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Unconstrained optimization

Linear and Quadratic Approximations
Construct the linear and quadratic approximations for the function

f (x) = 3x2 −
x1

x2

at a point x0 = [2, 1]t .

The gradient is given by

∇f (x) =
[
− 1

x2

3 + x1
x22

]
⇒ ∇f (x0) =

[
−1
5

]

The hessian is

∇2f (x) =

 0 1
x22

1
x22

− 2x1
x32

⇒ H(x0) = ∇2f (x0) =

[
0 1

1 −4

]
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Unconstrained optimization

The linear approximation of the function is given by

l(x) = f (x0) +∇(f (x0))t(x − x0)

= 1 +
[
−1 5

] [ x1 − 1

x2 − 1

]
= −x1 + 5x2 − 2

The quadratic approximation is

q(x) = f (x0) +∇f (x0)
′
(x − x0) +

1

2
(x − x0)

′
H(x0)(x − x0)

Verify!!!

q(x) = −x1 + 5x2 − 2 +
[

x1 − 2 x2 − 1
] [ 0 1

1 −4

][
x1 − 2

x2 − 1

]

= −x1 + 5x2 − 2 + (x1 − 2)(x2 − 1) + (x2 − 1)(x1 − 4x2 + 2)

A quadratic approximation of a function is often desired in optimization, as certain

solution methods such as Newton’s method show faster convergence for these

functions
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Unconstrained optimization

Newton’s method
Consider unconstrained optimization problem:

min
x∈Rn

f (x)

with f twice continuously differentiable.

Motivation for Newton:

• Steepest descend is easy ... but can be slow

• Quadratics approximate nonlinear f (x) better

• Faster local convergence

• More robust methods
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Unconstrained optimization

Newton’s method

• Steepest descent uses only first derivatives in selecting a suitable search direction.

• Newton’s method uses first and second derivatives .

• Given a starting point, construct a quadratic approximation to the objective

function that matches the first and second derivative values at that point.

• Minimize the approximation (quadratic function).

• The minimizer of the approximate function is used as the starting point in the

next step and repeat the procedure iteratively.
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Multidimensional search

Newton’s method
Consider the approximation of f at a given point xk

q(x) = f (xk ) +∇f (xk )
′
(x − xk ) +

1

2
(x − xk)

′
H(xk )(x − xk)

with H(xk) the Hessian matrix of f at xk .

Necessary condition for a minimum of q: ∇q(x) = 0
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Unconstrained Optimization

Newton’s Method
The method is based on the quadratic approximation of the function f at a given

point xk

f (x) ≈ q(x) =

f (xk ) +∇f (xk )(x − xk) +
1

2
(x − xk )

′
H(xk)(x − xk)

2︸ ︷︷ ︸
derivative equals to zero

Main step

xk+1 = xk − H(xk )
−1∇f (xk)
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Multidimensional search

Newton’s method

Necessary condition for a minimum of q: ∇q(x) = 0

∇q(x) = ∇f (xk ) + H(xk )(x − xk )

∇q(x) = 0⇒ ∇f (xk)
′
= −H(xk)(x − xk )

Solve the linear system ∇f (xk )
′
= −H(xk )d to find the search direction

−H(xk )
−1∇f (xk)

′
= (x − xk)
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Multidimensional search

Method of Newton

Then ∇f (xk) = −H(xk )(x − xk )

Assuming that the inverse of H(xk ) exists, the sucessor point is

xk+1 = xk − H(xk )
−1∇f (xk)

Algorithm - Newton’s Method:

Step 0 Given x0, set k ← 0

Step 1 dk = −H(xk)
−1∇f (xk ). If dk = 0, then stop.

Step 2 Choose step-size αk = 1.

Step 3 Set xk+1 ← xk + αkdk ,

k ← k + 1. Go to Step 1.

Celma de Oliveira Ribeiro



Example 1 Entrega

Consider f (x) = (x1 − 1)2 + (x2 − 3)2 − 1.8 (x1 − 1) (x2 − 3)

∇f (x) =
[

(x1 − 1)− 1.8 (x2 − 3)

(x2 − 3)− 1.8 (x1 − 1)

]

∇2f (x) =

[
2 −1.8
−1.8 2

]
∇2f (x)−1 =

[
2.6316 2.3684

−2.3684 2.6316

]

x∗ =

[
1

3

]

• Write f (x) as f (x) = 1
2
x tQx + ctx

• Beginning with x(0) =

[
3

−5

]
find the next three steps of the Newton’s method(

x(j)
)
, j = 1, 2, 3
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Note the following:

• The method assumes the Hessian H(xk) is nonsingular at each iteration.

• There is no guarantee that f (xk+1) ≤ f (xk )

• Step 2 could be improved by a line-search of f (xk + αdk ) to find an optimal value

of the step-size parameter α.
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Example 2

Consider f (x) = (x1 − 2)4 + (x1 − 2x2)
2

Begins with x(0) =

[
0

3

]
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Unconstrained Optimization

Newton’s Method
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Unconstrained Optimization

Newton’s Method
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Multidimensional search

Some problems 1

Full Newton (α = 1) step may fail to reduce f (x), e.g.

minx f (x) = x2 −
1

4
x4

x0 =
√

2
5
creates the following s alternating iterates: −

√
2
5
and

√
2
5
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Multidimensional search

Some problems 2

Hessian has indefinite curvature

Consider

minx f (x) = x41 + x1x2 + (1 + x2)
2

Starting Newton at x0 =

[
0

0

]

, ∇f (x0) =
[

0

2

]
, ∇2f (x0) =

[
0 1

1 2

]
⇒ d0 =

[
−2
0

]
Line-search from x0 in direction d0

x0 + αd0 =

[
−2α

0

]
⇒ f (x0 + αd0) = (−2α)4 + 1 = 16α+ 1 > 0

∀α. Then α = 0 Then Newton’s method stalls

Remedy: Modify Hessian to make it positive definite.
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Multidimensional search
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Multidimensional search

Newton’s method - Convergence

Important question: how many iteration is needed to make sure x is ϵ-close to the

minimizer x∗? That is

d(x , x∗) = ∥x − x∗∥ < ϵ

where d is a distance function.

This refer to the convergence to the minimizer x∗ it does not specify how many

minimizers there are

• Linear convergence

∥xk+1 − x∗∥ ≤ c∥xk − x∗∥, c > 0

• quadratic convergence

∥xk+1 − x∗∥ ≤ c∥xk − x∗∥2, c > 0

Theorem (Newton’s Method). Let f ∈ C3 on Rn, and assume that at the local

minimum point x∗, the Hessian H(x∗) is positive definite. Then if started sufficiently

close to x∗, the points generated by Newton’s method converge to x∗. The order of

convergence is at least two.
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Multidimensional search

Newton’s method - Convergence

When f is a quadratic function Newton´s method reaches the point x∗ such that

∇f (x∗) = 0 in just one step starting from any initial point.

Suppose Q = Qt invertible and f (x) = 1
2
x tQx − x tb

∇f (x) = Qx − b and H(x) = ∇2f (x) = Q

Given any initial point, x0, by Newton’s algorithm:

x1 = x0 − H(x0)
−1∇f (x0)

x1 = x0 − Q−1[Qx0 − b])

x1 = Q−1b = x∗

Convergence

Entregar: Give a numerical example with Q ∈ R3
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Multidimensional search

Newton’s method - Convergence

Theorem: Let {xk} be the sequence generated by Newton’s method for minimizing a

given objective function f (x).

If the Hessian H(xk) is positive definite and ∇f (xk) ̸= 0,

then the search direction dk = −H(xk )
−1∇f (xk ) = xk+1 − xk is a descent

direction for f in the sense that there exists an ᾱ such that for all α ∈ (0, ᾱ)

f (xk + αdk) < f (xk)
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Multidimensional search

Newton’s method

• Advantages

- The convergence to the solution of ∇f (x) = 0 will be rapid, at least for initial guesses

that are near to a solution

- If f is quadratic the Newton’s method takes us to a critical point in just one iteration

• Disadvantages

- Since the Hessian may not always be positive definite, H(xk )
−1∇f (xk ) may not always

be a descent direction

- For non-quadratic objectives and particularly at points far from the minimizer, the step

direction is not necessarily better that the steepest descent step direction.

- Factorization of the Hessian may require considerable effort if n is large or the Hessian

is dense
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Multidimensional search

Newton’s method

• Convergence

If f is twice differentiable and the Hessian is ”well behaved” in a neighborhood of

a solution x∗ and if the sufficient conditions are satisfied,

- If the starting point is sufficiently close to x∗ the sequence of interates converges to x∗

- the rate of convergence of xk is quadratic ( limk→∞
∥xk+1−x∗∥
∥xk−x∗∥2

< M)

Newton’s method converges quadratically ... steepest descend only linearly
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Multidimensional search

Newton’s method - Modifications
Although Newton’s method is very attractive in terms of its convergence properties

near the solution, it requires modification before it can be used at points that are

remote from the solution

• The theorem motivates the following modification of Newton’s method:

xk+1 = xk − αkH(xk )
−1∇f (xk)

where αk is selected to minimize f (α) . that is, at each iteration, we perform a

line search in the direction

• The Hessian matrix may not be positive definite!

A basic consideration for Newton’s method can be seen most clearly by a brief

examination of the general class of algorithms

xk+1 = xk − αMkgk

, where Mk is an n× n matrix, α is a positive search parameter, and gk = ∇f (xk )
.

Both steepest descent (Mk = I ) and Newton’s method (Mk = H(xk)
1) belong to

this class.
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Newton’s method - Modifications
Ref: Luenberger

Levenberg–Marquardt method

Common approach: take Mk = [ϵk I + H(xk)]
−1 for some non-negative value of ϵk .

• This can be regarded as a kind of compromise between steepest descent (ϵk very

large) and Newton’s method (ϵk = 0).

• There is always an ϵk that makes Mk positive definite.

Fix a constant δ > 0. Given xk , calculate the eigenvalues of H(xk ) and let ϵk and the

smallest non negative constant for which the matrix ϵk I + H(xk ) has eigenvalues

greater than or equal to δ

Then define

dk = −[ϵk I + H(xk )]
−1 ∗ ∇f (xk)

and xk+1 = xk + αkdk where αk minimizes f (xk ) + αdk , α > 0.

The selection of an appropriate δ is an art.

• δ small ⇒ nearly singular matrices to be inverted

• δ large ⇒ order two convergence may be lost
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Conditioning

• Consider the system [
1 2

1 1

][
x1
x2

]
=

[
3

2

]

Solution x
′
=

[
1 1

]
Change the first element of right-hand-size from 3 to 3.00001. The exact solution

is x
′
=

[
0.99999 1.00001

]
• An ill conditioned matrix[

1.00001 1

1 1

][
x1
x2

]
=

[
2.00001

2

]

Solution x
′
=

[
1 1

]
Change the first element of right-hand-size from 2.00001 to 2 . The exact

solution is x
′
=

[
0 2

]
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Conditioning

Suppose that A ∈ Rn×n is non singular. The condition number of A is defined as

κ(A) = ∥A∥∥A−1∥. If A is singular the condition number is ∞ 1

A matrix with a large condition number is said to be ill conditioned
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Unconstrained Optimization

Scaling

• Scaling: transforming variables that is, change their units

• It has a significant influence on the performance of optimization methods

• Useful when the variables in the initial formulation of the problem have widely

differing magnitudes
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Unconstrained Optimization

Example scaling

f : R2 → R, f (x) = (1000x1)2 + ( x2
1000

)2

x1 usually lies in [−0.01; 0.01]

x2 usually lies in [−104; 104]
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Unconstrained Optimization

Example scaling
If you want to obtain an solution that yields an objective that is within one unit of

the minimum then we need to obtain a value of x such that (approximately):

|x1 − x∗1 | < 0.001 |x2 − x∗2 | < 1000

Errors in the different components of x have differing effects on the objective.

Define: ϵ1 = 1000x1 and ϵ2 = x2
1000
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Unconstrained Optimization

Example scaling

ϕ(x) = (ϵ1)
2 + (ϵ2)

2

Contour sets of ϕ(x)
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