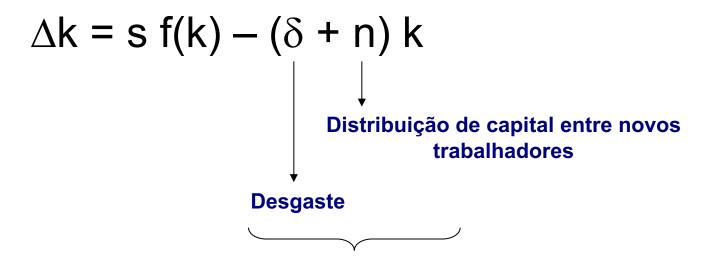

Crescimento Econômico II – aula 05 de macroeconomia caps. 08 e 09 Mankiw

Recap: Solow-Swan, Cap. 8

- L e K são usados para produzir bens finais
 Y = F(K, L)
- k = K/L e y = Y/L = f(k) são capital e produto por trabalhador
- A população é P, mas a fração u não está engajada na produção de bens finais. Então, L = (1 – u)P.
- Ambos *P* e *L* crescem a taxa *n*.
- Uma fração s de Y é poupada e adicionada ao capital
- Uma fração δ de K deprecia

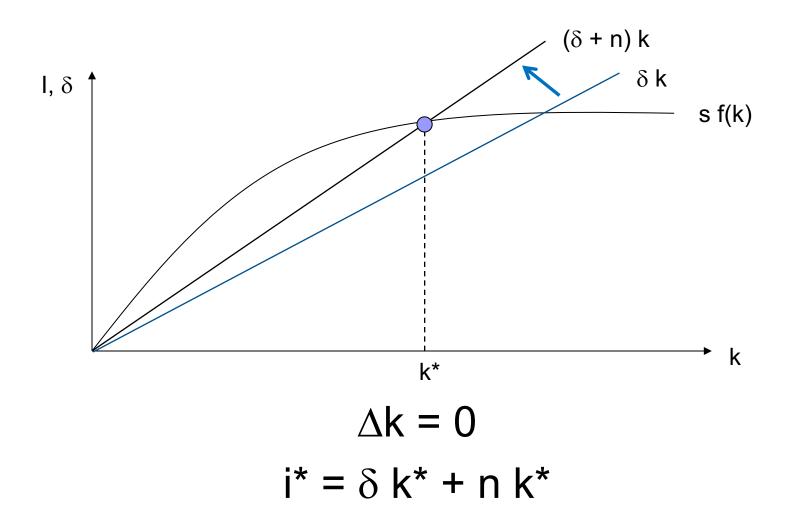
Modelo de Crescimento de Solow


- Acumulação de capital somente não constitui condição suficiente ao crescimento econômico contínuo (pára no Estado-Estacionário)
- Taxa de poupança elevada induz temporariamente ao crescimento
 - □ Economia sempre tende ao estado estacionário, onde capital e produto são constantes
- Outras variáveis importantes ao crescimento econômico
 - □ Crescimento demográfico
 - □ Progresso tecnológico

Crescimento Demográfico – Modelo Solow-Swan

- Estoque de capital
 - □ Investimento gera elevação
 - □ Depreciação gera redução
- Elevação no número de trabalhadores reduz a variação no estoque de capital

Investimento por trabalhador


Crescimento Demográfico

Investimento necessário à manutenção do estoque de capital por trabalhador constante

(nível de equilíbrio do investimento)

Crescimento Demográfico: aumenta a necessidade de Investimento

Crescimento Demográfico

- Crescimento populacional altera o modelo de Solow de três modos
 - Explica a persistência de crescimento econômico (da produção e capital totais)
 - Como no EE k e y por trabalhador são fixos, o aumento populacional precisa ser acompanhado por aumento de capital e produto
 - Explica a desigualdade de renda entre países
 Efeito do aumento populacional: redução de disponibilidade de capital por trabalhador
 - Alteração no nível ótimo de acumulação de capital

$$c^* = f(k^*) - (\delta + n) k^*$$

Nível de k* que maximiza o consumo é:

PMgK =
$$\delta$$
 + n OU PMgK - δ = n

Ou seja, na Regra de ouro a produtividade marginal do capital líquida, deduzida a depreciação, deve igualar-se à taxa de crescimento populacional

w

Crescimento Demográfico

No longo prazo a economia atinge o estado estacionário, com k e y constantes.

As variáveis por trabalhador, *k* e *y*, capital e produto *per-capita* são constantes no longo prazo.

O capital físico total (*K*) e o produto total (*Y*) aumentam a taxa *n*, que é a taxa de crescimento do número de trabalhadores (*L*)

Variável	Símbolo	Comportamento no Estado Estacionário
Capital por trabalhador	k	Constante
Renda por trabalhador	y = f(k)	Constante
Poupança e investimento por trabalhador	sy	Constante
Consumo por trabalhador	c = (1 - s)y	Constante
Trabalhadores	L	Cresce à taxa n
Capital	K	Cresce à taxa n
Renda	Y = F(K, L)	Cresce à taxa n
Poupança e investimento	sY	Cresce à taxa n
População	P	Cresce à taxa n

- Até agora a relação entre o volume de insumos empregados (capital e trabalho) e volume de produção resultante (bens e serviços) era suposta inalterada.
- Integração do progresso tecnológico no modelo requer retorno ao início:

$$Y = f(K,L)$$

Sob influência do progresso tecnológico, a eficiência produtiva do trabalho aumenta:

$$Y = f(K, LE)$$

E reflete o conhecimento que a sociedade tem sobre os métodos de produção.

Eficiência do Trabalho

- Progresso tecnológico com a taxa g de crescimento eleva a eficiência do trabalho proporcionalmente
 - □ Denominada progresso tecnológico incorporador de trabalho
 - ☐ Efeito análogo ao crescimento populacional

Um jeito simples de introduzir progresso tecnológico no modelo de Solow-Swan é pensar no progresso tecnológico como um aumento em nossas habilidades multitarefas. Desse modo, o modelo supõe que esta habilidade cresce à taxa g.

E é a eficiência do trabalho, que cresce à taxa g.

- Assim,
 - □ Força de trabalho aumenta à taxa n
 - □ Eficiência da mão-de-obra eleva-se à taxa g
 - Portanto, o número de unidades eficientes de trabalho cresce à taxa n+g
- Análise do modelo em termos de produção por unidade eficiente de trabalho:

$$k = \frac{K}{LE} \qquad \qquad y = \frac{Y}{LE}$$

Com E=1 no caso inicial

O EE com Progresso Tecnológico Incorporador de Trabalho

Evolução do estoque de capital ao longo do tempo requer a reposição de capital de forma que:

$$\Delta k = s f(k) - (\delta + n + g) k$$

$$(\delta + n + g) k$$

$$(\delta + n) k$$
Investimento, $s f(k)$

$$k^*$$
Capital por unidade de eficiência, k

- No estado estacionário, o capital por unidade de eficiência do trabalho é constante
 - Unidades de eficiência por trabalhador elevam-se à taxa g
 - □ Produto total da economia aumenta à taxa n+g

Variável	Expressão	Taxa de Crescimento
Capital por unidade de eficiência	k = <u>K</u> LE	0
Produto por unidade de eficiência	$y = \frac{Y}{LE}$	0
Produto por trabalhador	$yE = \frac{Y}{L}$	g
Produto total	Y = y L E	n + g

Progresso Tecnológico: Permite o crescimento econômico sustentável

- Inclusão do progresso tecnológico permite explicar elevação persistente no padrão de vida dos países
 - Taxa de crescimento do produto por trabalhador é decorrente da tecnologia
 - Elevação na taxa de poupança conduz a altas taxas de crescimento econômico somente até a economia alcançar o ponto de estado estacionário
 - Posteriormente, o crescimento do produto por trabalhador depende da taxa de progresso tecnológico
 - Há nova alteração no nível ótimo de acumulação de capital $c^* = f(k^*) (\delta + n + g) k^*$
 - Nível de k* que maximiza o consumo (REGRA DE OURO):

PMgK =
$$\delta$$
 + n + g ou PMgK - δ = n + g

 Ou seja, produtividade marginal do capital líquida, deduzida a depreciação, deve igualar-se à taxa de crescimento populacional adicionada à taxa de progresso tecnológico

Crescimento Econômico Sustentável

- Em termos de política econômica:
 - □ A sociedade deve poupar mais ou poupar menos?
 - Se PMgK δ > n + g, a produtividade marginal do capital líquida é superior à taxa de crescimento econômico, a economia opera com nível de capital inferior ao estado estacionário, assim, a elevação da taxa de poupança conduz a estado estacionário com maior consumo (da regra de ouro)

EUA: $PMgK - \delta = 8\%$ aa e n + g = 3%aa.

- □ Como a política econômica pode influenciar a poupança?
 - As políticas econômicas podem elevar a taxa de poupança de duas formas:
 - 1. Aumento da poupança privada: incentivos fiscais e crédito tributário para elevação da taxa de retorno da poupança, garantias do governo à poupança e ambiente de estabilidade econômica e confiança da população nas instituições econômicas
 - 2. Aumento da poupança pública: redução dos gastos do governo ou elevação da tributação
- Como a política econômica pode influenciar o progresso tecnológico ?
 - Promoção da educação formal, formação técnica e pesquisa; instituição de sistema de patentes e direitos autorais; isenção de tributos à pesquisa; e criação de agências de fomento à pesquisa (CNPq, CAPES, FAPESP, etc.)

Teoria do Crescimento Endógeno: Modelo Básico

Seja
$$Y = A.K$$
 (1)

Y produto; K estoque de capital; A uma constante maior que 1, que mede o produto gerado para cada unidade de capital.

Função de produção sem Retornos Decrescentes de Capital (difere do modelo de Sollow)

Acumulação de capital: $\Delta K = sY - \delta K$ (2)

Combinando (1) e (2):
$$\Delta Y/Y = \Delta K/K = sA - \delta$$
 (3)

(3) Mostra o que determina a taxa de crescimento da economia. Se $SA > \delta$, a renda da economia cresce sempre, mesmo sem o pressuposto do progresso tecnológico exógeno.

Este modelo é razoável quando se pensa no estoque de capital humano como compondo o estoque de capital da economia.