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a b s t r a c t

In this study, a novel metaheuristic optimization algorithm, gradient-based optimizer
(GBO) is proposed. The GBO, inspired by the gradient-based Newton’s method, uses two
main operators: gradient search rule (GSR) and local escaping operator (LEO) and a set
of vectors to explore the search space. The GSR employs the gradient-based method to
enhance the exploration tendency and accelerate the convergence rate to achieve better
positions in the search space. The LEO enables the proposed GBO to escape from local
optima. The performance of the new algorithmwas evaluated in two phases. 28 mathemat-
ical test functions were first used to evaluate various characteristics of the GBO, and then
six engineering problems were optimized by the GBO. In the first phase, the GBO was com-
pared with five existing optimization algorithms, indicating that the GBO yielded very
promising results due to its enhanced capabilities of exploration, exploitation, conver-
gence, and effective avoidance of local optima. The second phase also demonstrated the
superior performance of the GBO in solving complex real-world engineering problems.
Source codes of the GBO algorithm are publicly available at http://imanahmadian-
far.com/codes/.

� 2020 Elsevier Inc. All rights reserved.
1. Introduction

Many real-world applications in various science and engineering fields can be converted to optimization problems. How-
ever, the related problems are often highly non-convex, non-linear, and multimodal. Although a variety of optimization algo-
rithms have been developed, they frequently fail to provide satisfactory results for such challenging problems, which
emphasizes the need for new optimization methods. The metaheuristic algorithms (MAs) [1], which are known as global
optimization techniques, have been successfully used to solve various complex and real optimization problems [2,3]. The
metaheuristic methods use some principles of physics, swarm intelligence, and biology [4].

In the last decades, different MAs have been developed and used. For example, the genetic algorithm (GA) was derived
from the Darwin’s theory of evolution [5]. The differential evolution (DE) algorithm employs the same operators (i.e., muta-
tion and crossover) as those in the GA but with a different approach [6]. The DE algorithm uses the difference between two
randomly selected vectors to generate a new vector. Particle swarm optimization (PSO) was inspired by the social behaviors
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of birds and fish for catching food [7]. The artificial bee colony (ABC) algorithm simulates the information sharing capability
and food foraging behavior of honey bees [8]. The gravitational search algorithm (GSA) uses the laws of gravity and motion
[9]. The bat algorithm (BA) simulates the echolocation behavior involved in bats [10]. The grey wolf optimizer (GWO)mimics
the hunting behavior of grey wolves in nature [11]. The sine and cosine algorithm (SCA) uses a mathematical function on the
basis of sine and cosine functions [4]. The thermal exchange optimization (TEO) algorithm is based on the principle of the
Newton’s law of cooling [12]. Atom search optimization (ASO) simulates the motion of atoms in nature based on atom
dynamics [13].

The aforementioned methods are categorized as population-based algorithms, which involve a set of solutions in the opti-
mization process. The search engines of such optimization methods are based on different phenomena as described above.
Many studies have demonstrated successful applications of these methods for a broad variety of real-world problems
[2,14,15]. Generally, the population-based optimizers share common information despite their natures [16]. In these algo-
rithms, the search engine implements two steps: exploration and exploitation [17]. Exploration involves exploring new posi-
tions far from the current position in the entire search area, while exploitation aims to explore the near-optimal positions.
The utilization of exploration alone may lead to new positions with low accuracy. In contrast, the employment of exploita-
tion alone increases the chance to get stuck in local optimal positions. Many studies emphasized the importance to balance
the exploration and exploitation search processes in the metaheuristic algorithms [15]. Hence, creating a suitable balance
between these two processes is crucial [18].

Most of the metaheuristic algorithms are managed to create a proper trade-off between exploration and exploitation. To
do this, some studies have been conducted to enhance the efficiency of basic algorithms by using suitable setting of the con-
trol parameters or hybridization of optimization algorithms [19–21]. However, to date, creating a suitable balance between
exploration and exploitation in the metaheuristic methods is a challenging and unsolved issue. On the other hand, based on
the rule of No Free Lunch (NFL) [22], no metaheuristic algorithm can solve all problems, indicating that a specific algorithm
may provide very good results for a set of problems, but the same method may have low efficiencies for a different set of
problems. NFL also implies that this field of research is highly dynamic, which leads to the development of many new meta-
heuristic optimization algorithms over years. This study attempts to fill the research gap by proposing a new metaheuristic
algorithm with population-based characteristics.

Thus, the main objective of this study is to develop a novel gradient-based metaheuristic algorithm, namely gradient-
based optimizer (GBO). The most popular gradient-based search methods include the Newton’s method [23], Quasi-
Newton method [24], Levenberg Marquardt (LM) algorithm [25], and the conjugate direction method [26]. These methods
have been applied in many studies to solve different types of optimization problems. For example, Salajegheh and Salajegheh
combined the Quasi-Newton method with the PSO algorithm to promote the performance and reliability of the basic PSO
[27]. Ibtissem and Nouredine [28] introduced a hybrid of the DE algorithm and the conjugate gradient method to increase
the local search ability in the basic DE. Shahidi et al. [29] developed a self-adaptive optimization algorithm employing the
conjugate gradient as a local search method. Bandurski and Kwedlo [30] combined the conjugate gradient method with the
DE algorithm to improve the local search of the basic DE algorithm. Parwani et al. [31] introduced a hybrid DE with a local
optimization method, in which the conjugate gradient method was used for local search to increase the convergence speed.
These studies demonstrated the important role of the gradient-based methods. Therefore, this study proposes the GBO algo-
rithm with a search engine based on the Newton’s method and employs a set of vectors to search the solution space, which
involves two operators including the gradient search rule (GSR) and the local escaping operator (LEO). The performance of
the GBO is evaluated by using 28 mathematical test functions and 6 real-world engineering optimization problems that have
been examined in previous studies.

The remaining sections are organized as follows: A brief review of the Newton’s method as a gradient-based optimization
method is presented in Section 2 and the main structures of the GBO are explained in Section 3. Experimental results are
detailed in Section 4 and the conclusions from this study are summarized in Section 5.
2. Methodology

2.1. Theoretical background

Generally, the optimization methods can be categorized into two groups: gradient-based (GB) methods such as the
LM algorithm [25], gradient descent (GD) [32], and Newton’s method [23], and modern non-gradient-based methods
(i.e., metaheuristic algorithms (MAs)) such as genetic algorithms (GAs) [5], simulated annealing (SA) [33], water evapo-
ration optimization (WEO) [34], teaching learning based optimization (TLBO) [35], self-defense mechanism of plants
(SDMP) algorithm [36], henry gas solubility optimization (HGSO) [37], and Harris hawks optimization (HHO) [38]. The
gradient-based methods have been broadly employed to solve optimization problems. To determine an optimal solution
using the gradient-based methods, an extreme point, at which the gradient is equal to zero, must be identified. The
gradient methods such as the conjugate direction [26] and Newton’s method are based on this concept. In the gradient
methods and most of other optimization methods, a search direction is selected and the searching process moves
along this direction towards the optimal solution [29]. Exploring the search directions in these methods needs to
determine the derivatives of the objective function together with the constraints. The two main disadvantages of this
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type of optimization are: (1) the convergence speed is very slow and (2) there is no guarantee to achieve the optimal
solution [27].

In the second category, some initial points (i.e., initial population) are randomly generated. Each point has a search direc-
tion, which is determined by the information acquired from previous results. The optimization process is continued by
updating the search directions until the convergence criterion is met. Such optimization techniques (i.e., MAs) have been
widely utilized to optimize different engineering problems. The MAs provide great robustness to find the global optima,
while the gradient-based methods tend to converge into local optima. However, the non-gradient-based methods require
higher computational capacities, especially for the problems with high-dimensional search spaces. Hence, it will be very
worthwhile to develop an optimization method that uses a gradient method to skip the unfeasible points and move towards
the feasible area and also takes advantage of the capabilities of the population-based optimization methods. Thus, one of the
unique features of this study is to combine the concept of the gradient-based methods with the population-based methods
for creating a powerful and efficient algorithm to overcome the drawbacks of previous methods.
2.2. Newton’s method

The Newton’s method is a powerful method to numerically solve equations [24]. This method is a root-finding algorithm
that employs the initial terms of the Taylor series. This method starts with a single point (x0) and then uses the Taylor series
assessed at point x0 for estimating another point that is nearby to the solution. This procedure continues until the final solu-
tion is obtained. The Taylor series of function f ðxÞ can be expressed as:
f xð Þ ¼ f x0ð Þ þ f
0
x0ð Þ x� x0ð Þ þ f

0 0 ðx0Þ x� x0ð Þ2
2!

þ f ð3Þðx0Þ x� x0ð Þ3
3!

þ � � � ð1Þ
where f
0
xð Þ, f 0 0

xð Þ, and f ð3Þ xð Þ respectively are the first-, second-, and third-order derivatives of f xð Þwith respect tox. Assuming
that the initial point is very close to the actual root, x� x0ð Þ is small and the higher-order terms in the Taylor series will
approach to zero. Therefore, truncating the series (Eq. 1) attains a linear approximation of f xð Þ as follows:
f xð Þ � f x0ð Þ þ f
0
x0ð Þ x� x0ð Þ ð2Þ
To determine the root forf xð Þ, let f xð Þ be zero and solve for x:
x ¼ x0 � f x0ð Þ
f
0
x0ð Þ

ð3Þ
Accordingly, given xn, next approximation xnþ1 can be expressed as:
xnþ1 ¼ xn � f ðxnÞ
f
0 ðxnÞ

ð4Þ
The Newton’s method implements an iterative process to eventually obtain the final solution.
2.3. Modification of Newton’s method

In this study, a new variant of the Newton’s method introduced byWeerakoon and Fernando [39] is used to formulate the
proposed algorithm, which is defined as:
xnþ1 ¼ xn � f ðxnÞ
½f 0 ðxnþ1Þ þ f

0 ðxnÞ�=2
ð5Þ
where f
0 ðxnþ1Þ is the first-order derivative of f xð Þ with respect toxnþ1.

According to Özban [40], Eq. (5) can be expressed as:
xnþ1 ¼ xn � f xnð Þ
f
0 znþ1þxn½ �

2

� � ð6Þ
where
znþ1 ¼ xn � f ðxnÞ
f
0 ðxnÞ

ð6-1Þ
So, the new variant of the Newton’s method can be achieved by using the arithmetic mean of znþ1 and xn.
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2.4. Gradient-based optimizer

In the proposed GBO that combines the gradient and population-based methods, the search direction is specified by the
Newton’s method to explore the search domain utilizing a set of vectors and two main operators (i.e., gradient search rule
and local escaping operators). Minimization of the objective function is considered in the optimization problems.

2.4.1. Initialization
An optimization problem involves a set of decision variables, constraints, and an objective function. The control param-

eters of the GBO include a parameter for transition from the exploration to exploitation (a) and a probability rate. The num-
ber of iterations and the population size are determined, depending on the problem complexity. In the proposed algorithm,
each member of the population is called ‘‘vector”. Accordingly, the GBO includes N vectors in a D-dimensional search space.
Thus, a vector can be expressed as:
Xn;d ¼ Xn;1;Xn;2; . . . ;Xn;D½ �; n ¼ 1;2; . . . ;N; d ¼ 1;2; . . . ;D ð7Þ

Usually, the initial vectors of the GBO are randomly generated in the D-dimensional search domain, which can be defined

as:
Xn ¼ Xmin þ rand 0;1ð Þ � ðXmax � XminÞ ð8Þ

where Xmin and Xmax are the bounds of decision variable X , and rand 0;1ð Þ is a random number in [0, 1].

2.4.2. Gradient search rule (GSR)
In the gradient search rule, the movement of vectors is controlled to better search in the feasible domain and achieve bet-

ter positions. With the aim of enhancing the exploration tendency and accelerating the convergence of the GBO, the GSR is
proposed based on the concept of the GB method. However, this rule is extracted from the Newton’s gradient-based method
[23]. Given the fact that many optimization problems are not differentiable, a numerical gradient approach is employed as a
substitute for the direct derivation of the function. Generally, the GB method begins a guessed initial solution and moves
toward the next position along a gradient-specified direction. To derive the GSR based on Eq. (4), the first-order derivative
must be calculated by utilizing the Taylor series. The Taylor series for functions f ðxþ DxÞ and f ðx� DxÞ can be respectively
expressed as:
f xþ Dxð Þ ¼ f xð Þ þ f
0
x0ð ÞDxþ f

0 0 ðx0ÞDx2
2!

þ f ð3Þðx0ÞDx3
3!

þ � � � ð9Þ

f x� Dxð Þ ¼ f xð Þ � f
0
x0ð ÞDxþ f

0 0
x0ð ÞDx2
2!

� f ð3Þðx0ÞDx3
3!

þ � � � ð10Þ
From the truncated Eqs. (9) and (10), the first-order derivative is given by the following central differencing formula [41]:
f
0
xð Þ ¼ f xþ Dxð Þ � f x� Dxð Þ

2Dx
ð11Þ
Based on Eqs. (4) and (11), the new position (xnþ1) is then defined as:
xnþ1 ¼ xn � 2Dx� f ðxnÞ
f xn þ Dxð Þ � f xn � Dxð Þ ð12Þ
Since the GSR is considered as the main core of the proposed algorithm, some modifications are essential to handle the
population-based search. Regarding Eq. (12), the neighboring positions of xn are xn þ Dx and xn � Dx, which are depicted in
Fig. 1. In the GBO algorithm, these neighboring positions are replaced with two other positions (vectors) in the population.
Since f ðxÞ is a minimization problem, as shown in Fig. 1, position xn þ Dx has a worse fitness than xn, while xn � Dx is better
than xn. Accordingly, the GBO algorithm substitutes position xn � Dx with xbest, which has a better position in the neighbor-
hood of position xn, while xn þ Dx is replaced with xworst, which is a worse position in the neighborhood of xn. In addition, the
proposed algorithm employs the position (xn), instead of its fitness (f ðxnÞ) because the use of fitness of a position is more
time-consuming in the computation. The proposed GSR is then formulated as follows:
GSR ¼ randn� 2Dx� xn
ðxworst � xbest þ eÞ ð13Þ
where randn is a normally distributed random number, and e is a small number within the range of [0, 0.1]. xbest and xworst are
the best and worst solutions obtained during the optimization process. Eq. (13) can assist the current solution to update its
position. To improve the search capability of the proposed GBO and balance exploration (global) and exploitation (local), the
GSR is modified by introducing a random parameter q1 in Eq. (13), as detailed below.

Generally, an optimization algorithm should be capable of balancing the global exploration and local exploitation to
explore the promising areas in the search domain and eventually converge to the global optimal solution. To achieve this



Fig. 1. Gradient estimation using xn and its neighboring positions.
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goal, the GSR can be changed by utlizing an adaptive coefficient. In this study, q1 is introduced as the most significant param-
eter in the GBO to balance the exploration and exploitation searching processes, and it can be expressed as:
q1 ¼ 2� rand� a� a ð14Þ

a ¼ b� sin
3p
2

þ sin b� 3p
2

� �� �����
���� ð14-1Þ

b ¼ bmin þ bmax � bminð Þ � 1� m
M

� �3� �2

ð14-2Þ
where bmin and bmax are 0.2 and 1.2, respectively, m is the number of iterations, and M is the total number of iterations. To
balance the exploration and exploitation processes, parameter q1 changes based on the sine function a. Fig. 2 depicts how
Fig. 2. Variation of a parameter over course of iterations.
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the parameter a changes with the iteration number. The maximum iteration number is 1000. This parameter can be changed
at each iteration. It has a large value at the early iterations to enhance the population diversity and then its value decreases
as the iteration number increases to accelerate the convergence. The generated solutions should be capable of exploring the
search space around their corresponding best solutions. In this regard, the parameter value increases for the iteration num-
bers ranging from 550 to 750, which assists the proposed algorithm to escape from any local optima because it can increase
the diversity of population to search around the best solution ever obtained. Thus, Eq. (13) can be rewritten as:
GSR ¼ randn� q1 �
2Dx� xn

ðxworst � xbest þ eÞ ð15Þ
The proposed GSR helps the GBO to account for the random behavior during the optimization process, promoting explo-
ration and escaping local optima. In Eq. (15), Dx is determined based on the difference between the best solution (xbest) and a
randomly selected position (xmr1) (see Eqs. 16, 16-1, and 16-2). To ensure that Dx changes at each iteration, parameter d is
defined by Eq. (16-2). Additionally, to improve exploration, a random number (rand) is added to Eq. (16-2).
Dx ¼ randð1 : NÞ � jstepj ð16Þ

step ¼ ðxbest � xmr1Þ þ d
2

ð16-1Þ

d ¼ 2� rand� xmr1 þ xmr2 þ xmr3 þ xmr4
4

� xmn

����
����

� �
ð16-2Þ
where randð1 : NÞ is a random number with N dimensions, r1; r2; r3; andr4ðr1–r2–r3–r4–n) are different integers ran-
domly chosen from [1, N], step is a step size, which is determined by xbest and xmr1. Based on the proposed GSR, Eq. (12)
can be rewritten as:
xnþ1 ¼ xn � GSR ð17Þ

The direction of movement (DM) is also added to better exploit the nearby area of xn. This term uses the best vector and

moves the current vector (xn) in the direction of (xbest � xn). Therefore, this process creates a suitable local search tendency to
promote the convergence speed of the GBO algorithm. The proposed DM is formulated as follows:
DM ¼ rand� q2 � ðxbest � xnÞ ð18Þ

where rand is a random number in [0, 1], and q2 is a random parameter, which assists each vector to have a different step
size. In addition, this can be another component of the GBO that supports the exploration process. q2 is given by:
q2 ¼ 2� rand� a� a ð19Þ

Finally, based on the terms of the GSR and DM, Eqs. (20) and (21) can be used to update the position of current vector (xmn ).
X1m
n ¼ xmn � GSRþ DM ð20Þ

X1m
n ¼ xmn � randn� q1 �

2Dx� xmn
ðxworst � xbest þ eÞ þ rand� q2 � ðxbest � xmn Þ ð21Þ
where X1m
n is the new vector generated by updating xmn . Fig. 3 displays how the current position is updated. As shown in

Fig. 3, the position X1m
n is created at a random point which is specified by the GSR and DM in the search space.

In this study, the Newton’s method introduced by Özban [40] (Eq. 6) is used to improve the GSR. Based on Eqs. (6) and
(11), the GSR can also be expressed as:
xnþ1 ¼ xn � 2Dx� f ðxnÞ
f yn þ Dxð Þ � f yn � Dxð Þ ð22Þ
where
yn ¼ znþ1þxn½ �
2

ð22-1Þ
Eq. (22) is employed to update the position of the current solution with a formula different from Eq. (12). This equation
uses the average of two vectors znþ1 and xn, instead of xn only. This new formula can assist the optimization algorithm by
improving the search process in the solution space.

Similar to Eq. (15), to convert Eq. (22) to a population-based search method, znþ1 is first formulated as:
znþ1 ¼ xn � 2Dx� f ðxnÞ
f xn þ Dxð Þ � f xn � Dxð Þ ð22-2Þ
Then, to change to a population-based algorithm, Eq. (22-2) can be rewritten as:



Fig. 3. Updating the current position xn:
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znþ1 ¼ xn � randn� 2Dx� xn
ðxworst � xbest þ eÞ ð22-3Þ
yn þ Dx and yn � Dx in Eq. (22) are respectively given by:
yn þ Dx ¼ znþ1þxn½ �
2

þ Dx ð22-4Þ

yn � Dx ¼ znþ1þxn½ �
2

� Dx ð22-5Þ
In this research, to enhance the diversity and exploration and to create a robust population-based search method, Eqs.
(22-4) and (22-5) are revised as (note that yn þ Dx and yn � Dx are simplified as ypn and yqn):
ypn ¼ rand� znþ1þxn½ �
2

þ rand� Dx
� �

ð22-6Þ

yqn ¼ rand� znþ1þxn½ �
2

� rand� Dx
� �

ð22-7Þ
where ypn and yqn are two positions created in regard to znþ1 and xn, respectively.
Using the above equations, the GSR can be expressed as:
GSR ¼ randn� q1 �
2Dx� xn

ðypn � yqn þ eÞ ð23Þ
With respect to the GSR and DM, Eqs. (24) and (25) are used to produce the position of X1m
n .
X1m
n ¼ xmn � GSRþ DM ð24Þ

X1m
n ¼ xmn � randn� q1 �

2Dx� xmn
ðypm

n � yqm
n þ eÞ þ rand� q2 � ðxbest � xmn Þ ð25Þ
By replacing the position of the best vector (xbest) with the current vector (xmn ) in Eq. (25), the new vector (X2m
n ) can be

generated as follows:
X2m
n ¼ xbest � randn� q1 �

2Dx� xmn
ðypm

n � yqm
n þ eÞ þ rand� q2 � ðxmr1 � xmr2Þ ð26Þ
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This search direction method emphasizes the exploitation process. The search method expressed by Eq. (26) is good for
local search but is limited for global search, while the search method introduced in Eq. (25) is good for global search but is
limited for local search. Therefore, the GBO takes advantage of both search methods (Eqs. (25) and (26)) to enhance both
exploration and exploitation. Accordingly, based on the positions X1m

n , X2
m
n , and the current position (Xm

n Þ, the new solution
at the next iteration (xmþ1

n ) can be defined as:
xmþ1
n ¼ ra � rb � X1m

n þ 1� rbð Þ � X2m
n

� �þ 1� rað Þ�X3m
n ð27Þ

X3m
n ¼ Xm

n � q1 � ðX2m
n � X1m

n Þ ð27-1Þ

where ra and rb are two random numbers in [0, 1].
Fig. 4 depicts how a vector updates its position with regard to X1m

n , X2
m
n , and X3m

n in a 2D search space. According to Fig. 4
and Eq. (30), the position xmþ1

n would be at a random place determined by the positions X1m
n , X2

m
n , and X3m

n in the search
space. Indeed, these three positions specify the position xmþ1

n , and other vectors change their positions randomly around xmþ1
n .

2.4.3. Local escaping operator (LEO)
The LEO is introduced to promote the efficiency of the proposed GBO algorithm for solving complex problems. This oper-

ator can significantly change the position of the solution xmþ1
n . The LEO generates a solution with a superior performance

(Xm
LEO) by using several solutions, which include the best position (xbest), the solutions X1m

n and X2m
n , two random solutions

xmr1 and xmr2, and a new randomly generated solution (xmk ). The solution Xm
LEO is generated by the following scheme:
Fig. 4. Sketch map of the GBO algorithm.
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ð28Þ
where f 1 is a uniform random number in the range of [–1,1], f 2 is a random number from a normal distribution with mean
of 0 and standard deviation of 1, pr is the probability, and u1, u2, and u3 are three random numbers, which are defined as:
u1 ¼ 2� rand if l1 < 0:5
1 otherwise

	
ð28-1Þ

u2 ¼ rand if l1 < 0:5
1 otherwise

	
ð28-2Þ

u3 ¼ rand if l1 < 0:5
1 otherwise

	
ð28-3Þ
where rand is a random number in the range of [0, 1], and l1 is a number in the range of [0, 1]. The above equations can be
simplified:
u1 ¼ L1 � 2� randþ ð1� L1Þ ð28-4Þ

u2 ¼ L1 � randþ ð1� L1Þ ð28-5Þ

u3 ¼ L1 � randþ ð1� L1Þ ð28:6Þ

where L1 is a binary parameter with a value of 0 or 1. If parameter l1 is less than 0.5, the value of L1 is 1, otherwise, it is 0.
To determine the solution xmk in Eq. (28), the following scheme is suggested.
xmk ¼ xrand ifl2 < 0:5
xmp otherwise

(
ð28-7Þ

xrand ¼ Xmin þ rand 0;1ð Þ � ðXmax � XminÞ ð28-8Þ

where xrand is a new solution, xmp is a randomly selected solution of the population (p 2 1;2; . . . ;N½ �), and l2 is a random num-
ber in the range of [0, 1]. Eq. (28-7) can be simplified as:
xmk ¼ L2 � xmp þ ð1� L2Þ � xrand ð28-9Þ

where L2 is a binary parameter with a value of 0 or 1. If l2 is less than 0.5, the value of L2 is 1, otherwise, it is 0. This

random behavior in selecting the values of parameters u1, u2, and u3 assists to increase the diversity of the population
and escape from local optimal solutions. The pseudo code of the GBO algorithm is shown in Table 1.

3. Results and discussion

The performance of the GBO algorithm is extensively evaluated by using 28 mathematical functions, which have been
broadly employed in previous studies [2,15,42]. These test functions can be categorized into four different types, comprising
unimodal functions (f1–f6), multimodal functions (f7–f14), hybrid functions (f15–f20), and composite functions (f21–f28). A brief
summary of all functions is shown in Tables 2–4 in Appendix A. Note that optimization of the hybrid and composite



Table 1
Pseudo code of the GBO algorithm.

Step 1. Initialization
Assign values for parameterspr,e, and M
Generate an initial population X0 ¼ x0;1; x0;2; . . . ; x0;D


 �
Evaluate the objective function value f X0ð Þ;n ¼ 1; . . . ;N
Specify the best and worst solutions xmbest and xmworst

Step 2. Main loop
While (m<M)
for n = 1 : N
for i = 1 : D
Select randomlyr1–r2–r3–r4–n in the range of [1, N]
Calculate the position xmþ1

n;i using Eq. (27)

end for
Local escaping operator
ifrand < pr
Calculate the position xmLEO using Eq. (28)

Xmþ1
n ¼ xmLEO

end
Update the positions xmbest andx

m
worst

end for
m = m + 1

end
Step 3. returnxmbest

Table 3
Multimodal test functions.

Function D Range fmin

f 7 xð Þ ¼ gðx1; x2Þ þ gðx2; x3Þ þ . . .þ gðxD�1; xDÞ þ gðxD; x1Þ
g x; yð Þ ¼ 0:5þ ðsin2

ffiffiffiffiffiffiffiffiffiffi
x2þy2

p� �
�0:5Þ

ð1þ0:001 x2þy2ð ÞÞ2

30 [�100, 100] 0

f 8 xð Þ ¼ sin2 pw1ð Þ þPD�1
i¼1 ðwi � 1Þ2½1þ 10sin2 pwi þ 1ð Þ� þ ðwD � 1Þ2½1þ sin2 2pwDð Þ�

wherewi ¼ 1þ xi�1
4

30 [�100, 100] 0

f 9 xð Þ ¼ 418:9829� D�PD
i¼1g zið Þ; zi ¼ xi þ 4:209687462275036eþ 002

g zið Þ ¼
zi sin zij j12

� �
if zij j � 500

500�mod zi; 500ð Þð Þ sin ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
500�mod zi; 500ð Þj j

p� �
� ðzi�500Þ2

10000D if zi > 500

mod jzij; 500ð Þ � 500ð Þ sin ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mod jzij; 500ð Þ � 500j j

p� �
� ðziþ500Þ2

10000D if zi < �500

8>>><
>>>:

30 [�100, 100] 0

f 10 xð Þ ¼ 20� 20� expð�0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
D ð
PD

i¼1x
2
i

q
ÞÞ � expð1D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPD
i¼1coxð2pxi

q
ÞÞ þ e 30 [–32, 32] 0

f 11 xð Þ ¼PD
i¼1ð

Pkmax
k¼0 ½akcosð2pbkðxi þ 0:5ÞÞ�Þ-DPkmax

k¼0 ½akcosð2pbk:0:5Þ�
a ¼ 0:5; b¼ 3; kmax ¼ 20 30 [�100, 100] 0

f 12 xð Þ ¼ jPD
i¼1x

2
i � Dj

1
4 þ ð0:5PD

i¼1x
2
i þ

PD
i¼1xiÞ=Dþ 0:5 30 [�100, 100] 0

f 13 xð Þ ¼ jðPD
i¼1x

2
i Þ

2 � ðPD
i¼1xiÞ

2j
1
2 þ ð0:5PD

i¼1x
2
i þ

PD
i¼1xiÞ=Dþ 0:5

30 [�100, 100] 0

f 14 xð Þ ¼PD
i¼2jxisinðxiÞ þ 0:1xij 30 [0, 100] 0

Table 2
Unimodal test functions.

Function D Range fmin

f 1 xð Þ ¼ x21 þ 106PD
i¼2x

2
i

30 [�100, 100] 0

f 2 xð Þ ¼PD
i¼1jxijiþ1 30 [�100, 100] 0

f 3 xð Þ ¼PD
i¼1x

2
i þ

PD
i¼10:5xi

� �2 þ PD
i¼10:5xi

� �4 30 [�100, 100] 0

f4 xð Þ ¼PD�1
i¼1 ½100ðxiþ1 � x2i Þ

2 þ ðxi � 1Þ2� 30 [�100, 100] 0

f 5 xð Þ ¼ 106x21 þ
PD

i¼2x
2
i

30 [�100, 100] 0

f 6 xð Þ ¼PD
i¼1ð106Þ

i�1
D�1x2i

30 [�100, 100] 0
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Table 4
Hybrid and composite mathematical benchmark functions.

Function Name D Range fmin

f 15 xð Þ Hybrid Function 1 (N = 3) 30 [�100, 100] 1700
f 16 xð Þ Hybrid Function 2 (N = 3) 30 [�100, 100] 1800
f 17 xð Þ Hybrid Function 3 (N = 4) 30 [�100, 100] 1900
f 18 xð Þ Hybrid Function 4 (N = 4) 30 [�100, 100] 2000
f 19 xð Þ Hybrid Function 5 (N = 5) 30 [�100, 100] 2100
f 20 xð Þ Hybrid Function 6 (N = 5) 30 [�100, 100] 2200
f 21 xð Þ Composite Function 1 (N = 5) 30 [�100, 100] 2300
f 22 xð Þ Composite Function 2 (N = 3) 30 [�100, 100] 2400
f 23 xð Þ Composite Function 3 (N = 3) 30 [�100, 100] 2500
f 24 xð Þ Composite Function 4 (N = 5) 30 [�100, 100] 2600
f 25 xð Þ Composite Function 5 (N = 5) 30 [�100, 100] 2700
f 26 xð Þ Composite Function 6 (N = 5) 30 [�100, 100] 2800
f 27 xð Þ Composite Function 7 (N = 3) 30 [�100, 100] 2900
f 28 xð Þ Composite Function 8 (N = 3) 30 [�100, 100] 3000
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mathematical functions is more complicated and challenging than that of the unimodal and multimodal functions. Hence, it
is more proper to evaluate the capabilities of the algorithms in solving complex real-world optimization problems.

3.1. Experimental setup

To test the performance of the GBO, it is compared with five metaheuristic algorithms including GWO, CS, ABC, WOA, and
ISA. Each optimization algorithm is independently run 30 times for each test function. Table 5 shows the control parameters
of all algorithms, which are recommended on the basis of the trial-and-error technique and/or estimated experimentally. The
population size and the maximum number of iterations are respectively set to 50 and 500 for the unimodal and multimodal
functions, and 50 and 1000 for the hybrid and composite functions. Tables 6 and 7 show the best, average, and standard devi-
ation values of the objective function calculated for unimodal, multimodal, hybrid, and composite test functions over the 30
runs. In the following sections, the exploitation and exploration behaviors of the GBO are first investigated, and then its capa-
bility of avoidance of local optima and convergence behavior are tested.

3.2. Evaluation of the exploitation ability

The unimodal functions are usually used to evaluate the exploitation ability of the optimization algorithms. These test
functions have only one global position and no local position, so the exploitation behavior and the convergence speed of
the GBO algorithm can be assessed by using these functions. Table 6 shows the results of the GBO, GWO, CS, ABC, WOA,
and ISA algorithms for the unimodal functions (f1–f6). It can be observed that the GBO provided more promising results than
the GWO, CS, ABC, WOA, and ISA algorithms. In particular, the GBO was the best optimization algorithm to solve all unimodal
functions in the terms of the best, average, and standard deviation values of the objective function for the 30 independent
runs. The GBO had a good accuracy for the unimodal functions, indicating that this new algorithm proposed in this study has
more promising exploitation capability that the other five optimization algorithms.

3.3. Evaluation of the exploration ability

The exploration ability of the GBO was evaluated by the multimodal test functions (f7–f14). These functions are known for
having a large number of local optimal solutions so that the number of these solutions increases exponentially with increas-
ing the problem dimensions. Hence, it is proper to evaluate the exploration capability of the optimization methods. Table 6
shows the results of the GBO algorithm and the GWO, CS, ABC, WOA, and ISA algorithms. As shown in Table 6, the GBO
Table 5
Control parameters of six algorithms.

Algorithms Parameters

GWO a parameter that reduces linearly from 2 to 0 (Default)
WOA a parameter that reduces linearly from 2 to 0 (Default)

a parameter that reduces linearly from �1 to �2 (Default)
CS discovery rate of alien eggs/solutions = 0.25
ABC acceleration coefficient reduces exponentially from 2 to 0
ISA Scale factor = 0.001
GBO bmin = 0.2, bmax= 1.2

pr = 0.5



Table 6
Results of the unimodal and multimodal test functions.

Algorithm Criteria Unimodal functions

f1 f2 f3 f4 f5 f6

GBO Best 1.26E�135 2.33E�206 1.50E�138 1.98E + 01 3.92E�140 1.35E�136
Average 1.46E�125 3.29E�193 2.40E�128 2.16E+01 8.86E�131 9.61E�129
SD 7.96E�125 0.00E+00 1.21E�127 8.03E�01 4.07E�130 4.92E�128

GWO Best 4.33E�29 2.79E�108 2.25E�31 2.52E+01 1.61E�34 1.12E�31
Average 3.87E�27 4.17E�97 5.78E�29 2.68E+01 5.60E�33 5.14E�30
SD 7.73E�27 1.87E�96 1.48E�28 7.53E�01 5.84E�33 8.14E�30

CS Best 4.44E�05 1.46E�06 5.38E�03 2.96E+01 6.67E�06 1.22E�02
Average 2.52E�02 1.81E+01 9.00E�01 1.39E+02 5.16E�04 1.88E�01
SD 1.17E�01 8.44E+01 1.70E+00 2.37E+02 7.63E�04 3.04E�01

ABC Best 6.25E�10 1.90E�76 2.11E�08 3.97E+01 4.06E�16 1.48E�10
Average 1.77E�02 3.76E�54 1.32E+00 6.93E+01 1.56E�08 6.39E+00
SD 6.49E�02 2.06E�53 2.68E+00 5.50E+01 7.60E�08 3.50E+01

WOA Best 9.43E�89 9.17E�141 2.88E+01 2.69E+01 2.63E�94 2.90E�89
Average 6.75E�80 1.56E�110 5.52E+03 2.75E+01 2.86E�84 1.30E�81
SD 2.45E�79 7.86E�110 3.85E+03 4.12E�01 1.11E�83 5.59E�81

ISA Best 2.94E+00 6.76E�09 4.16E�04 2.35E+01 2.54E�05 2.80E�02
Average 9.87E+01 1.61E�01 1.54E�02 7.56E+01 1.50E�01 6.14E+01
SD 1.92E+02 6.00E�01 2.88E�02 5.18E+01 7.42E�01 1.65E+02

Algorithm Criteria Multimodal functions

f7 f8 f9 f10 f11 f12 f13 f14

GBO Best 0.00E+00 4.60E�09 3.82E�04 8.88E�16 1.35E�13 3.46E�01 4.06E�01 2.95E�73
Average 0.00E+00 2.96E�07 3.82E�04 8.88E�16 1.97E�13 5.31E�01 4.24E�01 6.45E�69
SD 0.00E+00 8.45E�07 0.00E+00 0.00E+00 3.62E�14 1.72E�01 1.17E�02 1.99E�68

GWO Best 2.11E+00 6.36E�01 3.82E�04 3.64E�14 2.27E+01 4.41E�01 3.43E�01 1.64E�19
Average 5.91E+00 1.01E+00 3.82E�04 4.46E�14 2.91E+01 6.39E�01 4.65E�01 4.27E�04
SD 2.20E+00 1.59E�01 8.72E�13 4.19E�15 3.34E+00 9.60E�02 7.24E�02 5.72E�04

CS Best 7.74E+00 6.28E�01 3.82E�04 4.69E�04 8.53E�14 4.42E�01 3.18E�01 2.60E�05
Average 9.86E+00 2.41E+00 4.12E�04 3.73E�03 6.23E�02 5.93E�01 4.54E�01 2.64E�02
SD 8.36E�01 2.27E+00 4.54E�05 3.44E�03 9.52E�02 8.40E�02 1.47E�01 2.69E�02

ABC Best 8.69E+00 4.49E�01 3.82E�04 2.22E+00 3.79E+00 2.64E�01 2.25E�01 4.20E�18
Average 1.05E+01 3.84E+00 9.84E+01 4.90E+00 9.29E+00 5.19E�01 5.78E�01 1.74E�03
SD 9.07E�01 3.98E+00 1.66E+02 1.51E+00 3.89E+00 1.84E�01 2.71E�01 9.45E�03

WOA Best 0.00E+00 6.99E�02 3.82E�04 8.88E�16 7.11E�15 2.60E�01 1.21E�01 0.00E+00
Average 3.00E+00 5.12E�01 3.82E�04 3.73E�15 1.92E�14 5.24E�01 3.84E�01 0.00E+00
SD 4.43E+00 3.58E�01 5.55E�13 2.70E�15 6.62E�14 1.88E�01 9.68E�02 0.00E+00

ISA Best 9.06E+00 4.72E+00 3.83E�04 1.33E�03 3.46E+01 3.31E�01 2.54E�01 1.27E�04
Average 1.09E+01 3.42E+01 1.87E�03 9.27E�01 3.89E+01 4.63E�01 6.42E�01 6.15E�01
SD 8.96E�01 2.25E+01 5.08E�03 8.13E�01 1.71E+00 9.80E�02 2.96E�01 1.22E+00
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yielded much better results than the five other algorithms, except for functions f11–f14. The GBO was inferior to the WOA on
functions f11, f13, and f14 and was outperformed by the ISA, WOA, and ABC on function f12. However, the ISA had the worst
performance on functions f7, f8, f11, f13, and f14, and the ABC provided the worst results for functions f9 and f10. These results
indicate that the performances of the GBO and WOA methods are approximately equal in solving the multimodal functions.
Note that the SD values for the GBO are much better than those of the other algorithms, expect for function f14. The results
demonstrate that the good competency of the GBO to improve the exploration search in optimization.
3.4. Evaluation of the capability escaping from local optima

The hybrid and composite functions (f15–f28) were used to evaluate the ability of the GBO to escape from local optima in
this research. These functions are known as the most challenging optimization problems because only an algorithm with a
suitable balance between exploration and exploitation can escape from local optimal solutions. Table 7 shows the results of
the six algorithms on the hybrid and composite functions.

For the hybrid functions (f15–f20) in Table 7, the average values of the objective function achieved for functions f15–f17 and
f19 over the 30 runs using the GBO are better than those achieved by the other algorithms, while the average values of the
objective function obtained for functions f18 and f20 using the ISA and GWO, respectively, are better than those obtained by
the GBO. In other words, the GBO is inferior to the ISA on function f18 and is outperformed by the GWO on function f20. The
best values of the objective function achieved for functions f15–f16 and f19–f20 over the 30 runs using the GBO are better than
those obtained by the other algorithms. The GBO is outperformed by the ISA on the best values of the objective function for
functions f17–f18 over the 30 runs.



Table 7
Results of the hybrid and composite test functions.

Algorithm Criteria Hybrid functions

f15 f16 f17 f18 f19 f20

GBO Best 8935.40 1882.27 1908.72 2359.86 5380.12 2222.16
Average 54281.78 3842.48 1913.11 3057.48 25618.08 2653.37
SD 42432.48 2399.27 3.92 744.79 18468.09 204.78

GWO Best 231111.70 5408.63 1912.26 8718.14 66706.84 2250.33
Average 1779929.97 7749192.43 1945.42 25284.54 865855.49 2581.81
SD 1644067.84 17864871.76 26.45 14344.57 1222558.84 145.41

CS Best 168986.27 2070.91 1909.39 3577.19 16508.82 2364.87
Average 1638591.37 8614.09 1931.73 94953.78 405641.76 3114.17
SD 1608329.34 8165.00 30.62 309592.19 577986.74 364.57

ABC Best 233476.61 2363.39 1910.94 17929.12 76522.99 2458.79
Average 658957.42 4103.94 1914.55 32002.21 200710.29 2717.80
SD 285149.46 1715.37 7.60 7762.82 68430.95 352.07

WOA Best 2520022.97 9512.03 1919.07 28141.42 189834.25 2476.51
Average 11178976.28 93612.11 1964.90 76381.26 3876550.62 3084.20
SD 7349962.08 94864.91 34.80 48244.50 4182086.86 252.11

ISA Best 20437.35 1902.304 1906.027 2234.03 6951.55 2371.626
Average 85225.05 3020.392 1916.644 2864.17 28591.60 2659.081
SD 51554.55 1325.382 19.50 747.64 23138.94 178.69

Algorithm Criteria Composite functions

f21 f22 f23 f24 f25 f26 f27 f28

GBO Best 2500.00 2600.00 2700.00 2700.24 2900.00 3000.00 3130.97 4164.96
Average 2500.00 2600.00 2700.00 2700.51 2900.00 3034.06 3450.88 5322.75
SD 0.00 0.00 0.00 0.17 0.00 186.56 643.65 892.78

GWO Best 2621.18 2600.01 2700.00 2700.33 3123.36 3675.15 7501.77 13904.34
Average 2636.05 2600.02 2711.44 2737.11 3379.48 4045.94 308528.23 53939.59
SD 11.16 0.01 4.47 48.71 111.60 346.48 600531.00 29108.60

CS Best 2615.24 2628.98 2705.81 2700.51 3105.55 3861.53 5335.67 5041.06
Average 2627.92 2648.17 2715.34 2705.09 3634.37 4481.44 9069.06 7161.88
SD 33.34 8.01 7.43 18.32 326.63 364.02 2236.96 1256.38

ABC Best 2615.27 2628.99 2712.05 2700.49 3123.23 4068.54 10795.11 7427.97
Average 2615.66 2633.06 2714.83 2700.72 3138.99 4440.74 20057.04 9638.17
SD 1.82 2.35 1.82 0.22 9.48 246.10 5239.48 1593.26

WOA Best 2633.57 2601.39 2700.00 2700.27 3128.00 4534.27 11837.45 59603.38
Average 2665.19 2609.03 2717.65 2710.48 3705.99 5499.60 7750877.69 241296.57
SD 16.51 5.05 20.14 30.38 417.89 604.76 5275879.13 156977.31

ISA Best 2615.244 2626.773 2700 2700.182 3101.926 3783.245 3946.881 4712.596
Average 2615.245 2631.823 2712.202 2703.647 3156.223 4623.885 5458.514 6365.478
SD 0.002225 4.186077 4.675988 18.21034 113.0097 730.5406 1915.738 1120.53
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For the composite functions (f21–f28), Table 7 indicates that the GBO provided much better results on all composite func-
tion than the other algorithms. Since the composite functions are formed by some standard test functions, they have a ran-
domly located global optimum and many deep local optima. From Table 7, it can be clearly observed that the GBO achieved
more promising results than the GWO, CS, ABC, WOA, and ISA algorithms on functions f21–f28, due to the local escaping oper-
ator of the GBO that contributed to the exploration and assisted to escape from local optima effectively.
3.5. Ranking analysis

To select the prominent performance among the six algorithms, the Friedman and Quade tests [43] were performed. The
Friedman test is a well-known, non-parametric test to determine the considerable difference in the efficiency between two
or more samples. The null hypothesis in this test implies that there is equality of medians among the samples, while the
alternative hypothesis explains the negation of the null hypothesis. The Quade test is used to for multiple comparisons.
In contrast to the Friedman test, the Quade test is based on the assumption that some problems are more complex or impor-
tant than others (in the Friedman test, all problems have an equal importance). Therefore, the computed rankings are scaled
in regards to the differences specified between the samples [43].

Tables 8 and 9 show the rankings from the Friedman and Quade tests, including the individual, average, and final ranks for
the average performances of the six algorithms on the unimodal, multimodal, hybrid and composite functions. The Friedman
test results (Table 8) indicate that the GBO has the best rank on all test functions compared to the GWO, CS, ABC, WOA, and
ISA algorithms, except for the multimodal functions. Note that the GBO was outperformed by the WOA algorithm on the
multimodal functions. In the case of the Quade test, the GBO has the best rank on all test functions including the unimodal,



Table 8
Friedman ranks for the unimodal, multimodal, hybrid, and composite test functions****.

Algorithms Unimodal functions Average Rank Rank

f1 f2 f3 f4 f5 f6

GBO 1 1 1 1 1 1 1.00 1
GWO 3 3 2 2 3 3 2.67 2
CS 5 5 4 5 5 4 4.67 5
ABC 4 4 3 4 4 5 4.00 4
WOA 2 2 6 3 2 2 2.83 3
ISA 6 6 5 6 6 6 5.83 6

Algorithms Multimodal functions

f7 f8 f9 f10 f11 f12 f13 f14

GBO 1 1 2 1 1 1 4 1.5 1.56 1
GWO 3 3 2 3 6 6 5 3 3.88 4
CS 4 4 4 4 3 5 2.5 4 3.81 3
ABC 5 5 5 6 4 4 6 5 5.00 6
WOA 2 2 2 2 2 3 1 1.5 1.94 2
ISA 6 6 6 5 5 2 2.5 6 4.81 5

Algorithms Hybrid functions

f15 f16 f17 f18 f19 f20

GBO 1 2 2 2 1 2 1.67 1
GWO 5 6 5 3 5 1 4.17 4
CS 4 4 4 6 4 6 4.67 5
ABC 3 3 3 4 3 4 3.33 3
WOA 6 5 6 5 6 5 5.50 6
ISA 2 1 3 1 2 3 2.00 2

Algorithms Composite functions

f21 f22 f23 f24 f25 f26 f27 f28

GBO 1 1 1 1 1 1 1 1 1.00 1
GWO 5 2 2 6 4 2 5 5 3.88 4
CS 4 6 5 4 5 4 3 3 4.25 5
ABC 3 5 4 2 2 3 4 4 3.38 3
WOA 6 3 6 5 6 6 6 6 5.50 6
ISA 2 4 3 3 3 5 2 2 3.00 2
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multimodal, hybrid, and composite functions (Table 9). Table 10 illustrates the statistics and p-values of the Friedman and
Quade tests. According to the p-values for the two tests, considerable differences can be observed among the six algorithms.

3.6. Evaluation of the convergence behavior

Generally, sudden changes in solutions would be expected at the early stages of the optimization [44], which can help an
optimization algorithm to appropriately explore the search domain. Next, the changes in the solutions should be decreased
to focus on the exploitation during the remaining stages of the optimization process. In this study, three metrics including
the search history, trajectory variation, and convergence rate were used to evaluate the convergence behavior of the GBO
algorithm.

In this regard, eight different test functions including f2, f4, f8, f10, f12, f21, f23, and f25 with a dimension of 2, were
selected. The GBO was applied to minimize these functions by utilizing five search agents (solutions) during 200 iterations.
Fig. 5 illustrates the search history and the trajectory curves of the five solutions in their first dimension. It can be observed
that the GBO successfully found the promising areas in the search domain and exploited the best position. The distribution
density of the solutions in the search domain demonstrates how the GBO accounted for the exploration and exploitation.
Obviously, the low distribution density demonstrates the exploration and the high distribution density illustrates the
exploitation. Fig. 5 also indicates that the distribution of solutions is high in the area near to the global optimum and low
in the areas far from the global optimum.

The trajectory graphs effectively display the exploration and exploitation behaviors of the optimization algorithms. Fig. 5
depict the trajectory curves of five solutions for the first dimension, indicating the high fluctuations at the early iterations.
These variations are decreased with an increase in the number of iterations, and the positions of the solutions tend to move
toward the global optimum at the later iterations. Apparently, the high fluctuations demonstrate the exploration search and
the low fluctuations illustrate the exploitation search. It can be concluded from the trajectory curves that the GBO first
implemented the exploration search and then the exploitation search.

The final aim of all optimization algorithms is to reach the global optimum accurately and rapidly. Thus, displaying
this behavior is very important. The convergence curve is commonly used to evaluate the convergence efficiency of the



Table 9
Quade ranks for the unimodal, multimodal, hybrid, and composite test functions.

Algorithms Unimodal functions Average Rank Rank

f1 f2 f3 f4 f5 f6

GBO 4 2 6 5 1 3 1.00 1
GWO 12 6 12 10 3 9 2.48 2
CS 20 12 24 30 5 12 4.90 6
ABC 16 8 30 20 4 15 4.43 4
WOA 8 4 36 15 2 6 3.38 3
ISA 24 10 18 25 6 18 4.81 5

Algorithms Multimodal functions

f7 f8 f9 f10 f11 f12 f13 f14

GBO 5 6 16 4 14 4 4 6 1.64 1
GWO 15 18 16 12 35 6 8 9 3.31 3
CS 20 24 32 16 21 5 6 15 3.86 4
ABC 25 30 48 24 28 2 10 12 4.97 5
WOA 10 12 16 8 7 3 2 3 1.69 2
ISA 30 36 40 20 42 1 12 18 5.53 6

Algorithms Hybrid functions

f15 f16 f17 f18 f19 f20

GBO 6 10 1 6 4 4 1.48 1
GWO 30 30 5 9 20 2 4.57 5
CS 24 20 4 18 16 12 4.48 4
ABC 18 15 2 12 12 8 3.19 3
WOA 36 25 6 15 24 10 5.52 6
ISA 12 5 3 3 8 6 1.76 2

Algorithms Composite functions

f21 f22 f23 f24 f25 f26 f27 f28

GBO 4 3 1 2 5 6 8 7 1.00 1
GWO 20 6 2 12 20 12 40 35 4.08 5
CS 16 18 5 8 25 24 24 21 3.92 4
ABC 12 15 4 4 10 18 32 28 3.42 3
WOA 24 9 6 10 30 36 48 42 5.69 6
ISA 8 12 3 6 15 30 16 14 2.89 2

Table 10
Statistics and p-values calculated by the Friedman and Quade tests for the
unimodal, multimodal, hybrid, and composite functions.

Average ranking

Friedman Quade

Unimodal functions

Statistic 22.47 6.05
p-value 4.25E�04 0.0008

Multimodal functions

Statistic 22.89 11.41
p-value 3.53E�04 0.00

Hybrid functions

Statistic 20.85 8.11
p-value 8.62E�04 0.0001

Composite functions

Statistic 25.64 8.30
p-value 1.05E�04 0.00
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optimization algorithms. As shown in Fig. 5, the convergence curves of functions f2, f4, f8, f10, f12, f21, and f25 are smooth
and drop quickly, indicating that the GBO performedmore efficiently in the exploitation than the exploration. In contrast, the
convergence curve of function f23 is relatively rough and drops slowly, which demonstrates better performance of the GBO



Fig. 5. 2D representation, search history, trajectory, and convergence curve of eight functions.
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in the exploration than the exploitation. Thus, all convergence curves can precisely approximate the global optimum during
the optimization process.

Figs. 6 and 7 depict the convergence curve variations of the six algorithms for different functions (unimodal and multi
modal functions in Fig. 6, and hybrid and composite functions in Fig. 7). The y-axis shows the best-so-far objective function
value explored, and the x-axis shows the number of function evaluations. From Figs. 6 and 7, the following conclusions can
be reached:



Fig. 6. Convergence curves of the GBO and the other algorithms achieved in some of unimodal and multimodal functions.
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Fig. 7. Convergence curves of the GBO and the other algorithms achieved in some of hybrid and composite functions.
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1. In terms of the convergence speed, the ABC, CS, and ISA algorithms are the poorest to solve the unimodal and multimodal
functions, followed by the GWO and WOA algorithms. The main cause for the weak performance of these algorithms is
the imbalance between the exploration and exploitation searches. Note that the WOA algorithm has a suitable conver-
gence speed on functions f5, f6, f7, f8, and f9.

2. For the unimodal and multimodal functions, the GBO algorithm converged faster than the others, which can be attributed
to the suitable balance between the exploration and exploitation searches in the GBO.

3. Except for the GBO algorithm, all other optimization algorithms have a slow convergence speed for solving the hybrid and
composite functions. Note that the ISA algorithm had good performances on functions f15, f18, f20, and f28.

4. The variations of the convergence curves demonstrate that the GBO algorithm has a superior convergence speed to solve
the test functions compared to the GWO, WOA, CS, ISA, and ABC algorithms.

4. Evaluation of the GBO algorithm on real-world engineering problems

Six engineering problems were optimized by utilizing the GBO, and the results were compared with those from the GWO,
WOA, CS, ISA, and ABC algorithms. To achieve fair comparisons, the GBO and the other optimization algorithms were exe-
cuted for 30 different runs. The population size and the maximum number of function evaluations were respectively 20
and 1000 for each problem.
4.1. Speed reducer problem

The main objective of the speed reducer problem is to minimize the weight of speed reducer (Fig. 8). This problem was
explained in details in [45]. The mathematical formulas of the speed reducer problem are detailed in Appendix B.

Table 11 shows the statistical results of the GBO and the other algorithms. As shown in Table 11, the best value of the
objective function is 2996.3481, which was achieved by the GBO, CS, and ISA algorithms. The optimal decision variables
obtained by the GBO are listed in Table 12. The GBO has more suitable standard deviation values than the others. Note that
the ISA and CS algorithms have better performances than the GWO, ABC, and WOA algorithms. The results demonstrate that
the proposed GBO can provide reliable and very comprising solutions compared with the other algorithms.
Table 11
Comparison of statistical results for the speed reducer problem.

GBO CS ABC GWO ISA WOA

Best 2996.3481 2996.3481 2996.6383 2998.0976 2996.3481 3006.8794
Mean 2996.3481 2996.3485 2996.8856 3003.0686 2996.3481 3032.2744
SD 2.4736E�11 4.3014E�04 1.6207E�01 3.1431E+00 2.1806E�07 2.6815E+01

Fig. 8. Speed reducer problem.



Table 12
Best solutions achieved by the six algorithms for the speed reducer problem.

Algorithm x1 x2 x3 x4 x5 x6 x7

GBO 3.4999 0.70 17.00 7.30 7.80 3.3502 5.2866
GWO 3.5000 0.70 17.00 7.38 7.81 3.3504 5.2867
WOA 3.5000 0.70 17.00 8.03 7.91 3.3600 5.2850
CS 3.4999 0.70 17.00 7.30 7.80 3.3502 5.2866
ISA 3.4999 0.70 17.00 7.30 7.80 3.3502 5.2866
ABC 3.5001 0.70 17.00 7.30 7.80 3.3504 5.2868

150 I. Ahmadianfar et al. / Information Sciences 540 (2020) 131–159
4.2. Three-bar truss problem

Minimizing the weight of three-bar truss is the main aim of the three-bar truss problem [46,47]. The components of this
problem are depicted in Fig. 9. The decision variables in this case are the cross-sectional area of the truss bars (xA1; xA2). The
objective function and the constraints of this problem are detailed in Appendix B.

Table 13 shows the statistical results obtained by the GBO and the other algorithms. Clearly, the GBO provided more suit-
able results than the GWO, WOA, CS, ABC, and ISA algorithms. Table 13 indicates that the average value of the objective func-
tion obtained by the GBO (263.8959) over the 30 runs is better than those achieved by the others. In addition, the standard
deviation of the objective function achieved by the GBO over the 30 independent runs is smaller than those of the other opti-
mization algorithms. It should be noted that the ABC and ISA had higher efficiencies than the GWO, CS, and WOA algorithms.
The optimal decision variables from the six algorithms are presented in Table 14, which again prove the superior ability of
the GBO to solve complex engineering problems.
Fig. 9. Three-bar truss problem.

Table 13
Comparison of statistical results for the three-bar truss problem.

GBO CS ABC GWO ISA WOA

Best 263.8958 263.8958 263.8962 263.8960 263.8958 263.8974
Mean 263.8959 264.5276 263.9016 263.9002 263.8970 265.0745
SD 1.600E�04 3.459E+00 4.678E�03 4.437E�03 3.720E�03 2.005E+00



Table 14
Best solutions achieved by the six algorithms for the three-bar truss
problem.

Algorithm x1 x2

GBO 0.788693 0.408197
GWO 0.788587 0.408499
WOA 0.787221 0.412378
CS 0.788619 0.408407
ISA 0.788720 0.408123
ABC 0.788304 0.409301
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4.3. I-beam design problem

The performance of the GBO was assessed by using the I-beam design problem with four variables [47] (Fig. 10). Mini-
mizing the vertical deflection of the I-beam is the main goal of this problem. The details on the objective function and
the constraints of the problem can be found in Appendix B.

Table 15 shows the statistical results of the GBO algorithm and the other algorithms. It can be observed that the average
of the objective function calculated by the GBO and CS algorithms are better than those of the other algorithms. In addition,
the standard deviation for the proposed GBO (8.82E-18) is much smaller than those of the other optimization algorithms. The
standard deviation for the CS (2.68E-12) is also better than those of the GWO, WOA, ABC, and ISA algorithms. The optimal
variables of the problem are listed in Table 16. According to the results, it can be concluded that the GBO algorithm can
provide a very competitive solution to this problem.
Fig. 10. I-beam design problem.

Table 15
Comparison of statistical results for the I-beam design problem.

GBO CS ABC GWO ISA WOA

Best 0.013074 0.013074 0.013074 0.013074 0.013074 0.013074
Mean 0.013074 0.013074 0.013075 0.013081 0.013082 0.014118
SD 8.8219E�18 2.6848E�12 4.8552E�07 6.8688E�06 3.0950E�05 1.3340E�03

Table 16
Best solutions achieved by the six algorithms for the I-
beam design problem.

Algorithm h l tw tf

GBO 50.00 80.00 0.90 2.3217
GWO 49.99 80.00 0.90 2.3179
WOA 50.00 80.00 0.90 2.3217
CS 50.00 80.00 0.90 2.3217
ISA 50.00 80.00 0.90 2.3217
ABC 50.00 80.00 0.90 2.3217



Fig. 11. Cantilever beam problem.
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4.4. Cantilever beam problem

The cantilever beam problem is shown in Fig. 11. This problem includes five hollow blocks, so the number of variables is
five [48]. The objective function and the constraints are detailed in Appendix B.

The statistical results of the objective function calculated by the six algorithms over 30 runs are listed in Table 17. The
proposed GBO provided the best values of the objective function and standard deviation. Table 18 shows the optimal values
of the variables from the GBO and the other algorithms, demonstrating that the GBO effectively optimized this problem and
yielded the best design.
4.5. Rolling element bearing design problem

In this problem, the objective function is to maximize the fatigue life. The fatigue life depends on the dynamic load-
carrying capacity [49]. The problem has 10 decision variables and 9 constraints (See Fig. 12). The objective function and con-
straints of the problem are detailed in Appendix B.

The results of the objective function computed by the GBO and the five other algorithms over 30 runs are shown in
Table 19. The proposed GBO yielded the best results on the average values of the objective function and standard deviation.
The optimal values of the decision variables of all optimization algorithms are listed in Table 20. It can be observed from
Table 20 that the proposed GBO more efficiently solved this problem than the other algorithms.

Since this problem is the most complicated one and has more decision variables and constraints than the other engineer-
ing design problems selected in this study, it was used to evaluate the computational efficiency of the proposed GBO. As
aforementioned, this problem was run 30 times and the total computing time was calculated after these runs. Table 19
shows the computational times of all optimization algorithms, indicating that the GBO took shorter computational time than
the ABC and CS algorithms, and longer time than the ISA, GWO, and WOA algorithms. This is due to the main formulas of the
GBO used to update the positions of solutions based on the GSR and the DM. In addition, the proposed algorithm used two
operators (i.e., GSR and LEO) to move toward the best solution. Therefore, it was expected that the GBO had an average per-
formance in terms of the computational time compared to the other algorithms.
Table 17
Comparison of statistical results for the cantilever beam problem.

GBO CS ABC GWO ISA WOA

Best 1.339957 1.340332 1.340043 1.339970 1.339958 1.360547
Mean 1.339970 1.342806 1.340257 1.340070 1.340265 1.532439
SD 1.80E�05 1.70E�03 1.37E�04 8.68E�05 2.57E�04 1.35E�01

Table 18
Best solutions achieved by the six algorithms for the cantilever beam problem.

Algorithm x1 x2 x3 x4 x5

GBO 6.0124 5.3129 4.4941 3.5036 2.1506
GWO 6.0189 5.3173 4.4922 3.5014 2.1440
WOA 5.5638 6.0809 4.6858 3.2263 2.2467
CS 6.0351 5.2763 4.4575 3.5818 2.1287
ISA 6.0246 5.2958 4.4790 3.5146 2.1600
ABC 5.9638 5.3312 4.5122 3.4744 2.1952



Fig. 12. Shape of rolling element bearing design problem.

Table 19
Comparison of statistical results for the rolling element bearing design problem.

GBO CS ABC GWO ISA WOA

Best 85245.0611 85245.0611 85244.8594 85156.2032 85245.0611 85012.7716
Mean 85245.0611 85245.0611 85238.5919 84668.3988 85245.0610 77318.5161
SD 5.96E�11 1.33E�08 5.94E+00 7.42E+02 4.24E�04 1.19E+04
CT* 26.47 34.83 46.83 14.41 21.25 15.79

* Computational time (second).

Table 20
Best solutions achieved by the six algorithms for the rolling element bearing design problem.

Variables GBO CS ABC GWO ISA WOA

Db 21.87500 21.87500 21.87498 21.86758 21.87500 21.86062
Dm 125.0000 125.0000 125.0000 125.01048 125.0000 125.0230
f i 0.51500 0.51500 0.51500 0.51501 0.51500 0.51500
f 0 0.51500 0.51500 0.51500 0.51511 0.51500 0.51500
Z 11.28817 11.28817 11.28343 11.29305 11.28817 11.11528
KDmin 0.41484 0.40000 0.47491 0.41803 0.50000 0.50000
KDmax 0.62866 0.70000 0.65702 0.63379 0.69996 0.70000
e 0.30000 0.30000 0.30000 0.30003 0.30000 0.30000
e 0.02033 0.02000 0.05815 0.02030 0.02010 0.06039
f 0.67206 0.60000 0.60320 0.60126 0.60023 0.60000
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4.6. Tension/compression spring design problem

Minimizing the weight of tension/compression spring is the main objective of this problem [50]. The schematic of this
problem is depicted in Fig. 13. The problem has 3 decision variables and 4 constraints and the detailed formulas of this prob-
lem are shown in Appendix B.

The comparison of the results of the GBO and other algorithms in Table 21 indicates that the GBO provided a suitable
design with the minimum objective function for this problem. According to the results of the GBO, CS, and ABC, the standard
deviation values for these algorithms are almost equal, and also the best and average values of the objective function for
these algorithms only have small differences. Therefore, these three algorithms are better than others for this problem.
The optimal values obtained by the six algorithms are shown in Table 22, indicating that the GBO provided more promising
results than the other optimization algorithms.



Fig. 13. Shape of tension/compression spring problem.

Table 21
Comparison of statistical results for the tension/compression problem.

GBO CS ABC GWO ISA WOA

Best 0.012667 0.012672 0.012668 0.012669 0.012686 0.012695
Mean 0.012696 0.012713 0.012701 0.013037 0.014115 0.013323
SD 3.358E�05 3.54E�05 3.61E�05 1.254E�03 1.434E�03 5.805E�04

Table 22
Best solutions achieved by the six algorithms for the tension/com-
pression problem.

Optimization algorithm Optimal decision variables

m Dc dw

GBO 0.05203 0.36509 10.81456
CS 0.0512 0.3447 12.0328
ABC 0.05155 0.35350 11.48213
GWO 0.0514 0.3503 11.6764
ISA 0.0528 0.3830 9.8978
WOA 0.0514 0.3513 11.6284
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5. Conclusions

A novel population-based algorithm, GBO was proposed in this study. The GBO algorithm was derived from the gradient-
based search method and used the Newton’s method to explore the better regions in the search space. Two operators (i.e.,
gradient-based rule (GSR) and local escaping operator (LEO)) were introduced and mathematically formulated in the GBO to
facilitate both exploration and exploitation searches. The Newton’s method was used as a search engine in the GSR to
strengthen the exploration and exploitation processes and the LEO was employed to avoid the local optimal solutions in
the GBO. The performance of the GBO was evaluated by using 28 unimodal, multimodal, hybrid, and composite test func-
tions. The excellent performance of the GBO on the unimodal functions and convergence demonstrated its enhanced capa-
bility of exploitation and improved convergence speed, which can be attributed to the use of the local search term in the GSR
and the local escaping operator. The superb ability of exploration of the GBO in the test of the multimodal functions can be
attributed to the exploration term used in the GSR and the global search term employed in the LEO. Furthermore, the results
of the hybrid and composite functions demonstrated that the GBO properly balanced exploration and exploitation by
employing the adaptive parameters.

The GBO was compared with five well-known and recent metaheuristic algorithms, including the GWO,WOA, ISA, CS, and
ABC algorithms. The Friedman and Quade tests were performed for comparing the efficiencies of the algorithms. The results
indicated that the GBO algorithm yielded very promising results and outperformed the other algorithms in the majority of
the mathematical test functions, demonstrating the ability of the GBO as an alternative optimization algorithm to solve dif-
ferent problems. Furthermore, this study also examined the performances of the GBO in optimizing six engineering problems
and compared with the other algorithms, which indicated that the GBO was able to optimize the real-world problems with
challenging and unknown search domains. Based on the results of this study, the following conclusions can be reached:
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1) The exploration in the GBO is guaranteed by the global search term in the GSR.
2) The GBO uses the local search term in the GSR and local escaping operator (LEO) to promote the exploitation in the

search domain.
3) The proposed GBO algorithm is able to find local areas around a promising solution.
4) The transition from exploration to exploitation is smoothly implemented by using the adaptive parameters in the

GBO.
5) The local escaping operator effectively avoids being trapped in local optima and improves the convergence speed of

the GBO algorithm.
6) The GBO uses the direction of movement term to guide solutions toward the promising regions.
7) Easy implementation of the GBO and few parameter settings are the main advantages of this algorithm.

For the future studies, the proposed GBO can be applied to solve water resources management, structural engineering,
and other real-world engineering problems. Moreover, the binary version of the GBO can be developed to solve the problems
with a discrete search space, and the multi-objective version of the GBO can be utilized to optimize multi-objective prob-
lems. Some aspects of the GBO can be further improved in the future. For instance, the third-order modifications of the New-
ton’s method can be employed and used in the GBO.
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Appendix A

See Tables 2–4.

Appendix B

I-Speed reducer problem

Minimize Fitness ¼ 0:7854x1x22 � 3:3333� x23 þ 14:9334� x3 � 43:0934Þ � 1:508� x1 � x26 þ x27
� �þ 7:4777� x36 þ x37

� �þ
0:7854� x4x26 þ x5x27

� �

Subject to

g1 xð Þ ¼ 27
ðx1x22 � x3Þ � 1 � 0

g2 xð Þ ¼ 397:5
ðx1x22 � x23Þ

� 1 � 0

g3 xð Þ ¼ 1:93x34
ðx2x3 � x46Þ

� 1 � 0

g4 xð Þ ¼ 1:93x35
ðx2x3 � x47Þ

� 1 � 0

g5 xð Þ ¼ 1
110� x36
� ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
745x4
x2x3

� �2

þ 16:9� 106

s
� 1 6 0

g6 xð Þ ¼ 1
85� x37
� ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
745x5
x2x3

� �2

þ 157:5� 106

s
� 1 6 0
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g7 xð Þ ¼ x2x3
40

� 1 � 0

g8 xð Þ ¼ 5
x2
x1

� 1 � 0

g9 xð Þ ¼ x1
12x2

� 1 � 0

g10 xð Þ ¼ 1:5x6 þ 1:9
x4

� 1 � 0

g11 xð Þ ¼ 1:1x7 þ 1:9
x5

� 1 � 0
II-Three-bar truss problem

Minimize Fitness x!
� �

¼ ð2
ffiffiffi
2

p
xA1 þ xA2Þ � l;

Subject to: g1 x!
� �

¼
ffiffi
2

p
xA1þxA2ffiffi

2
p

x2
A1þ2xA1xA2

P � r � 0;
g2 x!
� �

¼ xA2ffiffiffi
2

p
x2A1 þ 2xA1xA2

P � r � 0

g3 x!
� �

¼ 1ffiffiffi
2

p
xA2 þ xA1

P � r � 0

0 � xA1; xA2 � 1; l ¼ 100 cm; P ¼ 2
kN
cm2 ; r ¼ 2

kN
cm2
III-I-beam design problem
Minimize Fitness ¼ 5000

1
12 tw h� 2tf

� �3 þ 1
6 lt

3
f þ 2ltf

h�tf
2

� �2

Subject to:g1 xð Þ ¼ 2ltf þ tw h� 2tf

� �3 � 300
g2 xð Þ ¼ 180000x1

tw h� 2tf
� �3 þ 2ltf 4t2f þ 3h h� 2tf

� �h iþ 15000x2
h� 2tf
� �

t3w þ 2tf l
3 � 6
The variables are subject to:
10 � h � 80;

10 � l � 50;

0:9 � tw � 5;

0:9 � tf � 5;
IV-Cantilever beam problem
Minimize Fitness ¼ 0:0624� ðx1 þ x2 þ x3 þ x4 þ x5Þ

Subject to:
g xð Þ ¼ 61
x31

þ 37
x32

þ 19
x33

þ 7
x34

þ 1
x35

� 1 � 0
Variable ranges
0:01 � x1; x2; x3; x4; x5 � 100
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V-Rolling element bearing design problem
Maximize Z ¼ f c � Z2=3 � Db
1:8 if Db � 25:4

3:647�f c � Z2=3 � Db
1:4 otherwise

(

Subject to:
g1 x!
� �

¼ u0

2sin�1ðDb
Dm
Þ
� Z þ 1 � 1;

g2 x!
� �

¼ 2Db � KDmin D� dð Þ � 0;

g3 x!
� �

¼ KDmax D� dð Þ � 2Db � 0;

g4 x!
� �

¼ fBw � Db � 0;

g5 x!
� �

¼ Dm � 0:5� ðDþ dÞ � 0;

g6 x!
� �

¼ 0:5þ eð Þ � Dþ dð Þ � Dm � 0;

g7 x!
� �

¼ 0:5 D� Dm � Dbð Þ � eDb � 0;

g8 x!
� �

¼ f i � 0:515;

g9 x!
� �

¼ f 0 � 0:515;
where
f c ¼ 37:91 1þ 1:04
1þ c
1� c

� �1:72 f i 2f 0 � 1ð Þ
f 0 2f i � 1ð Þ
� �0:41

 !10
3

2
4

3
5

�0:3

� c0:3 1� cð Þ1:39

1þ cð Þ13

" #
� 2f i

2f i � 1


 �0:41

x ¼ D� dð Þ
2

� 3
T
4

� �	 �2

þ D
2
� T
4
� Db

	 �2

� d
2
þ T
4

	 �2
" #

y ¼ 2
D� dð Þ
2

� 3
T
4

� �	 �
� D

2
� T
4
� Db

	 �

u0 ¼ 2p� cos�1ðx
y
Þ

Bw ¼ 30; D ¼ 160; d ¼ 90; ri ¼r0 ¼ 11:033

c ¼ Db

Dm
; f i ¼

ri
Db

; f i ¼
r0
Db

; T ¼ D� d� 2Db

0:15ðD� dÞ � Db � 0:45 D� dð Þ; 4 � Z � 50; 0:515 � f i; f 0 � 0:60

0:4 � KDmin � 0:5; 0:6 � KDmax � 0:7; 0:3 � e � 0:4; 0:02 � e � 0:1

0:6 � f � 0:85
VI-Tension/compression spring design problem

Consider x!¼ ½m; Dc; dw�
Minimize Z x!

� �
¼ dw þ 2ð ÞDcm2
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Subject to: g1 x!
� �

¼ 1� Dc
3dw

71785m4 � 0;
g2 x!
� �

¼ 4Dc
2 �mdw

12566 Dcm3 �m4ð Þ þ
1

5108m2 � 0;

g3 x!
� �

¼ 1� 140:45m
Dc

2dw

� 0

g4 x!
� �

¼ mþ Dc

1:5
� 1 � 0;

0:05 � m � 2:00;

0:25 � Dc � 1:30;

2:00 � dw � 15:00;
References

[1] X.-S. Yang, Nature-Inspired Metaheuristic Algorithms, Luniver Press, 2010.
[2] I. Ahmadianfar, Z. Khajeh, S.-A. Asghari-Pari, X. Chu, Developing optimal policies for reservoir systems using a multi-strategy optimization algorithm,

Appl. Soft Comput. 80 (2019) 888–903.
[3] A. Kaveh, V. Mahdavi, Colliding bodies optimization: a novel meta-heuristic method, Comput. Struct. 139 (2014) 18–27.
[4] S. Mirjalili, SCA: a sine cosine algorithm for solving optimization problems, Knowl.-Based Syst. 96 (2016) 120–133.
[5] J.H. Holland, Genetic algorithms, Sci. Am. 267 (1992) 66–73.
[6] R. Storn, K. Price, Differential Evolution-a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces, ICSI Berkeley, 1995.
[7] R.C. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: Proceedings of the Sixth International Symposium on Micro Machine and

Human Science, New York, NY, 1995, pp. 39–43.
[8] D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, J. Global Optim.

39 (2007) 459–471.
[9] E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, GSA: a gravitational search algorithm, Inf. Sci. 179 (2009) 2232–2248.
[10] X.-S. Yang, A new metaheuristic bat-inspired algorithm, in: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), Springer, 2010, pp.

65–74.
[11] S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Softw. 69 (2014) 46–61.
[12] A. Kaveh, A. Dadras, A novel meta-heuristic optimization algorithm: thermal exchange optimization, Adv. Eng. Softw. 110 (2017) 69–84.
[13] W. Zhao, L. Wang, Z. Zhang, A novel atom search optimization for dispersion coefficient estimation in groundwater, Future Gener. Comput. Syst. 91

(2019) 601–610.
[14] O. Castillo, P. Melin, E. Ontiveros, C. Peraza, P. Ochoa, F. Valdez, J. Soria, A high-speed interval type 2 fuzzy system approach for dynamic parameter

adaptation in metaheuristics, Eng. Appl. Artif. Intell. 85 (2019) 666–680.
[15] W. Zhao, L. Wang, Z. Zhang, Atom search optimization and its application to solve a hydrogeologic parameter estimation problem, Knowl.-Based Syst.

163 (2019) 283–304.
[16] L. Rodríguez, O. Castillo, J. Soria, P. Melin, F. Valdez, C.I. Gonzalez, G.E. Martinez, J. Soto, A fuzzy hierarchical operator in the grey wolf optimizer

algorithm, Appl. Soft Comput. 57 (2017) 315–328.
[17] O. Olorunda, A.P. Engelbrecht, Measuring exploration, exploitation in particle swarms using swarm diversity, in: 2008 IEEE Congress on Evolutionary

Computation (IEEE world congress on computational intelligence), IEEE, 2008, pp. 1128–1134.
[18] V.K. Patel, V.J. Savsani, Heat transfer search (HTS): a novel optimization algorithm, Inf. Sci. 324 (2015) 217–246.
[19] S. Das, A. Abraham, U.K. Chakraborty, A. Konar, Differential evolution using a neighborhood-based mutation operator, IEEE Trans. Evol. Comput. 13

(2009) 526–553.
[20] A. Draa, S. Bouzoubia, I. Boukhalfa, A sinusoidal differential evolution algorithm for numerical optimisation, Appl. Soft Comput. 27 (2015) 99–126.
[21] H. Garg, A hybrid GSA-GA algorithm for constrained optimization problems, Inf. Sci. 478 (2019) 499–523.
[22] D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization, IEEE Trans. Evol. Comput. 1 (1997) 67–82.
[23] T.J. Ypma, Historical development of the Newton-Raphson method, SIAM Rev. 37 (1995) 531–551.
[24] M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear Programming: Theory and Algorithms, John Wiley & Sons, 2013.
[25] J.J. Moré, The Levenberg-Marquardt algorithm: implementation and theory, in: Numerical Analysis, Springer, 1978, pp. 105–116.
[26] M.R. Hestenes, E. Stiefel, Methods of Conjugate Gradients for Solving Linear Systems, NBS, Washington, DC, 1952.
[27] F. Salajegheh, E. Salajegheh, PSOG: enhanced particle swarm optimization by a unit vector of first and second order gradient directions, Swarm Evol.

Comput. 46 (2019) 28–51.
[28] C. Ibtissem, L. Nouredine, A hybrid method based on conjugate gradient trained neural network and differential evolution for non linear systems

identification, in: 2013 International Conference on Electrical Engineering and Software Applications, IEEE, 2013, pp. 1–5.
[29] N. Shahidi, H. Esmaeilzadeh, M. Abdollahi, E. Ebrahimi, C. Lucas, Self-adaptive memetic algorithm: an adaptive conjugate gradient approach, in: IEEE

Conference on Cybernetics and Intelligent Systems, 2004, IEEE, 2004, pp. 6–11.
[30] K. Bandurski, W. Kwedlo, A Lamarckian hybrid of differential evolution and conjugate gradients for neural network training, Neural Process. Lett. 32

(2010) 31–44.
[31] A.K. Parwani, P. Talukdar, P. Subbarao, A hybrid approach using CGM and DE algorithm for estimation of boundary heat flux in a parallel plate channel,

Numer. Heat Trans. Part A: Appl. 65 (2014) 461–481.
[32] S.O. Madgwick, A.J. Harrison, R. Vaidyanathan, Estimation of IMU andMARG orientation using a gradient descent algorithm, in: 2011 IEEE International

Conference on Rehabilitation Robotics, IEEE, 2011, pp. 1–7.
[33] E. Aarts, J. Korst, Simulated Annealing and Boltzmann Machines, 1988.
[34] A. Kaveh, T. Bakhshpoori, Water evaporation optimization: a novel physically inspired optimization algorithm, Comput. Struct. 167 (2016) 69–85.
[35] R.V. Rao, V.J. Savsani, D. Vakharia, Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems,

Comput. Aided Des. 43 (2011) 303–315.
[36] C. Caraveo, F. Valdez, O. Castillo, A new optimization meta-heuristic algorithm based on self-defense mechanism of the plants with three reproduction

operators, Soft. Comput. 22 (2018) 4907–4920.

http://refhub.elsevier.com/S0020-0255(20)30624-1/h0005
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0005
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0010
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0010
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0015
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0020
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0025
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0030
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0030
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0035
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0035
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0035
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0040
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0040
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0045
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0050
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0050
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0050
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0055
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0060
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0065
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0065
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0070
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0070
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0075
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0075
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0080
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0080
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0085
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0085
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0085
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0090
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0095
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0095
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0100
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0105
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0110
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0115
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0120
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0120
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0125
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0125
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0130
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0130
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0135
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0135
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0140
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0140
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0140
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0145
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0145
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0145
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0150
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0150
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0155
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0155
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0160
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0160
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0160
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0165
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0165
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0170
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0175
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0175
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0180
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0180


I. Ahmadianfar et al. / Information Sciences 540 (2020) 131–159 159
[37] F.A. Hashim, E.H. Houssein, M.S. Mabrouk, W. Al-Atabany, S. Mirjalili, Henry gas solubility optimization: a novel physics-based algorithm, Fut. Gener.
Comput. Syst. 101 (2019) 646–667.

[38] A.A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen, Harris hawks optimization: algorithm and applications, Fut. Gener. Comput. Syst. 97
(2019) 849–872.

[39] S. Weerakoon, T. Fernando, A variant of Newton’s method with accelerated third-order convergence, Appl. Math. Lett. 13 (2000) 87–93.
[40] A.Y. Özban, Some new variants of Newton’s method, Appl. Math. Lett. 17 (2004) 677–682.
[41] P. Patil, U. Verma, Numerical Computational Methods, Alpha Science International Ltd, Oxford UK, 2006.
[42] Q. Huang, K. Zhang, J. Song, Y. Zhang, J. Shi, Adaptive differential evolution with a Lagrange interpolation argument algorithm, Inf. Sci. 472 (2019) 180–

202.
[43] J. Derrac, S. García, D. Molina, F. Herrera, A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary

and swarm intelligence algorithms, Swarm Evol. Comput. 1 (2011) 3–18.
[44] F. Van den Bergh, A.P. Engelbrecht, A study of particle swarm optimization particle trajectories, Inf. Sci. 176 (2006) 937–971.
[45] E. Mezura-Montes, C.A.C. Coello, Useful infeasible solutions in engineering optimization with evolutionary algorithms, in: Mexican International

Conference on Artificial Intelligence, Springer, 2005, pp. 652–662.
[46] M.-Y. Cheng, D. Prayogo, Symbiotic organisms search: a new metaheuristic optimization algorithm, Comput. Struct. 139 (2014) 98–112.
[47] A.H. Gandomi, X.-S. Yang, A.H. Alavi, Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems, Eng. Comput. 29

(2013) 17–35.
[48] H. Chickermane, H. Gea, Structural optimization using a new local approximation method, Int. J. Numer. Meth. Eng. 39 (1996) 829–846.
[49] S. Gupta, R. Tiwari, S.B. Nair, Multi-objective design optimisation of rolling bearings using genetic algorithms, Mech. Mach. Theory 42 (2007) 1418–

1443.
[50] C.A.C. Coello, E.M. Montes, Constraint-handling in genetic algorithms through the use of dominance-based tournament selection, Adv. Eng. Inf. 16

(2002) 193–203.

http://refhub.elsevier.com/S0020-0255(20)30624-1/h0185
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0185
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0190
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0190
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0195
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0200
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0205
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0205
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0210
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0210
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0215
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0215
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0220
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0225
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0225
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0225
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0230
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0235
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0235
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0240
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0245
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0245
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0250
http://refhub.elsevier.com/S0020-0255(20)30624-1/h0250

	Gradient-based optimizer: A new metaheuristic optimization algorithm
	1 Introduction
	2 Methodology
	2.1 Theoretical background
	2.2 Newton’s method
	2.3 Modification of Newton’s method
	2.4 Gradient-based optimizer
	2.4.1 Initialization
	2.4.2 Gradient search rule (GSR)
	2.4.3 Local escaping operator (LEO)


	3 Results and discussion
	3.1 Experimental setup
	3.2 Evaluation of the exploitation ability
	3.3 Evaluation of the exploration ability
	3.4 Evaluation of the capability escaping from local optima
	3.5 Ranking analysis
	3.6 Evaluation of the convergence behavior

	4 Evaluation of the GBO algorithm on real-world engineering problems
	4.1 Speed reducer problem
	4.2 Three-bar truss problem
	4.3 I-beam design problem
	4.4 Cantilever beam problem
	4.5 Rolling element bearing design problem
	4.6 Tension/compression spring design problem

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Appendix A 
	Appendix B 
	I-Speed reducer problem
	II-Three-bar truss problem
	III-I-beam design problem
	IV-Cantilever beam problem
	V-Rolling element bearing design problem
	VI-Tension/compression spring design problem

	References


