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SCHEDULE
Date Contents Activities Prof.

23/06 Introduction to Machine Learning main concepts
Notebook and 

Abaqus
Larissa

30/06
Review mechanical behavior of materials and microstructure 

characterization
List of exercises Izabel

07/07 Discussion about list of exercises
List of Exercises

MS evolution
Izabel

14/07 Neural Networks – theory List of exercises Larissa

21/07 Neural Networks – application in structural analyses Notebook/article Larissa

28/07 Convolutional Neural Network – application 
Notebook

MS evolution
Larissa

04/08 Damage List of Exercises Izabel

11/08 Discussion about list of exercises
List of Exercises

MS evolution
Izabel

18/08 Discussion about manuscripts Manuscript Izabel/Larissa

25/08 Presentations 10min presentation Izabel/Larissa



WHAT IS IT?
Definition

Structure



4PMR5251

NEURAL NETWORK

•Dendrite: Receives signals from other neurons
•Soma: Processes the information
•Axon: Transmits the output of a neuron
•Synapse: Point of connection to other neurons

The neuron is the basic computing unit in the 
brain.

Our brain is made up of billions of neurons with 
hundreds of billions of connections between 
them, forming a huge communication network, 
the neural network.
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NEURAL NETWORK
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The Neural Network 
architecture is made of 

individual units 
called neurons  that 

mimic the biological 
behavior of the brain.
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MAIN CHARACTERISTICS OF BIOLOGICAL 
NEURAL NETWORKS PRESENT IN ANNS

▪An ANN consists of many simple processing units 
(neurons) interconnected;

▪Each artificial neuron, called perceptron, receives 
many signals;

▪These are modified by a weight in the receptor 
synapses;

▪Neurons sum up the weighted inputs;

▪Neurons define the importance of information and 
transmit a single output;

▪The output of one neuron is transmitted to many 
other neurons;

▪A network can have several layers of neurons.
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NEURAL NETWORK: ARCHITECTURE

The data that we 
feed to the 

model is loaded 
into the input 

layer from 
external sources 

like a CSV file or 
a web service.

The ANN has 𝐿 = 3 hidden layers (see that the last, output layer is not a hidden layer).

The output layer 

takes input from 

preceding hidden 

layers and comes to 

a final prediction 

based on the 

model’s learnings. It 

is where we get the 

result.

Intermediate layers do 
all the computations and 
extract the features 
from the data.
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The neural network maps an input dataset 𝒙𝑖 ∈ 𝑿 to the desired target value 𝒚𝑖 ∈ 𝒀
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ANN IS A SUPERVISED LEARNING ALGORITHM

Neural Network (or Artificial Neural Network) can learn by 
examples.

For an ANN to be able to map the problem, being it classification 
or regression, it needs to be trained. The supervised learning of an 
ANN initially requires a set of labeled and classified data. 

During learning, the outputs generated by the ANN are compared 
with the desired outputs and the differences between them are 
used for training.



11PMR5251

DATASET

The output data 

is defined by

𝒀 ∈ ℝ𝑛𝑦,𝑚,  

where 𝑛𝑦 is the 

number of ANN 

outputs.

𝑥1

𝑥2

𝑥3

𝑿 ∈ ℝ𝑛𝑥,𝑚, where 𝑛𝑥 is the number of features

in the problem (number of entries for each

example) and 𝑚 is the number of available

data (total number of training examples ). 
ො𝑦1

ො𝑦2

𝑥10

⋮

ො𝑦8

⋮
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ANNS KNOW
THINGS......
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TYPES OF ANNS...

The fundamental structure of ANNs is the layer! There are several types of 
layers, each type being specific for a given tensor shape and for a given type 
of processing.

Data in the form of vectors is 

stored in 2D tensors (1st axis: 

examples; 2nd axis: features) and 

normally processed in densely 

connected layers, called dense 

layers;
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Grayscale image data is stored in 3D tensors (1st axis: examples; 

2nd axis: height; 3rd axis: width) and normally processed in 

convolutional layers

Temporal data sequences are stored in 3D tensors (1st axis: examples; 2nd axis: 

time; 3rd axis: characteristics) and normally processed in recurring layers, for 

example LSTM (Long Short-Term Memory) or GRU (Gated Recurrent Unit) layers.
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DENSE CONVOLUTIONAL RECURRENT NEURAL 
NETWORK (DENSECRNN)

L. Xiao and Z. Wang, "Dense Convolutional Recurrent Neural Network for Generalized Speech Animation," 2018 24th International 

Conference on Pattern Recognition (ICPR), 2018, pp. 633-638, doi: 10.1109/ICPR.2018.8545744.
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PERCEPTRON

Frank Rosenblatt

Cornell Aeronautical Laboratory

In 1958, Rosenblatt created the perceptron, an 

algorithm for pattern recognition. The 

simplest neural network, well known as the 

Rosenblatt Perceptron, is a neural network 

compound of a single artificial neuron. 



THE PERCEPTRON
What is it? 

Python: sklearn
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PERCEPTRON

Rosenblatt 

Perceptrons are 

considered as the first 

generation of neural 

networks.

This artificial neuron 

model is the basis of 

today’s complex 

neural networks
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Extraído de:

https://www.analyticsvidhya.com/blog/2020/02/cnn-vs-rnn-vs-mlp-analyzing-3-types-of-neural-networks-in-deep-learning/

A single-layer 

perceptron is the 

basic unit of a 

neural network. 

It consists of four 

main parts, 

including input 

values, weights and 

a bias, a weighted 

sum, and activation 

function..

Input values Weights
Weighted sum 

and a bias
Activation

https://www.analyticsvidhya.com/blog/2020/02/cnn-vs-rnn-vs-mlp-analyzing-3-types-of-neural-networks-in-deep-learning/
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NOMENCLATURE



21PMR5251

MODELO DO PERCEPTRON

𝑧𝑖 𝑎𝑖

Input vector, 𝑛𝑥, 1

Neuron state (scalar)

Activation, scalar

Prediction, scalar

Weight vector, 𝑛𝑥, 1
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ACTIVATION FUNCTION

The purpose of the activation function is to introduce nonlinearity into the output 
of a neuron.

This nonlinearity is one of the factors that affect our results and the 
accuracy of our model.

If we use ANN with many hidden layers, a linear activation function 
will simply generate a series of affine transformations, so that the 
intermediate layers would be useless.

Unless we “transmit” nonlinearity, we are not computing interesting 
models, even if we delve deeper into neural networks.
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Degrau Unitário (Unit step):

𝑔 𝑧 = ቊ
1 𝑧 ≥ 0

−1 𝑐𝑐
𝑔 𝑧 = ቊ

1 𝑧 ≥ 0
0 𝑐𝑐

Linear:

𝑔 𝑧 = 𝑧

Sigmoide (logistic, sigmoid):

𝑔 𝑧 =
1

1 + 𝑒−𝑧

1

−1

1

0

1

0

tanh (Hyperbolic tangent):

𝑔 𝑧 =
𝑒2𝑧 − 1

𝑒2𝑧 + 1

1

−1

Leaky ReLU:

𝑔 𝑧 = max(0.1𝑧, 𝑧)
ReLU (Rectified Linear Unit):

𝑔 𝑧 = max(0, 𝑧)
ELU (Exponential Linear Unit):

𝑔 𝑧 = max(𝛼 𝑒𝑧 − 1 , 𝑧)

Softplus

𝑔 𝑧 = ln 1 + 𝑒𝑧
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The network must be trained. And it is the training that will show us 

the best option of parameters to be used (weights of connections 

and biases of neurons).
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HOW TO TRAIN OUR NN?

The objective of training an ANN is to calculate its parameters (weights and biases) in 
order to minimize a cost function.

The cost function is based on a function of the difference between the actual 𝒀 and 

predicted 𝒀 .

Mean Squared Error

Cost function
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Logistic error 𝟎 − 𝟏

Cost function

−log ො𝑦(𝑖)

− log 1 − ො𝑦(𝑖)
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WHAT DOES TRAINING NEURAL NETWORKS 
MEAN?

𝒙(𝑖) ෝ𝒚(𝑖) ≠ 𝒚(𝑖)

𝐽 += 𝐸(𝑖)



OPTIMIZATION PROBLEM

28
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HOW TO SOLVE THE OPTIMIZATION PROBLEM?
𝑓 𝝎

𝜔1

Global minimum

Local minimum

𝑓
𝝎

𝜔0

Local 

minimum

Global 

minimum



GRADIENT DESCENTE 
ALGORITHM

• How does gradient descent 
work?

• What types are used today?

• What are its advantages and 
disadvantages?
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WHY STUDY GRADIENT DESCENT?

Just because Gradient Descent is the heart and soul of most 
machine learning algorithms.

Gradient Descent is by far the most popular optimization strategy 
used in machine learning and deep learning right now.

It is used in training data models, can be combined with all 
algorithms, and is easy to understand and implement.

Everyone who works with machine learning must understand its 
concept.
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Fonte: https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html

Suppose you are at the top of a very high hill. 

The arrows represent the
direction of steepest descent
(negative gradient) from any
given point - the direction that
decreases the cost function as 
quickly as possible.

Starting from the top of
the hill (high cost)

reach the darkest part of the blue 
sea (low cost).

Your objective is to reach the sea as fast as possible.

https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html
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Fonte: https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html

We take our first step
downhill in the
direction specified by
the negative gradient.

Then we recalculate the
negative gradient (via the
coordinates of our new 
point) and take another
step in the direction it 
specifies.

We continue this process iteratively
until we reach the sea or a point 
where we can no longer move 
downwards - a local minimum.

https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html
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Fonte: https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html

And if you started just 
a few steps to the 
right?

Then the gradient descent 
would take you to another 
optimal location on the 
right.

Gradient Descending (GD) is an 

algorithm used to find the minimum of 

some function by iteratively moving in 

the direction of steepest descent.

https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html
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Valor 

mínimo

Ponto de mínimo 𝜔𝑚𝑖𝑛

𝑓 𝜔

𝜔

Chute inicial

Gradiente >0

While 𝛻𝑓 𝜔 > 𝜀 :

𝜔(𝑖+1): = 𝜔(𝑖+1) − 𝛼𝛻𝑓 𝜔 𝑖

𝑖 += 1

𝑑

𝑑𝜔
𝑓 𝜔

𝑓
𝜔

𝜔

We start with a random point in the function and …

… move in the negative direction of the function's 
gradient, to reach the local/global minima.
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Fonte: https://medium.com/@lucasoliveiras/regress%C3%A3o-linear-do-zero-com-python-ef74a81c4b84

https://medium.com/@lucasoliveiras/regress%C3%A3o-linear-do-zero-com-python-ef74a81c4b84
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EXAMPLE
𝑓 𝜔 = 𝜔 + 5 2

Minimum:

𝜔 = −5

Find the 

minimum value 

of the function 

𝜔 = −5
using the 

Gradient 

Descent 

method.
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GRADIENT DESCENT ALGORITHM

1. Parameter initialization: Assign an initial value 𝝎0 to the parameters;

2. Calculate the Jacobian;

3. Update the parameters in the opposite direction of the gradient in order to 
minimize the value of the function,

Repeat steps 2 and 3 until the desired value is 

obtained.

𝝎(𝑗+1) = 𝝎(𝑗) − 𝛼
𝜕𝐽 𝝎

𝜕𝝎 𝑗

What is the 

desired 

value?



39PMR5251

WHEN TO STOP?

When the variation 𝝎(𝑗+1) − 𝝎(𝑗) for menor que uma 

precisão 𝜀. For example, 𝜀 = 0,000001.

When the number of iterations exceeds a limit 𝑇. For example, 
𝑇 = 10000. 
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𝑓 𝜔 = 𝜔 + 5 2,
𝑑𝑓

𝑑𝜔
= 2 𝜔 + 5

1. Initialize with 𝑥 = 3. 

2. Modify 𝜔 in the negative direction of the gradient. How much to move? For this 
we need the learning rate. Let’s suppose 𝛼 ← 0,01,

LET’S FOLLOW THE STEPS

▪ Iteration 01

𝐽𝜔0 =
𝑑𝑓

𝑑𝜔
= 2 3 + 5 = 16 𝜔1 = 𝜔0 − 𝛼𝐽𝜔0 = 3 − 0,01 × 16 = 2,84

▪ Iteration 02

𝐽𝜔1 =
𝑑𝑓

𝑑𝜔
= 2 2,84 + 5 = 15,7 𝜔2 = 𝜔1 − 𝛼𝐽𝜔1 = 2,84 − 0,01 × 15,7 = 2,68

▪ Iteration 03

𝐽𝜔2 =
𝑑𝑓

𝑑𝜔
= 2 2,68 + 5 = 15,36𝜔3 = 𝜔2 − 𝛼𝐽𝜔2 = 2,68 − 0,01 × 15,36 = 2,53

Slowly on the 

way to the 

minimum...
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Iteration number
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LEARNING RATE 𝛼

Learning rate 𝛼 controls the step size in each iteration.

Selecting the correct value is a critical model decision, 𝛼 cannot be 
too big or too small...

As we approach a local minimum, the gradient descent will 
automatically take smaller steps. So, there is no need to decrease 
𝛼 over time.

Try …  𝟎, 𝟎𝟎𝟏 –  𝟎, 𝟎𝟎𝟑 –  𝟎, 𝟎𝟏 –  𝟎, 𝟎𝟑 –  𝟎, 𝟏 –  𝟎, 𝟑 –  𝟏 … 

Increase/decrease ~ 3x the previous value
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LOW 𝛼

A very low learning rate is more 

accurate, but the gradient 

calculation is time consuming, so it 

will take a long time to get to the 

end. ... We can confidently move in 

the direction of the negative 

gradient, as we are recalculating it 

very often, but “we will go down too 

slowly”;

𝑓 𝜔 = 𝜔2

𝜔
(0)

= 0.7

𝛼 = 0.01

𝜔

𝐽(
𝜔

)

Let's simplify the cost function something like 𝑓 𝜔 = 𝜔2
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𝛼 = 0.01 𝛼 = 0.001

𝜔

𝐽(
𝜔

)

𝜔

𝐽(
𝜔

)
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HIGH 𝛼

If we use a very high learning 
rate, we can cover more 
distance with each step, but we 
run the risk of going over the 
low point, as the gradient is 
constantly changing. The method 
diverges because we are “going 
down too fast”.

𝑓 𝜔 = 𝜔2

𝜔
(0)

= 0.7

𝛼 = 1.01

𝜔

𝐽(
𝜔

)
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𝛼 = 0.1 𝛼 = 0.3

𝑓 𝜔 = 𝜔2

𝜔
(0)

= 0.7

𝛼 = 0.5

𝛼 = 0.7 𝛼 = 0.9 𝛼 = 1.0

𝜔

𝐽
𝜔

𝐽
𝜔

𝜔

𝜔

𝜔

𝜔

𝜔
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IDEAL 𝛼

𝑓
𝜔

Iteration

high 𝛼

low 𝛼

high 𝛼

ideal 𝛼

It decreases sharply and then 
becomes smoother...
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https://blog.paperspace.com/intro-to-optimization-momentum-rmsprop-adam/

“Gradient descent is a First Order 
Optimization Method. It only takes the 
first order derivatives of the loss function 
into account and not the higher ones. 
What this basically means it has no clue 
about the curvature of the loss 
function. It can tell whether the loss is 
declining and how fast, but cannot 
differentiate between whether the 
curve is a plane, curving upwards or 
curving downwards.”
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𝐴
One problem with the 

gradient descent algorithm 

is that searching in the 

steepest direction, that is, in 

the direction perpendicular 

to the contours, can lead to 

a zig-zag and convergence 

will be very slow. For 

example, if we start from 

point A, the direction 

perpendicular to the 

contour points in a direction 

almost 90o degrees from 

the direction to the minimum 

point.
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Hessian is a matrix that organizes all the second-order partial derivatives of a 
function.

BUT it requires you to calculate gradients of the loss function with respect to 
each combination of parameters 𝜔𝑖 , 𝜔𝑗 . For modern problems, the number of 
parameters can be in the billions, and having to calculate a billion square 
gradients makes using higher-order optimization methods computationally 
intractable.

HOWEVER, second-order optimization consists of incorporating information 
about how the gradient is changing. While we cannot accurately calculate this 
information, we can choose to follow heuristics that guide our search for 
optima based on past gradient behavior.

IS HESSIAN THE SOLUTION?
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MOMENTUM

The Momentum proposes the following adjustment for the gradient descent.

𝑚 = 𝛽𝑚 − 𝛼𝛻𝐽 𝑤

𝜔 = 𝜔 + 𝑚

If we set the initial value of 𝑚 to 0 and choose our coefficient as 𝛽 = 0.9, the subsequent update equations 
will be,

𝑚1 = −𝐺(1)

𝑚2 = −0.9𝐺(1) − 𝐺(2)

𝑚3 = −0.9 0.9𝐺(1) + 𝐺(2) − 𝐺3 = −0.81𝐺(1) − 0.9𝐺(2) − 𝐺(3)

We give gradient descent a short-term memory!

𝑚 = 𝛽𝑚 − 𝛼𝛻𝐽 𝜔 𝑚 is the gradient that is maintained in previous iterations. This retained 

gradient is multiplied by a value called "Coefficient of Momentum“ 𝛽, which is 

the percentage of the gradient retained at each iteration.

𝐺(𝑖) = 𝛼∇𝐽 𝜔(𝑖)
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GD VS GD COM MOMENTO

Gradient descent is you walking down a hill. You follow the 

steepest path downwards; your progress is slow, but steady.

Momentum is a heavy ball rolling down the same hill. 



54PMR5251

Figura extraída de:

https://www.itread01.com/content/1543467366.html
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BACKPROPAGATION
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𝒙(𝑖)

𝑏

𝒘

𝒛(𝑖) 𝑎(𝑖)

= ෝ𝒚(𝒊)
𝐸 ෝ𝒚(𝒊), 𝒚(𝒊)

𝒚(𝒊)

WHY BACKPROPAGATION?

For each epoch 𝑘,
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EXAMPLE: SYNTHETIC DATA

from sklearn.datasets import make_blobs

n_samples = 250
x, y = make_blobs(n_samples=n_samples,

centers=([2.5, 3], [6.7, 7.9]),
random_state=0)

colours = ('steelblue', 'mediumvioletred')
fig, ax = plt.subplots()

for n_class in range(2):
ax.scatter(x[y==n_class][:, 0], x[y==n_class][:, 1],

c=colours[n_class], s=10, label=str(n_class))
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#Com a biblioteca python
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Perceptron
from sklearn.metrics import accuracy_score

X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=0)

modelo = Perceptron(alpha=0.1, random_state=0)
modelo.fit(X_train, y_train)
y_pred = modelo.predict(X_test)
print('Total de testes:{:d}, erros:{:d}'.format(len(y_test), (y_test != y_pred).sum()))
print('Acurácia: {:3.2f}'.format(accuracy_score(y_test, y_pred)))
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fig, ax = plt.subplots()

# plotting learn data
colours = ('steelblue', 'mediumvioletred')
for n_class in range(2):

ax.scatter(X_train[y_train==n_class][:, 0],
X_train[y_train==n_class][:, 1],
c=colours[n_class], s=40)

# plotting test data
colours = ('lightblue', 'plum')
for n_class in range(2):

ax.scatter(X_test[y_test==n_class][:, 0],
X_test[y_test==n_class][:, 1],
c=colours[n_class], s=20, alpha = 0.6)

print(modelo.coef_) # coeficientes
print(modelo.intercept_) # intercept/w0

print(np.max(x[:]))
t = np.arange(np.max(x[:]))
m = -modelo.coef_[0][0] / modelo.coef_[0][1]
c = -modelo.intercept_ / modelo.coef_[0][1]
ax.plot(t, m*t+c, color = 'rebeccapurple' )
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It is clear that a single perceptron will not serve our 
purpose: the classes aren’t linearly separable.

XOR PROBLEM
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MULTI-LAYERED PERCEPTRON (MLP)

An MLP is 
generally 

restricted to 
having a single 

intermediary 
layer.
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HOMEWORK – PART I

Solve the XOR Problem defined in the previous slide using a MLP.

How about classifying the synthetic data using SVM (Support Vector Machine) 
or K-means and add the results in the graph we did? This part of the 
homework is optative.

Although our classes have an end, theory doesn't!!!!



DEEP NEURAL NETWORKS
What will change if we have 

multiple layers in between?
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𝑧𝑘
[𝑙]

𝑎𝑘
[𝑙]

Somatório:

𝑧𝑘
[𝑙]

= 

𝑗

𝑤𝑘,𝑗
[𝑙]

𝑎𝑗
[𝑙−1]

+ 𝑏𝑘
[𝑙]

Ativação:

𝑎𝑘
[𝑙]

= 𝑔 𝑧𝑘
[𝑙]

𝑤𝑘,𝑗
[𝑙]

𝑏𝑘
[𝑙]
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ANN DATA FLOW DIAGRAM

Each block represents a matrix equation, and for each layer of the ANN 

there are two equations: one to calculate the states 𝑧[𝑖] of the neurons of 

the layer and another to calculate the activations 𝑎[𝑖] of the neurons in the 

layer. 

The output of one layer is the input of the next layer. 

𝒛[1] = 𝑾[1] ∙ 𝒙(𝑖) + 𝒃[1]
𝒙(𝑖)

𝒂[1] = 𝑔[1] 𝒛[1] 𝒛[2] = 𝑾[2] ∙ 𝒙(𝑖) + 𝒃[2] 𝒂[2] = 𝑔[2] 𝒛[2]

ෝ𝒚(𝑖) = 𝒂[2]
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THE 
QUESTION IS:

How to find the weights

𝑤𝑘,𝑗
[𝑙]

and bias 𝑏𝑘
[𝑙]

?
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ALGORITMO DE GRADIENTE DESCENDENTE

1. ANN parameter initialization: Assign initial value to 𝑾, 𝒃; 

2. Execution of the ANN for all examples of the training data set, so that given the inputs, the outputs predicted by the 
ANN are calculated;

3. Calculate the cost function for all training examples, through the sum of the error function;

4. Calculate the cost function gradient in relation to all ANN parameters;

5. Update of the ANN parameters in the opposite direction of the gradient in order to reduce the value of the cost 
function

Repeat steps 2 to 5 until the cost function 

value is low enough, or up to the limit 

number of epochs.
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ANN IN ONE SLIDE

𝑾
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WHY BACKPROPAGATION?
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FOR THE LAST LAYER...

You can reuse some of the calculations performed during the gradient evaluation.
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Obviously, everything applies in the solution to the gradient with respect to 𝑏

The first four terms on the right side of the equation are equal
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Homework 

Review the Notebook and do 
the proposed activities. 

Upload the complete Notebook 
until 23/07, 23:59.



Mistakes grow your brain.

Jo Boaler or Neural 

Networks? 

THE END
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