PRO 5970 Métodos de Otimização Não Linear

Convexity and matrices

Celma de Oliveira Ribeiro 2023

Departmento de Engenharia de Produção Universidade de São Paulo

Positive semi definite matrices

Definition

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is called positive semidefinite if

$$x'Ax \ge 0 \quad \forall x \in \mathbb{R}^n$$

It is called positive definite if

$$x'Ax > 0 \quad \forall x \in \mathbb{R}^n, x \neq 0$$

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is called negative semidefinite if

$$x'Ax \leq 0 \quad \forall x \in \mathbb{R}^n$$

It is called negative definite if

$$x'Ax < 0 \quad \forall x \in \mathbb{R}^n, x \neq 0$$

Celma de Oliveira Ribeiro

Positive semidefinite funccions

Definition

For an $n \times n$ matrix of A, a minor of order k is principal if it is obtained by deleting n-k rows and the corresponding n-k columns.

For instance, in a principal minor where you have deleted row 1 and 3, you should also delete column 1 and 3.

Definition

For a given $k \in \{1, 2, \dots, n\}$ the dominant principal submatrix A_k of matrix $A \in \mathbb{R}^n$ is given as

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \dots & a_{kk} \end{bmatrix}$$

Celma de Oliveira Ribeiro

Definition

The k-th leading principal minor of an $n \times n$ matrix is the determinant of the $k \times k$ matrix obtained by deleting the last n-k rows and columns of the matrix.

The leading principal minors of a matrix A $n \times n$ are the determinants of the submatrices:

$$A_1 = [a_{11}]$$

$$A_2 = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

:

$$A_n = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

Observation

The matrix A is positive semidefinite if and only if -A is negative semidefinite. Similarly a matrix A is positive definite if and only if -A is negative definite.

Theorem

The following statements are equivalent:

- The symmetric matrix A is positive definite (semidefinite).
- All eigenvalues of A are stricly positive (non negative).
- There exists a non singular $B \in \mathbb{R}^{n \times k}$ such that A = B'B. (B may be singular) ¹

Theorem

Let A be a symmetric $n \times n$ matrix. Then:

A is positive definite \Leftrightarrow all leading principal minors are positive

A is positive semidefinite \Leftrightarrow determinant of all minors are non negative ≥ 0

- In the first case, it is enough to check the inequality for all the leading principal minors (i.e. for $1 \le k \le n$).
- In the last case, we must check for all minors , i.e. for each $1 \le k \le n$ and for each of the $\binom{n}{k}$ principal minors of order k.

Example - Positive definite

$$\left[\begin{array}{cccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]$$

$$det(A_1) = 2 > 0$$
 $det(A_2) = 3 > 0$ $det(A_3) = 4 > 0$

Example - Indefinite

$$\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 2
\end{array}\right]$$

Leading minors
$$det(A_1) = 0$$
 $det(A_2) = 0$ $det(A_3) = 0$

$$k = 2$$
 $det(a_{22}) = 0$, $det(a_{33}) = 2$

$$k = 1$$

$$\det \left[\begin{array}{cc} 0 & 1 \\ 1 & 2 \end{array} \right] = -1 \quad \det \left[\begin{array}{cc} 0 & 0 \\ 0 & 2 \end{array} \right] = 0$$