

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia de Sistemas Eletrônicos PSI – EPUSP

PSI 3214 - LABORATÓRIO DE INSTRUMENTAÇÃO ELÉTRICA (2019) EXPERIÊNCIA 3 – Análise de Fourier de Sinais Periódicos

L.Q.O.; D.C.; V.H.N.

Leopoldo Yoshioka; Elisabete Galeazzo 2023

No. USP	Nome	Nota	Bancada

Data:	Turmas:	Profs:

GUIA E ROTEIRO EXPERIMENTAL

OBJETIVOS GERAIS:

- Realizar análise de Fourier de sinais periódicos pela *Transformada Discreta de Fourier* (TDF) e interpretação dos resultados.
- Determinar o *espectro* de um sinal periódico, ou seja, o conjunto dos coeficientes de Fourier de sua série.
- Usar um osciloscópio digital para a aquisição do sinal periódico, e um computador para capturar e processar os dados mostrados na tela do osciloscópio.
- Calcular os coeficientes da série de Fourier através da transformada discreta de Fourier (ver [1] para mais detalhes).

LISTA DE MATERIAL

- 1 computador com o programa LabVIEW instalado e placa GPIB.
- 1 osciloscópio digital DSO-X2002A.
- 1 gerador de funções Agilent 33500B, com interface GPIB.

PARTE EXPERIMENTAL

1 SINTETIZADOR DE FOURIER

Objetivos específicos: gerar ondas periódicas a partir da composição de ondas senoidais com frequências múltiplas. Obter uma onda quadrada a partir de uma série especial de senoides.

Na pasta *VIs_Laboratório_Eletricidade* do computador de sua bancada, você encontrará o aplicativo ("*Sintetizador de Sinais.vi*" na subpasta com o mesmo nome). Com ele você pode criar diferentes formas de onda, variando as amplitudes e fases dos diversos harmônicos. Além disso, o software permite que o sinal criado seja enviado ao gerador de funções **Agilent 33500B** para programá-lo. No entanto, neste item visualizaremos e analisaremos os sinais somente na tela do computador.

a) Gere um sinal v(t) através do "Sintetizador de sinais.exe¹" com as características da função indicada a seguir:

$$v(t) = \frac{2A}{\pi} \operatorname{sen}(\omega_0 t) + \frac{2A}{3\pi} \operatorname{sen}(3\omega_0 t) + \frac{2A}{5\pi} \operatorname{sen}(5\omega_0 t) + \dots + \frac{2A}{n\pi} \operatorname{sen}(n\omega_0 t); \text{ para n ímpar}$$

Note que este sinal é uma aproximação de uma <u>onda quadrada, onde</u> "A" representa o valor **pico-a-pico** da tensão e nível DC nulo [3].

Para sintetizar este sinal, procure ajustar o maior número possível de harmônicos no software (sendo que um bom valor para ω_0 é 10π krad/s, ou seja, $\mathbf{f}_0 = \mathbf{5}$ kHz). Sugestão: faça $(2A/\pi) = 1$.

Ajuste também **as** <u>fases</u> (θ_h) dos harmônicos para obter a soma de <u>sinais senoidais</u> (e não cossenoidais), como indicado na expressão acima.

Indique na **Tabela 1** as amplitudes dos harmônicos (c_h) e as fases (θ_h) escolhidos:

h	1	2	3	4	5	6	7	8	9	10	11
Ch											
θh											

 Tabela 1. Harmônicos (Ch) escolhidos no sintetizador:

Calcule qual é a amplitude pico a pico do sinal programado ("A"):

¹ Repare que este programa gera sinais cossenoidais e deve-se atribuir uma fase para que a função torne-se senoidal.

Esboce o sinal sintetizado e indique o período e a amplitude pico a pico no sinal esboçado.

b) Faça uma análise do sinal sintetizado, discutindo-se aspectos como o efeito da quantidade de harmônicos utilizados e a escolha das fases, entre outros.

2 FAMILIARIZAÇÃO COM O SISTEMA DE ANÁLISE ESPECTRAL

Objetivos específicos: aprender a utilizar um sistema de análise espectral virtual e obter o espectro de sinais periódicos pela transformada discreta de Fourier.

2.1 INFORMAÇÕES SOBRE O <u>SISTEMA DE ANÁLISE ESPECTRAL</u> UTILIZADO NO LABORATÓRIO

O sistema de análise espectral utilizado nesta experiência efetua aquisição e processamento dos sinais. Ele utiliza os seguintes instrumentos reais e software:

- <u>Osciloscópio digital</u>, com capacidade de condicionar os sinais, amostrá-los e enviar as amostras a um computador;
- Computador PC, com interface para comunicação com os demais instrumentos;
- Gerador de funções com interface para comunicação com o computador;
- <u>Software</u> desenvolvido em LabVIEW [4] denominado "*Análise_Espectral.vi*", que desempenhará a função de um *Analisador de Espectros* virtual. Este software está situado na pasta *VIs_Laboratório_Eletricidade*. A Figura 1 ilustra o painel frontal deste *VI*.

O "Analisador de Espectros Virtual²" efetua:

- O controle do gerador de funções real, por meio do comando "Gerador de Funções" (via GPIB);
- A aquisição de amostras do sinal visualizado na tela do osciloscópio (pela porta USB);
- A seleção de subconjuntos das amostras adquiridas, por meio de cursores situados na janela "Sinal Amostrado";
- O cálculo do espectro de Fourier destas amostras selecionadas, através do comando "Análise de Fourier".

Figura 1 - Painel frontal do Analisador de Espectros Virtual.

Os comandos do programa e suas funções são descritos com mais detalhes a seguir:

permite configurar e comandar o gerador de funções remotamente.

AQUISIÇÃO permite que amostras (ou pontos) do sinal do osciloscópio sejam capturadas

Note que:

GERADOR DE

FUNÇÕES

- (i) **Número de Amostras** : Indica o número de amostras do sinal a serem capturadas do osciloscópio. Este valor **deve ser informado pelo usuário antes da aquisição**
- (ii) Período de Amostragem (s) : Informa ao usuário um valor calculado (não é possível alterá-lo). É a relação entre o intervalo de tempo total visualizado na tela do osciloscópio pelo número de amostras capturadas
- (iii) O sinal capturado do osciloscópio será visualizado na janela "Sinal Amostrado" no painel superior do software

² Desenvolvido pelos estagiários Filipe Medeiros Braga, Harm D.P. Jorge, Luiz Henrique S. Rosa e Rogério T. Fujimoto, sob orientação da Prof^a. Denise Consonni.

ANÁLISE DE	1
FOURIER	l

esta função processa os dados situados entre os cursores da janela definida pelo usuário, calculando o espectro do sinal através da Transformada Discreta de Fourier (TDF).

Observe que:

Tipo de Janela

i) **Retangular** : o usuário deve escolher o tipo de janela antes da análise. Nesta experiência só utilizaremos a janela **Retangular**;

 iii) Na apresentação dos resultados, os elementos da TDF são convertidos para os fasores da série trigonométrica polar de Fourier (amplitudes e fases), através das relações (15) e (19) de [2].

MOSTRAR TABELA

MOSTRAR GRÁFICOS esta função indica o número de raias espectrais da TDF apresentadas nos gráficos e tabelas. O usuário deve escolher este valor <u>antes</u> de efetuar a análise espectral

permite obter os valores numéricos que resultaram da aplicação da TDF.

permite visualizar os gráficos gerados com maior resolução

2.2 ANÁLISE ESPECTRAL DE SINAIS PERIÓDICOS

Vamos efetuar a análise espectral de alguns sinais com o sistema apresentado, seguindo-se as instruções a seguir.

2.2.1 ANÁLISE DE SINAIS SENOIDAIS:

a) Ajuste manualmente o gerador de funções* (gerador real) para fornecer um sinal senoidal de 10 kHz, amplitude 7 Vpp, no modo High Z. e offset nulo.

Nota: Se o gerador estiver no modo "**rmt**", tecle "**local**" no painel frontal do equipamento para ele

Nota: Se o gerador estiver no modo "**rmt**", tecle "**local**" no painel frontal do equipamento para ele voltar à condição padrão.

b) No osciloscópio, visualize 10 períodos do sinal senoidal fazendo as conexões necessárias e meça os seguintes parâmetros: frequência do sinal, a amplitude (pico a pico) e o valor eficaz. Indique as grandezas na Tabela 2.

Tabela 2:

Frequência (<i>Hz</i>)	V _{pp} (<i>V</i>)	V _{ef} (<i>V</i>)	Taxa de varredura horizontal do osciloscópio

c) Com o software *Análise_Espectral.vi*, capture este sinal com 200 amostras.

Nota: Como a leitura dos sinais é feita através da conexão USB, <u>não</u> é necessário efetuar nenhuma ligação a mais entre o osciloscópio e o computador.

- d) Em seguida, confira no software se os parâmetros **Tipo de Janela** e **Número de Raias Espectrais Apresentadas** estão selecionados como *Retangular* e *60*, respectivamente.
- e) Efetue a análise de Fourier do sinal, selecionando-se exatamente 1 período do sinal. Para isso siga as etapas descritas a seguir:
 - Posicione <u>com cuidado</u> os dois cursores³ contidos na janela *Sinal Amostrado* para delimitar um período do sinal com a maior exatidão possível. Use a indicação "*Tempo entre os Cursores*" situada abaixo do gráfico para certificar-se sobre os intervalos delimitados.

Dica: Para conseguir delimitar <u>períodos inteiros</u> do sinal com exatidão, coloque o cursor do mouse no gráfico e clique o seu botão da direita. Selecione *visible itens* \rightarrow *graphic palette*. Uma janela surgirá no painel frontal para efetuar zoom no gráfico.

*Nota Adicional:

ATENÇÃO: Caso não selecione um número inteiro de períodos do seu sinal, ocorrerá um efeito denominado "<u>VAZAMENTO ESPECTRAL</u>". Como consequência, componentes espúrios de frequência alta serão observados no espectro, e que não corresponderão ao sinal original. Informações adicionais sobre este efeito estão descritas no arquivo anexo "**Erros da TDF**, no e-disciplinas. Vale a pena ler sobre este tipo de erro.

. Realize a Análise de Fourier, ativando o comando adequado.

Note que a *frequência fundamental da análise espectral*, f_d (ou *resolução espectral*) é calculada por (veja a equação 30 da Introdução Teórica):

(1)

 $f_d = 1/T_d ,$

em que T_d é a duração da janela, indicada sob o título "*Tempo entre os Cursores*", no painel *Sinal Amostrado*.

A frequência da k-ésima raia espectral (f_k) é calculada por:

(2)

Os índices *k* das raias espectrais estão representados no eixo x dos gráficos "*Amplitude da série trigonométrica (volts)*" e "*Fases da série trigonométrica (graus)*".

 $f_k = k f_d$.

³ Nesse programa, os cursores são coloridos.

- **f**) A seguir, esboce o espectro obtido e faça uma análise do resultado, com atenção às seguintes perguntas:
 - Qual raia espectral da TDF apresentou amplitude significativa?
 - Qual é a amplitude e a frequência associada a essa raia?
 - Qual é a relação desse resultado com o sinal original?

g) Complete a 1^a linha da Tabela 3 (a seguir) com as demais informações solicitadas sobre o espectro obtido, considerando que:

k_{max} = índice da última raia espectral calculada pela TDF;

 $\mathbf{f}_{\mathbf{a}} =$ frequência de amostragem.

h) Altere o tamanho da janela para selecionar exatamente **4** períodos do sinal. Efetue a análise espectral e complete os campos correspondentes na Tabela 3 com as informações solicitadas.

nº de períodos na janela (entre os cursores)	nº de pontos selecionados na janela (amostras entre os cursores)	Resolução espectral f _d (Hz)	Índice do k _{máx}	f _{kmáx} (Hz)	f _a (Hz)	Índice espectral (k) da raia com maior amplitude	Amplitude calculada pela TDF neste índice espectral	Amplitude teórica esperada no mesmo índice espectral	Frequência da raia com maior amplitude
1									
4									

 Tabela 3 - dados da análise espectral do sinal senoidal:

i) Compare os dois espectros obtidos e descreva quais foram as principais diferenças ao aumentar o número de períodos numa determinada janela para realizar a TDF.

j) Volte a selecionar um único período do sinal e refaça a análise de Fourier. Veja o efeito de deslocar a posição da janela para outras regiões do sinal amostrado, observando o que ocorre com os espectros de Amplitudes e de Fases ao efetuar a análise de Fourier. Comente.

- k) Altere a frequência do sinal senoidal para 47,5 kHz no gerador de funções. Ajuste a taxa de varredura do osciloscópio para 200 μs/div e meça as grandezas indicadas na Tabela 4. Faça a aquisição do sinal com 1000 amostras. Selecione uma janela de duração igual a 400 μs e "número de raias espectrais apresentadas" igual a 200. A seguir faça a análise espectral. Preencha a 1ª linha da Tabela 5 (a seguir) com as informações solicitadas.
- Repita <u>a aquisição do mesmo sinal</u> agora com 100 amostras, selecionando-se uma janela de igual duração (400 μs). Faça a análise espectral e compare os resultados com o obtido no espectro anterior. Indique os resultados na 2^a linha da Tabela 5.

ATENÇÃO: Toda vez que o sinal a ser analisado contiver componentes espectrais com frequência superior a metade da frequência de amostragem ocorrerá o <u>ERRO DE</u> <u>REBATIMENTO</u>, dando origem a um falso componente de frequência baixa. Informações adicionais sobre este erro estão descritas no arquivo "**Erros da TDF**". Tabela 4:

Frequência (<i>Hz</i>)	V _{pp} (<i>V</i>)	V _{ef} (<i>V</i>)	Taxa de varredura horizontal do osciloscópio

Tabela 5: Dados da análise espectral do sinal senoidal, com janela de duração igual a 400 µs:

n ^o de amostras selecionad as na aqui\sição	nº de pontos selecionados na janela (entre os cursores)	Resolução espectral f _d (Hz)	Índice do k _{máx}	f _{kmáx} (Hz)	f _a (Hz)	Índice espectral (k) da raia com maior amplitude	Amplitude calculada pela TDF neste índice espectral	Amplitude teórica esperada no mesmo índice espectral	Frequência da raia com maior amplitude
1000									
100									

m) Faça uma análise dos espectros obtidos nos dois últimos itens, com atenção às seguintes perguntas:

- Por que a resolução espectral é a mesma nos dois casos ?
- Os sinais visualizados na tela "Sinal Amostrado" correspondem ao sinal observado no osciloscópio nas duas condições ?
- No segundo caso, por que a frequência do sinal analisado pela TDF não corresponde à frequência do sinal do osciloscópio ?
- Qual é o tipo de erro que está sendo observado no 2º caso ?

2.2.2 ANÁLISE DA ONDA QUADRADA:

a) Ajuste o gerador de funções para gerar uma onda quadrada, com <u>A MESMA AMPLITUDE</u> <u>PICO A PICO</u> ("A")⁴ do sinal calculado **NO ITEM 1.a** e $f_o = 5$ kHz. Visualize o sinal no osciloscópio com taxa de varredura em **300 µs/div**. Indique na Tabela 6 os valores das grandezas obtidas no osciloscópio.

Tabela 6:

frequência (<i>Hz</i>)	V _{PP} (V)	V _{ef} (<i>V</i>)	Taxa de varredura horizontal do osciloscópio

b) Faça a aquisição do sinal com 1000 (mil) amostras utilizando o "Número de Raias Apresentadas" = 100. Com os cursores, janele nove (9) períodos do sinal. Indique somente os harmônicos relevantes da sua análise na Tabela 7.

Imprima a tela da análise espectral e anexe-a ao seu relatório.

c) Complete a Tabela 7 com os harmônicos relevantes utilizados no <u>item 1.a</u> e o erro relativo entre as grandezas.

Tabela 7 - Dados da análise espectral da onda quadrada e dos harmônicos do item 1.a.

	Dados extrai	ídos da TDF	Dados do	Erro relativo das		
Nº de períodos na janela =	Índice espectral k	Frequência f k	Amplitude $\mathbf{A}_{\mathbf{k}}$	Índice do harmônico h	Amplitude do c h sintetizado	amplitudes (%)
Nº de pontos						
selecionados na janela =						
Resoluçao espectral						
$I_d(\mathbf{HZ}) =$						
Frequência de						
amostragem=						

⁴ <u>Lembre-se</u> que a amplitude pico a pico da onda quadrada é diferente dos valores dos harmônicos ch"

d) Examine os resultados que obteve com a TDF e compare-os com os valores que você usou no item 1.a. Verifique especialmente se os harmônicos pares da sua TDF são ou não desprezíveis. Discuta também qual foi o efeito de janelar o sinal com 9 períodos na análise de Fourier. Procure explicar eventuais discrepâncias.

2.2.3 EFEITO DE REBATIMENTO:

- a) Mantendo-se o mesmo sinal e a mesma taxa de varredura do osciloscópio do item anterior, faça uma nova aquisição com 100 amostras. Delimite 9 períodos do sinal entre os cursores e efetue a análise de Fourier. Anote na Tabela 8 somente as frequências e as amplitudes das raias espectrais mais significativas do espectro obtido. Imprima a tela da Análise Espectral obtida.
- Tabela 8:

b) Compare os valores obtidos com os resultados esperados teoricamente (ou seja, sem o efeito de rebatimento).

Considere os seguintes aspectos na sua discussão:

- A frequência de amostragem e o critério de Nyquist;
- As frequências reais e espúrias do sinal observadas após realizar a análise de Fourier.
- Identifique quais harmônicos do sinal real estão relacionados com as frequências espúrias observadas na análise.

Frequências espúrias (fe) são determinadas através da seguinte expressão:

 $f_e = |m f_a - f|, m = 1, 2, 3, \dots$

onde: m = 1 se $f_a/2 < f < 3f_a/2$; m = 2 se $3f_a/2 < f < 5f_a/2$

c) Indique no gráfico impresso, quais raias são correspondentes ao sinal sem rebatimento, e as demais, oriundas do rebatimento, a que frequências do sinal original estão relacionadas.

3 PROGRAMAS

Análise_Espectral.vi e *Síntese_de_Fourier.vi*, baseados somente com instrumentos virtuais, a serem utilizados em qualquer micro.

BIBLIOGRAFIA

Orsini, L. Q., Consonni, D., *Curso de Circuitos Elétricos*, vol. 2, S. Paulo, ed. Blucher, 2004.
 Nascimento, V.H., *Introdução à Análise de Fourier*. Apostila do curso PSI3214, EPUSP, 2015.
 Nascimento, V. H., *Exemplos com Séries de Fourier*. Apostila do curso PSI3214, EPUSP, 2015.