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A B S T R A C T

Vehicle timetabling and scheduling in a public transit system are usually performed separately,
with the output of timetabling serving as the input of scheduling. An obvious drawback of this
sequential planning method is that the trade-off between bus timetables and vehicle schedules
may be neglected when determining solutions, which in turn results in that the obtained
solutions may be inferior to those produced using an integrated framework. For example, a
well-planned timetable may result in a schedule that requires a large vehicle fleet size with more
operational cost, while a well-planned schedule may reduce the quality of a bus timetable by
limiting the use of vehicles. In this paper, we introduce a time-space network-based framework
for integrating electric bus timetabling and scheduling, with minimum and maximum headway
times, depot requirements, deadheading and vehicle battery capacities considerations. The
underlying time-space network is constructed with well-designed inventory arcs that represent
multiple operations a bus may execute, thus decreasing the network size. Using the constructed
network, we formulate the considered problem with a multi-commodity network flow model
and develop a Lagrangian relaxation heuristic that consists of three phases, including generating
relaxed solutions, making relaxed solutions feasible, and improving feasible solutions, to solve
the integrated model. Tests on a set of instances confirm that the proposed integrated solution
method can efficiently produce bus timetables and schedules with valid bounds, indicate that
the integrated method can produce better solutions where the profit is increased by 5.29%–
20.28%, and show how the headway times, service trip profit and operating cost settings affect
the solution.

1. Introduction

Transit networks play an important role in cities, especially in metropolitan areas, as they are effective and low-carbon means of
alleviating traffic pressure. Advances in electric vehicle technology are enabling the increased use of electric buses in public to reduce
greenhouse gas emissions. For example, in the bus system of Hefei city, China, almost all of the commercial vehicles are electric
buses which work in daytime and return to assigned depots for charging at night. The transit planning process is usually divided into
five sequential planning stages (see, e.g., Ceder and Wilson, 1986): line planning, frequency/headway setting, timetabling, vehicle
scheduling and crew rostering. We study an integration optimization problem of the frequency/headway setting, timetabling and
vehicle scheduling stages in an electric bus system as they are tightly coupled to one another. For example, a well-planned bus
timetable may ensure an efficient public transit service and a well-planned vehicle schedule may reduce the operational cost of the
line. However, there is a trade-off between a well-planned bus timetable and a well-planned vehicle schedule. That is, a well-planned
timetable may produce a vehicle schedule with a large bus fleet size as the connection between the arrivals and departures of each
vehicle at the same bus terminus is usually neglected when determining timetables. A large fleet size increases the operating cost.
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Conversely, a well-planned vehicle schedule may reduce the quality of a bus timetable by limiting the vehicle fleet size or minimizing
the number of vehicles used. Thus, modeling and solving the timetable generating problem and vehicle scheduling problem (VSP)
separately may produce lower-quality solutions than those produced using an integrated optimization framework.

1.1. Related literature

In this section, we review related existing studies in which the studied problems can be divided into three categories: the transit
etwork timetabling (TNT), vehicle scheduling problem and the integration optimization problem of TNT and VSP.

.1.1. Transit network timetabling
The main purpose of the TNT is to maximize the number of transported passengers while minimizing the operating cost; therefore,

assengers’ convenience and cost and operators’ operating cost and profit are usually taken into consideration when determining
ransit network timetables. Some studies on the TNT problem consider only decisions regarding departure times from lines’ starting
tations. For example, de Palma and Lindsey (2001), Castelli et al. (2004) and Li et al. (2010) have studied the TNT problem of
oordinating different lines’ starting times to minimize the operator cost and/or passenger cost. Mesa et al. (2014) studied the TNT
roblem of determining each trip’s departure times from the original station, taking the vehicle fleet size into account. Gkiotsalitis
nd Alesiani (2019) considered a robust timetable optimization for bus lines that minimized the possible loss in a worst-case scenario,
n which the uncertain nature of travel times and passenger demand was taken into consideration and predetermined planned
ispatch times were required. The decision variables were the deviations from each predetermined vehicle dispatch time. Some
tudies on the TNT problem have generated detailed timetables by determining the arrival and departure times at each visited stop.
or example, Zhao and Zeng (2008) analyzed an integrated transit network problem consisting of line planning, headway setting
nd timetabling problems, in which timetabling decisions at stops were made with random variables after headway decisions were
ade. Fonseca et al. (2018) studied an integrated timetabling and vehicle scheduling (ITTVS) problem, in which the arrival and
eparture times at each stop were not based on headway decisions but were instead set as decision variables. Chu et al. (2019)
tudied a bus timetabling problem considering transfer synchronization, in which bus timetabling decisions, such as the departure
imes at each stop and the running time between two stops, and passenger choices regarding travel paths were simultaneously
ptimized.

.1.2. Vehicle scheduling problem
Given a determined timetable, the VSP aims to assign vehicles covering all trips in the timetable, while satisfying practical

onstraints such as layover time requirements between trips. In practice, the quality of vehicle schedules, which is usually measured
y the fleet size (Ceder, 2007), affects not only the vehicle usage and maintenance costs but also the staffing cost. The simplest
ersion of the VSP is the single-depot single-type VSP (SDVSP), which determines vehicle schedules such that all trips are covered
y vehicles departing (returning) from (to) the same location, i.e., the depot (see, e.g., Ibarra-Rojas et al., 2015). An extended
ersion of SDVSP is the multi-depot vehicle scheduling problem (MDVSP), in which vehicles can depart (return) from (to) different
ocations (see, e.g., Dell’Amico et al., 1993; Oukil et al., 2007; Kulkarni et al., 2018). Some researchers have studied the MDVSP
aking fuel consumption into consideration; see, e.g., Haghani and Banihashemi (2002). Zhang et al. (2021) analyzed an electric
us fleet scheduling problem taking battery degradation and the nonlinear charging profile into consideration. In their problem, the
harging strategy, which determine the trip chain of a bus and the times when it charges its battery, had to be determined. Some
esearchers have studied the MDVSP with time windows that determine when the services must begin; see, for example, Desaulniers
t al. (1998) and Kliewer et al. (2012). Other researchers have studied the MDVSP taking the vehicle type into consideration; see,
.g., Guedes and Borenstein (2015), Kliewer et al. (2006), and Hassold and Ceder (2014).

.1.3. Integrated TNT and VSP
Integrating timetabling and vehicle scheduling may enable a favorable trade-off between service quality and operating cost. Some

tudies addressing the ITTVS problem can be found in the literature, e.g., Ibarra-Rojas et al. (2014), and Ceder (2001) considered
he first to examine the ITTVS problem (Fonseca et al., 2018; Carosi et al., 2019). Most studies on the ITTVS problem have used
deal, desired, or predetermined timetables (see, e.g., Guihaire and Hao, 2010; Petersen et al., 2013), in which timetabling decisions
re often made by shifting and/or canceling line runs. There are two typical application scenarios for various versions of the ITTVS
roblem. One application scenario minimizes the negative influence of a disruption, such as a vehicle breakdown, traffic accident,
edical emergency, or road work, by allowing trips to be both shifted and canceled when rescheduling vehicles; see, e.g., the vehicle

escheduling problem studied in Li et al. (2007, 2009). The other application scenario is to reduce the operating cost by allowing trips
o be shifted and vehicle routes to be rescheduled while limiting the deviation between the original and newly-generated schedules
nd timetables. For example, Petersen et al. (2013) studied the ITTVS problem of minimizing the vehicle scheduling and passenger
ransfer costs by developing a large neighborhood search metaheuristic. In their study, sets of metatrips were constructed based on
he given original trips, with exactly one trip from each metatrip being covered in the solution. The idea underlying this strategy is
hat choosing alternative departure timings may reduce passenger-transfer-related waiting times. Ibarra-Rojas et al. (2014) used two
nteger linear programming models and an 𝜖-constraint method to jointly solve the combined timetabling and vehicle scheduling

problems.
More recently, Liu and Ceder (2017) solved an ITTVS problem involving transfer path routing and even-headway departure
2

decisions by using a deficit-function-based sequential search method. Laporte et al. (2017) studied an integrated problem comprising
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Table 1
Comparison of some closely related studies.

Reference Infrastr- Objective(s) Headway Original Mileage/elec- Deadhead Methodo-
uture restrictions timetable tricity limits logy

Guihaire and General Minimize weighted service Not Given Not Allowed Iterated
Hao (2010) network quality and resource considered considered local

utilization search

Petersen et al. General Obtain a trade-off between Not Given Not Allowed Large neigh-
(2013) network passenger service and considered considered borhood sea-

operating cost rch

Ibarra-Rojas General Obtain a trade-off between Not Given Not Allowed 𝜖-constraint
et al. (2014) network passenger service and considered considered method

operating cost

Liu and Ceder General Minimize passenger in-vehicle, Maximum Given Not Not Deficit func-
(2017) network waiting, transfer time, load considered allowed tion based

discrepancy and vehicle size heuristic

Laporte General Minimize user inconvenience, line Not Not Not Not 𝜖-constraint
et al. (2017) network run cost, and fleet size cost considered given considered allowed method

Fonseca et al. General Minimize a weighted sum of Minimum Given Not Allowed Matheuristic
(2018) network operating and passenger cost maximum considered
Desfontaines General Minimize a weighted sum of Not Given Not Allowed two-phase
and Desauln- network operating cost, shifting penalties, considered considered matheuristic
iers (2018) headway and timetable deviation

Tong et al. General Minimize the number of unserved Not Not Not Not Lagrangian
(2017) network passengers and routing costs considered given considered consider relaxation
Carosi et al. Single Minimize deviation from ideal Minimum Not Not Allowed Diving-type
(2019) depot timetable, vehicle operating maximum given considered matheuristic

cost

This work General Maximum service profit less Minimum Not Considers Allowed Lagrangian
network operating cost maximum given relaxation

timetabling, vehicle scheduling and user routing problems, in which the number of runs along each line was restricted and
deadheading was not considered. Desfontaines and Desaulniers (2018) studied the MDVSP with given targeted timetables, allowing
trips to be shifted when determining vehicle routes. Tong et al. (2017) studied a customized bus service design problem for
finding optimal stop locations, routes and timetables for each vehicle, wherein passenger demand and vehicle capacity were
explicitly considered. They formulated their problem using a multi-commodity network flow optimization model, and developed
a Lagrangian relaxation heuristic (LRH) to decompose the integrated problem into a general assignment problem associated with
passenger-to-vehicle assignment decisions and a time-dependent shortest path problem associated with vehicle routing decisions. To
efficiently solve these problems, they developed a space–time prism-based method solution algorithm to reduce the solution search
space. Fonseca et al. (2018) addressed the ITTVS problem tactically, making timetabling decisions by shifting the departure time
and increasing the dwell time at intermediate stops to maximize transfer opportunities. They developed a matheuristic to iteratively
solve a bi-objective mathematical formulation of the ITTVS problem, wherein at each iteration, timetabling and vehicle scheduling
decisions are determined in a preliminary and a secondary step, respectively. Carosi et al. (2019) studied the ITTVS problem of
optimally balancing the regularity (i.e., minimizing the deviation from the desired headways) and service provider cost, wherein no
timetable was given but desired headways together with deviation cost were provided. They proposed an ingenious multi-commodity
flow-type model for the considered ITTVS problem using pure compatibility, pure time-space and mixed-type underlying graph. An
effective diving-type matheuristic was developed to solve their model, in which the continuous relaxation could be solved using
either a linear programming solver or Lagrangian techniques at each iteration.

Table 1 summarizes the characteristics of studies closely related to ours. For a comprehensive literature review on transit network
lanning, please refer to Ibarra-Rojas et al. (2015). As concluded in Carosi et al. (2019), almost all the previous studies on the
TTVS problem used meta-heuristics to obtain solutions, save for Carosi et al. (2019) and Fonseca et al. (2018), where matheuristic
pproaches are developed to solve the studied problems. We use a multi-commodity network flow model on a time-space network
nd develop an LRH to obtain feasible solutions and valid bounds for the ITTVS problem. Our work differs from previous research
n at least two aspects. First, almost all of the previous works, except Laporte et al. (2017) and Carosi et al. (2019), have used ideal,
esired, or original timetables, whereas we do not use a predetermined timetable that may increase the solution space and obtain
etter solutions while increase the computational burden. Second, we consider the battery capacity constraints of buses that has been
eglected in most TNT models but has been considered in VSP studies; see, e.g., Haghani and Banihashemi (2002), and Zhang et al.
2021), while battery charge scheduling for electric vehicles is beyond the scope of this paper. The frequency of service (reciprocal
f the headway) may be the simplest one to measure the qualities of timetables from the viewpoint of users of the transportation
ervice. Similar to Carosi et al. (2019) and Fonseca et al. (2018), in our work headway times should be determined and are limited to
espect minimum headway and maximum headways. This is consistent with operator practice, as it can reduce the work of solving
he ITTVS problem. For example, from the given passenger flow data, operators in the study area, such as Hefei Public Transport
3
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Group, use their experience to estimate approximate values of the minimum and maximum headway times at different times. Our
study differs from Fonseca et al. (2018) in that valid bounds can be quickly obtained using the LRH, whereas Fonseca et al. (2018)
provide valid bounds using the CPLEX solver which requires a computational time of 24 h. Our work differs from Carosi et al. (2019)
in that we consider the maximum battery capacity constraint for each individual bus. As addressed in Carosi et al. (2019), their VS
subproblem would be a minimum cost network flow problem if it could be solved independently, where some constraints on the
vehicle routes, such as those depending on the total time/distance traveled by the vehicle may not be capable of being expressed.

1.2. Contributions and overview of the paper

We make two contributions to the research. First, we develop a time-space network-based framework for integrating TNT
nd VSP. To the best of our knowledge, our problem is the first that considers minimum and maximum headway times, depot
equirements, deadheading and vehicle battery capacities. The underlying time-space network is smaller than the traditional one,
s the former is constructed with well-designed inventory arcs that represent multiple operations a bus may execute. Second, we
ormulate the considered problem with a multi-commodity network flow model and develop a Lagrangian relaxation heuristic that
onsists of three phases, including generating relaxed solutions, making relaxed solutions feasible, and improving feasible solutions
o solve the integrated model. The developed heuristic can efficiently handle different operator-specified headway patterns and
he battery capacity limitation of electric buses. A computational study in which our method is applied to various line topologies
onfirms that the proposed solution method produces bus timetables and vehicle schedules with valid bounds and report the benefits
btained by integrating vehicle timetabling and scheduling decisions.

The rest of this paper is organized as follows. Section 2 presents a detailed description of our integrated bus timetabling and
cheduling problem. Section 3 describes the construction of a time-space network with inventory arcs, based on which an integer
rogram for the considered problem is formulated. A Lagrangian relaxation-based solution method is developed in Section 4.
ection 5 conducts a computational study to examine the effectiveness of the modeling and solving methods. Some conclusions
re made in Section 6.

. Problem description

Given some lines and bus depots, the problem we study is to simultaneously determine bus timetabling and routing decisions
hat maximize the operational profit while minimizing the operational cost, such that certain operational requirements are satisfied.
imetabling decisions determine the departure headways between two adjacent service trips along the same line. These departure
eadways are used to specify the bus timetable, which comprises the starting and ending times of all trips. Routing decisions
etermine a series of activities for each bus during the considered planning horizon, which can be represented by a time-space
rajectory, i.e., a bus route, in the bus system. Along a route, a bus may leave a depot and arrive at a terminus, make a service or
eadhead trip, arrive at another terminus where it may wait before departing for the next service or deadhead trip, after which it
eturns to the depot it had left at the start.

.1. Input data

Four types of objects are considered in the bus system: depots, termini, bus lines and buses. The input data corresponding to
hese objects are summarized in Table 2 and explained below in detail. The considered planning horizon is discretized and given
y {0, 1,… , 𝑇 }, in which each time unit is 1 min.
Depot and terminus data: Let 𝐷 = {𝑑1, 𝑑2,… , 𝑑

|𝐷|

} be the set of all considered bus depots, where the buses are parked and
battery charging operations are performed overnight. The capacity of each depot is assumed to be unlimited. Let 𝑆 = {𝑠1, 𝑠2,… , 𝑠

|𝑆|}
be the set of all considered bus termini. Each terminus represents the starting or ending point of a bus line. To begin its regular
service trips to transport passengers, a bus performs a pull-in action to travel from the depot to the starting point of the line. After
completing its assigned trips, the bus performs a pull-out action to travel from the terminus to the same depot it had left to commence
its trips. Buses may also perform deadhead trips to reposition themselves. Here, a service trip is the journey of a bus along a line,
which is similar to the line run presented in Mesa et al. (2014) and Laporte et al. (2017), and deadhead trips are the journeys a bus
makes between termini without carrying any passengers.

Bus line data: Let 𝐿 = {𝑙1, 𝑙2,… , 𝑙
|𝐿|} be the set of all considered directed bus lines. The input data for each bus line (or line)

𝑙 are given by (𝑝𝑙 , 𝑞𝑙 , 𝜏𝑙 , 𝑓𝑙 , 𝑔𝑙 , ℎ𝑙). Specifically, each line 𝑙 has one starting point 𝑝𝑙 and one ending point 𝑞𝑙, where 𝑝𝑙 , 𝑞𝑙 ∈ 𝑆. A
pair of opposing lines is defined as two lines along which buses travel between two termini in opposite directions (see, e.g., Castelli
et al., 2004). The time for service trips between the starting and ending points of a line 𝑙 is always 𝜏𝑙; i.e., there is exactly one
unidirectional line if lines exist between two termini in one direction. The opposing line 𝑙′ of line 𝑙 may have a different service
trip time. Without loss of generality, we denote 𝜑𝑙 as the ratio of 𝜏𝑙′ to 𝜏𝑙; i.e., 𝜑𝑙 = 𝜏𝑙′∕𝜏𝑙. The line operator receives a profit of
𝑓𝑙 for every service trip performed for line 𝑙 (see, e.g., Caprara et al., 2002; Cacchiani et al., 2008). Moreover, to guarantee the
service quality of line 𝑙, its service trip frequency cannot be less than a predetermined value. The interval between the departure
times of two consecutive trips along the same line 𝑙 must be no greater than 𝑔𝑙 time units; this is the maximum departure headway
restriction. However, considering the limited passenger demand and safety requirements, the interval between the departure times
4

of two consecutive trips along the same line 𝑙 must be at least ℎ𝑙 time units; this is the minimum departure headway restriction. In
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Table 2
Summary of input data.

Type of data Notation Description

Depot and 𝐷 set of all bus depots, 𝐷 = {𝑑1 , 𝑑2 ,… , 𝑑
|𝐷|

}

terminus data 𝑆 set of all bus termini, 𝑆 = {𝑠1 , 𝑠2 ,… , 𝑠
|𝑆|}

Bus line data 𝐿 set of all bus lines, 𝐿 = {𝑙1 , 𝑙2 ,… , 𝑙
|𝐿|}

𝑝𝑙 starting terminus of bus line 𝑙

𝑞𝑙 ending terminus of bus line 𝑙

𝜏𝑙 travel time for a service trip between line 𝑙’s starting and ending termini
𝑓𝑙 fixed profit achieved by performing a service trip for line 𝑙

𝑔𝑙 maximum time difference between departures from line 𝑙’s starting terminus
ℎ𝑙 minimum time difference between departures from line 𝑙’s starting terminus
𝜑𝑙 ratio of 𝜏𝑙′ and 𝜏𝑙 , where 𝑙′ is the opposing line of line 𝑙, i.e., 𝜑𝑙 = 𝜏𝑙′∕𝜏𝑙
𝐿(𝑠) set of lines originating at the same terminus 𝑠 ∈ 𝑆

𝜒(𝑠) minimum service trip time among the lines in 𝐿(𝑠)

Bus data 𝐾 set of all buses (𝐾 = {𝑘1 , 𝑘2 ,… , 𝑘
|𝐾|

})
𝐸max maximum battery capacity
𝑒𝑘 electricity consumed per unit time for a running bus 𝑘 ∈ 𝐾

𝑐𝑓 fix cost of using a bus
𝑐𝑑 unit cost of a bus’s time spent on deadheading between termimi
𝛼𝑠𝑠′ time for a deadhead trip between termini 𝑠, 𝑠′ ∈ 𝑆

𝛼′𝑑𝑠 time for a pull-in operation between depot 𝑑 ∈ 𝐷 and terminus 𝑠 ∈ 𝑆

𝛼′′𝑠𝑑 time for a pull-out operation between terminus 𝑠 ∈ 𝑆 and depot 𝑑 ∈ 𝐷

𝛽 minimum dwell time between performing two consecutive bus trips
𝜓𝑙 ratio of 𝛼𝑝𝑙 ,𝑞𝑙 to 𝜏𝑙 , i.e., 𝜓𝑙 = 𝛼𝑝𝑙 ,𝑞𝑙 ∕𝜏𝑙

addition to these input data, we denote 𝐿(𝑠) as the set of lines originating at the same terminus 𝑠, and 𝜒(𝑠) as the minimum service
trip time among the lines in 𝐿(𝑠).

Bus data: Let 𝐾 = {𝑘1, 𝑘2,… , 𝑘
|𝐾|

} be the set of all the considered buses, which are homogeneous electric buses whose maximum
battery capacity is 𝐸max, and the electricity consumed per unit time for a running bus 𝑘 is 𝑒𝑘. Note that a bus is either assigned work
or is idle during the considered planning horizon and it is not allowed to charge its battery between two pieces of works. This is
consistent with the operator practice in Hefei bus system where most buses are not suitable for quick charging. A fixed cost of 𝑐𝑓 is
incurred if bus 𝑘 is assigned work. A cost of 𝑐𝑑 is incurred per unit time for a deadhead. The time for a deadhead trip between two
termini 𝑠, 𝑠′ ∈ 𝑆 is 𝛼𝑠𝑠′ . As a bus usually runs faster when it is deadheading than when performing a service trip, 𝛼𝑠𝑠′ is no greater
than the time of the service trip from termini 𝑠 to 𝑠′. We denote 𝜓𝑙 as the ratio of 𝛼𝑝𝑙 ,𝑞𝑙 to 𝜏𝑙; i.e., 𝜓𝑙 = 𝛼𝑝𝑙 ,𝑞𝑙∕𝜏𝑙. Similarly, the pull-in
(pull-out) time between a depot 𝑑 ∈ 𝐷 (terminus 𝑠 ∈ 𝑆) and terminus 𝑠 ∈ 𝑆 (depot 𝑑 ∈ 𝐷) is given by 𝛼′𝑑𝑠 (𝛼′′𝑠𝑑). Buses may also
wait at termini before performing the next service or deadhead trip. For operational safety, each bus must be assigned at least 𝛽
time units of dwell time between performing two consecutive bus trips.

2.2. Objective and constraints

As mentioned above, the aim of the considered problem is to simultaneously generate a feasible bus timetable and determine
bus routes in a planning horizon, such that the total profit is maximized. The total profit can be calculated as the difference between
the operational profit of providing bus service trips (e.g., profit from the bus fare) and the operational cost of buses (e.g., the fixed
and deadhead costs). Therefore, the objective of our problem is to obtain a solution that optimally balances the operational profits
and costs. More specifically, the operational profit can be maximized by maximizing the number of service trips, while minimizing
the operational cost by minimizing the number of buses used and the travel time of deadhead trips, for which the following five
types of constraints must be satisfied:

∙ Service constraints: Each service trip can be performed by at most one bus, and each bus can perform at most one service trip
at a time. ∙ Headway time constraints: For each pair of adjacent service trips along the same line, the headway time between
these trips should be no less than the minimum headway time and no greater than the maximum headway time.
∙ Break requirements: Each bus must be assigned a dwell time after performing a service trip.
∙ Depot requirements: After completing its assigned trips, each bus is required to return to the same depot it had left to commence
its trips.
∙ Maximum battery capacity constraints: For each bus, the quantity of electricity consumed in its assigned trips cannot exceed
its maximum battery capacity 𝐸 .
5
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3. Mathematical formulation

In this section, we formulate the considered problem using a multi-commodity flow model with certain restrictions, in which
ach commodity represents a bus. The underlying network is an acyclic directed time-space network 𝐺 = (𝑉 ,𝐴), where depots and

termini with time instants are represented by vertices and service or deadhead trips are represented by (inventory) arcs.

3.1. Time-space network construction

A time-space network with inventory arcs was used by Kulkarni et al. (2018) to model their MDVSP as an inventory formulation,
in which a feasible solution must cover all the trips in the input bus timetable. In the time-space network, inventory arcs are
constructed to represent a trip from a certain location and time to the end location and time. This inventory arc construction may
help reduce the size of the time-space network by reducing the number of vertices and the corresponding arcs, which in turn may
help reduce the computational burden. Following Kulkarni et al. (2018), we construct a time-space network with inventory arcs for
the problem under consideration. As the timetable in our problem is unknown that should be determined, our time-space network
contains all the possible service trips that may be scheduled in the timetable. The ‘‘time’’ dimension of our time-space network
𝐺 comprises the instants 0, 1, 2,… , 𝑇 . The ‘‘space’’ dimension of 𝐺 comprises the vertices �̄�𝑑 and 𝜌𝑑 for each depot 𝑑 ∈ 𝐷, which
epresent the arrival at and departure from depot 𝑑, respectively. Each terminus 𝑠 ∈ 𝑆, together with time point 𝑡 ∈ {0, 1,… , 𝑇 }

corresponds to vertices �̄�𝑠𝑡 and 𝜌𝑠𝑡, where vertex �̄�𝑠𝑡 represents the arrival of a bus at terminus 𝑠 at time 𝑡 and vertex 𝜌𝑠𝑡 represents
he departure of a bus from terminus 𝑠 at time 𝑡. For the common line 𝑙 sharing the same origin and destination, i.e., 𝑝𝑙 = 𝑞𝑙, we
lso construct independent arrival vertices �̄�𝑝𝑙 ,𝑡, �̄�𝑞𝑙 ,𝑡 and independent departure vertices 𝜌𝑝𝑙 ,𝑡, 𝜌𝑞𝑙 ,𝑡. Let vertex �̄� and vertex 𝑑 be an
rtificial source and sink, respectively, for the multi-commodity flow; the vertex set 𝑉 of the time-space network 𝐺 can then be
athematically written as

𝑉 =
{

�̄�, 𝑑
}

∪
{

𝜌𝑖, �̄�𝑖 ∣ 𝑖 ∈ 𝐷
}

∪
{

𝜌𝑠𝑡, �̄�𝑠𝑡 ∣ 𝑠 ∈ 𝑆; 𝑡 = 0, 1,… , 𝑇
}

.

he arc set 𝐴 of 𝐺 contains several types of arcs. A cost coefficient 𝑐(𝑢, 𝑣) associated with each arc 𝑢 → 𝑣 ∈ 𝐴 represents the cost for
bus to traverse arc 𝑢 → 𝑣. These types of arcs and their associated cost coefficients are described below.

.1.1. Starting, ending, pull-in, pull-out and non-working arcs
A starting arc connects the dummy source vertex �̄� and a departure vertex 𝜌𝑑 for each 𝑑 ∈ 𝐷. A bus traversing this starting

rc represents a bus that is starting its work during the considered planning horizon and incurring a fixed cost 𝑐𝑓 ; we then have
(�̄�, 𝜌𝑑 ) = 𝑐𝑓 . An ending arc connects an arrival vertex �̄�𝑑 and the dummy sink vertex 𝑑 for each 𝑑 ∈ 𝐷. A bus traversing this ending
rc represents a bus that has completed its work during the considered planning horizon and is incurring no cost; we then have
(�̄�𝑑 , 𝑑) = 0. Starting arcs and ending arcs can be used to ensure that the operational requirements of buses are satisfied. A pull-in
rc 𝜌𝑑 → 𝜌𝑠𝑡 such that 𝑡 ≥ 𝛼𝑑𝑠 and a pull-out arc 𝜌𝑠𝑡 → �̄�𝑑 such that 𝑡 ≤ 𝑇 − 𝛼𝑠𝑑 exist for each pair consisting of a depot 𝑑 ∈ 𝐷 and
terminus 𝑠 ∈ 𝑆. A bus traversing a pull-in (pull-out) arc represents a bus that is performing a pull-in (pull-out) action to go from

return to) its depot 𝑑 to (from) a terminus 𝑠, thereby a cost 𝑐𝑑 ⋅ 𝛼′𝑑𝑠 (𝑐𝑑 ⋅ 𝛼′′𝑠𝑑) is incurred. A non-working arc �̄� → 𝑑 connects the
ummy source and sink vertices. A bus traversing this non-working arc represents a bus that is idle (i.e., is not used) during the
onsidered horizon and is incurring no cost; i.e., 𝑐(�̄�, 𝑑) = 0.

.1.2. Inventory, deadheading, transfer and waiting arcs
Two types of inventory arcs ensure that buses can perform service trips between depots to transport passengers. One type is the

nventory arc 𝜌𝑠𝑡 → 𝜌𝑠′𝑡′ for each line 𝑙 ∈ 𝐿 and time instants 𝑡, 𝑡′ = 0, 1,… , 𝑇 such that 𝑠 = 𝑝𝑙 , 𝑠′ = 𝑞𝑙 and 0 ≤ 𝑡 ≤ 𝑡′ = 𝑡 + 𝜏𝑙 + 𝛽 ≤ 𝑇 .
The other type is the inventory arc 𝜌𝑠𝑡 → 𝑑 for each line 𝑙 ∈ 𝐿 and time instant 𝑡 = 0, 1,… , 𝑇 − 𝜏𝑙 such that 𝑠 = 𝑝𝑙. A bus traversing
an inventory arc represents a bus that is performing a service trip for line 𝑙 in which a profit of 𝑓𝑙 is achieved and no cost is
incurred. For each 𝑙 ∈ 𝐿 and 𝑡, 𝑡′ = 0, 1,… , 𝑇 , if 𝑠 = 𝑝𝑙 , 𝑠′ = 𝑞𝑙, and 0 ≤ 𝑡 < 𝑡′ = 𝑡 + 𝜏𝑙 + 𝛽 ≤ 𝑇 , we have 𝑐(𝜌𝑠𝑡, 𝜌𝑠′𝑡′ ) = −𝑓𝑙;
otherwise, 𝑐(𝜌𝑠𝑡, 𝜌𝑠′𝑡′ ) = +∞. For each 𝑙 ∈ 𝐿 and 𝑡 = 0, 1,… , 𝑇 − 𝜏𝑙, if 𝑠 = 𝑝𝑙 we have 𝑐(𝜌𝑠𝑡, 𝑑) = −𝑓𝑙; otherwise, 𝑐(𝜌𝑠𝑡, 𝑑) = +∞.
Our inventory arcs, which are similar to those presented in Kulkarni et al. (2018) may help reduce the scale of the time-space
network. For example, the inventory arc 𝜌𝑠𝑡 → 𝜌𝑠′𝑡′ represents two bus operations: a service trip between the origin and destination
termini and a dwell at the end terminus, that are usually represented by two or more arcs; see, e.g., travel and dwelling arcs in Xu
et al. (2021). Another example is a bus traversing the inventory arc 𝜌𝑠𝑡 → 𝑑, which represents a bus that is performing a service
trip, after which it may wait at the end terminus for some time before returning to the nearest depot and completing its work at
time 𝑇 . These operations are usually represented by a travel arc, a dwelling arc, many waiting arcs, a pull-out arc and an ending
arc in a classical time-space network (see, e.g., Xu et al., 2021). The size of the time-space network can be further reduced by
assigning at most one inventory arc in

{

𝜌𝑝𝑙 ,𝑡 → 𝜌𝑞𝑙 ,𝑡′ , 𝜌𝑝𝑙 ,𝑡 → 𝑑
}

to each line 𝑙 ∈ 𝐿 and 𝑡 ∈ [0, 𝑇 ]. To achieve this, for each 𝑙 ∈ 𝐿, let
𝑇𝑙 = max

{

0, 𝑇 −(𝜏𝑙 +𝛽)−min𝑠∈𝑆⧵{𝑞𝑙}{𝜒(𝑞𝑙), 𝛼𝑞𝑙 ,𝑠 +𝜒(𝑠)}
}

. By Proposition 1, for each time instant 𝑡 = 0, 1,… , 𝑇𝑙, we construct only one
inventory arc 𝜌𝑠𝑡 → 𝜌𝑠′𝑡′ such that 𝑠 = 𝑝𝑙 , 𝑠′ = 𝑞𝑙 and 0 ≤ 𝑡 < 𝑡′ = 𝑡+𝜏𝑙 +𝛽 ≤ 𝑇 , and for each time instant 𝑡 = 𝑇𝑙 +1, 𝑇𝑙 +2,… , 𝑇 −𝜏𝑙, we
construct only one inventory arc 𝜌𝑝𝑙 ,𝑡 → 𝑑. As the minimum dwell time 𝛽 is incorporated into these inventory arcs, the requirement
that each bus must be assigned at least 𝛽 time units of dwell time between two consecutive trips is implicitly satisfied.

Deadheading arcs are constructed to ensure that buses can travel between different termini to reposition themselves. In our
time-space network, a deadheading arc 𝜌𝑠𝑡 → �̄�𝑠′𝑡′ exists for each pair of termini 𝑠, 𝑠′ ∈ 𝑆 such that 𝑠 ≠ 𝑠′ and 𝑡′ − 𝑡 = 𝛼𝑠𝑠′ . A bus
traversing a deadheading arc represents a bus that is performing a deadhead trip to reposition itself from terminus 𝑠 to terminus 𝑠′
6
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Table 3
Summary of arc types.

Type of arcs Form Domain Situation Cost

Starting arcs �̄� → 𝜌𝑑 𝑑 ∈ 𝐷
A bus starts its
work at depot 𝑑 𝑐𝑓

Ending arcs �̄�𝑑 → 𝑑 𝑑 ∈ 𝐷
A bus completes its
work at depot 𝑑 0

Pull-in arcs 𝜌𝑑 → 𝜌𝑠𝑡 𝑑 ∈ 𝐷; 𝑠 ∈ 𝑆; 𝑡 = 0, 1,… , 𝑇 A bus performs a pull-in action 𝑐𝑑 ⋅ 𝛼′𝑑𝑠
Pull-out arcs 𝜌𝑠𝑡 → �̄�𝑑 𝑑 ∈ 𝐷; 𝑠 ∈ 𝑆; 𝑡 = 0, 1,… , 𝑇 A bus performs a pull-out action 𝑐𝑑 ⋅ 𝛼′′𝑠𝑑
Non-working arcs �̄� → 𝑑 / A bus is not assigned any work 0

Inventory arc
𝜌𝑝𝑙 𝑡 → 𝜌𝑞𝑙 𝑡′ 𝑙 ∈ 𝐿; 𝑡, 𝑡′ = 0, 1,… , 𝑇𝑙

s.t. 0 ≤ 𝑡 ≤ 𝑡′ = 𝑡 + 𝜏𝑙 + 𝛽 ≤ 𝑇 ,
A bus performs a service trip for line
𝑙 and a dwell operation, 𝑇𝑙 = max

{

0,
𝑇 − (𝜏𝑙 + 𝛽) − min{𝜒(𝑞𝑙), 𝛼𝑞𝑙 ,𝑠 + 𝜒(𝑠)}

}

−𝑓𝑙
𝜌𝑝𝑙 𝑡 → 𝑑 𝑙 ∈ 𝐿; 𝑡 = 𝑇𝑙 + 1, 𝑇𝑙 + 2,… , 𝑇 − 𝜏𝑙

Deadheading arcs 𝜌𝑠𝑡 → �̄�𝑠′ 𝑡′
𝑠, 𝑠′ ∈ 𝑆; 𝑡, 𝑡′ = 0, 1,… , 𝑇
s.t. 𝑠 ≠ 𝑠′; 𝑡′ − 𝑡 = 𝛼𝑠𝑠′

A bus performs a deadhead trip
to reposition itself 𝑐𝑑 ⋅ 𝛼𝑠𝑠′

Transfer arcs �̄�𝑠𝑡 → 𝜌𝑠𝑡 𝑠 ∈ 𝑆; 𝑡, 𝑡′ = 0, 1,… , 𝑇
A bus change its status from
arrival to departure 0

Waiting arcs 𝜌𝑠𝑡 → �̄�𝑠,𝑡+1
𝑡 = 0, 1,… , 𝑇 s.t. 𝑡 + 1 ≤ min

{

𝑇 ,
max{𝑙∈𝐿 s.t. 𝑞𝑙=𝑠}{𝑇𝑙 + (𝜏𝑙 + 𝛽)}

} A bus is waiting at terminus 𝑠 0

in which a cost 𝑐𝑑 ⋅𝛼𝑠𝑠′ is incurred and no profit is achieved, as the bus does not transport passengers. Thus, for each pair of termini
, 𝑠′ ∈ 𝑆 and 𝑡, 𝑡′ = 0, 1,… , 𝑇 , if 𝑠 ≠ 𝑠′ and 0 ≤ 𝑡 < 𝑡′ = 𝑡 + 𝛼𝑠𝑠′ ≤ 𝑇 , we have 𝑐(𝜌𝑠𝑡, �̄�𝑠′𝑡′ ) = 𝑐𝑑 ⋅ 𝛼𝑠𝑠′ ; otherwise, 𝑐(𝜌𝑠𝑡, �̄�𝑠′𝑡′ ) = +∞. A
ransfer arc �̄�𝑠𝑡 → 𝜌𝑠𝑡 follows each deadheading arc. A bus traversing this arc represents a bus whose status changing from arrival
o departure. No cost is incurred and no profit is achieved; i.e., 𝑐(�̄�𝑠𝑡, 𝜌𝑠𝑡) = 0. Moreover, for each terminus 𝑠 ∈ 𝑆 and each time
nstant 𝑡 = 0, 1, 2,… ,min

{

𝑇 ,max{𝑙∈𝐿 s.t. 𝑞𝑙=𝑠}{𝑇𝑙 + (𝜏𝑙 + 𝛽)}
}

− 1, a waiting arc connects two departure vertices 𝜌𝑠𝑡 and 𝜌𝑠,𝑡+1. A bus
traversing a waiting arc represents a bus that is waiting at terminus 𝑠 for 1 min without incurring any cost; i.e., 𝑐(𝜌𝑠𝑡, 𝜌𝑠,𝑡+1) = 0.

Table 3 summarizes these types of arcs, in which the ‘‘Form’’ column indicates the representation of the considered arcs,
he ‘‘Domain’’ column displays the domains of indexes used in these arc representations, the ‘‘Situation’’ and ‘‘Cost’’ columns,
espectively, present the situation and the cost 𝑐(𝑢, 𝑣) of a bus traversing the arc 𝑢 → 𝑣. In addition to the starting, ending, pull-in,
ull-out, non-working and inventory arcs of the second type, each arc of network 𝐺 takes the following forms: 𝑢 → 𝑣 ∈ 𝐴, where
he time index of 𝑣 is greater than the time index of 𝑢; see, e.g., inventory arcs of the first type, waiting arcs, and deadheading arcs.
herefore, the time-space network 𝐺 is acyclic when all time-related parameters are positive.

roposition 1. For each line 𝑙, a bus cannot perform another bus service trip after performing a bus service trip 𝓁 of line 𝑙 in case of trip
’s departure time is later than max

{

0, 𝑇 − (𝜏𝑙 + 𝛽) − min𝑠∈𝑆⧵{𝑞𝑙}{𝜒(𝑞𝑙), 𝛼𝑞𝑙 ,𝑠 + 𝜒(𝑠)}
}

.

Proof. In case of a bus performs a bus service of line 𝑙, we consider the following two situations: (i) the bus performs a bus service
of another bus line 𝑙′ whose origin terminus is 𝑙’s destination terminus; and (ii) the bus first repositions itself to another terminus
𝑠 (𝑠 ≠ 𝑝𝑙 and 𝑠 ≠ 𝑞𝑙) and then serves another bus line 𝑙′ whose origin terminus is 𝑠. It is easy to calculate that the minimum
required operational times for the first and second situation are, respectively, 𝜒(𝑞𝑙) and 𝛼𝑞𝑙 ,𝑠 + 𝜒(𝑠). Combine situations (i), (ii) and
he corresponding minimum required operational times, we can conclude that the bus cannot perform another bus service after
ime instant max

{

0, 𝑇 − min𝑠∈𝑆⧵{𝑞𝑙}{𝜒(𝑞𝑙), 𝛼𝑞𝑙 ,𝑠 + 𝜒(𝑠)}
}

. Furthermore, consider the minimum break time of 𝛽 and bus service trip
time of 𝜏𝑙 along line 𝑙, it is easy to deduce that if the departure time of a bus service trip 𝓁 of line 𝑙 is later than time instant
max

{

0, 𝑇 − (𝜏𝑙 + 𝛽) − min𝑠∈𝑆⧵{𝑞𝑙}{𝜒(𝑞𝑙), 𝛼𝑞𝑙 ,𝑠 + 𝜒(𝑠)}
}

, a bus cannot perform another bus service trip after performing bus service trip
𝓁. This completes the proof. □

3.2. Constraints

For each bus 𝑘 ∈ 𝐾, a path from vertex �̄� to vertex 𝑑 in this time-space network corresponds to a bus route. The route from �̄�
to 𝑑, except for the route consisting of the non-working arc �̄� → 𝑑, satisfies the break constraints discussed in Section 2.2 if any
inventory arc is traversed. Given the constructed network 𝐺, we aim to determine one unit of flow for each of the |𝐾| commodities
from vertex �̄� to vertex 𝑑 to construct routes for all buses, such that the maximum total profit is achieved. However, a flow in this
network may not satisfy the departure headway constraints discussed in Section 2.2. Hence, in addition to the standard network
flow constraints, such as flow balance constraints, supply and demand constraints and siding constraints for an individual path,
(e.g., the same depot restriction and maximum battery capacity constraint), our network flow model also includes the following
departure headway constraints for various flows.

Minimum (maximum) departure headway time constraints: for each pair of adjacent trips of line 𝑙 ∈ 𝐿 in the determined
timetable, the headway time between the trips should be greater (less) than the minimum (maximum) headway time ℎ𝑙 (𝑔𝑙). Hence,
for each line 𝑙 ∈ 𝐿 and each 𝑡 = 0, 1, 2,… , 𝑇 − ℎ + 1, no more than one bus (at least one bus) can depart from 𝑝 during the time
7
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Fig. 1. Line topology and the time-space network in the example.

interval [𝑡1, 𝑡1 + ℎ𝑙 −1] ([𝑡1, 𝑡1 + 𝑔𝑙 −1]). Thus, we impose the constraint that the total flow along the inventory arcs in the arc subset

𝐶1
𝑙𝑡1

= 𝐴∩
[

{𝜌𝑝𝑙 ,𝑡 → 𝜌𝑞𝑙 ,𝑡′ ∣ 𝑡, 𝑡
′ = 0, 1,… , 𝑇 ; 𝑡1 ≤ 𝑡 ≤ 𝑡1 + ℎ𝑙 − 1, s.t. 𝑡′ = 𝑡 + 𝜏𝑙 + 𝛽}

∪ {𝜌𝑝𝑙 ,𝑡 → 𝑑 ∣ 𝑡1 < 𝑡 ≤ 𝑡1 + ℎ𝑙 − 1}
]

ust be at most 1. We also impose the constraint that the total flow along the inventory arcs in the arc subset

𝐶2
𝑙𝑡1

= 𝐴∩
[

{𝜌𝑝𝑙 ,𝑡 → 𝜌𝑞𝑙 ,𝑡′ ∣ 𝑡, 𝑡
′ = 0, 1,… , 𝑇 ; 𝑡1 ≤ 𝑡 ≤ 𝑡1 + 𝑔𝑙 − 1, s.t. 𝑡′ = 𝑡 + 𝜏𝑙 + 𝛽}

∪ {𝜌𝑝𝑙 ,𝑡 → 𝑑 ∣ 𝑡1 < 𝑡 ≤ 𝑡1 + 𝑔𝑙 − 1}
]

ust be at least 1. Let

1 = {𝐶1
𝑙𝑡 ∣ 𝑙 ∈ 𝐿; 𝑡 = 0, 1, 2,… , 𝑇 − ℎ𝑙 + 1} and 2 = {𝐶2

𝑙𝑡 ∣ 𝑙 ∈ 𝐿; 𝑡 = 0, 1, 2,… , 𝑇 − 𝑔𝑙 + 1}.

The total bus flow along arcs in any arc set 𝐶 ∈ 1 must then be no greater than 1, and the total bus flow along arcs in any arc set
𝐶 ∈ 2 must then be at least 1.

3.3. An example

Consider a line topology with two depots {𝑑1, 𝑑2}, two termini {𝑠1, 𝑠2}, two bus lines {𝑙1, 𝑙2} and five buses, as depicted in
Fig. 1(a). The service trip times along 𝑙1 and 𝑙2 are, respectively, 3 and 4 min. The deadhead times of 𝛼𝑠1𝑠2 from 𝑠1 to 𝑠2 and of 𝛼𝑠2𝑠1
from 𝑠2 to 𝑠1 are 2 and 3 min, respectively. Without loss of generality, the deadhead times between the depots and termini are set
as 𝛼′𝑑1 ,𝑠1 = 𝛼′′𝑠1 ,𝑑1 = 0, 𝛼′𝑑2 ,𝑠2 = 𝛼′′𝑠2 ,𝑑2 = 0, 𝛼′𝑑1 ,𝑠2 = 𝛼′′𝑠1 ,𝑑2 = 𝛼𝑠1 ,𝑠2 , and 𝛼′𝑑2 ,𝑠1 = 𝛼′′𝑠2 ,𝑑1 = 𝛼𝑠2 ,𝑠1 . In addition, the minimum dwell time 𝛽 is
set to 1 min, and the considered planning horizon is set to [0, 15]; i.e., 𝑇 = 15.

Fig. 1(b) depicts a partial time-space network corresponding the line topology presented in Fig. 1(a), where various vertices
and types of arcs are shown. In this time-space network, the maximum allowed departure time for bus service trips along lines
𝑙1 and 𝑙2 are, respectively, 𝑇 − 𝜏𝑙1 = 15 − 3 = 12 and 𝑇 − 𝜏𝑙2 = 15 − 4 = 11. For line 𝑙2, by Proposition 1, after time 7
(

=
[

𝑇 − (𝜏𝑙2 + 𝛽) − min{𝜒(𝑠1), 𝛼𝑠1 ,𝑠2 + 𝜒(𝑠2)}
]

=
[

15 − (4 + 1) − min{3, 2 + 4}
])

, only inventory arcs of the form 𝜌𝑠2𝑡 → 𝑑 exist;
see, e.g., inventory arcs 𝑎6, 𝑎7, 𝑎8, 𝑎9 in Fig. 1(b). Also, for time 𝑡 = 0, 1,… , 7 only inventory arcs of the form 𝜌𝑠2𝑡 → 𝜌𝑠1𝑡′ exist. In
addition, after time 12, there is no waiting arc corresponding to terminus 𝑠1, as inventory arcs 𝑎6, 𝑎7, 𝑎8 and 𝑎9 can represent these
waiting arcs as discussed in Section 3.1.2. Similarly, for line 𝑙1, for time 𝑡 = 0, 1,… , 7 only inventory arcs of the form of 𝜌𝑠1𝑡 → 𝜌𝑠2𝑡′
exist, after time 7 only inventory arcs of the form of 𝜌𝑠1𝑡 → 𝑑 exist, and there is no waiting arc at terminus 𝑠2 after time 11.

With the constructed time-space network, we are now able to describe the solution using a set of bus routes. Suppose the vehicle
battery capacity is large enough, one feasible solution of the example can be represented by the five bus routes depicted in Fig. 2,
where we can see that each bus returns to the same depot it had left to commence its trips, i.e., the depot requirements are satisfied.
Moreover, for the minimum and maximum headway times as 2 and 3 min, respectively, we can construct arc sets 𝐶1

𝑙1 ,0
= {𝑎1, 𝑎2},

𝐶1
𝑙2 ,5

= {𝑎5, 𝑎6}, 𝐶2
𝑙1 ,0

= {𝑎1, 𝑎2, 𝑎3}, 𝐶2
𝑙2 ,5

= {𝑎5, 𝑎6, 𝑎7} and so on. In the solution, a bus 𝑘1 may traverse a path 𝑝1 consisting of starting
arc �̄� → 𝜌𝑑1 , pull-in arc 𝜌𝑑1 → 𝜌𝑠1 ,0, inventory arc 𝑎1, four waiting arcs, and inventory arc 𝑎7. Another bus 𝑘2 may traverse a path
𝑝2 consisting of starting arc �̄� → 𝜌𝑑1 , pull-in arc 𝜌𝑑1 → 𝜌𝑠1 ,0, three waiting arcs, inventory arc 𝑎4, four waiting arcs, and inventory
arc 𝑎9. It can be seen that both the minimum and maximum headway times between paths 𝑝1 and 𝑝2 satisfy the requirements; these
two paths thereby are compatible. Further, it can be observed that in current solution there are 10 service trips with 8 headway
8
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Fig. 2. Routes of buses on the time-space network.

imes, while 7 headway times are the same 3 min. This implies that to achieve more profit one can insert more service trips into
urrent solution by scheduling better vehicle routes using more buses.

Note that although set 2 is specified using the time intervals 𝑡 = 0, 1,… , 𝑇 − 𝑔𝑙 + 1, the generated set 2 may not cover all the
corner cases at the end of the planning horizon. This gap in coverage occurs because impossible inventory arcs are not constructed for
the end of the time horizon, and so there is no arc set 𝐶2

𝑙𝑡 for line 𝑙 ∈ 𝐿 and time interval 𝑡 at the end of the planning horizon, where
the maximum headway constraint need not to be considered. In addition, the set 2 covers all the corner cases at the beginning of
the planning horizon. For example, arc sets 𝐶2

𝑙1 ,0
= {𝑎1, 𝑎2, 𝑎3} and 𝐶2

𝑙1 ,1
= {𝑎2, 𝑎3, 𝑎4} in set 2 cover the corner cases at time intervals

0 and 1. However, in set 2, there is no arc set corresponding to the end of the time horizon [0, 15], e.g., time intervals 14 and 15.

3.4. Integer programming formulation

For each bus 𝑘 ∈ 𝐾 and arc 𝑢 → 𝑣 ∈ 𝐴, define decision 𝑥𝑘𝑢𝑣 = 1 if arc 𝑢 → 𝑣 is traversed by bus 𝑘 in the determined solution;
otherwise, let 𝑥𝑘𝑢𝑣 = 0. The multi-commodity network flow problem with the above restrictions can then be formulated as the
following integer program.

Pmax: Maximize ∑

𝑘∈𝐾
∑

𝑢→𝑣∈𝐴 −𝑐(𝑢, 𝑣)𝑥𝑘𝑢𝑣 (1)

subject to ∑

{𝑣∶�̄�→𝑣∈𝐴} 𝑥
𝑘
�̄�𝑣 = 1, for all 𝑘 ∈ 𝐾 (2)

∑

{𝑢∶𝑢→𝑑∈𝐴} 𝑥
𝑘
𝑢𝑑

= 1, for all 𝑘 ∈ 𝐾 (3)
∑

{𝑣∶𝑢→𝑣∈𝐴} 𝑥
𝑘
𝑢𝑣 =

∑

{𝑣∶𝑣→𝑢∈𝐴} 𝑥
𝑘
𝑣𝑢, for all 𝑘 ∈ 𝐾, 𝑢 ∈ 𝑁 ⧵ {�̄�, 𝑑} (4)

∑

{𝑢→𝑣∈𝐴+
𝑑 }
𝑥𝑘𝑢𝑣 =

∑

{𝑢→𝑣∈𝐴−
𝑑 }
𝑥𝑘𝑢𝑣, for all 𝑘 ∈ 𝐾, 𝑑 ∈ 𝐷 (5)

∑

𝑢→𝑣∈𝐴 𝑒𝑢𝑣𝑥
𝑘
𝑢𝑣 ≤ 𝐸max, for all 𝑘 ∈ 𝐾 (6)

∑

𝑘∈𝐾
∑

𝑢→𝑣∈𝐶 𝑥
𝑘
𝑢𝑣 ≤ 1, for all 𝐶 ∈ 1 (7)

∑

𝑘∈𝐾
∑

𝑢→𝑣∈𝐶 𝑥
𝑘
𝑢𝑣 ≥ 1, for all 𝐶 ∈ 2 (8)

𝑥𝑘𝑢𝑣 ∈ {0, 1}, for all 𝑘 ∈ 𝐾, 𝑢→ 𝑣 ∈ 𝐴 (9)

he objective function (1) is the total profit of the solution, which is the difference between total profit achieved from assigning
us services to buses and the operational costs derived from the fixed and deadheading costs. Constraints (2) require the total flow
f each bus emanating from vertex �̄� to be 1, and constraints (3) require the total flow of each bus entering vertex 𝑑 to be 1.
onstraints (4) are flow balance constraints for buses. Constraints (5) require that a bus returns to the same depot it left to begin its
rips, where 𝐴+

𝑑 denotes the set of all pull-in arcs corresponding to depot 𝑑 (e.g., pull-in arc 𝜌𝑑1 → 𝜌𝑠1 ,0 in Fig. 1) and 𝐴−
𝑑 denotes the

et of all pull-out and inventory arcs corresponding to depot 𝑑 (e.g., pull-out arc 𝜌𝑠1 ,12 → �̄�𝑑1 and inventory arcs 𝑎6, 𝑎7, 𝑎8 and 𝑎9 in
Fig. 1). Constraints (6) require that the electricity consumed in a bus route is no greater than the maximum battery capacity of the
bus, where 𝑒𝑢𝑣 denotes the quantity of electricity consumed on arc 𝑢 → 𝑣. Constraints (7) and (8), respectively, cover all minimum
nd maximum headway time constraints presented in Section 3.2. As the minimum cost multi-commodity network flow problem
s more widely researched in the literature, in the following, we reformulate problem 𝐏 as problem 𝐏 for the convenience
9

max min
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of presentation.

Pmin: Minimize ∑

𝑘∈𝐾
∑

𝑢→𝑣∈𝐴 𝑐(𝑢, 𝑣)𝑥𝑘𝑢𝑣
subject to constraints (2)–(9).

4. Lagrangian relaxation heuristic

In this section, we present a Lagrangian relaxation heuristic to solve the proposed model 𝐏min. Lagrangian relaxation heuristic
as a nice property which permits us to decompose a complex problem into a series easy-solved problems, and it has been widely
sed to solve bus/vehicle routing and timetabling problems, see, e.g., Carosi et al. (2019), Xu et al. (2018), and Lu et al. (2022).

.1. Lagrangian relaxation

We use the Lagrangian method to relax constraints (7) and (8) of problem 𝐏min, and denote 𝜆𝐶 ≥ 0 (𝐶 ∈ 1) and 𝜇𝐶 ≥ 0 (𝐶 ∈ 2)
s their respective Lagrangian multipliers. Incorporating these relaxed constraints into the objective function with Lagrangian
ultipliers 𝜆 and 𝜇, we obtain the Lagrangian relaxed problem 𝐏(𝜆, 𝜇) (see below), where 𝜆 and 𝜇 are the vectors of the 𝜆𝐶 and 𝜇𝐶

alues, respectively.

𝐏min(𝜆, 𝜇) ∶ Minimize ∑

𝑘∈𝐾
∑

𝑢→𝑣∈𝐴 𝑐(𝑢, 𝑣)𝑥𝑘𝑢𝑣 +
∑

𝐶∈1 𝜆𝐶 (
∑

𝑘∈𝐾
∑

𝑢→𝑣∈𝐶 𝑥
𝑘
𝑢𝑣 − 1)

+
∑

𝐶∈2 𝜇𝐶 (1 −
∑

𝑘∈𝐾
∑

𝑢→𝑣∈𝐶 𝑥
𝑘
𝑢𝑣)

subject to constraints (2)–(6) and (9).

s all relaxed constraints are related only to inventory arcs, we let 𝐴𝑖𝑛𝑣 denote the set of all inventory arcs in our time-space network
.

After removing the constant ∑𝐶∈2 𝜇𝐶 −
∑

𝐶∈1 𝜆𝐶 from the objective function of 𝐏(𝜆, 𝜇), this Lagrangian relaxation problem can
e decomposed into |𝐾| independent subproblems. The subproblem corresponding to each 𝑘 ∈ 𝐾 is as follows:

𝐏𝑘(𝜆, 𝜇) ∶ Minimize ∑

𝑢→𝑣∈𝐴 𝑐(𝑢, 𝑣)𝑥𝑘𝑢𝑣 +
∑

𝐶∈1
∑

𝑢→𝑣∈𝐶 𝜆𝐶𝑥
𝑘
𝑢𝑣 −

∑

𝐶∈2
∑

𝑢→𝑣∈𝐶 𝜇𝐶𝑥
𝑘
𝑢𝑣

subject to ∑

{𝑣∶�̄�→𝑣∈𝐴} 𝑥
𝑘
�̄�𝑣 = 1

∑

{𝑢∶𝑢→𝑑∈𝐴} 𝑥
𝑘
𝑢𝑑

= 1
∑

{𝑣∶𝑢→𝑣∈𝐴} 𝑥
𝑘
𝑢𝑣 =

∑

{𝑣∶𝑣→𝑢∈𝐴} 𝑥
𝑘
𝑢𝑣, for all 𝑢 ∈ 𝑁 ⧵ {�̄�, 𝑑}

∑

{𝑢→𝑣∈𝐴+
𝑑 }
𝑥𝑘𝑢𝑣 =

∑

{𝑢→𝑣∈𝐴−
𝑑 }
𝑥𝑘𝑢𝑣, for all 𝑑 ∈ 𝐷

∑

{𝑢→𝑣∈𝐴} 𝑒𝑢𝑣𝑥
𝑘
𝑢𝑣 ≤ 𝐸max,

𝑥𝑘𝑢𝑣 ∈ {0, 1}, for all 𝑢 → 𝑣 ∈ 𝐴

ach subproblem 𝐏𝑘(𝜆, 𝜇) is a constrained shortest path problem with revised arc lengths 𝛿𝑢𝑣 which are determined as follows:

𝛿𝑢𝑣 =
{

𝑐(𝑢, 𝑣) +
∑

{𝐶∈1∶𝑢→𝑣∈𝐶} 𝜆𝐶 −
∑

{𝐶∈2∶𝑢→𝑣∈𝐶} 𝜇𝐶 , if 𝑢 → 𝑣 ∈ 𝐴𝑖𝑛𝑣;
𝑐(𝑢, 𝑣), otherwise.

e then develop a relaxed solution heuristic using a labeling algorithm to obtain the constrained shortest path.
Given any vectors 𝜆 and 𝜇, a lower bound on the optimal objective value of problem 𝐏 can be obtained by solving the relaxed

roblem 𝐏min(𝜆, 𝜇). A tight lower bound can be obtained by solving the optimization problem

max
𝜆,𝜇

𝐏min(𝜆, 𝜇),

hich is referred to as the Lagrangian multiplier problem associated with the original optimization 𝐏min (see, e.g., Ahuja et al.,
993, p. 606), where the subgradient optimization procedure presented in Section 4.4 is used to find the optimal Lagrangian
ultipliers. The solution of problem 𝐏min(𝜆, 𝜇) enables the upper bound of problem 𝐏max to be obtained. If these buses are considered
omogeneous, the |𝐾| subproblems are identical. We then need to solve only one of them when we determine the lower bound on
he optimal objective value of problem 𝐏min, which is equal to

(

the length of the shortest path × |𝐾| +
∑

𝐶∈2 𝜆𝐶 −
∑

𝐶∈1 𝜇𝐶
)

.
To obtain tighter lower bounds and better feasible solutions, we adopt a subgradient optimization procedure to find the near-

ptimal Lagrangian multipliers, as shown in Section 4.4. At each iteration of the subgradient optimization procedure, the following
teps may be executed. First, determining the lower bound of 𝐏min by solving the relaxed problem with the developed relaxed solution
euristic that is presented in Section 4.2. Second, determining the upper bound by the feasible solution heuristic that is presented
n Section 4.3. Third, updating Lagrangian multipliers using the method in Section 4.4 with the obtained lower and upper bounds.
lgorithm 1 summarizes the entire Lagrangian heuristic, where we execute these steps iteratively, until the number of iterations
its a prespecified limit 𝑀𝑎𝑥𝐼𝑡𝑒𝑟. To save the computational time, we may execute the feasible solution heuristic with different
robabilities at different iterations, as the feasible solution heuristic is time-consuming and it will be less likely to be able to obtain
better upper bound solution at later iterations. Moreover, we reduce the value of step size 𝜃 if the incumbent best lower bound
10

as not been improved for certain consecutive iterations.



Transportation Research Part C 149 (2023) 104057X. Xu et al.

(
i
𝐸

+
(
𝑑
v

a
t
h

Algorithm 1 Lagrangian relaxation heuristic
1: Input: System data, initialize iteration number 𝑖 = 1, optimality gap 𝑔𝑎𝑝 = 100%, the best upper bound

𝑈𝐵min = +∞, best lower bound 𝐿𝐵min = −∞, maximum iteration number 𝑀𝑎𝑥𝐼𝑡𝑒𝑟, step size 𝜃
2: while 𝑖 < 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 do
3: Step 1: Use the relaxed solution heuristic (see Algorithm 2 in Section 4.2) to obtain lower bound 𝑙𝑏,

let 𝐿𝐵min ← max{𝑙𝑏, 𝐿𝐵min}, reduce 𝜃 if 𝐿𝐵min is not improved for certain iterations
4: Step 2: Use the feasible solution heuristic (see Algorithm 3 in Section 4.3) to obtain upper bound 𝑢𝑏

with different probabilities, let 𝑈𝐵min ← min{𝑢𝑏, 𝑈𝐵min}
5: Step 3: Update Lagrangian multipliers (see Section 4.4), let 𝑔𝑎𝑝 ← 𝑈𝐵min−𝐿𝐵min

𝐿𝐵min
× 100%, 𝑖← 𝑖 + 1

6: end while
7: Output: 𝐿𝐵min, 𝑈𝐵min and the best feasible solution

4.2. Relaxed solution heuristic

Labeling algorithms have been widely used to find constrained shortest paths; see, e.g., Tong et al. (2017), Righini and Salani
2008), Lozano et al. (2016) and Xu et al. (2018). Our relaxed solution heuristic (see Algorithm 2) also includes a labeling algorithm
n which for each 𝑣 ∈ 𝑉 , we introduce a two-dimensional label (𝐿𝑣, 𝐸𝑣), where 𝐿𝑣 denotes the length of a path from vertex �̄� to 𝑣, and
𝑣 denotes the electricity consumed along this path. We first initialize a label set  = {(𝐿�̄�, 𝐸𝑑 )} = {(0, 0)} and denote the shortest

path length by 𝐿min = +∞. For each depot 𝑑 ∈ 𝐷, we first set the lengths of all pull-in, pull-out and inventory arcs equal to those in
{𝛿𝑢𝑣 ∣ 𝑢 → 𝑣 ∈ 𝐴} and temporarily set the lengths of all pull-in, pull-out and inventory arcs corresponding to depot 𝑑′ ∈ 𝐷 ⧵ {𝑑} to
∞, which implicity satisfies the depot constraints. We then execute the while loop in Algorithm 2. In each loop, we consider label
𝐿𝑢, 𝐸𝑢) = argmin{𝐿𝑢 + �̃�𝑢 ∣ (𝐿𝑢, 𝐸𝑢) ∈ }, where �̃�𝑢 is the length of the shortest path (with arc length {𝛿𝑢𝑣 ∣ 𝑢 → 𝑣 ∈ 𝐴}) from 𝑢 to
̄, if 𝑢 = 𝑑, we update 𝐿min = min{𝐿𝑣, 𝐿min} and break the while-loop. Otherwise, if the length of arc 𝑢 → 𝑣 is finite, we extend to
ertex 𝑣 the label (𝐿𝑣, 𝐸𝑣), where 𝐿𝑣 = 𝐿𝑢 + 𝑐𝑢𝑣 and 𝐸𝑣 = 𝐸𝑢 + 𝑒𝑢𝑣. We can then obtain new labels for all vertices in 𝑢’s succeeding

vertex set 𝑆𝑢𝑐𝑐(𝑢).

Algorithm 2 Relaxed solution heuristic
1: Input: Network 𝐺, arc length {𝛿𝑢𝑣 ∣ 𝑢 → 𝑣 ∈ 𝐴}

initialize label set  = {(𝐿�̄�, 𝐸�̄�) = (0, 0)}, shortest path length 𝐿min = +∞
2: for 𝑑 ∈ 𝐷 do
3: set the lengths of all pull-in, pull-out and inventory arcs as the same as that in {𝛿𝑢𝑣 ∣ 𝑢 → 𝑣 ∈ 𝐴}, while

reset the lengths of all pull-in, pull-out and inventory arcs corresponding to depot 𝑑′ ∈ 𝐷 ⧵ {𝑑} as +∞
4: while label set  is not empty do
5: select the label (𝐿𝑢, 𝐸𝑢) = argmin{𝐿𝑢 + �̃�𝑢 ∣ (𝐿𝑢, 𝐸𝑢) ∈ }
6: if 𝑣 = 𝑑 then
7: update 𝐿min = min{𝐿𝑣, 𝐿min}; break;
8: else
9: generate (𝐿𝑣, 𝐸𝑣) = {𝐿𝑢 + 𝑐𝑢𝑣, 𝐸𝑢 + 𝑒𝑢𝑣} to each 𝑣 in vertex 𝑢’s succeeding vertex set 𝑆𝑢𝑐𝑐(𝑢)

10: for each new generated label (𝐿𝑣, 𝐸𝑣) for 𝑣 ∈ 𝑆𝑢𝑐𝑐(𝑢):
(1) if 𝐿𝑣 + �̃�𝑣 > 𝐿min or 𝐸𝑣 + �̃�𝑣 > 𝐸max or (𝐿𝑣, 𝐸𝑣) is dominated by other labels, then prune

label (𝐿𝑣, 𝐸𝑣); otherwise, add label (𝐿𝑣, 𝐸𝑣) into label set 
(2) if some labels in  are dominated by (𝐿𝑣, 𝐸𝑣), then remove these labels from 

11: end if
12: end while
13: end for
14: Output: shortest path length 𝐿min

To speed up the labeling algorithm, two dominance pruning strategies are developed to handle the scale of the extended labels
ccording to the characteristics of our constrained shortest path problem. In the first pruning strategy, let (𝐿1

𝑣, 𝐸
1
𝑣 ) and (𝐿2

𝑣, 𝐸
2
𝑣 ) be

wo labels associated with the same vertex 𝑣 ∈ 𝑉 . Label (𝐿1
𝑣, 𝐸

1
𝑣 ) can be said to dominate label (𝐿2

𝑣, 𝐸
2
𝑣 ) if the following conditions

old: (i) 𝐿1
𝑣 ≤ 𝐿2

𝑣 and (ii) 𝐸1
𝑣 ≤ 𝐸2

𝑣 , in which (𝐿2
𝑣, 𝐸

2
𝑣 ) would thereby be pruned. In the second pruning strategy, for each 𝑣 ∈ 𝑉 , label

(𝐿 ,𝐸 ) would be pruned if 𝐸 + �̃� > 𝐸 or 𝐿 + �̃� > 𝐿 , where �̃� is the minimum required quantity of electricity consumed
11
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among the paths from 𝑣 to 𝑑. Each newly generated label will be added to label set  if it is not pruned. Similarly, some labels in
et  will also be removed from  if they are dominated by the newly generated labels.

.3. Feasible solution heuristic

We now present an upper bound heuristic that generates feasible solutions to the problem of determining the upper bound of
min, where the Lagrangian dual information derived from the nonnegative vectors 𝜆 and 𝜇 used in the lower bound solution method

s adopted. The lower bound of problem 𝐏max can be derived using the feasible solution to problem 𝐏min. The heuristic has three
hases: the first phase constructs a bus schedule and a bus timetable satisfying the minimum departure headway constraints (7), the
econd phase attempts to make the aforementioned relaxed solution feasible by inserting more bus services satisfying the maximum
eadway time constraints (8) and the third phase aims to improve the quality of the obtained feasible bus timetable. We describe
hese three phases in detail below and summarize this heuristic in Algorithm 3.

Algorithm 3 Feasible solution heuristic
1: Input: Network 𝐺, arc length {𝛿𝑢𝑣 ∣ 𝑢 → 𝑣 ∈ 𝐴}
2: Phase 1: Generate relaxed solution
3: for 𝑘 ∶= 𝑘1, 𝑘2,… , 𝑘

|𝐾|

do
4: apply the relaxation solution heuristic to construct a route for 𝑘 with arc length 𝛿𝑘𝑢𝑣, see equation (10),

where the routes of bus determined before 𝑘 remain unchanged
5: end for
6: Phase 2: Make relaxed solution feasible
7: for each pair of scheduled adjacent trips 𝑚, 𝑛 for the same line 𝑙 ∈ 𝐿 such that the time of 𝑡𝑚 + 𝑔𝑙 (𝑡𝑚 is trip 𝑚’s departure time

) is earlier than 𝑛’s departure time 𝑡𝑛, i.e., 𝑡𝑚 + 𝑔𝑙 < 𝑡𝑛 do
8: if 𝑡𝑚 + ℎ𝑙 ≤ 𝑡𝑛 − ℎ𝑙 then

execute the insert (see Algorithm 4) operation
9: else if 𝑡𝑚 + ℎ𝑙 > 𝑡𝑛 − ℎ𝑙 then

10: execute the shift (see Algorithm 5) operation
11: end if
12: end for
13: Phase 3: Improve feasible solution
14: for each 𝑘 ∈ 𝐾 that has been assigned to work do
15: if there exists a bus route 𝑟𝑘′ that can be performed by bus 𝑘 after completing its route 𝑟𝑘 then
16: combine routes 𝑟𝑘 and 𝑟𝑘′ , and make bus 𝑘′ idle by updating 𝐾 ← 𝐾 ⧵ {𝑘′}
17: end if
18: end for
19: Output: A feasible solution or a sufficient big cost in case of no feasible solution is found

Phase 1: We construct routes for buses one by one in a predetermined sequence (e.g., bus ID), where each route corresponds to a
path from vertex �̄� to vertex 𝑑 in network 𝐺. When we construct bus 𝑘’s route, the routes determined before the construction remain
unchanged. To ensure that the route for bus 𝑘 does not violate the minimum departure headway time constraints (7) of problem
𝐏min, we need to prevent its corresponding path in network 𝐺 from traversing arcs that are incompatible with the existing paths.
To this end, using the existing paths, we construct a set ̃1 to cover all possible incompatible arc sets, in which each incompatible
inventory arc set 𝐶1

𝑙𝑡 ∈ ̃1 is the same as that defined in Section 3.2. Specifically, for each 𝑙, if there exists a scheduled bus service
trip with departure time of 𝑡, we add the incompatible inventory arc set 𝐶1

𝑙𝑡 to set ̃1. To ensure that no arc in ̃1
𝑙 can be traversed

by bus 𝑘, we revise the arc lengths in the set to +∞. Letting 𝛿𝑘𝑢𝑣 denote the revised arc length of 𝑢 → 𝑣 ∈ 𝐴, we set

𝛿𝑘𝑢𝑣 =
{

+∞, if 𝑢 → 𝑣 ∈ 𝐶, for each 𝐶 ∈ ̃1;
𝛿𝑢𝑣, otherwise.

Using the arc lengths {𝛿𝑘𝑢𝑣 ∣ 𝑢 → 𝑣 ∈ 𝐴}, we construct a route for bus 𝑘 by obtaining the shortest path from vertex �̄� to vertex 𝑑 in
network 𝐺 using a dynamic programming algorithm. The collection of the paths (or routes) constructed in Phase 1 for all the buses
forms an initial relaxed solution to problem 𝐏min that satisfies the minimum departure headway constraints; see, e.g., constraints
(7), which however may not satisfy the maximum departure headway constraints; see, e.g., constraints (8). For each line 𝑙 ∈ 𝐿, let
𝐶𝑙𝑡 be the arc set of the inventory arcs whose departure time is in [𝑡 − 𝑔𝑙 , 𝑡] (𝑡 ∈ {𝑔𝑙 , 𝑇 − 𝜏𝑙}). To ensure that a bus service trip is
generated during the first (last) 𝑔𝑙 time instants, at the beginning of Phase 1 we set the length of the inventory arc in 𝐶𝑙,𝑔𝑙 (𝐶𝑙,𝑇−𝜏𝑙 )
to a negative value that is small enough to ensure a bus traverses these arcs. Once an inventory arc in 𝐶𝑙,𝑔𝑙 (𝐶𝑙,𝑇−𝜏𝑙 ) is selected, we

𝑘

12

reset the length of the inventory arc in 𝐶𝑙,𝑔𝑙 (respectively 𝐶𝑙,𝑇−𝜏𝑙 ) to its original arc length 𝛿𝑢𝑣. This may reduce the computational
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burden of repairing the obtained relaxed solution in Phase 2. Moreover, we can further refine the relaxed solution by deleting routes
that contain only non-working arc �̄�→ 𝑑.

Phase 2: For each line 𝑙, considering each pair of adjacent scheduled bus service trips 𝑚 and 𝑛 such that the difference between
their departure times 𝑡𝑚 and 𝑡𝑛 is larger than the maximum departure headway time 𝑔𝑙 (i.e., 𝑡𝑚 + 𝑔𝑙 < 𝑡𝑛), we can execute an insert
operation or a shift operation to modify the current solution. When 𝑡𝑚 + ℎ𝑙 ≤ 𝑡𝑛 − ℎ𝑙, we use the insert operation presented in
Algorithm 4 to try insert a new bus service 𝓁 such that 𝑡𝑚 + ℎ𝑙 ≤ 𝑡𝓁 ≤ 𝑡𝑛 − ℎ𝑙 and modify some bus routes to ensure their feasibility.
In this insert operation, we first check all the existing bus routes, and if a route 𝑟𝑘 corresponding to bus 𝑘 exists that can pick
up a newly generated bus service 𝓁 without deadhead trips, we add this service trip 𝓁 to route 𝑟𝑘 and insert it in the current bus
timetable. Otherwise, we generate a new bus service trip 𝓁 such that 𝑡𝓁 = 𝑡𝑚 + ℎ𝑙 and construct a new bus route by assigning this
trip to an idle bus that has not been assigned to any work in the relaxed solution. After executing an insert operation for the second
situation, the existing service trip 𝑚 and the newly generated service trip 𝓁 must satisfy the maximum headway time constraint as
𝑡𝓁 = 𝑡𝑚 + ℎ𝑙, while the newly generated service trip 𝓁 and the existing service trip 𝑛 may satisfy the maximum headway constraint
as 𝑡𝓁 ≤ 𝑡𝑛 − ℎ𝑙.

Algorithm 4 Insert operation
1: Input: current solution, two adjacent trips 𝑚, 𝑛 and corresponding departure time 𝑡𝑚 and 𝑡𝑛
2: for 𝑡 ∈ [𝑡𝑚 + ℎ𝑙 , 𝑡𝑛 − ℎ𝑙] do
3: if there exists a bus 𝑘 that has been assigned work can perform a newly generated bus service trip 𝓁

whose departure time is 𝑡 without deadhead trips then
4: add trip 𝓁 to bus 𝑘’s route 𝑟𝑘, break
5: end if
6: end for
7: if no new service trip is generated then generate a new service trip 𝓁 with departure time of 𝑡𝑚 + ℎ𝑙, and

assign trip 𝓁 to an idle bus 𝑘
8: end if
9: Output: revised solution

When 𝑡𝑚 + ℎ𝑙 > 𝑡𝑛 − ℎ𝑙, we cannot directly insert a new bus service trip between service trips 𝑚 and 𝑛, but we can change
their departure times using the shift operation presented in Algorithm 5 to reduce the difference between 𝑡𝑚 and 𝑡𝑛 and satisfy the

aximum departure headway time constraints. We can also increase the difference between 𝑡𝑚 and 𝑡𝑛 to enable new bus service
rips to be inserted between service trips 𝑚 and 𝑛. For convenience of presentation, we let 𝑅(𝑚) denote the bus route that covers
ervice trip 𝑚. Here, we consider the following three situations: (i) if 𝑡𝑚 can be delayed for 1 min while 𝑅(𝑚) and the trip pair (𝑚, 𝑛)
emain feasible, we delay 𝑡𝑚 by 1 min, and accordingly update 𝑡𝑚 = 𝑡𝑚 + 1; (ii) if 𝑡𝑛 can be advanced by 1 min while 𝑅(𝑛) and the
rip pair (𝑛,𝓁) remain feasible, where 𝓁 is the next bus service trip to 𝑛, we advance 𝑡𝑛 by 1 min, and accordingly update 𝑡𝑛 = 𝑡𝑛 −1;
iii) if it is not advantageous to delay of advance service trip 𝑚 or 𝑛’s departure time by 1 min, we change service trip 𝑚’s departure
ime to 𝑡𝑛 − ℎ𝑙 to possibly increase the departure headway time between service trips 𝓁′ and 𝑚, where 𝓁′ is the scheduled service
rip that precedes 𝑚; meanwhile, we assign the new service trip 𝑚 to an idle bus 𝑘 and accordingly update 𝑅(𝑚) ← 𝑅(𝑚) ⧵ {𝑚} and
𝑘 ← {𝑚}.

Algorithm 5 Shift operation
1: Input: current solution, two adjacent trips 𝑚, 𝑛 and corresponding departure time 𝑡𝑚 and 𝑡𝑛
2: if 𝑡𝑚 can be delay for one minute while the feasibilities of trips pair (𝑚, 𝑛) and the route 𝑅(𝑚) that contains

trip 𝑚 are still ensured then
3: set 𝑡𝑚 = 𝑡𝑚 + 1
4: else if 𝑡𝑛 can be advanced for one minute while the feasibilities of trips pair (𝑚, 𝑛) and the route 𝑅(𝑛) that

contains trip 𝑛 are still ensured then
5: set 𝑡𝑛 = 𝑡𝑛 − 1
6: else
7: set 𝑡𝑚 = 𝑡𝑛 − ℎ𝑙, 𝑅(𝑚) ← 𝑅(𝑚) ⧵ {𝑚}, and assign bus service trip 𝑚 to an idle bus
8: end if
9: Output: revised solution

Phase 3: If Phase 2 generates a feasible solution, we try to improve its quality by reducing the bus fleet size as much as possible.
This reduction can be achieved if, for each bus 𝑘 ∈ 𝐾, another bus 𝑘′ ∈ 𝐾 with the same depot exists such that the starting time
13
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of bus route 𝑟𝑘′ is later than the ending time of bus route 𝑟𝑘 and one of the following conditions holds: (i) the ending depot of 𝑟𝑘
and the starting depot of 𝑟𝑘′ are the same or (ii) the difference between the starting time of 𝑟𝑘′ and the ending time of 𝑟𝑘 is long
enough to accommodate the deadhead trip time of 𝑘 from 𝑟𝑘’s ending depot to 𝑟𝑘′ ’s starting depot. If these conditions hold, we use
bus 𝑘 for bus 𝑘′’s service trips and make bus 𝑘′ idle, which saves the cost 𝑐𝑓 of using 𝑘′.

4.4. Subgradient optimization procedure

In this section we adopt a widely used subgradient optimization procedure to find the near-optimal Lagrangian multipliers 𝜆
and 𝜇 to obtain tighter lower bound. Let 𝛬 = {𝜆1, 𝜆2,… , 𝜆

|1|, 𝜇1, 𝜇2,… , 𝜇
|2|} be the set of all Lagrangian multipliers in vectors

𝜆 and 𝜇, and 𝜂 = {𝜂1, 𝜂1,… , 𝜂
|1|+|2|} be the subgradient vector corresponding to Lagrangian multiplier vector 𝛬. The subgradient

optimization procedure is an iterative approach, in which each component in 𝛬 is initialized as 0 at the first iteration. Let 𝜆𝜅𝑖 , 𝜇𝜅𝑖 and
𝜂𝜅𝑖 be the 𝑖th components of vector 𝜆, 𝜇 and 𝜂 at 𝜅th iteration of the subgradient optimization, respectively. Lagrangian multipliers
𝜆 and 𝜇 then can be updated according to the following formulation (see, e.g., Held and Karp, 1971):

𝜆𝜅𝑖 ← max{𝜆𝜅−1𝑖 + 𝜃 ⋅
𝑈𝐵min − 𝐿𝐵min(𝜆, 𝜇)

‖𝜂𝜅‖2
⋅ 𝜂𝜅𝑖 , 0} (𝑖 = 1, 2,… , |1|)

and

𝜇𝜅𝑖 ← max{𝜇𝜅−1𝑖 + 𝜃 ⋅
𝑈𝐵min − 𝐿𝐵min(𝜆, 𝜇)

‖𝜂𝜅‖2
⋅ 𝜂𝜅𝑖+|1|, 0} (𝑖 = 1, 2,… , |2|)

where 𝑈𝐵min is the objective value of the incumbent best feasible solution for problem 𝐏min, 𝐿𝐵min(𝜆, 𝜇) is the optimal objective
value of 𝐏min(𝜆, 𝜇) at current iteration with current Lagrangian multiplier values 𝜆 and 𝜇, and parameter 𝜃 is a preset step size of
the subgradient optimization procedure.

5. Computational study

In this section, we conduct a computational study to examine the effectiveness and performance of our modeling and solving
methods. The developed solution method is implemented using C# language, and all the test instances are solved on a personal
computer with a 3.60 GHz Intel Core i7-7700 processor and 16 GB RAM. Section 5.1 introduces the method for generating test
instances, followed by the computational result reports, analysis and discussions in Sections 5.2 and 5.3. In our implementation of
the subgradient optimization procedure, parameter 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 is set to 15,000. The step size 𝜃 is initialized as 2.0 and reduced by
10% if 𝐿𝐵min is not improved for 160 or more consecutive iterations. We execute the feasible solution heuristic with probability of
1.0 (respectively 0.2) if the number of iterations is no greater than 50 (respectively greater than 50).

5.1. Instance generation

Our computational study can be divided into two parts. In the first part, we conduct four sets of test instances using a simple
line topology with two depots and two opposing lines; see Fig. 1(a). The first set consists of small-size test instances that can be
solved using the CPLEX solver and the proposed LRH, to investigate the effectiveness of our solution method. The second set of test
instances uses data from Line 119 operated by Hefei Public Transport Group. The third set consists of test instances conducted to
observe the computational results with various values of minimum and maximum headway times. The fourth set consists of test
instances conducted to check whether the computational results are influenced by different combinations of the ratio of ‘‘fixed cost
𝑐𝑓 ’’ to ‘‘service profit 𝑓𝑙 ’’ and the ratio of ‘‘deadhead cost 𝑐𝑑 × 𝛼𝑝𝑙 ,𝑞𝑙 ’’ to ‘‘service profit 𝑓𝑙 ’’. In these two instance sets, for each
(combination of) tuned parameter(s), we randomly generate three test instances, where 80 buses (i.e., |𝐾| = 80) are considered in
each instance.

In the second part of our computational study, we test our modeling and solving method using four complex line topologies,
as shown in Fig. 3, where deadheading between each pair of termini is allowed. The first line topology, denoted by LT-1, consists
of three termini, three depots, and two pairs of opposing lines, where one terminus is shared by all of the four lines, and the
maximum deadhead trip time between termini is less than the minimum service trip time of all the lines, see Fig. 3(a). The second
line topology, denoted by LT-2, is similar to the first, except that the maximum deadhead trip time between termini is at least equal
to the maximum service trip time, see Fig. 3(b). The third line topology, denoted by LT-3, consists of four termini, four depots,
and two independent pairs of opposing lines, in which the maximum deadhead trip time between termini is less than the minimum
service trip time; see Fig. 3(c). The fourth line topology, denoted by LT-4, is similar to the third, except that the maximum deadhead
trip time between termini is at least equal to the maximum service trip time; see Fig. 3(d). For each line topology, we randomly
generate five instances, where 180 buses (i.e., |𝐾| = 180) are considered in each instance.

We generate the data of each instance as follows, unless otherwise specified. The planning horizons in our test instances are the
same [0, 1080], e.g., from 6 ∶ 00 to 24 ∶ 00, in which there are two peak periods [7 ∶ 00, 9 ∶ 00) and [17 ∶ 00, 19 ∶ 00) and three
off-peak periods, including [6 ∶ 00, 7 ∶ 00), [9 ∶ 00, 17 ∶ 00) and [19 ∶ 00, 24 ∶ 00]. Without loss of generality, for each terminus of
each line 𝑙 ∈ 𝐿, we assume that there exists an adjoining depot. The service trip time 𝜏𝑙 is randomly selected from {60, 65,… , 85, 90},
the probability of selecting a particular component being 1/7. For each line 𝑙 with service trip time 𝜏𝑙, its opposing line 𝑙′’s service
trip time is set to the round value of 𝜏𝑙 ⋅ 𝜑𝑙, where 𝜑𝑙 is randomly selected from {1.00, 1.01,… , 1.19} and the probability of each
14

value being selected is 1/20. For example, when 𝜏𝑙 = 65 min and 𝜑 = 1.10, 𝜏𝑙′ = 65 ⋅ (1.10) ≈ 72 min. Similarly, the deadhead trip
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Fig. 3. Four line topologies.

time is 𝜏𝑙∕𝜓𝑝𝑙 ,𝑞𝑙 rounded to the nearest integer, where 𝜓𝑙 is randomly selected from {0.61, 0.62,… , 1.00}, the probability of selecting
a particular component being 1/40. The pull-in and pull-out times (in minutes) between the depot and its adjoining terminus are
randomly selected from {5, 6, 7, 8, 9}, the probability of selecting a particular component being 1/5. The pull-in (pull-out) time
between the depot and other more distant termini is set to the sum of the pull-in (pull-out) time and the deadhead time between its
adjoining terminus and other more distant termini. Moreover, we set the maximum battery capacity 𝐸max to 100 and the electricity
𝑒𝑘 consumed per unit time while running to 0.1, which means that each electric bus can run at most (100∕0.1∕60) ≈ 16.67 hours when
one unit time is defined as 1 min. When the minimum headway time ℎ𝑙 is determined, the maximum headway time 𝑔𝑙 is generated
as 𝑔𝑙 = ℎ𝑙 + 𝛥ℎ. The minimum dwell time is set to 5 min; i.e., 𝛽 = 5. Moreover, we set the fixed cost 𝑐𝑓 = 2.0 ⋅ 𝑓𝑙 and the deadhead
cost 𝑐𝑑 × 𝛼𝑝𝑙 ,𝑞𝑙 = 0.5 ⋅𝑓𝑙. For simplicity, the monetary unit is scaled such that 𝑓𝑙 = 1. For the second part of our computational study,
the minimum headway time ℎ𝑙 for each line 𝑙 ∈ 𝐿 in the peak and off-peak periods is set to 3 and 6 min, respectively. The value
of 𝛥ℎ is randomly selected from {3, 4, 5} and each component is selected with probability of 1/3. The Appendix describes in detail
the method of generating the deadhead trip time between two termini that belong to different pairs of lines.

For each test instance, we record the numbers of generated service trips and deadhead trips. As a feasible solution may not be
obtained for every execution of the solution method presented in Section 4.3, we record the ratio of the number of times a feasible
solution was obtained to the number of times the feasible solution heuristic was executed (see the ‘‘Average LB generation rate’’
column in Tables 8 and 9). For each instance, we also record the optimality gap and profitability index, which are defined as

𝐺𝑎𝑝 = 𝑈𝐵 − 𝐿𝐵
𝐿𝐵

× 100%, profitability index =
total profit
total cost ,

here 𝑈𝐵 is the objective value of problem 𝐏max with the optimal solution of 𝐏min(𝜆, 𝜇), 𝐿𝐵 is the objective value of problem
max with a feasible solution to problem 𝐏min, and the profitability index can be used to measure the profitability/attractiveness of
unning the bus lines.

.2. Computational study on the simple line topology

We first report the results of the first part of the computational study to evaluate the performance of our solution method and
bserve how the headway times, service trip profit and operating cost settings affect the solution.

.2.1. Results from small-scale test instances
We randomly generate five small-scale test instances using the aforementioned methods and parameters, except for the planning

orizon, which is set to [0, 360] rather than to [0, 1080]. We solve these small-scale instances using the commercial mixed-integer
inear programming solver CPLEX 22.1.0 and our LRH, where for each instance the running time limit of the solver is set to 10 h
nd the maximum number of iterations of the LRH is set to 10,000. We define the optimality gaps 𝐺𝑎𝑝1 and 𝐺𝑎𝑝2 as follows

𝐺𝑎𝑝1 =
𝑈𝐵𝐿𝑅𝐻 − 𝑈𝐵𝐶𝑝𝑙𝑒𝑥

𝑈𝐵𝐶𝑝𝑙𝑒𝑥
× 100% and 𝐺𝑎𝑝2 =

𝐿𝐵𝐿𝑅𝐻 − 𝐿𝐵𝐶𝑝𝑙𝑒𝑥
𝐿𝐵𝐶𝑝𝑙𝑒𝑥

× 100%,

where 𝑈𝐵𝐿𝑅𝐻 and 𝑈𝐵𝐶𝑝𝑙𝑒𝑥 (respectively 𝐿𝐵𝐶𝑝𝑙𝑒𝑥 and 𝐿𝐵𝐿𝑅𝐻 ) are the upper bounds (the objective values) to problem 𝐏max obtained
by the CPLEX solver and LRH.

Table 4 summarizes the computational results from these small-scale test instances, where ‘‘|𝐾|’’ column report the numbers
15

f buses used in different solutions and ‘‘CT(s)’’ columns report the CPU time consumed in solving the considered problems. The
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Table 4
Computational results obtained by different methods.

Instance CPLEX solver Lagrangian relaxation heuristic 𝐺𝑎𝑝1 𝐺𝑎𝑝2

index 𝑈𝐵 𝐿𝐵 𝐺𝑎𝑝 CT(s) 𝑈𝐵 𝐿𝐵 𝐺𝑎𝑝 No. of trips |𝐾| CT(s)
1 58.67 51.00 15.03% 36000 51.67 51.00 1.30% 102 24 146.16 −13.55% 0.00%
2 59.50 51.50 15.53% 36000 51.58 51.50 0.16% 103 25 131.98 −15.35% 0.00%
3 57.50 50.50 13.86% 36000 51.25 49.50 3.54% 101 25 110.84 −12.19% −2.02%
4 57.00 50.50 12.87% 36000 51.25 48.00 6.77% 99 24 113.61 −11.22% −5.21%
5 64.50 61.00 5.74% 36000 61.52 55.50 10.85% 98 19 94.82 −4.84% −9.91%
Average: 59.43 52.90 12.61% 36000 53.45 51.10 4.61% 100.6 23.4 119.48 −11.18% −3.52%

Table 5
Computational results obtained by sequential and integrated optimization methods.

Instance TNT (CPLEX) VSP (CPLEX) TNT+VSP (SEQ) Integrated framework (LRH) 𝐺𝑎𝑝3

index OptV CT(s) OptV |𝐾| CT(s) OptV CT(s) 𝑈𝐵 𝐿𝐵 𝐺𝑎𝑝 |𝐾| CT(s)
1 410.0 0.09 −233.0 58.0 2839.58 177.0 2839.67 220.2 210.0 4.87% 35.0 1425.59 18.64%
2 415.0 0.07 −200.5 50.0 2528.95 214.5 2529.02 241.2 231.5 4.18% 33.0 2432.68 7.93%
3 412.0 0.08 −232.0 58.0 2583.30 180.0 2583.37 222.1 216.5 2.57% 35.0 1454.60 20.28%
4 410.0 0.08 −233.0 58.0 2600.17 177.0 2600.25 220.2 209.0 5.38% 36.0 941.91 18.08%
5 416.0 0.08 −189.0 47.0 2893.22 227.0 2893.29 247.7 239.0 3.66% 32.0 2380.92 5.29%
Average: 412.6 0.08 −217.5 54.2 2689.04 195.1 2689.12 230.3 221.2 4.11% 34.2 1727.14 13.38%

average optimality gap of the CPLEX solver is much greater than that of the proposed LRH, and the LRH consumes significantly
less CPU time than the CPLEX solver. These results confirm both effectiveness and efficiency of our modeling and solving methods.
Moreover, the ‘‘𝑈𝐵’’ columns show that the LRH can provide much tighter upper bounds for problem 𝐏max than the CPLEX solver.

he ‘‘𝐺𝑎𝑝2’’ column indicates that although the LRH on average produces worse feasible solutions than those produced by the CPLEX
olver, for two instances the feasible solutions produced by them have the same quality. It can be also observed that the last instance
hows a gap of 10.85% of LRH, the number of buses used in the last instance is 19 which is much less than those in other instances,
hile the number of generated trips in the last instance is slightly less than that in other instances. A plausible explanation for this

esult is the last instance may produce an optimal solution with less buses and 100 or more service trips, while the LRH generates
n ordinary solution with less trips and less profit which in turn results in a worse optimality gap. In conclusion, the computational
esults show that the proposed LRH can provide tighter bounds for the considered problems, but the heuristic that produces feasible
olutions needs to be improved with further optimization techniques.

.2.2. Trade-off between the bus timetable and vehicle schedule
In this section we investigate the advantage of the developed integrated optimization method. We generate five instances using

he aforementioned method and parameters, except for the fixed cost 𝑐𝑓 , which is 4.0 ⋅𝑓𝑙 rather than 2.0 ⋅𝑓𝑙. We solve TNT and VSP
sing CPLEX solver in a sequential manner, with the output of TNT as the input of VSP. The TNT aims to schedule as much service
rips as possible that can be formulated as

𝐏𝑇𝑁𝑇 ∶ Maximize objective function (1)

subject to constraints (7)–(9).

et �̂�𝑖𝑛𝑣 denote the set of all inventory arcs that are selected in the timetable solution of the TNT. The VSP aims at using least cost
o cover all obtained service trips that can be formulated as

𝐏𝑉 𝑆𝑃 ∶ Maximize objective function (1)

subject to ∑

𝑘∈𝐾
∑

𝑢→𝑣∈�̂�𝑖𝑛𝑣
𝑥𝑘𝑢𝑣 = 1, (10)

constraints (2)–(6), (9),

here for each inventory arc 𝑢 → 𝑣 ∈ 𝐴, its cost 𝑐(𝑢, 𝑣) is set to 0 (respectively +∞) if this arc is (respectively not) in inventory arc
et �̂�𝑖𝑛𝑣.

Table 5 summarizes the results obtained by the aforementioned sequential method SEQ and the developed integrated opti-
ization methods LRH, where ‘‘OptV’’ columns report the optimal objective values obtained by the CPLEX solver. The ‘‘𝐺𝑎𝑝3’’

olumn shows the optimality gaps between solutions obtained by SEQ and LRH, where the optimality gap 𝐺𝑎𝑝3 is defined as
00% × (𝐿𝐵𝐿𝑅𝐻 −𝑂𝑝𝑡𝑉𝑆𝐸𝑄)∕𝑂𝑝𝑡𝑉𝑆𝐸𝑄. From ‘‘𝐺𝑎𝑝3’’ and ‘‘CT(s)’’ columns, we can observe that compared with SEQ, the developed
RH can produce better solutions using less computational time and the improvement gaps range from 5.29% to 20.28%, which
eports the significance of integrating TNT and VSP decisions and demonstrate the effectiveness of LRH. Moreover, the |𝐾| columns
ndicate that in the solutions obtained by method SEQ, more buses are required to cover the obtained optimal bus timetable, thus
16

ncreasing the operational cost.
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Fig. 4. Bus line 119 in Hefei city (Google Maps: https://www.google.com/maps/place/Hefei,+Anhui,+China).

Table 6
Computational results on realistic test instances: Part 1.

Fixed cost 𝑈𝐵 𝐿𝐵 𝐺𝑎𝑝 No. of used buses No. of trips Profitability index CPU time(s)
1.00 303.53 294.00 3.24% 29.00 324.00 10.80 2458.11
2.00 274.66 269.00 2.10% 28.00 326.00 5.72 2514.54
3.00 245.88 242.00 1.60% 28.00 326.00 3.88 2562.05
4.00 217.20 214.00 1.50% 28.00 326.00 2.91 2356.69
Average: 260.32 254.75 2.11% 28.25 325.50 5.83 2472.85

Table 7
Computational results on realistic test instances: Part 2.
𝐸max 𝑈𝐵 𝐿𝐵 𝐺𝑎𝑝 No. of max𝑘∈𝐾{𝑁𝑘} min𝑘∈𝐾{𝑁𝑘} Sample CPU

used buses deviation of 𝑁𝑘 time(s)
70 274.70 262.00 4.85% 31.00 12.00 4.00 4.72 2840.21
80 274.67 269.00 2.11% 28.00 14.00 8.00 8.31 2738.56
90 274.66 270.00 1.73% 28.00 16.00 6.00 19.57 2285.69
100 274.66 269.00 2.10% 28.00 16.00 6.00 18.90 2463.61
110 274.66 269.00 2.10% 28.00 16.00 6.00 18.90 2465.75

5.2.3. Results from realistic test instances
As shown in Fig. 4, Bus Line 119 in Hefei city connects Hefei Railway Station (HRS) and Anhui Electrical Engineering School

(AEES, ‘‘Sheng DianQi XueXiao’’ in Chinese pronunciation). The application comprises 275 service trips covered by 24 buses;
i.e., each bus operates about 11.46 trips on average. There are 27 off-peak and peak periods (11 in one direction and 16 in the
other), and in each period the time span ranges from 30 min to 5 h, and the headway varies over a small range. For the realistic
test instances, the travel time along the service (deadhead) trip from HRS to AEES is set to 55 (27) minutes, and the travel time
along the service (deadhead) trip from AEES to HRS is set to 50 (25) minutes. The planning horizon is [0, 1020], e.g., from 6:00 to
23:00, in which there are two peak periods [6 ∶ 00, 8 ∶ 00) and [14 ∶ 00, 18 ∶ 00) and two off-peak periods [8 ∶ 00, 14 ∶ 00) and
[18 ∶ 00, 23 ∶ 00]. The minimum and maximum headways in the peak (off-peak) periods are set to 4 and 7 min (8 and 13 min).
Moreover, all the pull-in and pull-out times are set to 0. Other data in the realistic test instances are generated using the above
method unless otherwise specified.

Table 6 presents the computational results from the realistic test instances with four fixed cost settings. The results show that
the proposed LRH effectively solves the realistic cases and provide high-quality feasible solutions with an average optimality gap
of only 2.11%. The average computational time is 2472.85 s, i.e., 0.69 h, indicating that the LRH is suitable for practical off-line
transit planning. In the instances with fixed costs of 2.00, 3.00 and 4.00, the LRH generates 326 trips operated by 28 buses. That
is, each used bus serves 11.64 trips, which is slightly greater than the current value of 11.46. Thus, our LRH may produce better
vehicle schedules, which would improve the bus utilization. Moreover, the profitability index tends to decrease as the fixed cost
increases, because the total cost becomes higher as the value of vehicle fixed cost increases, and the influence of the profits is small
as the number of service trips varies over a small range.

Table 7 presents the computational results from the realistic test instances with five 𝐸max settings. We can see that when
𝐸 = 70, 80, the optimality gaps, upper and lower bounds are inferior to that of 𝐸 = 90, 100, 110, indicating that as the maximum
17
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Table 8
Computational results with different minimum and maximum headway times.

Instance ℎ𝑙 in ℎ𝑙 in 𝛥ℎ Average Average Average Ave- Ave- Ave- Profita- CPU
set peak off-peak no. of ser- no. of dead- LB gene- rage rage rage bility time(s)

periods periods vice trips head trips ration rate 𝑈𝐵 𝐿𝐵 𝐺𝑎𝑝 index
1 3 6 3 397.33 0.67 34.10% 304.46 296.33 2.73% 3.99 2341.62
2 3 6 4 391.33 0.67 40.92% 288.01 281.00 2.51% 3.55 2124.03
3 3 6 5 394.33 0.33 40.92% 303.94 296.17 2.64% 4.02 2422.34
4 3 6 6 372.33 1.67 40.88% 282.42 274.17 3.01% 3.84 1689.58
Average: 388.83 0.83 39.21% 294.71 286.92 2.72% 3.85 2144.39
5 4 7 3 327.00 1.67 37.48% 256.75 251.50 2.08% 4.34 2224.42
6 4 7 4 320.33 0.33 45.13% 258.05 250.83 2.88% 4.61 2031.56
7 4 7 5 321.67 0.33 51.55% 252.62 246.83 2.38% 4.37 2352.72
8 4 7 6 323.67 0.33 49.71% 257.87 251.50 2.57% 4.55 2216.72
Average: 323.17 0.67 45.97% 256.32 250.17 2.48% 4.47 2206.35
9 5 8 3 275.00 0.33 22.97% 216.97 210.83 2.93% 4.31 2023.13
10 5 8 4 278.67 1.33 44.87% 225.95 220.67 2.39% 4.81 2564.64
11 5 8 5 276.00 1.33 51.20% 228.59 222.67 2.67% 5.19 2525.58
12 5 8 6 274.00 1.33 58.46% 220.66 214.67 2.79% 4.73 2639.92
Average: 275.92 1.08 44.38% 223.04 217.21 2.69% 4.76 2438.32
13 6 9 3 242.67 2.67 21.31% 190.83 186.00 2.61% 4.31 1998.93
14 6 9 4 242.67 0.67 43.91% 196.59 192.33 2.21% 4.94 2202.79
15 6 9 5 242.33 2.33 56.12% 192.61 187.83 2.56% 4.47 2125.61
16 6 9 6 244.00 0.67 56.43% 200.84 197.00 1.95% 5.21 2590.24
Average: 242.92 1.58 44.44% 195.22 190.79 2.33% 4.73 2229.39

battery capacity increases, the negative influence of the battery capacity limit on the problem becomes less. We can see that in the
instances with small 𝐸max, the number of used buses is more than that of instances with bigger 𝐸max. This is because a bus can
perform less trips as the battery capacity is small, as shown in the ‘‘max𝑘∈𝐾{𝑁𝑘}’’ column, where 𝑁𝑘 is the number of service trips
covered by bus 𝑘. As shown in the ‘‘CPU time(s)’’ column, using more buses requires more computational time as more constrained
shortest path problems should be solved when determining feasible solutions. From the ‘‘Sample deviation of 𝑁𝑘’’, one can observe
that the instances with small battery capacity may produce paths whose lengths vary over a narrower range.

5.2.4. Results with various headway parameter settings
Table 8 summarizes the computational results with various minimum and maximum headway times, in which each column

reports the average result of three random instances. Table 8 shows that high-quality solutions can be obtained within 1 h and the
average optimality gaps of all test instance sets, except instance set 4, are less than 3%, which confirms the stability of our modeling
and solution methods when applied to randomly generated test instances on simple line topology. The number of generated service
trips tends to decrease as the headway times increase, which is reasonable. Moreover, the number of generated deadhead trips
is nearly zero in our test instances, implying that deadhead operations are undesirable when generating feasible solutions. The
‘‘Average LB generation rate’’ column shows that the LB (recall that LB is defined as the lower bound to problem 𝐏max) generation
rate tends to fall as 𝛥ℎ decreases. This fall may be explained by the fact that when the time difference between the maximum and
minimum headway times becomes small, the coupling tendency becomes stronger, which makes it more difficult to find feasible
solutions using the feasible solution heuristic. The profitability index is stable with various headway times, and as the headway
times increase, the profitability index increases slightly. A possible explanation for this slight increase is that as the timetable is
sparse, one bus may perform more service trips, which may help produce compatible pairs of trips.

5.2.5. Results with various cost and profit settings
In this section, we report the results obtained with various cost and profit settings. For convenience, we define the following

ratios for the same line 𝑙,

RFP =
fixed cost 𝑐𝑓

service profit 𝑓𝑙
, RDP =

deadhead cost 𝑐𝑑 × 𝛼𝑝𝑙 ,𝑞𝑙
service profit 𝑓𝑙

.

etting RFP = 1, 2, 3, 4 and RDP = 0.2, 0.4, 0.6, 0.8, allows 16 combinations of RFP and RFP. As described in Section 5.1, for each
combination, we generate three random instances, thus producing another 16 sets of test instances in which there are 48 random
instances.

Fig. 5(a) shows how the optimality gap is affected by various combinations of RFP and RDP. We can observe that the average
optimality gaps obtained with RFP = 1, 2 are superior to that with RFP = 3, 4 in most instance sets, which implies that the more
the ‘‘RFP’’, the larger the optimality gap. Fig. 5(b) shows the average LB generation rate with various combinations of RFP and
RDP, and it shows that the generation rate increases as the value of RFP increases. A plausible explanation for this behavior is that
as RFP increases, the number of buses used decreases; this shortage of used buses makes it difficult to obtain feasible solutions.
Fig. 5(c) shows that the profitability index decreases when the fixed cost increases. This is reasonable as the maximum headway
time constraints are imposed in our problem, making the numbers of generated service trips substantially the same because the
headway times settings are approximately equal to each other for different instances; see Table 8. As the numbers of service trips
are approximately the same, the numbers of used buses are also approximately the same. Therefore, the higher the fixed cost of
using a bus, the lower the profitability index.
18
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Fig. 5. Average optimality gaps, LB generation rates, profitability indexes with various RFP and RDP.

Table 9
Computational results on different line topologies.

Instance set Line topology 𝛥ℎ in two pairs of lines 𝐿𝐵 generation rate 𝑈𝐵 𝐿𝐵 𝐺𝑎𝑝 CPU time(s)
(4.0,3.0) 24.59% 656.45 613.00 7.09% 17709.93
(5.0,3.0) 22.61% 623.31 583.50 6.82% 18000.00

33 LT-1 (5.0,5.0) 28.11% 590.86 556.00 6.27% 15254.65
(3.0,3.0) 21.57% 618.90 577.50 7.17% 18000.00
(4.0,4.0) 25.79% 580.90 545.00 6.59% 17649.17

Average: (4.2,3.6) 24.53% 614.08 575.00 6.79% 17322.55
(4.0,5.0) 23.19% 573.91 530.50 8.18% 13742.21
(4.0,4.0) 23.97% 603.73 564.00 7.05% 15214.45

34 LT-2 (5.0,5.0) 25.55% 569.33 536.00 6.22% 14579.65
(3.0,3.0) 22.63% 599.15 562.50 6.52% 16705.84
(5.0,5.0) 25.62% 591.02 561.00 5.35% 14314.85

Average: (4.2,4.4) 24.19% 587.43 550.80 6.66% 14911.40
(4.0,4.0) 19.31% 634.72 560.00 13.34% 18000.00
(5.0,4.0) 19.89% 615.28 557.50 10.36% 18000.00

35 LT-3 (3.0,3.0) 15.85% 647.31 573.00 12.97% 18000.00
(5.0,5.0) 19.23% 648.17 577.00 12.33% 18000.00
(3.0,5.0) 15.40% 638.60 572.50 11.55% 18000.00

Average: (4.0,4.2) 17.94% 636.82 568.00 12.11% 18000.00
(4.0,4.0) 23.20% 591.13 532.00 11.11% 18000.00
(4.0,4.0) 22.81% 589.27 534.00 10.35% 18000.00

36 LT-4 (5.0,4.0) 21.35% 615.09 563.50 9.15% 18000.00
(5.0,5.0) 20.93% 623.30 557.00 11.90% 18000.00
(3.0,5.0) 17.72% 617.02 559.00 10.38% 18000.00

Average: (4.2,4.4) 21.20% 607.16 549.10 10.58% 18000.00

5.3. Computational study on complex line topologies

As introduced in Section 5.1, in the second part of our computational study, we test four set of instances (20 instances in total)
n four complex line topologies as shown in Fig. 3.

.3.1. Computation results
Table 9 reports the computational results obtained for various line topologies. The ‘‘𝐺𝑎𝑝’’ column shows that although the

ptimality gaps obtained for various complex line topologies are greater than those for the simple line topology (see Table 8), most
ptimality gaps for test instances of LT-1 and LT-2 are less than 8%, demonstrating that our solution method can also effectively
olve these problems on such two-line topologies. The optimality gaps for test instances of LT-3 and LT-4 are higher than 8% and
ange from 9.15% to 13.34%, which would be resulted from that our solution is less likely to generate feasible solutions at each
teration for such test instances; see the ‘‘LB generation rate’’ column of Table 9.

The ‘‘CPU time(s)’’ columns in Tables 8 and 9 show that much more computational time is used to solve a test instance for
omplex line topologies than for a simple line topology, implying that the more complex a line topology is, the more time is required
o obtain a feasible solution, because of the larger solution space.

.3.2. Results on shared depots
Fig. 6(a) shows the numbers of used buses in feasible solutions. The obtained bus fleet sizes in feasible solutions are quite stable

n various random test instances, confirming the robustness of our solution methods for problems involving complex line topologies.
ig. 6(b) shows that the numbers of generated service trips for various line topologies range from 740 to 780, which may imply
hat such problems have similar characteristics (e.g., complexity, scale). Fig. 6(c) shows the line changes obtained for various line
19

opologies, where a line change represents a bus that is switching from one pair of opposing lines to another pair of opposing lines.
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Fig. 6. Obtained indicators in different instances involving complex line topologies.

any line changes occur in instances of LT-1 and LT-2, whereas at most one line change occurs in one test instance of LT-3 and LT-4.
plausible explanation for this discrepancy is shared depot in LT-1 and LT-2 (see, e.g., Figs. 3(a)–(b)), which may help generate
ore line connections between different pairs of opposing lines. Similar to the results obtained for the simple line topology, no
eadhead trip is produced for complex line topologies, again indicating that our integrated optimization method avoids performing
eadhead trips to reduce the operational cost.

. Conclusions

We studied an integrated electric bus timetabling and scheduling problem with minimum and maximum headway times, depot
equirements, deadheading and vehicle battery capacities considerations. The problem was formulated using a multi-commodity
etwork flow model on a developed time-space network where inventory arcs representing multiple bus operations were constructed.
Lagrangian relaxation heuristic was developed to solve the model. The computational study on various line topologies shows that

olving bus timetabling and scheduling problem using an integrated framework performs better than that in a sequential manner
nd the average optimality gaps of almost all instance sets on simple line topology are less than 3%, while the more complex a line
opology is, the larger optimality gap is produced. Moreover, the results also show that more line connections between different pairs
f opposing lines may be generated in instances of line topologies with shared depots, implying one would like to avoid performing
eadhead trips to reduce the operational cost.

Our solution method, however, may obtain a solution with irregular headways. One way of obtaining a regular timetable is to
et the difference between the minimum and maximum headway times as small as possible. Another way is to penalize a deviation
rom the desired headways in the objective function. However, the developed solution method may not solve the model effectively
ith such a penalty, because our relaxed problem is a constrained shortest path problem, and no dual information about such
enalty can be used to find the constrained shortest path with revised arc lengths (see Section 4.1). Therefore, modeling and solving
he integrated problem taking headway regularity into consideration is an interesting topic requiring further research. Further, we
ocused on developing a model and solution method to simultaneously determine bus timetabling and routing decisions, without
onsidering operational details and siding constraints, such as the difference between travel times in peak and off-peak hours and the
epot capacity constraint. Incorporating the time difference and depot capacity constraint would be easy and would not change the
ature of our model. The travel time difference can be imposed by setting different time lengths on inventory arcs during peak and
ff-peak hours. The depot capacity constraint can be modeled by imposing that the total flow along each pull-in arc or pull-out arc be
o greater than the capacity of the corresponding depot, and such a linking constraint can also be relaxed using Lagrangian method
ith an additional Lagrangian multiplier, thus requiring more computational time. Developing more efficient solution methods such
s meta-heuristics for the ITTVS problem is an interesting topic that requires further research.

ata availability

Data will be made available on request.

cknowledgments

The authors thank four anonymous referees for their helpful comments. This study is supported by the National Natural Science
oundation of China (Nos. 72071059, 71925001), China Postdoctoral Science Foundation (No. 2019M662144), and the major
cience and technology projects in Anhui Province (No. 202003a05020009). Moreover, thanks are due to Hefei Public Transport
roup and Jiaoxin Technology Co., Ltd for having provided the operational data used in the paper.
20



Transportation Research Part C 149 (2023) 104057X. Xu et al.

i

a

Appendix. The method for generating deadhead trip times

Let 𝑠 and 𝑠′ be two termini that belong to different pairs of opposing lines, e.g., 𝑠2 and 𝑠3 in Fig. 3, 𝜏min (respectively 𝜏max)
be the minimum (respectively the maximum) value of service trip times among different lines, 𝜈1 and 𝜈2 be two coefficients. For
nstances of LT-1, we set deadhead trip time of 𝛼𝑠𝑠′ between termini 𝑠 and 𝑠′ as the round value of 𝜏min × 𝜈1, where coefficient 𝜈1

is randomly selected from {0.61, 0.62,… , 1.00} and each component is selected with probability of 1/40. The deadhead trip time of
𝛼𝑠′𝑠 between termini 𝑠′ and 𝑠 as the round value of 𝛼𝑠𝑠′ × 𝜈2, where coefficient 𝜈2 is randomly selected from {0.81, 0.82,… , 1.00} and
each component is selected with probability of 1/20. Similarly, for instances of LT-2, we respectively set deadhead trip times 𝛼𝑠𝑠′
and 𝛼𝑠′𝑠 as the round values of 𝜏max × 𝜈1 and 𝛼𝑠𝑠′ × 𝜈2, where coefficients 𝜈1 and 𝜈2 are randomly selected from {1.01, 1.02,… , 1.40}
and {1.01, 1.02,… , 1.20}, respectively.

For instances of LT-3 and LT-4, we need to consider four pairs of termini that belong to different pairs of opposing lines as there
is no shared depot. Let 𝑠 and 𝑠′ be a pair of adjacent termini that belong to different pairs of opposing lines, e.g., the pair of 𝑠1 and
𝑠2 and the pair of 𝑠3 and 𝑠4 in Figs. 3(c) and 3(d). For instances of LT-3, we set deadhead trip time of 𝛼𝑠𝑠′ between termini 𝑠 and 𝑠′
s the round value of 𝜏min × 𝜈1, where coefficient 𝜈1 is randomly selected from {0.41, 0.42,… , 0.60} and each component is selected

with probability of 1/20. The deadhead trip time of 𝛼𝑠′𝑠 between termini 𝑠′ and 𝑠 as the round value of 𝛼𝑠𝑠′ × 𝜈2, where coefficient
𝜈2 is randomly selected from {0.81, 0.82,… , 1.00} and each component is selected with probability of 1/20. Similarly, for instances
of LT-4, we respectively set deadhead trip times 𝛼𝑠𝑠′ and 𝛼𝑠′𝑠 as the round values of 𝜏max × 𝜈1 and 𝛼𝑠𝑠′ × 𝜈2, where coefficients 𝜈1 and
𝜈2 are randomly selected from {1.01, 1.02,… , 1.20}.

Let 𝑠 and 𝑠′ be a pair of diagonal termini to different pairs of opposing lines, e.g., the pair of 𝑠1 and 𝑠4 and the pair of 𝑠2 and 𝑠3 in
Figs. 3(c) and 3(d). For instances of LT-3, we set deadhead trip time of 𝛼𝑠𝑠′ between termini 𝑠 and 𝑠′ as the round value of 𝜏min × 𝜈1,
where coefficient 𝜈1 is randomly selected from {0.81, 0.82,… , 1.00} and each component is selected with probability of 1/20. The
deadhead trip time of 𝛼𝑠′𝑠 between termini 𝑠′ and 𝑠 as the round value of 𝛼𝑠𝑠′ × 𝜈2, where coefficient 𝜈2 is randomly selected from
{0.81, 0.82,… , 1.00} and each component is selected with probability of 1/20. Similarly, for instances of LT-4, we respectively set
deadhead trip times 𝛼𝑠𝑠′ and 𝛼𝑠′𝑠 as the round values of 𝜏max × 𝜈1 and 𝛼𝑠𝑠′ × 𝜈2, where coefficients 𝜈1 and 𝜈2 are randomly selected
from {1.21, 1.22,… , 1.40} and {1.01, 1.02,… , 1.20}, respectively.
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