Astrofísica Moderna

Aglomerados de Galáxias e Estruturas de Larga Escala do Universo

Prof. Aion Viana e Prof. Vitor de Souza

Referencias principais da aula:

"An introduction to modern astrophysics", B.W.Carroll and D.A. Ostlie "Fundamentos de Astronomia", notas de aula da Prof. Elisabete Gouveia dal Pino IAG/USP

Escalas de distâncias cósmicas - Galáctica

Paralaxe estelar (heliocêntrica):

p = ângulo de paralaxe

para
$$p \ll 1$$
 rad $d = \frac{1\mathrm{UA}}{\mathrm{tan}\,p} \simeq \frac{1\mathrm{UA}}{p} \quad \left[\begin{array}{c} 1\mathrm{UA} = 1.496 \times 10^8 \,\mathrm{km} \end{array} \right]$

$$d=rac{1}{p''}\,\mathrm{pc}$$

p" = ângulo em arco-segundos

Distâncias típicas: 1 UA - 400 pc Distância máxima medida: Hubble telescope WFC3 (p" ~20 a 40 microarco-segundos) => d ~ 5000 pc

Escalas de distâncias cósmicas - Galáctica

Paralaxe espectroscópica:

- O tipo espectral da estrela observada corresponde a uma magnitude absoluta (luminosidade intínseca)
- ➤ m M = 5 log(d/10pc)
- Determinamos a distância
- Métido sugerido em 1914 por W.D. Adams, W.S.&A. Kohlschütter
- Limites: extinção interestelar, magnitude aparente suficiente para medir espectro

Distâncias máximas: 10 kpc

http://www.atnf.csiro.au/outreach/education/senior/astrophysics/variable_cepheids.html

Distâncias máximas: RRLyrae => 1 Mpc (M31) Cefeidas => 30 Mpc

Distâncias extragaláticas!

Relação de Tully-Fisher:

Relação entre magnitude Rubin et al. ApJ 289 81, 1985 _ absoluta e V_{max} em galáxias Sa: $M_B = 3.15 - 9.95 \log V_{\text{max}}$ r = -0.89Sb $M_B = 2.71 - 10.2 \log V_{\text{max}}$ r = -0.62Sc: $M_B = 3.31 - 11.0 \log V_{\text{max}}$ r = -0.82espirais -23 M_B , blue absolute magnitude $M_B = -9.95 \log_{10} V_{\rm max} + 3.15$ (Sa), -22 -21 $M_B = -10.2 \log_{10} V_{\rm max} + 2.71$ (Sb), -20 $M_B = -11.0 \log_{10} V_{\text{max}} + 3.31$ (Sc). Sa Sb -19Sc Sb -18200

100

300

 $V_{\rm max} \, (\rm km \ s^{-1})$

400

Distâncias máximas: 100 Mpc

Relação de Faber-Jackson:

Relação entre magnitude absoluta e a dispersão de velocidades centrais σ_0 em galáxias elípticas.

$$L \propto \sigma_0^4,$$

$$\log_{10} \sigma_0 = -0.1 M_B + \text{constant.}$$

Distâncias máximas: 100 Mpc

Relação de D-**σ**:

Relação entre diâmetro quando brilho superficial igual a 20.75 B-mag arcseg⁻² e a dispersão de velocidades centrais σ em galáxias elípticas.

$$\log_{10} D = 1.333 \log \sigma + C,$$

D proporcional a 1/d: $\frac{d_2}{d_1} = \frac{D_1}{D_2} = 10^{C_1 - C_2}$.

Distâncias máximas: 100 Mpc

Expansão de supernovas:

Assumindo que a fotosfera de supernova expande esfericamente e emite como corpo negro (Lei de Stefan-Boltzmann):

$$R(t) = v_{fot}t$$

corpo negro (Lei de Stefan-Boltzmann): $L = 4\pi R^2(t)\sigma T_e^4$ onde o raio da fotoesfera é dado por $R(t) = v_{fot}t$ e v_{fot} é a velocidade da fotoesfera calculada g por efeito Doppler.

Luminosidade->Magnitude Abs-> Distância

Expansão de supernovas:

Assumindo que a fotosfera de supernova expande esfericamente e emite como corpo negro (Lei de Stefan-Boltzmann):

$$R(t) = v_{fot}t$$

corpo negro (Lei de Stefan-Boltzmann): $L = 4\pi R^2(t)\sigma T_e^4$ onde o raio da fotoesfera é dado por $R(t) = v_{fot}t$ e v_{fot} é a velocidade da fotoesfera calculada o por efeito Doppler.

Luminosidade->Magnitude Abs-> Distância

- Principais limitações:
 - SNs não expandem como esfera perfeita
 - SNs não são corpo negro perfeito
 - extinção interestelar

Distâncias máximas: 200 Mpc

Curvas de luminosidade de supernovas de tipo la

Durante muito tempo considerou-se que SNs de tipo la tinham a mesma luminosidade: <M_B>~M_V~-19.3 +-0.03 no seu máximo => velas padrão

Artist's rendition of a white dwarf accumulating mass from a nearby companion star. This type of progenitor system would be considered singly-degenerate.

Image courtesy of David A. Hardy, © David A. Hardy/www.astroart.org.

Curvas de luminosidade de supernovas de tipo la: Método dos 15 dias

Curvas de luminosidade de supernovas de tipo la: Método dos 15 dias

- Durante muito tempo considerou-se que SNs de tipo la tinham a mesma luminosidade: <M_B>~M_v~-19.3 +-0.03 no seu máximo => velas padrão
- SNs de tipo la têm luminosidades diferentes: não são velas padrão!
- Quanto maior o brilho, mais tempo leva para apagar: velas padronizáveis
- Relação entre magnitude absoluta do máxima e taxa de decaimento (diferença de magnitude em 15 dias)

Distâncias máximas: 1 Gpc

Phillips, M. M. (1993). ApJL 413

Curvas de luminosidade de supernovas de tipo la: Método dos 15 dias

- Durante muito tempo considerou-se que SNs de tipo la tinham a mesma luminosidade: <M_B>~M_V~-19.3 +-0.03 no seu máximo => velas padrão
- SNs de tipo la têm luminosidades diferentes: não são velas padrão!
- Quanto maior o brilho, mais tempo leva para apagar: velas padronizáveis
- Relação entre magnitude absoluta do máxima e taxa de decaimento (diferença de magnitude em 15 dias)
- Evolução diferente para diferentes filtros (temperaturas)

Distâncias máximas: 1 Gpc

Curvas de luminosidade de supernovas de tipo la: Método dos 15 dias

- Durante muito tempo considerou-se que SNs de tipo la tinham a mesma luminosidade: <M_B>~M_v~-19.3 +-0.03 no seu máximo => velas padrão
- SNs de tipo la têm luminosidades diferentes: não são velas padrão!
- Quanto maior o brilho, mais tempo leva para apagar: velas padronizáveis
- Relação entre magnitude absoluta do máxima e taxa de decaimento (diferença de magnitude em 15 dias)
- Evolução diferente para diferentes filtros (temperaturas)

Distâncias máximas: 1 Gpc

Curvas de luminosidade de supernovas de tipo la: Método do alongamento (stretching)

- Durante muito tempo considerou-se que SNs de tipo la tinham a mesma luminosidade: <M_B>~M_V~-19.3 +-0.03 no seu máximo => velas padrão
- SNs de tipo la têm luminosidades diferentes: não são velas padrão!
- Quanto maior o brilho, mais tempo leva para apagar: velas padronizáveis
- Correção da curva de luminosidade pela relação de decaimento => parâmetro de alongamento
- Todas SNs-Ia são renormalizadas para terem <M_B>~M_V~-19.3 +-0.03 no seu máximo

Curvas de luminosidade de supernovas de tipo la: Método do alongamento (stretching)

- Durante muito tempo considerou-se que SNs de tipo la tinham a mesma luminosidade: <M_B>~M_v~-19.3 +-0.03 no seu máximo => velas padrão
- SNs de tipo la têm luminosidades diferentes: não são velas padrão!
- Quanto maior o brilho, mais tempo leva para apagar: velas padronizáveis
- Correção da curva de luminosidade pela relação de decaimento => parâmetro de alongamento
- Todas SNs-Ia são renormalizadas para terem <M_B>~M_V~-19.3 +-0.03 no seu máximo

Distâncias máximas: 1 Gpc

Distâncias máximas observadas: 9 Gpc

Indicadores de distâncias e erros típicos

TABLE 27.1	Distance Indicators. (Adapted from Jacoby et al., Publ. Astron. Soc. Pac., 104, 599,
1992.)	

	Uncertainty for	Distance to	
	Single Galaxy	Virgo Cluster	Range
Method	(mag)	(Mpc)	(Mpc)
Cepheids	0.16	15 - 25	29
Novae	0.4	21.1 ± 3.9	20
Planetary nebula luminosity function	0.3	15.4 ± 1.1	50
Globular cluster luminosity function	0.4	18.8 ± 3.8	50
Surface brightness fluctuations	0.3	15.9 ± 0.9	50
Tully-Fisher relation	0.4	15.8 ± 1.5	> 100
D – σ relation	0.5	16.8 ± 2.4	> 100
Type Ia supernovae	0.10	19.4 ± 5.0	> 1000

Aglomerados de galáxias

A Via Láctea pertence ao Grupo Local
 D ~ 1 Mpc: aglomerado de galáxias considerado "pobre"
 contém cerca de 30 objetos (poucas S, varias E anas e Irr)

Aglomerados de galáxias

A Via Láctea pertence ao Grupo Local
 D ~ 1 Mpc: aglomerado de galáxias considerado "pobre"
 contém cerca de 30 objetos (poucas S, varias E anas e Irr)

Aglomerados de galáxias ricos x pobres

Aglomerados pobres

- Menos de 50 membros
- Diâmetro: D~1 Mpc
- Dispersão de velocidades: 150 km/s
- Massa: 2x10¹³ M_{sol}
- Massa/Luminosidade: 260 M_{sol}/L_{sol}
- Exemplo: Grupo Local

Aglomerados ricos

- Até 1000 membros
- Diâmetro: D~6 Mpc
- Dispersão de velocidades: 800-1000 km/s
- Massa: 1x10¹⁵ M_{sol}
- Massa/Luminosidade: 400 M_{sol}/L_{sol}
- Exemplo: Virgo

Aglomerado de Virgo (Virgem)

Virgo : aglomerado rico mais próximo: contém mais de 1000 galáxias

- área 10° x 12° no céu
- Diâmetro: D= 3 Mpc
- Distância: d = 15Mpc (estrelas Cefeidas na galáxia S M100).
- Três elípticas gigantes (20 vezes maiores que galáxias normais) dominam o centro.

Aglomerado de Virgo (Virgem)

Rogelio Bernal Andreo (Deep Sky Colors)

Classificação de Aglomerados Ricos

Regulares (ex. Coma):

- esféricos: concentração de galáxias no centro
- inúmeras interações entre galáxias teriam causado distribuição simétrica
- Maioria das galáxias: elípticas (~15% espirais ou irregulares)
- razão E:S0:S = 3:4:2

Irregulares (ex. Virgo):

- galáxias distribuídas aleatoriamente
 Quantidade de galáxias espirais e irregulares é maior
- razão E:S0:S = 1:2:3

Aglomerado de Coma

- Mais proximo alglomerado regular
- + de 1000 gals. (~10000 contando anãs)
- Diâmetro: D= 6Mpc
- Distância d=100 Mpc (dist.)
- Maioria: E e SOs (15% S)

Aglomerado de Coma

Duas galáxias cD no Centro:

NGC 4889

NGC 4874

NASA/JPL-Caltech/GSFC/SDSS

Aglomerado de Coma

- Distribuição de gás quente esférica => aglomerado se extende muito além do núcleo
- Emissão Bremsstrahlung (freamento) está emitindo em raio-X
- Parece estar engolindo outro aglomerado (abaixo a direita)

Massa de aglomerados

Massa do Virial

- Teorema do Virial:
- **Energia cinética:**
- Energia potencial de esfera de densidade constante (núcleo):

$$-2E_c = E_p$$

$$E_c = \frac{3M\left\langle v_r^2 \right\rangle}{2}$$

$$E_p = \frac{-3GM^2}{5R_{vir}}$$

$$M_{Virial} = \frac{5\langle v_r^2 \rangle R_{vir}}{G}$$

onde o raio do virial R_{vir} é definido como:

$$\rho(< R_{vir}) = \Delta_c \rho_c$$

 Δ_{c} é uma constante que depende da cosmologia (tipicamente Δ_c =200) $ho_c={3H^2\over 8\pi G}, ~
ho_c=1.8788 imes10^{-26}h^2\,{
m kg/m^3}.$

Massa do aglomerado de Coma

A dispersão de velocidades do aglomerado de Coma é 977 km/s. Dentro do raio do Virial R= 3 Mpc, a massa

$$M_{Virial} = \frac{5\langle v_r^2 \rangle R_{vir}}{G} = 3.3 \times 10^{15} M_{sol}$$

Como a luminosidade de Coma é $5 \times 10^{12} L_{sol}$, a razão massa-luminosidade é M/L = 660 M_{sol}/L_{sol}

Alta quantidade de matéria escura!

Massa de aglomerados

Distribuição de gás em aglomerados Regulares

- Gás em equilibrio hidrostático:
- Lei dos gases perfeitos:

$$\frac{dP}{dr} = \frac{-GM_r\rho(r)}{r^2}$$
$$P = \frac{\rho kT}{\mu m_H}$$

Massa função do raio:

$$M_r = -\frac{kT(r)r}{\mu m_H G} \left(\frac{\partial \ln \rho}{\partial \ln r} + \frac{\partial \ln T}{\partial \ln r}\right)$$

- T(r) e ρ(r) são calculadas observacionalmente a partir da emissão em raio-X do gás quente
- Massa total dentro de r estimada

Massa do Aglomerado de Abell 1413

- Primeiro, a distribuição média do brilho da superfície dos raios X em função do raio foi ajustada um modelo empírico (Fig. 4.6a).
- Então, a temperatura média projetada do gás foi estimado em anéis a diferentes distâncias radiais do centro do cluster (Fig. 4.6b).
- Estes foram desenhados e a variação da massa total dentro do raio r derivada usando a fórmula do slide anterior (Fig. 4.6c).
- Finalmente, a relação entre a densidade do gás e a densidade total em função do raio, ou no caso da Fig. 4.6d, a superdensidade relativa à densidade cosmológica crítica pode ser encontrado.

Illustrating the determination of the physical properties of the cluster A1413 from X-ray imaging and spectroscopy by the XMM-Newton X-ray Observatory. (*a*) The X-ray brightness distribution as a function of distance from the centre of the cluster. (*b*) The projected radial distribution of the temperature of the gas. (*c*) The integrated mass distribution as a function of distance from the centre. (*d*) The fraction of gas density to total mass density f_{gas} within the cluster as a function of overdensity δ relative to the critical cosmological density (Pratt and Arnaud, 2002).

Super-aglomerados de galáxias

Aglomerados de galaxias: agrupam-se em superaglomerados

- Diagrama centrado na VL: do Super-aglomerado Local
- Centro real: no agl. de Virgo
- $M = 10^{15} M_{sol}$ $M = 10^{15} M_{sol}$ $M = 10^{15} M_{sol}$ $M = 10^{15} M_{sol}$
- Extensao: 100 Mpc
 N galaxias: varias 10.000
- \blacktriangleright M/L = 400 M_{sol}/L_{sol}

NGC 4697 NGC 6744 NGC 5128 Canes Groups Local Galactic Group M101 Sculptor Maffei M81

Leo l NGC 1023

15 Mpc

Leo II Groups

Eridanus Cluster

Fornax Cluster

)orado

Super-aglomerados de galáxias

- Super-aglomerado de Virgo seria só um lobulo de um super-aglomerado ainda maior: Laniakea
- mais de 100000 galáxias
- extensão ~ 160 Mpc
- \sim M = 10¹⁷ M_{sol}

Estruturas em Grande Escala do Universo

Com lei de Hubble: mapear o Universo: distribuiçao espacial das galaxias

- Distribuição em grandes escalas: não aleatória: em filamentos ou cadeias circundando vazios imensos (100 Mpc)
- Universo formado de "bolhas": com galaxias distribuindo-se nas superficies dessas bolhas
- Aglomerados e super-aglomerados
 => formados nas zonas de contato entre 2 ou + bolhas
- Estrutura vermelha: a "Grande Muralha" de agls. de galaxias => 70 Mpc x 200 Mpc.

Estruturas em Grande Escala do Universo

2dF Redshift Survey (z=0.2 => 780 Mpc)

Estruturas em Grande Escala do Universo

parentesis mostram distancias)