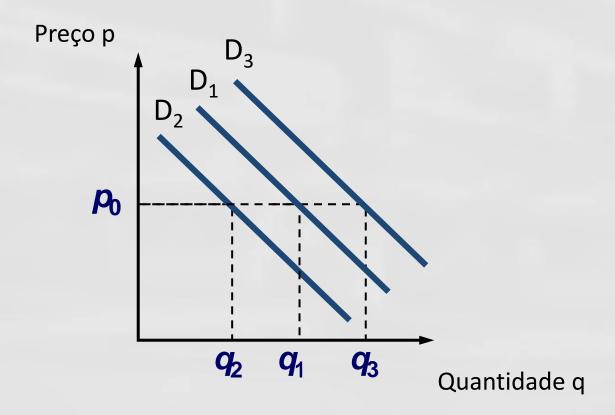

DESTINO????

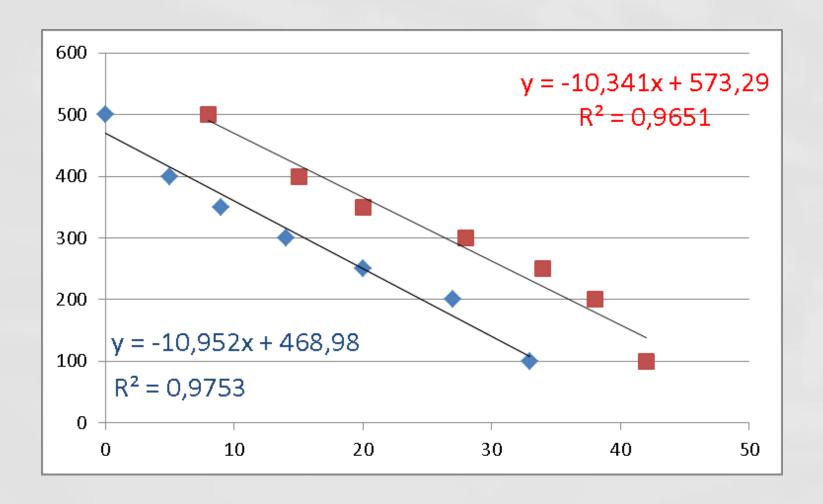
MODO DE TRANSPORTES????




MOTIVO????

COMO SERIA A CURVA DA DEMANDA (X) EM RELAÇÃO AO PREÇO (Y)????


Pessoas	Tarifa ônibus
0	500
5	400
9	350
14	300
20	250
27	200
33	100



Inclinação negativa

- Aumento do preço, redução na "vontade" de viajar
- Redução no preço, aumento no número de viagens

PARA O NOSSO EXEMPLO, QUAIS OUTROS FATORES AFETARIAM????

Pessoas	Tarifa ônibus	Tempo de viagem (h)	Conforto ônibus
0	500	32	0
5	400	30	0
9	350	29	1
14	300	27	2
20	250	26	3
27	200	25	4
33	100	20	5

MODELOS DIRETOS

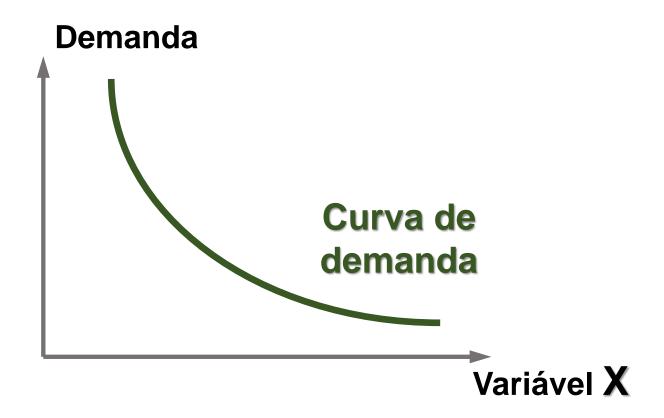
 $y = 12,88 - 0,05 Tarifa_{bus}$ -0,003 $Tempviagem_{bus} + 3,6 Conforto$

ELASTICIDADE DA DEMANDA

MODELOS DIRETOS

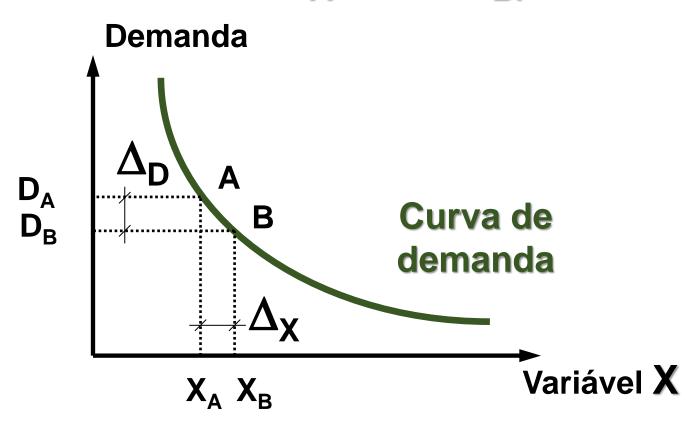
 $V_{ij} = K + \partial.Tarifa + \theta.Tempo de Viagem$

ELASTICIDADE DA DEMANDA



ELASTICIDADE DA DEMANDA EM RELAÇÃO A UMA VARIÁVEL

Razão entre
VARIAÇÃO RELATIVA DA DEMANDA
e
VARIAÇÃO RELATIVA DA VARIÁVEL


ELASTICIDADE

Demanda D é função de uma Variável X

O QUE ACONTECE COM A DEMANDA SEXVARIA

Por exemplo, de X_A para X_{B.}

ELASTICIDADE DA DEMANDA EM RELAÇÃO A UMA VARIÁVEL

Razão entre
VARIAÇÃO RELATIVA DA DEMANDA
e
VARIAÇÃO RELATIVA DA VARIÁVEL

$$\alpha = \Delta D/\Delta X$$

Mais interessante uma relação adimensional

$$\varepsilon = \frac{\frac{\Delta D}{D}}{\frac{\Delta X}{X}} = \frac{X}{D} \times \frac{\Delta D}{\Delta X}$$

No limite

Tende para a derivada da função D em relação a X no ponto A

Levando ao limite, com $\Delta X \rightarrow 0$:

$$\epsilon = \lim_{\Delta X \to 0} \frac{X}{D} \times \frac{\Delta D}{\Delta X} = \frac{X}{D} \times \frac{\partial D}{\partial X} \bigg|_{X = X_A}$$

ε = Elasticidade da demanda D em relação à variável X, no ponto X = X_A

EM RESUMO

ELASTICIDADE DA DEMANDA

é a RAZÃO entre variação relativa da demanda e variação relativa da variável.

PORTARE

Pode ser interpretada como a variação percentual na quantidade demandada quando o valor de um dado atributo varia em 1%.

Kahoot

Demanda *D* (ton/ano) pode ser expressa em função do preço *P* (US\$/ton)

$$D = \alpha . P^{\beta}$$

Onde:

$$\alpha = 0.8 \times 10^8$$

$$\beta$$
 = -0,8

O que deve acontecer com a demanda, se o preço aumentar 10%?

$$D = \alpha P^{\beta}$$

$$\epsilon = \lim_{\Delta X \to 0} \frac{X}{D} \times \frac{\Delta D}{\Delta X} = \frac{X}{D} \times \frac{\partial D}{\partial X} \bigg|_{X = X_A}$$

$$\varepsilon = \frac{P}{D} \times \frac{\partial D}{\partial P} = \frac{P}{\alpha \cdot P^{\beta}} \times \alpha \cdot \beta \cdot P^{\beta - 1} = \beta$$

$$\mathcal{E} = \beta = -0.8$$

Pode ser interpretada como a variação percentual na quantidade demandada quando o valor de um dado atributo varia em 1%.

O que deve acontecer com a demanda, se o preço aumentar 10%?

A variação da demanda será -0,8 x 10% = -8%.

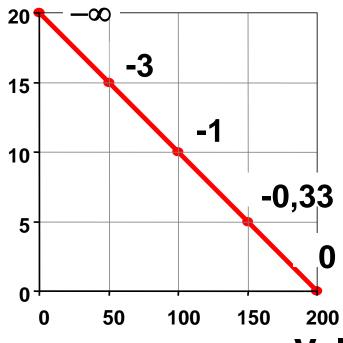
E PARA UMA FUNÇÃO LINEAR DE DEMANDAP

$$q = \alpha - \beta \cdot p$$

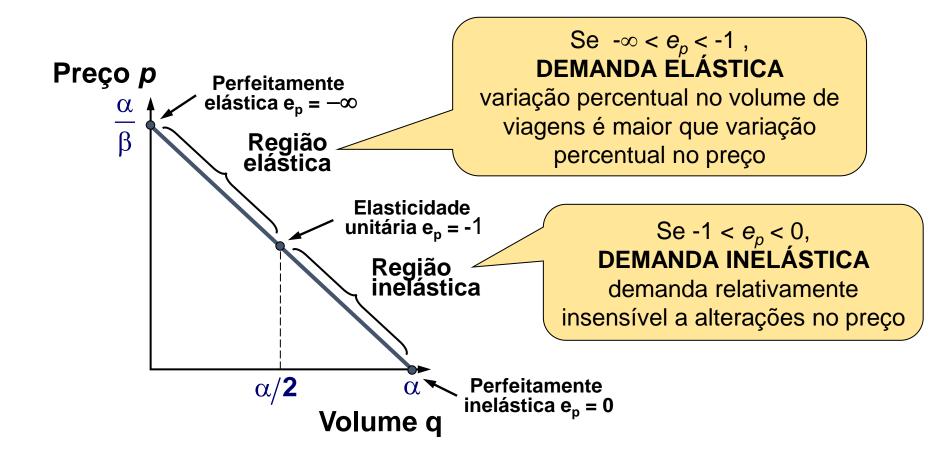
$$e_p = \frac{\partial q/q}{\partial p/p} = \frac{\partial q}{\partial p} \times \frac{p}{q}$$

$$\begin{vmatrix}
\frac{\partial q}{\partial p} = -\beta \\
p = \frac{\alpha - q}{\beta}
\end{vmatrix} \implies e_p = \frac{\partial q}{\partial p} \frac{p}{q} = -\beta \frac{1}{q} \frac{\alpha - q}{\beta} = 1 - \frac{\alpha}{q}$$

EXEMPLO


```
Seja a função demanda
q = 200 - 10.p
Achar a elasticidade da demanda
q = 0, 50, 100, 150 e 200 viagens
para
p = 20, 15, 10, 5 e 0 u.m.
```

Idahoct,


$$q = 200 - 10.p$$

Preço p

$$\mathbf{e_p} = 1 - \frac{\alpha}{q} = 1 - \frac{200}{200} = 0$$

Volume q

MODELO KRAFT DE DEMANDA

Para

 $Q = \alpha P^{\beta}$

ELASTICIDADE É CONSTANTE

Elasticidade da demanda por ônibus em relação ao preço da passagem é -2,75.

12.500 passageiros/dia tarifa = R\$0,50

Qual o efeito do aumento da tarifa para R\$0,70?

SOLUÇÃO:

$$Q = \alpha P^{\beta}$$

$$12500 = \alpha \cdot 50^{-2,75}$$

$$\alpha = 12500 \times 50^{-2,75} = 5,876 \times 10^{8}$$

$$Q = 5.876 \times 10^8 \times P^{-2.75}$$

$$Q = 5.876 \times 10^8 \times 70^{-2.75}$$

Q = 4955 passageiros

IMPACTO NA RECEITA TOTAL

12.500 passageiros/dia 4.955 passageiros/dia tarifa = R\$0,50

tarifa = R\$0,70

 R 0,50/pass \times 12500 passageiros = R$ 6250,00$

 R 0,70/pass \times 4955 passageiros = R$ 3468,50$

Perda de R\$2781,50 na receita

INPORTANTE

DEMANDA ELÁSTICA ($-\infty < e_P < -1$)

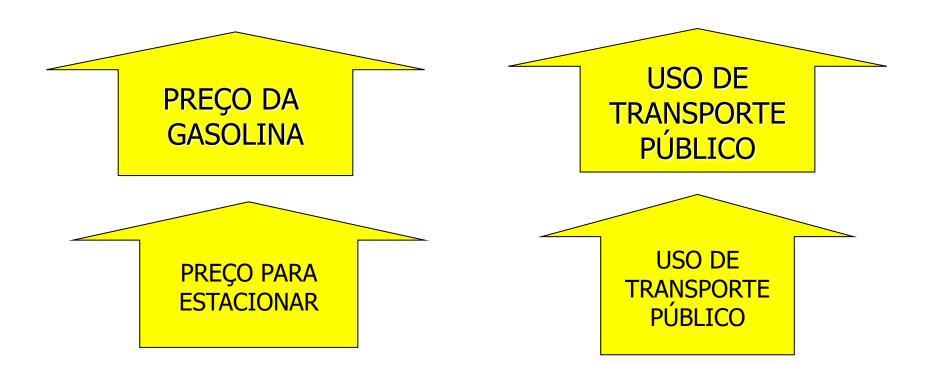
Aumento do preço resulta em perda global Redução do preço resulta em ganho final

INPORTANTE

DEMANDA INELÁSTICA (-1 $< e_P < 0$)

Aumento do preço resulta em ganho global Redução do preço resulta em perda final

ELASTICIDADES DIRETA E CRUZADA


ELASTICIDADE DIRETA

Efeito da variação do preço na demanda de um mesmo bem

ELASTICIDADE CRUZADA

Efeito da variação do preço de um bem na demanda de outro bem

ELASTICIDADE CRUZADA

Idhooti

EXEMPLO

Demanda por viagens de ônibus

 $Q = T^{-0,3} C^{-0,2} A^{0,1} I^{-0,25}$

Em que

Q: número de viagens por ônibus

T: tempo de viagem por ônibus (h)

C: preço da passagem (reais)

A: custo da viagem por automóvel (reais)

I: renda média (reais)

10.000 passageiros/h usando ônibus (C = R\$1,00)

Quantos novos passageiros se C = R\$0,90?

Qual o ganho por hora?

SOLUÇÃO:

Elasticidade da demanda em relação à tarifa de ônibus

- Constante
- ₀ Igual a -0,2
- Redução de 1% na tarifa
- Aumento de 0,2% no número de viagens

SOLUÇÃO:

- Redução de 1% na tarifa
- Aumento de 0,2% na demanda
- Redução de 10% na tarifa
- Aumento de 2% na demanda

$$C = 1,00 \implies Q = 10.000$$

$$C = 0.90 \implies Q = 10.200$$

$$R = R$10.000,00$$
 $R = R$9.180,00$

Demanda por viagens de ônibus $Q = T^{-0,3} C^{-0,2} A^{0,1} I^{-0,25}$

A viagem de carro custa A = R\$3,00 Qual o efeito, nas viagens por ônibus, de um aumento de R\$0,30 no estacionamento?

SOLUÇÃO:

ELASTICIDADE CRUZADA

$$\frac{\partial Q/Q}{\partial A/A} = 0,1$$

- Aumento de 1% no custo da viagem de carro
- Aumento de 0,1% no número de viagens de ônibus

$$R$0,30 = 10\% \text{ de } R$3,00$$

- 10% de aumento no custo da viagem de carro
- o 1% de aumento nas viagens de ônibus

Q' = 10.100 passageiros

Demanda por viagens de ônibus $Q = T^{-0,3} C^{-0,2} A^{0,1} I^{-0,25}$

Renda média de quem viaja de carro é R\$15.000 Qual o aumento de renda que anula o efeito do aumento do preço do estacionamento?

SOLUÇÃO:

ELASTICIDADE CRUZADA

$$\frac{\partial Q/Q}{\partial I/I} = -0,25$$

- Aumento de 1% na renda
- Redução de 0,25% no número de viagens de ônibus

Aumento no preço do estacionamento

Variação ∂Q/Q
 de 1% de aumento nas viagens de ônibus

$$\frac{\partial Q/Q}{\partial I/I} = \frac{1\%}{\partial I/I} = -0,25 \text{ e } \frac{\partial I}{I} = \frac{0,01}{-0,25} = -0,04 \text{ ou } 4\%$$