Base

A noção de base de um espaço vetorial é muito simples. Ela consiste em escolher um conjunto de geradores que seja o menor possível, isto é, um conjunto que gere o espaço, mas que se deste conjunto for subtraído qualquer elemento, o que resta não gera mais o espaço todo.

Definição

Seja $V \neq \{0\}$ um espaço vetorial finitamente gerado. Uma base de V é uma sequência de vetores L. L, B, de V que também gera V.

Exemplos

- **1** $B = \{(1,0,0), (0,1,0), (0,0,1)\}$ é uma base de \mathbb{R}^3 .
- ② Os vetores $e_1, \ldots, e_n \in \mathbb{R}^n$, em que

$$e_1 = (1, 0, \dots, 0), e_2 = (0, 1, 0, \dots, 0), \dots, e_n = (0, \dots, 0, 1)$$

formam uma base de \mathbb{R}^n .

As matrizes em

$$B = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

formam uma base de M_2 .

Exemplos

• Os vetores (1,1) e (1,-1) formam uma base de \mathbb{R}^2 .

Primeiramente, vamos mostrar que (1,1) e (1,-1) são L. I.

Sejam $\alpha_1, \alpha_2 \in \mathbb{R}$ tais que

$$0 = \alpha_1(1,1) + \alpha_2(1,-1).$$

Isto equivale a resolver o sistema

$$\begin{cases} \alpha_1 + \alpha_2 &= 0 \\ \alpha_1 - \alpha_2 &= 0 \end{cases}$$

que possui como única solução, $\alpha_1 = \alpha_2 = 0$.

Portanto (1,1) e (1,-1) são L. I.

Exemplos

(continuação)

Agora, temos que mostrar que todo ponto de \mathbb{R}^2 se escreve como combinação linear de (1,1) e (1,-1).

Sejam $(x,y)\in\mathbb{R}^2$ e $lpha_1,lpha_2\in\mathbb{R}$ tais que

$$(x,y) = \alpha_1(1,1) + \alpha_2(1,-1).$$

Isto equivale a resolver o sistema

$$\begin{cases} \alpha_1 + \alpha_2 &= x \\ \alpha_1 - \alpha_2 &= y \end{cases}$$

que possui como solução, $\alpha_1=\frac{\left(x+y\right)}{2}$ e $\alpha_2=\frac{\left(x-y\right)}{2}$.

Observação

Bastava mostrar que todo ponto de \mathbb{R}^2 se escreve de maneira única. (Por quê?)

Observação

A base de um espaço vetorial não é única.

Exemplo:

• Pelo exemplo 2,

$$B_1 = \{(1,0),(0,1)\}$$
 é uma base de \mathbb{R}^2 ;

• Pelo exemplo 4,

$$B_2 = \{(1,1), (1,-1)\}$$
 também é uma base de \mathbb{R}^2 .

Teorema

Todo espaço vetorial

 $V \neq \{0\}$ finitamente gerado

admite uma base. Em outras palavras, existe uma sequência de vetores L.I. de V formada por geradores.

Demonstração.

Como $V \neq \{0\}$ é finitamente gerado existem $u_1, \ldots, u_n \in V$ tais que

$$V=[u_1,\ldots,u_n].$$

Se u_1, \ldots, u_n forem L.I, então esta sequência será uma base de V e não há nada mais a ser provado.

Suponha que u_1, \ldots, u_n sejam L.D. Como $V \neq \{0\}$, existe $j \in \{1, \ldots, n\}$ tal que $u_j \neq 0$. Por simplicidade, podemos supor que $u_1 \neq 0$.

(i) Se u_2, \ldots, u_n puderem ser escritos como combinação linear de u_1 , então

$$V = [u_1]$$

e u_1 é uma base de V.

Demonstração (continuação).

- Se (i) não for válido, então existirá algum u_j , com $2 \le j \le n$, tal que u_1, u_j são L.I.. Por simplicidade, suponhamos u_1, u_2 são L.I..
 - (ii) Se u_3, \ldots, u_n puderem ser escritos como combinações lineares de u_1 e u_2 , então

$$V=[u_1,u_2]$$

e u_1, u_2 formam uma base de V.

Podemos repetir este processo e, como o número de elementos de $L = \{u_1, \dots, u_n\}$ é finito, ele finda.

Assim, existe uma sequência de vetores L.I. em L que gera V.

Esta sequência forma uma base de V.

Teorema

Em um espaço vetorial

 $V \neq \{0\}$ finitamente gerado,

toda base possui o mesmo número de elementos.

Demonstração.

Sejam

$$B_1 = \{u_1, \dots, u_n\}$$
 e $B_2 = \{v_1, \dots, v_m\}$

bases de um espaço vetorial finitamente gerado V. Suponha que n > m.

Como os vetores v_1, \ldots, v_m geram V, podemos escrever, para cada $1 \le j \le n$,

$$u_j = \alpha_{1j}v_1 + \cdots + \alpha_{mj}v_m = \sum_{i=1}^m \alpha_{ij}v_i.$$

Assim, a combinação linear nula $\beta_1 u_1 + \cdots + \beta_n u_n = 0$ é equivalente a

$$\beta_1\left(\sum_{i=1}^m \alpha_{i1} v_i\right) + \cdots + \beta_n\left(\sum_{i=1}^m \alpha_{in} v_i\right) = 0,$$

ou ainda,

$$\left(\sum_{j=1}^n \frac{\beta_j \alpha_{1j}}{\nu_1}\right) v_1 + \cdots + \left(\sum_{j=1}^n \frac{\beta_j \alpha_{mj}}{\nu_m}\right) v_m = 0.$$

Demonstração (continuação).

Como v_1, \ldots, v_m são L.I., então

$$\sum_{j=1}^{n} \beta_{j} \alpha_{ij} = 0, \quad \text{para todo } 1 \leq i \leq m.$$

Estas m equações representam um sistema linear homogêneo com n incógnitas. Como n > m, existe uma solução não trivial, isto é, existem $\beta_1, \ldots, \beta_n \in \mathbb{R}$ em que pelo menos um β_j é diferente de zero, ou seja,

$$\beta_1 u_1 + \cdots + \beta_n u_n = 0 \implies \beta_j \neq 0$$
 para algum j .

Assim, u_1, \ldots, u_n são L.D., o que é uma contradição, já que

$$B_1 = \{u_1, \ldots, u_n\}$$

 \acute{e} uma base de V.

REFERÊNCIA

• S. L. Zani, Notas de Aula - Álgebra Linear, ICMC.