
Journal of the Operational Research Society (2002) 53, 512–522 #2002 Operational Research Society Ltd. All rights reserved. 0160-5682/02 $15.00

www.palgrave-journals.com/jors

A guide to vehicle routing heuristics
J-F Cordeau,1 M Gendreau,2 G Laporte,1* J-Y Potvin2 and F Semet3

1École des Hautes Études Commerciales, Montréal, Canada; 2Université de Montréal, Montréal, Canada; and 3Université de
Valenciennes et du Hainaut Cambresis, Valenciennes, France

Several of the most important classical and modern heuristics for the vehicle routing problem are summarized and
compared using four criteria: accuracy, speed, simplicity and flexibility. Computational results are reported.
Journal of the Operational Research Society (2002) 53, 512–522. DOI: 10.1057=palgrave=jors=2601319

Keywords: vehicle routing problem; heuristics

Introduction

The Vehicle Routing Problem (VRP), introduced by Dantzig

and Ramser1 in 1959, holds a central place in distribution

management and has become one of the most widely studied

problems in combinatorial optimization. The Classical VRP

can be formally defined as follows. Let G ¼ ðV ;AÞ be a

graph where V ¼ fv0; v1; . . . ; vng is a vertex set, and

A ¼ fðvi; vjÞ : vi; vj 2 V ; i 6¼ jg is an arc set. Vertex v0 repre-

sents a depot, while the remaining vertices correspond to

customers. With A are associated a cost matrix ðcijÞ and a

travel time matrix ðtijÞ. If these matrices are symmetrical,

as is commonly the case, then it is standard to define the

VRP on an undirected graph G ¼ ðV ;EÞ, where

E ¼ fðvi; vjÞ : vi; vj 2 V ; i < jg is an edge set. Each custo-

mer has a non-negative demand qi and a service time ti. A

fleet of m identical vehicles of capacity Q is based at the

depot. The number of vehicles is either known in advance or

treated as a decision variable. The VRP consists of design-

ing a set of at most m delivery or collection routes such that

(1) each route starts and ends at the depot, (2) each customer

is visited exactly once by exactly one vehicle, (3) the total

demand of each route does not exceed Q, (4) the total

duration of each route (including travel and service times)

does not exceed a preset limit D, and (5) the total routing

cost is minimized. A common variant is where a time

window ½ai; bi	 is imposed on the visit of each customer.

Several other extensions have also been studied; the vehicle

fleet may be heterogeneous,2 vehicles may perform both

collections and deliveries on the same route,3 some vehicles

may be unable to visit certain sites,4 some customers may

require several visits over a given time period,5 there may

exist more than one depot,5 deliveries may be split among

several vehicles,6 etc. For overview articles on the VRP, see

Golden and Assad,7 Fisher,8 Desrosiers et al,9 Crainic and

Laporte,10 Toth and Vigo,11 Laporte and Semet,12 Gendreau

et al13 and Cordeau et al.14

The VRP is a hard combinatorial optimization problem

and only relatively small instances can be solved to optim-

ality. To this day, it seems that no exact algorithm is capable

of consistently solving instances in excess of 50 custo-

mers.15 This is due to the fact that sharp lower bounds on

the objective value are hard to derive, which means that

partial enumeration based exact algorithms (using branch-

and-bound or dynamic programming) will have a slow

convergence rate. Since exact approaches are in general

inadequate, heuristics are commonly used in practice.

There has been a steady evolution, over the past 40 years,

in the development of VRP heuristics. In the early classical

heuristics, much of the emphasis was put on quickly

obtaining a feasible solution and possibly applying to it a

postoptimization procedure. This class of methods includes

the well-known savings algorithm,16 the sweep algorithm17

and the Fisher and Jaikumar algorithm.18 Over the last ten

years, much of the research effort has concentrated on the

development of algorithms based on metaheuristics, using

mainly two principles: local search and population search.

In local search methods, an intensive exploration of the

solution space is performed by moving at each step from the

current solution to another promising solution in its neigh-

bourhood. Simulated annealing (SA)19 and tabu search

(TS)20 are two prime examples of this principle. Population

search consists of maintaining a pool of good parent solu-

tions and recombining them to produce offspring. A classi-

cal example is genetic search (GS)21 which combines two

parents to produce offspring. Adaptive memory procedures

(AMPs)22 can be viewed as an extension of GS where

several parents are used to produce several offspring.

While more time consuming than the early heuristics,

*Correspondence: G Laporte, Centre de recherche sur les transports
(C.R.T.), Campus de I’Université de Montréal, C.P. 6128, Succursale
Centre-ville, Montréal H3C 3J7, Canada.

metaheuristics are capable of consistently producing high

quality solutions. Thus, on the Christofides, Mingozzi and

Toth (CMT)23 14 classical VRP benchmark instances, the

most powerful methods have produced one proven optimum

while the solutions obtained on the remaining instances are

believed to be optimal or near-optimal since they have not

been improved after thousands of hours of computing effort,

using sophisticated search techniques.

Yet most commercial software and several in-house

computer programs used by companies are based on unso-

phisticated methodologies, sometimes dating back to the

1960s. There are several reasons for this state of affairs. One

is that the optimization component of VRP software is only

a small part of the product, most of the effort being

expanded on data management and sophisticated user inter-

faces. It is not uncommon for routing experts to use low

quality solutions produced by VRP software and exploit the

interactive capabilities of the system to perform manual

improvements. Another reason is that company analysts and

software developers are simply unaware of the latest algo-

rithmic developments. While there is some truth to this, we

believe the main hindrance to technology transfer may be

more deep-rooted. In this paper, we argue that most of the

available VRP heuristics lack some of the necessary attri-

butes to ensure their adoption by practitioners.

In the following section we describe what we believe are

four essential attributes for software transferability and end-

user adoption. We then provide an appraisal of some of the

best known heuristics with respect to these criteria. As much

as we have tried to base this study on published and

objective data, our analysis is at times personal and critical,

especially with respect to the more intangible criteria. The

algorithms are grouped in two categories: classical heuristics

and metaheuristics. A summary and conclusion close the

paper.

Four attributes of good VRP heuristics

Vehicle routing heuristics, as are most heuristics, are usually

measured against two criteria: accuracy and speed. In our

opinion simplicity and flexibility are also essential attributes

of good heuristics. We now elaborate on these four criteria.

Accuracy

Accuracy measures the degree of departure of a heuristic

solution value from the optimal value. Since optima and

sharp lower bounds are usually unavailable in the case of the

VRP, most comparisons have to be made with best known

values. As pointed out by Barr et al,24 analysing heuristic

results is fraught with difficulties. Authors often report

results obtained for the best combination of algorithmic

parameters, or for the best of several runs with different

starting solutions. Not all authors use the same rounding or

truncating conventions which, as emphasized by Gendreau

et al,25 can lead to vastly different results. Tests are often

carried out by rounding costs d digits after the decimal

point, ie, by setting cij :¼ 10
db10dcij þ 0:5c, where b yc is

the integer part of y. More rarely, costs are truncated d digits

after the decimal point, ie cij :¼ 10
db10dcijc. Tests can also

be performed with floating point arithmetic, without round-

ing or truncating, using as many digits as allowed by the

computer. When rounding or truncating occurs, it is

common to recompute the final solution cost using more

than d digits after the decimal point and to present the final

result with one or two digits after the point. To illustrate the

discrepancy in results, consider the first instance of the CMT

test problems. The same tabu search algorithm (Taburoute)

yields a cost of 524.61 if computations are performed with

rounded costs cij and d ¼ 5 (this is, by the way, a proven

optimum26), a cost of 521 if costs are rounded up or down to

the nearest integer, and a cost of 508 if truncated integer

costs are used. In instances with route duration constraints,

using an insufficient precision may yield an infeasible

solution if travel times are proportional to distances. For a

further discussion on the bias introduced by rounding in

VRPs, see Mole.27

Another issue related to accuracy is consistency. As a

rule, users will prefer a heuristic that performs well all the

time rather than one that may perform even better most of

the time but very poorly on other occasions, and may even

produce solutions easily perfectible by visual inspection.

Such solutions are enough to discredit the algorithm.

Finally, users will often prefer an algorithm that produces

a good solution at an early stage, and then displays solutions

of increasing quality throughout the execution to an algo-

rithm that comes up with only a final answer, possibly after a

long computing time. This gives users a better feel of how

much additional effort is worth investing given the evolution

rate of the solution value.

Speed

Just how important is computation speed in vehicle routing?

It all depends on the planning level at which the problem is

solved and on the degree of accuracy required. At one

extreme, real-time applications such as express courier

pickup and delivery28 or ambulance redeployment29 require

fast, sometimes almost instantaneous, action. For example,

Gendreau et al29 describe the crucial role played by parallel

computing in a setting where an ambulance relocation

strategy must be determined every three minutes on average.

At the other extreme, in long term planning decisions made

every several months, such as fleet sizing, it makes sense to

invest several hours or even several days of computing time,

particularly if large sums of money are at stake. Most

applications fall somewhere between these two extremes.

It does not seem unreasonable to invest ten or twenty

minutes of computing time on a routing problem that must

be solved daily. Interactive systems must of course react

J-F Cordeau et al—Guide to vehicle routing heuristics 513

much more quickly. The issue of speed is not always

properly put into perspective. For example, would not

most practitioners prefer a VRP heuristic that is 2.38%

accurate and runs in 3.48 min to one that is 5.85% accurate

but requires only 0.26 min of computing time? (These are

actual statistics of the 2-petal and 1-petal algorithms

described by Renaud et al.30)

Accurate reporting of computing time is another delicate

issue in the scientific literature, particularly in the case of

multiple runs or if parallel computing is used. As in the area

of accuracy, strict standards are not consistenly enforced by

VRP researchers when it comes to assessing the speed of

algorithms.

Simplicity

Several VRP heuristics are rarely implemented because they

are just too complicated to understand and to code. While it

is unrealistic to expect scientific articles to provide a minute

description of every algorithmic detail, sufficient informa-

tion should be provided to enable a reasonably skilled

programmer to come up with a working code. In addition,

heuristics should be reasonably robust to ensure that they

work properly, even if not every single detail is implemen-

ted. Many algorithmic descriptions fail on the count of

providing too much or insufficient detail. One reason why

the Clarke and Wright16 algorithm is so popular among

practitioners is that its basic principle is trivial to understand

and easy to code. (Amazingly, the original description is

rather clumsy and would probably fall short of today’s

publishing standards.) Simple codes, preferably short and

self-contained, stand a better chance of being adopted,

although a minimum of complexity is to be expected for

good results.

Algorithms that contain too many parameters are difficult

to understand and unlikely to be used. This problem is

prevalent in most metaheuristics developed over the past ten

years. In their quest for ever better solutions, researchers

have increased the number of parameters contained in their

algorithms far beyond what can be deemed reasonable,

particularly in view of the fact that relatively few instances

are used in the tests. This problem was recently raised by

Golden et al.31 Not only should the number of algorithmic

parameters be limited, but these should also make sense to

the end-user. Thus a parameter controlling the number of

consecutive iterations without improvement in a local search

heuristic is easy to understand, whereas a bound on the

number of executions of an internal procedure is mean-

ingless to most people.

There are two easy ways around the proliferation of

parameters. One is to set them once and for all at some

meaningful value, especially if tests show that the algorithm

is rather insensitive to a particular parameter choice.

Another possibility is to make use of parameters that self-

adjust during the course of the algorithm.5,25

Flexibility

A good VRP heuristic should be flexible enough to accom-

odate the various side constraints encountered in a majority

of real-life applications. While most of the VRP literature

focuses on capacity and sometimes route length constraints,

it is often clear how changes can be made to deal with

additional constraints, but this is not always possible, and

performance can also deteriorate significantly as a result.

Our experience5,25 suggests that an efficient way of handling

side constraints in a local search process is through the use

of two objectives. The first, FðxÞ, computes the routing cost

of solution x. The second, F 0ðxÞ, is the sum of FðxÞ and

weighted penalty terms associated with violations of each

side constraint. For example, if QðxÞ and DðxÞ are the

capacity and route duration violations associated with solu-

tion x, then F 0ðxÞ would be defined as FðxÞ þ aQðxÞ þ

bDðxÞ, where a and b are positive self-adjusting penalty

parameters. Initially set equal to 1, these parameters are

periodically increased or decreased throughout the search

according to whether previous solutions were infeasible or

feasible. This way of proceeding means that the search will

probably evolve through a mix of feasible and infeasible

solutions, thus reducing the probability of becoming trapped

in a local minimum. Another algorithmic advantage of this

device is that the search can operate with relatively simple

moves, such as removing a customer from its current route

and inserting it in a different route. When feasibility must be

maintained at all cost, such simple moves tend not to work if

side constraints are tight, and more complex and time

consuming operations must then be envisaged, such as

ejection chains.32,33 So in a sense, algorithmic flexibility is

in part achieved through simplicity of design.

Classical heuristics

Several heuristics have been devised for the VRP,12 only

some of which are sufficently well known to be truly viewed

as ‘classical’. For the sake of parsimony we concentrate on

three of the best known heuristics: the Clarke and Wright

algorithm, the sweep algorithm and the Fisher and Jaikumar

algorithm. These were selected partly because of their

popularity, and also because they operate on vastly different

principles. Some extensions of these methods are also

discussed in passing.

The Clarke and Wright savings heuristic

The Clarke and Wright (CW)16 heuristic is one of the best

known and remains widely used in practice to this day,

despite some of its shortcomings. It is based on the notion of

saving. Initially, a feasible solution consists of n back and

forth routes between the depot and a customer. At any given

iteration, two routes ðv0; . . . ; vi; v0Þ and ðv0; vj; . . . ; v0Þ are

merged into a single route ðv0; . . . ; vi; vj . . . ; v0Þ whenever

514 Journal of the Operational Research Society Vol. 53, No. 5

this is feasible, thus generating a saving sij ¼ ci0 þ c0j
 cij.

In the parallel version of the algorithm, the merge yielding

the largest saving is always implemented, whereas the

sequential version keeps expanding the same route until

this is no longer feasible. In practice the parallel version is

much better. It is common to apply a 3-opt34 post-optimiza-

tion step to the final solution.

This algorithm scores very high on simplicity and speed.

It contains no parameters and is easy to code. In our tests on

the CMT benchmark instances, it typically ran within 0.12 s

on a Sun Ultrasparc 10 workstation (440 MHz), without the

3-opt step. Executing a 3-opt post-optimization step

increased the average running time to only 0.13 s. This

algorithm obtains a medium score on accuracy. The best

implementation (parallel version followed by 3-opt)

produced an average deviation of 6.71% from the best

known solution values identified by Taillard35 and Rochat

and Taillard22 (see Table 1). In addition, several researchers

have observed that the solution is sometimes of rather poor

quality and often contains at least one rather circumferential

route. The lack of flexibility is probably the worst feature of

this algorithm. While additional constraints can, in princi-

ple, be incorporated in the CW algorithm, this usually

results in a sharp deterioration in solution quality. This

can be explained by the fact that the algorithm is based on

a greedy principle and contains no mechanism to undo early

unsatisfactory route merges. Solomon36 reports a variant of

the CW algorithm in which savings are adapted to handle

time windows, but results are disappointing.

Several improvements to the CW algorithm have been

proposed. Gaskell37 and Yellow38 have suggested using

generalized savings of the form sij ¼ ci0 þ c0j
 lcij to

help produce more compact routes, where l is a positive

parameter. Other enhancements are related to the use of

sophisticated data structures and sorting strategies39,40 to

better handle the savings. We believe, however, that, given

the present level of computer technology and the very fast

running time of the CW algorithm on medium size

instances, the latter improvements are fast becoming

irrelevant.

Another stream of research on the CW algorithm has

concentrated on optimising the route merging process

through the use of a matching algorithm. Early results

based on this idea were produced by Desrochers and

Verhoog41 and Altinkemer and Gavish.42 The best and

most recent implementation is due to Wark and Holt43

Table 1 Comparison of five classical heuristics for the VRP

Clarke and Wrighta Two-matchingb Sweepc 1-Petal c 2-Petal c

Instance n Typed Value Secondse Value Secondsf Value Secondsg Value Secondsg Value Secondsg Best

1 50 C 578.56 0.03 524.6k 1200 531.90 7.2 531.90 6.0 524.61 45.6 524.61h,j

2 75 C 888.04 0.05 835.8 3000 884.20 10.2 885.02 4.2 854.09 31.2 835.26h

3 100 C 878.70 0.10 830.7 8700 846.34 70.8 836.34 19.2 830.04 230.4 826.14h

4 150 C 1128.24 0.21 1038.5 17100 1075.38 151.8 1070.50 24.6 1054.62 355.8 1028.42h

5 199 C 1386.84 0.32 1321.3 28800 1396.05 216.0 1406.84 24.6 1354.23 372.6 1291.45i

6 50 C,D 616.66 0.05 555.4 1800 560.08 9.6 560.08 5.4 560.08 33.6 555.43h

7 75 C,D 974.79 0.06 911.8 2700 965.51 11.4 968.89 4.2 922.75 25.8 909.68h

8 100 C,D 968.73 0.08 878.0 9900 883.56 88.2 877.80 15.0 877.29 174.6 865.94h

9 150 C,D 1284.63 0.17 1176.5 20700 1220.71 180.0 1220.20 15.6 1194.51 214.8 1162.55h

10 199 C,D 1521.94 0.33 1418.3 32100 1526.64 294.6 1515.95 21.0 1470.31 311.4 1395.85i

11 120 C 1048.53 0.14 1043.4 16500 1265.65 211.2 1252.84 36.6 1109.14 702.0 1042.11h

12 100 C 824.42 0.08 819.6 5700 919.51 38.4 824.77 12.6 824.77 126.6 819.56h

13 120 C,D 1587.93 0.12 1548.3 30600 1785.30 134.4 1173.69 15.6 1585.20 198.6 1541.14h

14 100 C,D 868.50 0.08 866.4 8400 911.81 5.1 894.77 10.2 885.87 101.4 866.37h

Average deviation
from best and
time

6.71% 0.13 0.63% 13371.42 7.09% 105.6 5.85% 15.6 2.38% 208.8

aImplemented by Laporte and Semet.12 Verifiable results (detailed solutions are available in articles or on web sites). Computations
performed by rounding costs seven digits after the decimal point.
bImplemented by Wark and Holt.43 Verifiable results, best of five runs. Computations performed by rounding costs two digits after the
decimal point.43

cImplemented by Renaud et al.30 Verifiable results. Computations performed by rounding costs twelve digits after the decimal point.66

dC: capacity restriction, D: route duration restriction.
eSun Ultrasparc 10 workstations (42 Mflops).
fSun 4=630 MP. Total time for five runs.
gSun Sparcstation 2 (210.5 Mips, 4.2 Mflops).
hTaillard.35 Verifiable results.
iRochat and Taillard.22

jOptimal solution value.
kBold numbers correspond to best known values.

J-F Cordeau et al—Guide to vehicle routing heuristics 515

who often obtained significant improvements over the origi-

nal CW implementation, but at the expense of much

increased computing times. Their results, presented in

Table 1, correspond to the best of five runs, each requiring

on the average between 4 and 107 min on a Sun4=630MP.

On the whole, this algorithmic enhancement removes from

the CW heuristic two of its best features (speed and

simplicity), is difficult to implement and does nothing to

redress the lack of flexibility of the original algorithm.

While the repeated application of a matching based algo-

rithm yields increased accuracy (it produces average devia-

tion of 0.63% on the CMT benchmark instances), this

technique has in our opinion limited potential because of

its complexity and low flexibility level.

The sweep algorithm

The sweep algorithm is generally attributed to Gillett and

Miller17 although its principle can be traced back to Wren44

and Wren and Holliday.45 It applies to planar instances of

the VRP. Feasible routes are created by rotating a ray centred

at the depot and gradually including customers in a vehicle

route until the capacity or route length constraint is attained.

A new route is then initiated and the process is repeated

until the entire plane has been swept. A 3-opt step is then

typically applied. On the CMT instances, the Renaud et al30

implementation of this algorithm has yielded an average

deviation of 7.09% from the best known solution values.

Average computing times of 105.6 s were obtained on a Sun

Sparcstation 2 (210.5 Mips, 4.2 Mflops) (see Table 1). This

algorithm scores high on simplicity, but does not seem to be

superior to CW both in terms of accuracy and speed. It is

also rather inflexible. Again, the greedy nature of the sweep

mechanism makes it difficult to accomodate extra

constraints and the fact that the algorithm assumes a

planar structure severely limits its applicability. In particular,

the algorithm is not well suited to instances defined in an

urban setting with a grid street layout.

A number of heuristics generate feasible vehicle routes

(sometimes called petals in this context) and determine a

best combination through the solution of a set partitioning

problem. Prime examples of this approach are the 1-petal

algorithm of Foster and Ryan46 and Ryan et al47 and the 2-

petal heuristic of Renaud et al30 where, in addition to single

routes, double vehicle routes are also generated. These

extensions provide accuracy gains with respect to the

sweep algorithm. In terms of speed, improvements can

also be made since the 3-opt step is no longer applied (see

Table 1). These extensions do not get full marks on

simplicity since generating a large pool of petals (especially

2-petals) can be cumbersome, and a set partitioning step

must also be executed. As far as flexibility is concerned,

petal algorithms can be made to accomodate a wide variety

of constraints but this can come at the expense of simplicity.

In fact, this type of algorithm can be viewed as a truncated

version of column generation which is known to produce

high quality results on tightly constrained VRPs with time

windows,48 but again simplicity is sacrificed.

The Fisher and Jaikumar algorithm

The Fisher and Jaikumar18 algorithm is a two-phase process

in which feasible clusters of customers are first created by

solving a generalized assignment problem (GAP), and a

vehicle route is determined on each cluster by means of a

travelling salesman problem (TSP) algorithm. To formulate

the GAP, it is necessary to first determine a seed for each

route from which customer distances are computed. Since

the GAP is NP-hard, it is usually solved by means of a

Lagrangian relaxation technique. While good results were

reported for this algorithm in the early 1980s we have some

misgivings about its performance. The original article18

provides integer solutions values without providing the

rounding or truncating rule, and the solutions cannot be

verified, which makes the assessment of the algorithm

difficult. Our own computational experiments suggest that

the Fisher and Jaikumar algorithm is not simple to program

and its speed is highly related to the choice of seeds and to

the implementation of Lagrangian process. We found that if

seeds are selected as in Fisher et al49 and the Lagrangian

steps programmed as recommended by Fisher et al50 then

convergence is often poor, several trials may be necessary to

reach a satisfactory solution, and even then accuracy can be

low. We did not, in general, succeed in obtaining results

close to those of Fisher and Jaikumar.18 Flexibility is also

problematic. While it is, in principle, simple to handle

capacity constraints, the original reference contains no

indication regarding the treatment of route duration

constraints, although six instances involving such

constraints are reportedly solved. We see no easy mechan-

ism by which to incorporate these or other side constraints

within the GAP algorithm. Bramel and Simchi-Levi51 have

optimized the choice of seeds in the Fisher and Jaikumar

algorithm by solving a capacitated location problem. Their

results on the seven CMT instances containing only capacity

constraints show a significant average deviation (3.29%)

from the best known results (see Table 2).

Metaheuristics

Compared with classical heuristics, metaheuristics perform

a much more thorough search of the solution space, allow-

ing inferior and sometimes infeasible moves, as well as

recombinations of solutions to create new ones. This area of

research has experienced a formidable growth over the past

ten years and has produced some highly effective and

flexible VRP heuristics.13 It is fair to say, however, that

the gains in solution quality obtained with these modern

heuristics have often been made at the expense of speed and

simplicity, although this is not the case of some of the more

516 Journal of the Operational Research Society Vol. 53, No. 5

recent implementations. The past decade has been very rich

in algorithmic design and testing. Some promising ideas did

not translate into equally good algorithms while others have

withstood the test of time.

Tabu search (TS) clearly stands out as the best metaheur-

istic for the VRP. By and large, the best TS implementations

for the VRP dominate other search processes such as

simulated52 and deterministic53,54 annealing, genetic

search,55 ant systems56 and neural networks57 (see, eg,

Gendreau et al13). The idea behind TS is to perform a

local search by moving, at iteration t, from a solution xt to

the best solution xtþ1 in its neighbourhood. Since moving

from xt to xtþ1 may cause the objective function to deterio-

rate, an anti-cycling mechanism is put in place, namely any

solution possessing some attribute of xt is declared tabu, or

forbidden, for a number of iterations. So, in effect, the best

neighbour xtþ1 of xt is only selected if it is non-tabu or if it

is clear cycling will not occur. Several additional mechan-

isms, such as diversification and intensification, have been

implemented by a variety of researchers. Of course, not all

TS heuristics for the VRP have been equally successful. The

first known implementation, by Willard,58 did not make use

of a sufficiently powerful neighbourhood structure to allow

the identification of high quality solutions. In contrast,

several implementations that followed contained too many

devices and user-controlled parameters. There has been a

tendency in recent years toward leaner implementations. In

what follows, we present some of the best available TS

heuristics for the VRP.

Taburoute

With respect to earlier TS implementations, the Taburoute

heuristic of Gendreau et al25 is rather involved and contains

several innovative features. The neighbourhood of xt is the

set of all solutions reachable from xt by removing a vertex v

from its current route r and inserting it in another route s

containing one of its closest neighbours by means of a

generalized insertion (GENI) procedure.59 Reinserting v in

route r is then declared tabu for y iterations, where y is

randomly drawn from the interval [5, 10], as suggested by

Taillard60 in the context of the quadratic assignment

problem. Intermediate infeasible solutions are considered

and penalized through the use of self-adjusting penalty

parameters, as explained earlier. Periodic reoptimisations

of the individual vehicle routes are performed by means of

the GENIUS heuristic59 for the TSP. A continuous diversi-

fication strategy is also applied to penalise frequently moved

vertices. This is done by adding to the objective function a

term proportional to the relative past movement frequency

of the vertex currently being considered. False starts are also

employed: this allows a limited search starting from several

initial solutions, and a full search is then performed using

the most promising starting point. As is commonly done, the

Table 2 The Fisher and Jaikumar algorithm and the Bramel and Simchi-Levi enhancement

Fisher and Jaikumara Location-based heuristicb

Instance n Typec Value Secondsd Value Secondse Best

1 50 C 524 9.3 524.6f 68 524.61g,i

2 75 C 857 12.0 848.2 406 835.26g

3 100 C 833 17.7 832.2 400 826.14g

4 150 C 1014 33.6 1088.6 2552 1028.42g

5 199 C 1420 40.1 1461.2 4142 1291.45h

6 50 C,D 560 15.2 — — 555.43g

7 75 C,D 916 20.6 — — 909.68g

8 100 C,D 885 52.2 — — 865.94g

9 150 C,D 1230 121.3 — — 1162.55g

10 199 C,D 1518 136.6 — — 1395.85h

11 100 C — — 1051.5 1303 1042.11g

12 120 C 824 6.4 826.1 400 819.56g

13 100 C,D — — — — 1541.14g

14 120 C,D 848 6.3 — — 866.37g

Average deviation from best and time 47.13 3.29% 1324.43

aImplemented by Fisher and Jaikumar.18 Unverifiable results. The rounding or truncating rule is not reported.
bImplemented by Bramel and Simchi-Levi.51 Verifiable results. Computations performed with double-precision floating point arithmetic.67

cC: capacity restrictions, D: route duration restrictions.
dDEC-10 computer.
eRS6000, Model 550.
fBold numbers correspond to best known values.
gTaillard.35

hRochat and Taillard.22

iOptimal solution value.26

J-F Cordeau et al—Guide to vehicle routing heuristics 517

procedure ends when the objective has not improved for a

number of consecutive iterations.

On the CMT test problems, Taburoute has produced high

quality solutions: the average deviation from the best known

values is 0.86% and five best known solutions were

produced. Running times can be described as good but

not excellent. Solution times vary between 6 and 100 min on

Silicon Graphics workstation (36 MHz, 5.7 Mflops). Tabu-

route probably scores rather low on simplicity, partly due to

its large number of user-controlled parameters (nine in all)

and to its use of the outside TSP heuristic GENIUS which is

not that easy to reproduce. Flexibility, however, is relatively

high given that additional constraints can easily be incorpo-

rated through the penalty mechanism.

The Taillard tabu search algorithm

The Taillard35 TS implementation was developed at the

same time as Taburoute. It also uses random tabu durations

and continuous diversification. Where it differs most from

Taburoute is in the neighbourhood structure. Standard

vertex insertions and exchanges are used instead of GENI.

Periodic route reoptimizations are performed by means of an

exact TSP algorithm. To help speed up computations,

Taillard partitions the problem into several subproblems,

each of which is solved independently on a parallel proces-

sor. In the case of planar problems, the decomposition

process uses concentric rings carved into sectors centred

at the depot. For non-planar problems a different decom-

position method based on computation of shortest spanning

arborescences is used. The boundaries of the subproblems

are redefined dynamically.

Taillard’s algorithm is one of the best available in terms of

accuracy. It has identified twelve of the fourteen best known

results on the CMT instances. Computation times needed to

obtain best solutions are not reported and are difficult to

establish with any degree of accuracy. The algorithm is, in

one respect at least, simpler than Taburoute since it uses

standard insertions, but managing the dynamic decomposi-

tion process as well as the parallel implementation adds to

its complexity. One would expect this algorithm to handle

additional side contraints reasonably well because of the

combination of insertion and exchange moves used to define

neighbour solutions. We believe, however, that resorting to

simple insertions and a penalized objective function should

offer more flexibility.

The adaptive memory procedure of Rochat and Taillard

The concept of adaptive memory, developed by Rochat and

Taillard,22 is probably one of the most powerful ideas put

forward in the area of metaheuristics in recent years. An

adaptive memory is a pool of good solutions produced by a

heuristic, which is dynamically updated by adding to it new

high quality elements and removing from it some of its least

interesting elements. New elements are generated by recom-

bining good solutions from the pool. The memory update

process can therefore be viewed as a form of population

search and as a generalization of genetic search. Rochat and

Taillard22 have developed an adaptive memory mechanism

for the capacity and route duration constrained VRP and for

the VRP with time windows, based on the earlier TS

algorithms of Taillard35 and Rochat and Semet.61 Given a

pool of good VRP solutions, new solutions are obtained by

extracting high quality vehicle routes, where routes belong-

ing to better solutions are given a higher probability of being

selected. While extracting vehicle routes care is taken not to

include those that contain already covered customers. Even-

tually this process will stop with a set of selected routes and

some unrouted customers. A new solution is then reconsti-

tuted from these routes and unrouted customers using TS,

and included in the pool if it is of sufficient quality. Two

new best VRP solutions were identified through this

process.

The success of an adaptive memory procedure is

obviously linked to the capacity of the underlying search

process to generate a pool of high quality solutions, which is

certainly the case of Taillard’s35 TS algorithm. It may not

work so well if an unsophisticated heuristic was employed to

generate the individual solutions. The use of an adaptive

memory certainly adds to computation time, as illustrated by

some of the results obtained by Rochat and Taillard.22

Coding an adaptive memory procedure requires a minimum

of computing skills but is not overly complicated. The

concept is highly flexible since it can be used in conjunction

with other types of heuristics, not only TS, and it can easily

be adapted to other contexts. For example, Bozkaya et al62

report an application in the area of political districting.

The granular tabu search algorithm of Toth and Vigo

The idea behind granular tabu search (GTS)63 is to remove

from the graph unpromising arcs or edges that have only a

small likelihood of belonging to an optimal solution. Toth

and Vigo63 eliminate all edges whose cost exceeds a

granularity threshold n ¼ b�cc, where b is a sparsification

parameter, and �cc is the average cost of an edge in a good

solution generated with a fast heuristic. If b is chosen in the

interval ½1:0; 2:0	, then only 10–20% of the original edges

tend to remain. The value of this parameter is dynamically

updated throughout the search process. In their implementa-

tion, Toth and Vigo work on the restricted edge set

EðnÞ ¼ fðvi; vjÞ 2 E : cij � ng [I , where I is a set of impor-

tant edges such as those incident to the depot and those

belonging to high quality solutions. The search mechanism

implemented by Toth and Vigo uses Taburoute as a subrou-

tine, but tends to produce better results faster. Because it

works on a sparse graph, GTS can quickly perform an

extensive search of the solution space. It also produces

high quality solutions. The concept of granularity is

518 Journal of the Operational Research Society Vol. 53, No. 5

relatively easy to implement once a good underlying search

algorithm is available.

The unified tabu search algorithm of Cordeau et al

The unified tabu search algorithm (UTSA) was initially

designed by Cordeau et al for the periodic VRP and the

multi-depot VRP, and later slightly modified and extended to

the single depot, multi-depot and periodic VRP with time

windows by Cordeau et al.64 The algorithm shares some

features with Taburoute, namely a penalised objective func-

tion F
0

with self-adjusting coefficients to allow the explora-

tion of intermediate infeasible solutions, and the use of

continuous diversification. However, fixed length tabu dura-

tions are used, and only one initial solution is generated. As

in Semet and Taillard,65 the tabu mechanism operates on an

attribute set BðxÞ associated with solution x. More specifi-

cally, BðxÞ ¼ fði; kÞ : vertex ui is visited by vehicle k

in solution xg. Neighbour solutions are obtained by remov-

ing an attribute ði; kÞ from BðxÞ and replacing it with ði; k
0

Þ,

where k
0

6¼ k. The insertion of ui into route k
0

is then

performed so as to minimize the penalized objective func-

tion F
0

, and attribute ði; kÞ is declared tabu for a set number

of iterations.

The algorithm was highly successful on a variety of VRPs

including the classical VRP with capacity and distance

restrictions (see Table 3), the periodic and multi-depot

VRPs,5 the VRP with site dependencies,4 and the single

and multi-depot VRP with time windows.64 On the classical

VRP, it yields solution values within 0.69% of the best

known. The average computing time is 13.75 min on a Sun

Ultrasparc 10 workstation (440 MHz). On all other problems

it often identified new best known solutions and has proved

superior to several competing methods.

The UTSA ranks high on accuracy and performs rather

well on speed, although it cannot compete on this dimension

with very fast heuristics such as CW. Since all but one of its

parameters are the same for all applications, this heuristic

has in effect only one parameter. Moreover, since it operates

according to a very simple mechanism, it is probably the

simplest of all TS implementations for the VRP, but still it

does not outperform CW in terms of simplicity. Finally,

UTSA obtains excellent marks on flexibility. To our knowl-

edge, this is the only VRP heuristic that can effectively

Table 3 Comparison of five metaheuristics for the VRP

Taburoutea Taillardb Adaptive memoryb
Granular tabu

searchc
Unified tabu search

algorithmd

Instance n Type Value Minutese Value Value Value Minutesf Value Minutesg Best

1 50 C 524.61l 6.0 524.61 524.61 524.61 0.81 524.61 4.57 524.61i,k

2 75 C 835.77 53.8 835.26 835.26 838.60 2.21 835.45 7.27 835.26i

3 100 C 829.45 18.4 826.14 826.14 828.56 2.39 829.44 11.23 826.14i

4 150 C 1036.16 58.8 1028.42 1028.42 1033.21 4.51 1038.44 18.72 1028.42i

5 199 C 1322.65 90.9 1298.79 1291.45 1318.25 7.50 1305.87 28.10 1291.45j

6 50 C,D 555.43 13.5 555.43 555.43 555.43 0.86 555.43 4.61 555.43i

7 75 C,D 913.23 54.6 909.68 909.68 920.72 2.75 909.68 7.55 909.68i

8 100 C,D 865.94 25.6 865.94 865.94 869.48 2.90 866.38 11.17 865.94i

9 150 C,D 1177.76 71.0 1162.55 1162.55 1173.12 5.67 1171.81 19.17 1162.55i

10 199 C,D 1418.51 99.8 1397.94 1395.85 1435.74 9.11 1415.40 29.74 1395.85j

11 120 C 1073.47 22.2 1042.11 1042.11 1042.87 3.18 1074.13 14.15 1042.11i

12 100 C 819.56 16.0 819.56 819.56 819.56 1.10 819.56 10.99 819.56i

13 120 C,D 1573.81 59.2 1541.14 1541.14 1545.51 9.34 1568.91 14.53 1541.14i

14 100 C,D 866.37 65.7 866.37 866.37 866.37 1.41 866.53 10.65 866.37i

Average deviation
from best and time

0.86% 46.8 0.06% 0.00% 0.69% 3.84 0.69% 13.75

aStandard algorithm with one set of parameters. Verifiable results. Computations performed by rounding costs five digits after the decimal
point.25

bVerifiable results. Best of several runs. Computation times are not reported. Computations performed with floating point arithemic.68

cToth and Vigo.63 Computations performed by rounding costs three digits after the decimal point.69

dSolutions obtained by means of the Unified Tabu Search Algorithm of Cordeau et al,5 without changing the parameters, and with 100 000
iterations. Computations performed with double-precision floating point arithmetic.
eSilicon Graphics workstation (36 MHz, 5.7 Mflops).
fPentium 200 MHz PC.
gSun Ultrasparc 10 (440 MHz).
hC: capacity restrictions, D: route duration restrictions.
iTaillard.35

jRochat and Taillard.22

kOptimal solution value.26

lBold numbers correspond to best known values.

J-F Cordeau et al—Guide to vehicle routing heuristics 519

handle so many different variants with a unique set of

algorithmic rules and a single user-controlled parameter.

We present in Table 3 comparative computational results

for the various VRP metaheuristics just described. Care

must be taken when comparing results since the Taillard

and adaptive memory solution values are the best over

several runs, whereas in the case of Taburoute, GTS and

UTSA, all reported values correspond to a single run using

standard parameter settings. In the case of Taburoute and

UTSA, better solution values (sometimes corresponding to

the best) were obtained by either changing parameter values

(for Taburoute) or by executing several runs with the same

parameters, starting from different randomly generated

initial solutions (for UTSA).

Summary and conclusion

In this guide to VRP heuristics we have examined some of

the well-known classical methods as well as some of the best

available metaheuristics. Contrary to a long established

custom of assessing heuristics against accuracy and speed

only, we have added what we perceive as two criticial

criteria: simplicity and flexibility. The results of our analysis

are summarized in Table 4.

None of the classical heuristics fares very well on

accuracy and flexibility. In this category, the celebrated

Clarke and Wright heuristic has at least the distinct advan-

tage of being very quick and simple to implement. This

probably explains its ongoing popularity. However, in

contexts where vehicle routes must be planned over a long

horizon and large sums of money are at stake, it is worth

investing time and resources in a method that performs a

more extensive exploration of the search space.

Among the tabu search algorithms, there has been a

tendency in recent years toward increased speed and simpli-

city. The adaptive memory procedure and the granularity

principle are highly portable concepts that can be used

within almost any search process. Among stand-alone

heuristics, the unified tabu search algorithm scores very

well on all dimensions.

Acknowledgements—This paper was partly written while the third author

visited the Centre for Traffic and Transportation at the Technical University

of Denmark. This research was partly funded by the Canada Research Chair

in Distribution Management, by Canadian Natural Sciences and Engineer-

ing Research Council (NSERC) under grants 227837-00, OGP00338816,

OGP0039682, and OGP0036662, and by the Fonds pour la Formation de

Chercheurs et l’Aide à la Recherche (FCAR) under grant 2002-ER-73080.

This support is gratefully acknowledged. The authors thank Edgar Alberto

Cabral and François Guertin for their help with programming, and Oli BG

Madsen who provided some useful references. Thanks are due to two

referees for their valuable comments.

References

1 Dantzig GB and Ramser JH (1959). The truck dispatching
problem. Mngt Sci 6: 80–91.

2 Gendreau M, Laporte G, Musaraganyi C and Taillard ÉD
(1999). A tabu search heuristic for the heterogeneous fleet
vehicle routing problem. Comput Opns Res 26: 1153–1173.

3 Mingozzi A, Giorgi S and Baldacci R (1999). An exact method
for the vehicle routing problem with backhauls. Transport Sci
33: 315–329.

Table 4 Assessment of some of the main VRP heuristics

Classical heuristics Accuracy Speed Simplicity Flexibility

Clarke and Wright (CW)16 Low Very high Very high Low
Two-matching based methods43 High Very low Low Low
Sweep17 Low Medium-high High Low
1-Petal47 Low High Medium Medium
2-Petal30 Medium Medium Medium Medium
Fisher and Jaikumar (FJ)18 Difficult to assess Medium Low Low
Location based FJ by Bramel and
Simchi-Levi51

Medium Low Low Low

Metaheuristics Accuracy Speed Simplicity Flexibility

Taburoute25 High Medium Medium High
Taillard35 Very high Lowb Medium-low High
Adaptive memory22,a Very high Lowb Medium-low High
Granular tabu search63,a High Medium Medium High
Unified tabu search algorithm64 High Medium Medium High

aThese are not VRP algorithms per se, but mechanisms that can be incorporated within another algorithm to
improve its performance. Some of the ratings of these two features are therefore linked to those of the
underlying algorithm. They relate to the results presented by Rochat and Taillard22 and Toth and Vigo63 for
specific implementations.
bTaillard35 and Rochat and Taillard22 do not provide the time required to obtain their best known solution.
They do, however, report the time required to obtain a solution value within 1% or 5% of the best known.
These computation times can be rather high.

520 Journal of the Operational Research Society Vol. 53, No. 5

4 Cordeau J-F and Laporte G (2001). A tabu search heuristic for
the site dependent vehicle routing problem with time windows.
INFOR 39: 292–298.

5 Cordeau J-F, Gendreau M and Laporte G (1997). A tabu search
heuristic for the periodic and multi-depot vehicle routing
problems. Networks 30: 105–119.

6 Dror M, Laporte G and Trudeau P (1994). Vehicle routing with
split deliveries. Discr Appl Math 50: 239–254.

7 Golden BL and Assad AA (eds) (1988). Vehicle Routing:
Methods and Studies. North-Holland: Amsterdam.

8 Fisher ML (1995). Vehicle routing. In: Ball MO, Magnanti TL,
Monma CL and Nemhauser GL (eds). Network Routing, Hand-
books in Operations Research and Management Science, vol. 8.
North-Holland: Amsterdam, pp 1–33.

9 Desrosiers J, Dumas Y, Solomon MM and Soumis F (1995).
Time constrained routing and scheduling. In: Ball MO,
Magnanti TL, Monma CL and Nemhauser GL (eds). Network
Routing: Handbooks in Operations Research and Management
Science, vol. 8. North-Holland: Amsterdam, pp 35–139.

10 Crainic TG and Laporte G (eds) (1998). Fleet Management and
Logistics. Kluwer: Boston.

11 Toth P and Vigo D (eds) (2001). The Vehicle Routing
Problem. SIAM Monographs on Discrete Mathematics and
Applications. SIAM Publishing: Philadelphia, PA.

12 Laporte G and Semet F (2002). Classical heuristics for the
capacitated VRP. In: Toth P and Vigo D (eds). The Vehicle
Routing Problem. SIAM Monographs on Discrete Mathematics
and Applications. SIAM Publishing: Philadelphia, PA, pp 109–
128.

13 Gendreau M, Laporte G and Potvin J-Y (2002). Metaheuristics
for the capacitated VRP. In: Toth P and Vigo D (eds). The
Vehicle Routing Problem. SIAM Monographs on Discrete
Mathematics and Applications. SIAM Publishing: Philadelphia,
PA, pp 129–154.

14 Cordeau J-F, Desaulniers G, Desrosiers J, Solomon MM and
Soumis F (2002). The VRP with time windows. In: Toth P and
Vigo D (eds). The Vehicle Routing Problem. SIAM Monographs
on Discrete Mathematics and Applications. SIAM Publishing:
Philadelphia, PA, pp 157–193.

15 Toth P and Vigo D (1998). Exact solution of the vehicle routing
problem. In: Crainic TG and Laporte G (eds). Fleet Manage-
ment and Logistics. Kluwer: Boston, pp 1–31.

16 Clarke G and Wright JR (1964). Scheduling of vehicles from a
central depot to a number of delivery points. Opns Res 12: 568–
581.

17 Gillett BE and Miller LR (1974). A heuristic algorithm for the
vehicle dispatch problem. Opns Res 22: 340–349.

18 Fisher ML and Jaikumar R (1981). A generalized assignment
heuristic for vehicle routing. Networks 11: 109–124.

19 Kirkpatrick S, Gellatt CD Jr and Vecchi MP (1983). Optimiza-
tion by simulated annealing. Science 220: 671–680.

20 Glover F (1986). Future paths for integer programming
and links to artificial intelligence. Comput Opns Res 13: 533–
549.

21 Holland JH (1975). Adaptation in Natural and Artificial
Systems. University of Michigan Press: Ann Arbor, MI.

22 Rochat Y and Taillard ÉD (1995). Probabilistic diversification
and intensification in local search for vehicle routing. J Heur-
istics 1: 147–167.

23 Christofides N, Mingozzi A and Toth P (1979). The vehicle
routing problem. In: Christofides N, Mingozzi A, Toth P and
Sandi C (eds). Combinatorial Optimization. Wiley, Chichester,
pp 315–338.

24 Barr RS, Golden BL, Kelly JP, Resende MGC and Stewart WR
Jr (1995). Designing and reporting on computational experi-
ments with heuristic methods. J Heuristics 1: 9–32.

25 Gendreau M, Hertz A and Laporte G (1994). A tabu search
heuristic for the vehicle routing problem. Mngt Sci 40: 1276–
1290.

26 Hadjiconstantinou EA, Christofides N and Mingozzi A (1995).
A new exact algorithm for the vehicle routing problem based on
q-paths and k-shortest paths relaxations. In: Gendreau M and
Laporte G (eds). Freight Transportation. Baltzer: Amsterdam,
pp 21–43.

27 Mole RH (1983). The curse of unintended rounding error: a case
from the vehicle scheduling literature. J Opl Res Soc 34: 607–
613.

28 Ichoua S, Gendreau M and Potvin J-Y (2000). Diversion issues
in real-time vehicle dispatching. Transport Sci 34: 426–438.

29 Gendreau M, Laporte G and Semet F (2001). A dynamic model
and parallel tabu search heuristic for real-time ambulance
relocation. Parallel Comput 27: 1641–1653.

30 Renaud J, Boctor FF and Laporte G (1996). An improved petal
heuristic for the vehicle routing problem. J Opl Res Soc 47:
329–336.

31 Golden BL, Wasil EA, Kelly JP and Chao I-M (1998). Meta-
heuristics in vehicle routing: In: Crainic TG and Laporte G
(eds). Fleet Management and Logistics. Kluwer: Boston, pp
33–56.

32 Rego C and Roucairol C (1996). A parallel tabu search algo-
rithm using ejection chains for the vehicle routing problem. In:
Osman IH and Kelly JP (eds). Meta-Heuristics: Theory and
Applications. Kluwer: Boston, pp 661–675.

33 Rego C (1998). A subpath ejection method for the vehicle
routing problem. Mngt Sci 44: 1447–1459.

34 Lin S (1965). Computer solutions of the traveling salesman
problem. Bell Syst Tech J 44: 2245–2269.

35 Taillard ÉD (1993). Parallel iterative search methods for vehicle
routing problems. Networks 23: 661–673.

36 Solomon MM (1987). Algorithms for the vehicle routing and
scheduling problem with time window constraints. Opns Res
35: 254–265.

37 Gaskell TJ (1967). Bases for vehicle fleet scheduling. Opl Res Q
18: 281–295.

38 Yellow P (1970). A computational modification to the savings
method of vehicle scheduling. Opl Res Q 21: 281–283.

39 Nelson MD, Nygard KE, Griffin JH and Shreve WE (1985).
Implementation techniques for the vehicle routing problem.
Comput Opns Res 12: 273–283.

40 Paessens H (1988). The savings algorithm for the vehicle
routing problem. Eur J Opl Res 34: 336–344.

41 Desrochers M and Verhoog TW (1989). A matching based
savings algorithm for the vehicle routing problem. Les Cahiers
du GERAD G-89-04, École des Hautes Études Commerciales:
Montreal.

42 Altinkemer K and Gavish B (1991). Parallel savings based
heuristic for the delivery problem. Opns Res 39: 456–469.

43 Wark P and Holt J (1994). A repeated matching heuristic for the
vehicle routing problem. J Opl Res Soc 45: 1156–1167.

44 Wren A (1971). Computers in Transport Planning and Opera-
tion. Ian Allan: London.

45 Wren A and Holliday A (1972). Computer scheduling of
vehicles from one or more depots to a number of delivery
points. Opl Res Q 23: 333–344.

46 Foster BA and Ryan DM (1976). An integer programming
approach to the vehicle scheduling problem. Opl Res Q 27:
307–384.

47 Ryan DM, Hjorring C and Glover F (1993). Extension of the
petal method for vehicle routing. J Opl Res Soc 44: 289–296.

48 Desrosiers J, Soumis F and Desrochers M (1984). Routing
with time windows by column generation. Networks 14: 545–
565.

J-F Cordeau et al—Guide to vehicle routing heuristics 521

49 Fisher ML, Greenfield AJ, Jaikumar R and Lester JT III (1982).
A computerized vehicle routing application. Interfaces 12(4):
42–52.

50 Fisher ML, Jaikumar R and Van Wassenhove LN (1986). A
multiplier adjustment method for the generalized assignment
problem. Mngt Sci 32: 1095–1103.

51 Bramel JB and Simchi-Levi D (1995). A location based
heuristic for general routing problems. Opns Res 43: 649–660.

52 Osman IH (1993). Metastrategy simulated annealing and tabu
search algorithms for the vehicle routing problem. Annal Opns
Res 41: 421–451.

53 Dueck G and Scheuer T (1990). Threshold accepting: a general
purpose optimization algorithm. J Comput Phys 90: 161–175.

54 Dueck G (1993). New optimization heuristic: the great deluge
algorithm and the record-to-record travel. J Comput Phys 104:
86–92.

55 Van Breedam A (1996). An analysis of the effect of local
improvement operators in genetic algorithms and simulated
annealing for the vehicle routing problem. RUCA Working
Paper 96=14, University of Antwerp: Belgium.

56 Bullnheimer B, Hartl RF and Strauss C (1999). An improved ant
system algorithm for the vehicle routing problem. Annal Opns
Res 89: 561–581.

57 Ghaziri H (1996). Supervision in the self-organizing feature
map: application to the vehicle routing problem. In: Osman IH
and Kelly JP (eds). Meta-Heuristics: Theory and Applications.
Kluwer: Boston, pp 651–660.

58 Willard JAG (1989). Vehicle routing using r-optimal tabu
search, MSc dissertation, The Management School, Imperial
College: London.

59 Gendreau M, Hertz A and Laporte G (1992). New insertion and
postoptimization procedures for the traveling salesman
problem. Opns Res 40: 1086–1094.

60 Taillard ÉD (1991). Robust taboo search for the quadratic
assignment problem. Parallel Comput 17: 433–445.

61 Rochat Y and Semet F (1994). A tabu search approach for
delivering pet food and flour in Switzerland. J Opl Res Soc 45:
1233–1246.

62 Bozkaya B, Erkut E and Laporte G (2002). A tabu search
heuristic and adaptive memory procedure for political district-
ing. Eur J Opl Res, to be published.

63 Toth P and Vigo D (1998). The granular tabu search (and its
application to the vehicle routing problem). Technical report
OR=98=9, DEIS, Università di Bologna: Italy.

64 Cordeau J-F, Laporte G and Mercier A (2001). A unified tabu
search heuristic for vehicle routing problems with time
windows. J Opl Res Soc 52: 928–936.

65 Semet F and Taillard ÉD (1993). Solving real-life vehicle
routing problems efficiently using tabu search. Annal Opns
Res 41: 469–481.

66 Renaud J (2001). Private communication.
67 Simchi-Levi D (2001). Private communication.
68 Taillard ÉD (2001). Private communication.
69 Toth P (2001). Private communication.

Received June 2001;

accepted November 2001 after one revision

522 Journal of the Operational Research Society Vol. 53, No. 5

