
PMR5251 - Assessment of Mechanical Behavior of
Materials using Machine Learning Approach

ARTIFICIAL NEURAL
NETWORKS (ANNS)

Izabel F. Machado

Larissa Driemeier

2PMR5251

SCHEDULE
Date Contents Activities Prof.

23/06 Introduction to Machine Learning main concepts
Notebook and

Abaqus
Larissa

30/06
Review mechanical behavior of materials and microstructure

characterization
List of exercises Izabel

07/07 Discussion about list of exercises
List of Exercises

MS evolution
Izabel

14/07 Neural Networks – theory List of exercises Larissa

21/07 Neural Networks – application in structural analyses Notebook/article Larissa

28/07 Convolutional Neural Network – application
Notebook

MS evolution
Larissa

04/08 Damage List of Exercises Izabel

11/08 Discussion about list of exercises
List of Exercises

MS evolution
Izabel

18/08 Discussion about manuscripts Manuscript Izabel/Larissa

25/08 Presentations 10min presentation Izabel/Larissa

WHAT IS IT?
Definition

Structure

4PMR5251

NEURAL NETWORK

•Dendrite: Receives signals from other neurons
•Soma: Processes the information
•Axon: Transmits the output of a neuron
•Synapse: Point of connection to other neurons

The neuron is the basic computing unit in the
brain.

Our brain is made up of billions of neurons with
hundreds of billions of connections between
them, forming a huge communication network,
the neural network.

5PMR5251

NEURAL NETWORK

6PMR5251

The Neural Network
architecture is made of

individual units
called neurons that

mimic the biological
behavior of the brain.

7PMR5251

MAIN CHARACTERISTICS OF BIOLOGICAL
NEURAL NETWORKS PRESENT IN ANNS

▪An ANN consists of many simple processing units
(neurons) interconnected;

▪Each artificial neuron, called perceptron, receives
many signals;

▪These are modified by a weight in the receptor
synapses;

▪Neurons sum up the weighted inputs;

▪Neurons define the importance of information and
transmit a single output;

▪The output of one neuron is transmitted to many
other neurons;

▪A network can have several layers of neurons.

8PMR5251

NEURAL NETWORK: ARCHITECTURE

The data that we
feed to the

model is loaded
into the input

layer from
external sources

like a CSV file or
a web service.

The ANN has 𝐿 = 3 hidden layers (see that the last, output layer is not a hidden layer).

The output layer

takes input from

preceding hidden

layers and comes to

a final prediction

based on the

model’s learnings. It

is where we get the

result.

Intermediate layers do
all the computations and
extract the features
from the data.

9PMR5251

The neural network maps an input dataset 𝒙𝑖 ∈ 𝑿 to the desired target value 𝒚𝑖 ∈ 𝒀

10PMR5251

ANN IS A SUPERVISED LEARNING ALGORITHM

Neural Network (or Artificial Neural Network) can learn by
examples.

For an ANN to be able to map the problem, being it classification
or regression, it needs to be trained. The supervised learning of an
ANN initially requires a set of labeled and classified data.

During learning, the outputs generated by the ANN are compared
with the desired outputs and the differences between them are
used for training.

11PMR5251

DATASET

The output data

is defined by

𝒀 ∈ ℝ𝑛𝑦,𝑚,

where 𝑛𝑦 is the

number of ANN

outputs.

𝑥1

𝑥2

𝑥3

𝑿 ∈ ℝ𝑛𝑥,𝑚, where 𝑛𝑥 is the number of features

in the problem (number of entries for each

example) and 𝑚 is the number of available

data (total number of training examples).
ො𝑦1

ො𝑦2

𝑥10

⋮

ො𝑦8

⋮

12PMR5251

ANNS KNOW
THINGS......

13PMR5251

TYPES OF ANNS...

The fundamental structure of ANNs is the layer! There are several types of
layers, each type being specific for a given tensor shape and for a given type
of processing.

Data in the form of vectors is

stored in 2D tensors (1st axis:

examples; 2nd axis: features) and

normally processed in densely

connected layers, called dense

layers;

14PMR5251

Grayscale image data is stored in 3D tensors (1st axis: examples;

2nd axis: height; 3rd axis: width) and normally processed in

convolutional layers

Temporal data sequences are stored in 3D tensors (1st axis: examples; 2nd axis:

time; 3rd axis: characteristics) and normally processed in recurring layers, for

example LSTM (Long Short-Term Memory) or GRU (Gated Recurrent Unit) layers.

15PMR5251

DENSE CONVOLUTIONAL RECURRENT NEURAL
NETWORK (DENSECRNN)

L. Xiao and Z. Wang, "Dense Convolutional Recurrent Neural Network for Generalized Speech Animation," 2018 24th International

Conference on Pattern Recognition (ICPR), 2018, pp. 633-638, doi: 10.1109/ICPR.2018.8545744.

16PMR5251

PERCEPTRON

Frank Rosenblatt

Cornell Aeronautical Laboratory

In 1958, Rosenblatt created the perceptron, an

algorithm for pattern recognition. The

simplest neural network, well known as the

Rosenblatt Perceptron, is a neural network

compound of a single artificial neuron.

THE PERCEPTRON
What is it?

Python: sklearn

18PMR5251

PERCEPTRON

Rosenblatt

Perceptrons are

considered as the first

generation of neural

networks.

This artificial neuron

model is the basis of

today’s complex

neural networks

19PMR5251

Extraído de:

https://www.analyticsvidhya.com/blog/2020/02/cnn-vs-rnn-vs-mlp-analyzing-3-types-of-neural-networks-in-deep-learning/

A single-layer

perceptron is the

basic unit of a

neural network.

It consists of four

main parts,

including input

values, weights and

a bias, a weighted

sum, and activation

function..

Input values Weights
Weighted sum

and a bias
Activation

https://www.analyticsvidhya.com/blog/2020/02/cnn-vs-rnn-vs-mlp-analyzing-3-types-of-neural-networks-in-deep-learning/

20PMR5251

NOMENCLATURE

21PMR5251

MODELO DO PERCEPTRON

𝑧𝑖 𝑎𝑖

Input vector, 𝑛𝑥, 1

Neuron state (scalar)

Activation, scalar

Prediction, scalar

Weight vector, 𝑛𝑥, 1

22PMR5251

ACTIVATION FUNCTION

The purpose of the activation function is to introduce nonlinearity into the output
of a neuron.

This nonlinearity is one of the factors that affect our results and the
accuracy of our model.

If we use ANN with many hidden layers, a linear activation function
will simply generate a series of affine transformations, so that the
intermediate layers would be useless.

Unless we “transmit” nonlinearity, we are not computing interesting
models, even if we delve deeper into neural networks.

23PMR5251

Degrau Unitário (Unit step):

𝑔 𝑧 = ቊ
1 𝑧 ≥ 0

−1 𝑐𝑐
𝑔 𝑧 = ቊ

1 𝑧 ≥ 0
0 𝑐𝑐

Linear:

𝑔 𝑧 = 𝑧

Sigmoide (logistic, sigmoid):

𝑔 𝑧 =
1

1 + 𝑒−𝑧

1

−1

1

0

1

0

tanh (Hyperbolic tangent):

𝑔 𝑧 =
𝑒2𝑧 − 1

𝑒2𝑧 + 1

1

−1

Leaky ReLU:

𝑔 𝑧 = max(0.1𝑧, 𝑧)
ReLU (Rectified Linear Unit):

𝑔 𝑧 = max(0, 𝑧)
ELU (Exponential Linear Unit):

𝑔 𝑧 = max(𝛼 𝑒𝑧 − 1 , 𝑧)

Softplus

𝑔 𝑧 = ln 1 + 𝑒𝑧

24PMR5251

The network must be trained. And it is the training that will show us

the best option of parameters to be used (weights of connections

and biases of neurons).

25PMR5251

HOW TO TRAIN OUR NN?

The objective of training an ANN is to calculate its parameters (weights and biases) in
order to minimize a cost function.

The cost function is based on a function of the difference between the actual 𝒀 and

predicted 𝒀 .

Mean Squared Error

Cost function

26PMR5251

Logistic error 𝟎 − 𝟏

Cost function

−log ො𝑦(𝑖)

− log 1 − ො𝑦(𝑖)

27PMR5251

WHAT DOES TRAINING NEURAL NETWORKS
MEAN?

𝒙(𝑖) ෝ𝒚(𝑖) ≠ 𝒚(𝑖)

𝐽 += 𝐸(𝑖)

OPTIMIZATION PROBLEM

28

29PMR5251

HOW TO SOLVE THE OPTIMIZATION PROBLEM?
𝑓 𝝎

𝜔1

Global minimum

Local minimum

𝑓
𝝎

𝜔0

Local

minimum

Global

minimum

GRADIENT DESCENTE
ALGORITHM

• How does gradient descent
work?

• What types are used today?

• What are its advantages and
disadvantages?

31PMR5251

WHY STUDY GRADIENT DESCENT?

Just because Gradient Descent is the heart and soul of most
machine learning algorithms.

Gradient Descent is by far the most popular optimization strategy
used in machine learning and deep learning right now.

It is used in training data models, can be combined with all
algorithms, and is easy to understand and implement.

Everyone who works with machine learning must understand its
concept.

32PMR5251

Fonte: https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html

Suppose you are at the top of a very high hill.

The arrows represent the
direction of steepest descent
(negative gradient) from any
given point - the direction that
decreases the cost function as
quickly as possible.

Starting from the top of
the hill (high cost)

reach the darkest part of the blue
sea (low cost).

Your objective is to reach the sea as fast as possible.

https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html

33PMR5251
Fonte: https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html

We take our first step
downhill in the
direction specified by
the negative gradient.

Then we recalculate the
negative gradient (via the
coordinates of our new
point) and take another
step in the direction it
specifies.

We continue this process iteratively
until we reach the sea or a point
where we can no longer move
downwards - a local minimum.

https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html

34PMR5251
Fonte: https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html

And if you started just
a few steps to the
right?

Then the gradient descent
would take you to another
optimal location on the
right.

Gradient Descending (GD) is an

algorithm used to find the minimum of

some function by iteratively moving in

the direction of steepest descent.

https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html

35PMR5251

Valor

mínimo

Ponto de mínimo 𝜔𝑚𝑖𝑛

𝑓 𝜔

𝜔

Chute inicial

Gradiente >0

While 𝛻𝑓 𝜔 > 𝜀 :

𝜔(𝑖+1): = 𝜔(𝑖+1) − 𝛼𝛻𝑓 𝜔 𝑖

𝑖 += 1

𝑑

𝑑𝜔
𝑓 𝜔

𝑓
𝜔

𝜔

We start with a random point in the function and …

… move in the negative direction of the function's
gradient, to reach the local/global minima.

36PMR5251

Fonte: https://medium.com/@lucasoliveiras/regress%C3%A3o-linear-do-zero-com-python-ef74a81c4b84

https://medium.com/@lucasoliveiras/regress%C3%A3o-linear-do-zero-com-python-ef74a81c4b84

37PMR5251

EXAMPLE
𝑓 𝜔 = 𝜔 + 5 2

Minimum:

𝜔 = −5

Find the

minimum value

of the function

𝜔 = −5
using the

Gradient

Descent

method.

38PMR5251

GRADIENT DESCENT ALGORITHM

1. Parameter initialization: Assign an initial value 𝝎0 to the parameters;

2. Calculate the Jacobian;

3. Update the parameters in the opposite direction of the gradient in order to
minimize the value of the function,

Repeat steps 2 and 3 until the desired value is

obtained.

𝝎(𝑗+1) = 𝝎(𝑗) − 𝛼
𝜕𝐽 𝝎

𝜕𝝎 𝑗

What is the

desired

value?

39PMR5251

WHEN TO STOP?

When the variation 𝝎(𝑗+1) − 𝝎(𝑗) for menor que uma

precisão 𝜀. For example, 𝜀 = 0,000001.

When the number of iterations exceeds a limit 𝑇. For example,
𝑇 = 10000.

40PMR5251

𝑓 𝜔 = 𝜔 + 5 2,
𝑑𝑓

𝑑𝜔
= 2 𝜔 + 5

1. Initialize with 𝑥 = 3.

2. Modify 𝜔 in the negative direction of the gradient. How much to move? For this
we need the learning rate. Let’s suppose 𝛼 ← 0,01,

LET’S FOLLOW THE STEPS

▪ Iteration 01

𝐽𝜔0 =
𝑑𝑓

𝑑𝜔
= 2 3 + 5 = 16 𝜔1 = 𝜔0 − 𝛼𝐽𝜔0 = 3 − 0,01 × 16 = 2,84

▪ Iteration 02

𝐽𝜔1 =
𝑑𝑓

𝑑𝜔
= 2 2,84 + 5 = 15,7 𝜔2 = 𝜔1 − 𝛼𝐽𝜔1 = 2,84 − 0,01 × 15,7 = 2,68

▪ Iteration 03

𝐽𝜔2 =
𝑑𝑓

𝑑𝜔
= 2 2,68 + 5 = 15,36𝜔3 = 𝜔2 − 𝛼𝐽𝜔2 = 2,68 − 0,01 × 15,36 = 2,53

Slowly on the

way to the

minimum...

41PMR5251

Iteration number

42PMR5251

LEARNING RATE 𝛼

Learning rate 𝛼 controls the step size in each iteration.

Selecting the correct value is a critical model decision, 𝛼 cannot be
too big or too small...

As we approach a local minimum, the gradient descent will
automatically take smaller steps. So, there is no need to decrease
𝛼 over time.

Try … 𝟎, 𝟎𝟎𝟏 – 𝟎, 𝟎𝟎𝟑 – 𝟎, 𝟎𝟏 – 𝟎, 𝟎𝟑 – 𝟎, 𝟏 – 𝟎, 𝟑 – 𝟏 …

Increase/decrease ~ 3x the previous value

43PMR5251

LOW 𝛼

A very low learning rate is more

accurate, but the gradient

calculation is time consuming, so it

will take a long time to get to the

end. ... We can confidently move in

the direction of the negative

gradient, as we are recalculating it

very often, but “we will go down too

slowly”;

𝑓 𝜔 = 𝜔2

𝜔
(0)

= 0.7

𝛼 = 0.01

𝜔

𝐽(
𝜔

)

Let's simplify the cost function something like 𝑓 𝜔 = 𝜔2

44PMR5251

𝛼 = 0.01 𝛼 = 0.001

𝜔

𝐽(
𝜔

)

𝜔

𝐽(
𝜔

)

45PMR5251

HIGH 𝛼

If we use a very high learning
rate, we can cover more
distance with each step, but we
run the risk of going over the
low point, as the gradient is
constantly changing. The method
diverges because we are “going
down too fast”.

𝑓 𝜔 = 𝜔2

𝜔
(0)

= 0.7

𝛼 = 1.01

𝜔

𝐽(
𝜔

)

46PMR5251

𝛼 = 0.1 𝛼 = 0.3

𝑓 𝜔 = 𝜔2

𝜔
(0)

= 0.7

𝛼 = 0.5

𝛼 = 0.7 𝛼 = 0.9 𝛼 = 1.0

𝜔

𝐽
𝜔

𝐽
𝜔

𝜔

𝜔

𝜔

𝜔

𝜔

47PMR5251

IDEAL 𝛼

𝑓
𝜔

Iteration

high 𝛼

low 𝛼

high 𝛼

ideal 𝛼

It decreases sharply and then
becomes smoother...

48PMR5251

https://blog.paperspace.com/intro-to-optimization-momentum-rmsprop-adam/

“Gradient descent is a First Order
Optimization Method. It only takes the
first order derivatives of the loss function
into account and not the higher ones.
What this basically means it has no clue
about the curvature of the loss
function. It can tell whether the loss is
declining and how fast, but cannot
differentiate between whether the
curve is a plane, curving upwards or
curving downwards.”

49PMR5251

𝐴
One problem with the

gradient descent algorithm

is that searching in the

steepest direction, that is, in

the direction perpendicular

to the contours, can lead to

a zig-zag and convergence

will be very slow. For

example, if we start from

point A, the direction

perpendicular to the

contour points in a direction

almost 90o degrees from

the direction to the minimum

point.

50PMR5251

51PMR5251

Hessian is a matrix that organizes all the second-order partial derivatives of a
function.

BUT it requires you to calculate gradients of the loss function with respect to
each combination of parameters 𝜔𝑖 , 𝜔𝑗 . For modern problems, the number of
parameters can be in the billions, and having to calculate a billion square
gradients makes using higher-order optimization methods computationally
intractable.

HOWEVER, second-order optimization consists of incorporating information
about how the gradient is changing. While we cannot accurately calculate this
information, we can choose to follow heuristics that guide our search for
optima based on past gradient behavior.

IS HESSIAN THE SOLUTION?

52PMR5251

MOMENTUM

The Momentum proposes the following adjustment for the gradient descent.

𝑚 = 𝛽𝑚 − 𝛼𝛻𝐽 𝑤

𝜔 = 𝜔 + 𝑚

If we set the initial value of 𝑚 to 0 and choose our coefficient as 𝛽 = 0.9, the subsequent update equations
will be,

𝑚1 = −𝐺(1)

𝑚2 = −0.9𝐺(1) − 𝐺(2)

𝑚3 = −0.9 0.9𝐺(1) + 𝐺(2) − 𝐺3 = −0.81𝐺(1) − 0.9𝐺(2) − 𝐺(3)

We give gradient descent a short-term memory!

𝑚 = 𝛽𝑚 − 𝛼𝛻𝐽 𝜔 𝑚 is the gradient that is maintained in previous iterations. This retained

gradient is multiplied by a value called "Coefficient of Momentum“ 𝛽, which is

the percentage of the gradient retained at each iteration.

𝐺(𝑖) = 𝛼∇𝐽 𝜔(𝑖)

53PMR5251

GD VS GD COM MOMENTO

Gradient descent is you walking down a hill. You follow the

steepest path downwards; your progress is slow, but steady.

Momentum is a heavy ball rolling down the same hill.

54PMR5251

Figura extraída de:

https://www.itread01.com/content/1543467366.html

55PMR5251

BACKPROPAGATION

56PMR5251

𝒙(𝑖)

𝑏

𝒘

𝒛(𝑖) 𝑎(𝑖)

= ෝ𝒚(𝒊)
𝐸 ෝ𝒚(𝒊), 𝒚(𝒊)

𝒚(𝒊)

WHY BACKPROPAGATION?

For each epoch 𝑘,

57PMR5251

58PMR5251

EXAMPLE: SYNTHETIC DATA

from sklearn.datasets import make_blobs

n_samples = 250
x, y = make_blobs(n_samples=n_samples,

centers=([2.5, 3], [6.7, 7.9]),
random_state=0)

colours = ('steelblue', 'mediumvioletred')
fig, ax = plt.subplots()

for n_class in range(2):
ax.scatter(x[y==n_class][:, 0], x[y==n_class][:, 1],

c=colours[n_class], s=10, label=str(n_class))

59PMR5251

#Com a biblioteca python
from sklearn.model_selection import train_test_split
from sklearn.linear_model import Perceptron
from sklearn.metrics import accuracy_score

X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=0)

modelo = Perceptron(alpha=0.1, random_state=0)
modelo.fit(X_train, y_train)
y_pred = modelo.predict(X_test)
print('Total de testes:{:d}, erros:{:d}'.format(len(y_test), (y_test != y_pred).sum()))
print('Acurácia: {:3.2f}'.format(accuracy_score(y_test, y_pred)))

60PMR5251

fig, ax = plt.subplots()

plotting learn data
colours = ('steelblue', 'mediumvioletred')
for n_class in range(2):

ax.scatter(X_train[y_train==n_class][:, 0],
X_train[y_train==n_class][:, 1],
c=colours[n_class], s=40)

plotting test data
colours = ('lightblue', 'plum')
for n_class in range(2):

ax.scatter(X_test[y_test==n_class][:, 0],
X_test[y_test==n_class][:, 1],
c=colours[n_class], s=20, alpha = 0.6)

print(modelo.coef_) # coeficientes
print(modelo.intercept_) # intercept/w0

print(np.max(x[:]))
t = np.arange(np.max(x[:]))
m = -modelo.coef_[0][0] / modelo.coef_[0][1]
c = -modelo.intercept_ / modelo.coef_[0][1]
ax.plot(t, m*t+c, color = 'rebeccapurple')

61PMR5251

It is clear that a single perceptron will not serve our
purpose: the classes aren’t linearly separable.

XOR PROBLEM

62PMR5251

MULTI-LAYERED PERCEPTRON (MLP)

An MLP is
generally

restricted to
having a single

intermediary
layer.

63PMR5251

HOMEWORK – PART I

Solve the XOR Problem defined in the previous slide using a MLP.

How about classifying the synthetic data using SVM (Support Vector Machine)
or K-means and add the results in the graph we did? This part of the
homework is optative.

Although our classes have an end, theory doesn't!!!!

DEEP NEURAL NETWORKS
What will change if we have

multiple layers in between?

65PMR5251

66PMR5251

67PMR5251

𝑧𝑘
[𝑙]

𝑎𝑘
[𝑙]

Somatório:

𝑧𝑘
[𝑙]

=

𝑗

𝑤𝑘,𝑗
[𝑙]

𝑎𝑗
[𝑙−1]

+ 𝑏𝑘
[𝑙]

Ativação:

𝑎𝑘
[𝑙]

= 𝑔 𝑧𝑘
[𝑙]

𝑤𝑘,𝑗
[𝑙]

𝑏𝑘
[𝑙]

68PMR5251

69PMR5251

70PMR5251

71PMR5251

ANN DATA FLOW DIAGRAM

Each block represents a matrix equation, and for each layer of the ANN

there are two equations: one to calculate the states 𝑧[𝑖] of the neurons of

the layer and another to calculate the activations 𝑎[𝑖] of the neurons in the

layer.

The output of one layer is the input of the next layer.

𝒛[1] = 𝑾[1] ∙ 𝒙(𝑖) + 𝒃[1]
𝒙(𝑖)

𝒂[1] = 𝑔[1] 𝒛[1] 𝒛[2] = 𝑾[2] ∙ 𝒙(𝑖) + 𝒃[2] 𝒂[2] = 𝑔[2] 𝒛[2]

ෝ𝒚(𝑖) = 𝒂[2]

72PMR5251

THE
QUESTION IS:

How to find the weights

𝑤𝑘,𝑗
[𝑙]

and bias 𝑏𝑘
[𝑙]

?

73PMR5251

ALGORITMO DE GRADIENTE DESCENDENTE

1. ANN parameter initialization: Assign initial value to 𝑾, 𝒃;

2. Execution of the ANN for all examples of the training data set, so that given the inputs, the outputs predicted by the
ANN are calculated;

3. Calculate the cost function for all training examples, through the sum of the error function;

4. Calculate the cost function gradient in relation to all ANN parameters;

5. Update of the ANN parameters in the opposite direction of the gradient in order to reduce the value of the cost
function

Repeat steps 2 to 5 until the cost function

value is low enough, or up to the limit

number of epochs.

74PMR5251

ANN IN ONE SLIDE

𝑾

75PMR5251

WHY BACKPROPAGATION?

76PMR5251

FOR THE LAST LAYER...

You can reuse some of the calculations performed during the gradient evaluation.

77PMR5251

Obviously, everything applies in the solution to the gradient with respect to 𝑏

The first four terms on the right side of the equation are equal

78PMR5251

Homework

Review the Notebook and do
the proposed activities.

Upload the complete Notebook
until 23/07, 23:59.

Mistakes grow your brain.

Jo Boaler or Neural

Networks?

THE END

	Slide 1: Artificial Neural networks (ANNs)
	Slide 2: Schedule
	Slide 3: What is it?
	Slide 4: Neural Network
	Slide 5: Neural Network
	Slide 6
	Slide 7: Main characteristics of biological neural networks present in ANNs
	Slide 8: Neural Network: Architecture
	Slide 9
	Slide 10: ANN is a Supervised learning algorithm
	Slide 11: dataset
	Slide 12: ANNs know things......
	Slide 13: Types of ANNs...
	Slide 14
	Slide 15: Dense Convolutional Recurrent Neural Network (DenseCRNN)
	Slide 16: Perceptron
	Slide 17: The Perceptron
	Slide 18: Perceptron
	Slide 19
	Slide 20: Nomenclature
	Slide 21: Modelo do perceptron
	Slide 22: Activation function
	Slide 23
	Slide 24
	Slide 25: How to train our NN?
	Slide 26
	Slide 27: What does Training Neural Networks mean?
	Slide 28: Optimization problem
	Slide 29: How to solve the optimization problem?
	Slide 30: Gradient descente Algorithm
	Slide 31: Why Study Gradient Descent?
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: ExAmplE f de ômega , é igual a abre parêntese ômega mais 5 , fecha parêntese ao quadrado
	Slide 38: Gradient descent algorithm
	Slide 39: When to stop?
	Slide 40: Let’s follow the steps
	Slide 41
	Slide 42: Learning rate alfa
	Slide 43: low alfa
	Slide 44
	Slide 45: High alfa
	Slide 46
	Slide 47: ideal alfa
	Slide 48
	Slide 49
	Slide 50
	Slide 51: Is Hessian the solution?
	Slide 52: Momentum
	Slide 53: GD vs GD com momento
	Slide 54
	Slide 55: Backpropagation
	Slide 56: Why backpropagation?
	Slide 57
	Slide 58: Example: SyntHetic data
	Slide 59
	Slide 60
	Slide 61: XOR problem
	Slide 62: Multi-layered Perceptron (MLP)
	Slide 63: Homework – Part I
	Slide 64: Deep Neural Networks
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71: ANN data flow diagram
	Slide 72: The question is:
	Slide 73: Algoritmo de gradiente descendente
	Slide 74: ANN in one slide
	Slide 75: Why Backpropagation?
	Slide 76: For the Last Layer...
	Slide 77
	Slide 78
	Slide 79: The end

