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A B S T R A C T   

The airline crew scheduling problem has become a crucial but challenging task for commercial 
airlines for decades. Airlines are operating with two types of air crew: cockpit crew and cabin 
crew. Due to the unique operating characteristics, the scheduling problems for these two crew 
types are very different. Besides, according to the planning stage, the airline crew scheduling 
problem can be classified as tactical planning problems (traditional scheduling and robust 
scheduling, weeks or months before the actual operations) and operational planning problems 
(recovery, after disruptions have occurred during the operational stage). Realizing the signifi
cance of the airline crew scheduling problems and a lack of review on the modelling and algo
rithmic advancements in terms of each crew type and planning stage, we develop this paper to 
review the related literature from four aspects: the scheduling for cabin crew, the scheduling for 
both cabin crew and cockpit crew, the robust scheduling for cockpit crew, and the recovery for 
cockpit crew. For each stream, we examine a number of prior representative studies to review the 
advancements in model development and solution algorithm construction to generate insights. 
Finally, we conclude the review by proposing a future research agenda for the airline crew 
scheduling problem.   

1. Introduction 

1.1. Background 

The air transportation industry has become a crucial part for both the passenger transportation (Atkinson et al., 2016; Cui et al., 
2019; Hu et al., 2013; Wang & Jacquillat, 2020) and the cargo delivery all over the world (Chung et al., 2020; Wen et al., 2019). Due to 
the intensive market competition (Lijesen & Behrens, 2017; Scotti & Volta, 2017), airlines are struggling to improve their decision 
making in various aspects, such as pricing strategies (Ma et al., 2020), financial hedging tactics (Merkert & Swidan, 2019), and 
behavioral analysis (Kang & Hansen, 2017; Nicolae et al., 2017; Sheng et al., 2019). In terms of operational decisions, the airline 
scheduling problem is especially critical to properly manage the diverse resources (e.g., aircraft, crew, seat inventory) with the 
assistance of operations research techniques (Bish et al., 2011; Etschmaier & Mathaisel, 1985; Jiang & Barnhart, 2009). 

The airline scheduling problem is further categorized into the tactical planning problem (carried out weeks or even months before the 
operation date) and the operational planning problem (conducted during the operational stage for recoveries after disruptions occur) 
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according to the time of the decision making (Tekiner et al., 2009; Wang & Jacquillat, 2020; Wen et al., 2020b), as depicted in Fig. 1. 
Generally speaking, cost-minimization scheduling is the focus of the tactical planning stage. However, in recent years, due to the highly 
volatile operating environment, airlines are moving from the traditional cost-minimization scheduling to the robust scheduling, with the 
aim of enhancing the solution robustness to better hedge against the potential disruptions in real operations. On the other hand, in the 
operational stage, recovery is used to bring the disrupted operations back to schedule in order to alleviate the negative impacts of 
various disruptions that have happened (Aktürk et al., 2014; Chung et al., 2015, 2017). Disruption management for aircrew (involving 
both the robust scheduling and recovery) has attracted increasing attention due to the highly volatile and uncertain operating envi
ronment in the aviation industry. Generally, the robust scheduling problems and recovery problems are more complicated in various 
aspects (like the modelling approach, decision variables) than the traditional cost-minimization based scheduling problems as 
robustness measures or recovery strategies shall be considered. Besides, decision makers should also evaluate the tradeoffs between the 
operating costs and robustness enhancement (or recoveries). 

Considering the large problem scale and high complexity, the airline scheduling problem is generally solved by sequentially dealing 
with a flight scheduling problem, fleet assignment problem, aircraft maintenance routing problem, and a crew scheduling problem 
(Cadarso et al., 2017). First, flight scheduling decides the flight routes to serve and the corresponding flight frequency. Second, fleet 
assignment assigns an aircraft type (i.e., fleet) to each flight scheduled. Then, the routes for each individual aircraft in a fleet are 
planned according to the maintenance requirements in aircraft maintenance routing. Lastly, as the final stage of airline scheduling, crew 
scheduling is crucial for airlines’ operations efficiency and overall performances by assigning crew members to serve the scheduled 
flights with the aim of cost minimization. Fig. 2 demonstrates the sequential stages in the airline scheduling. 

Among these airline scheduling problems, the crew scheduling problem has attracted extensive attention from both the academia 
and the industry, which is motivated by the problem’s practical significances and industrial challenges. First of all, the crew-related 
cost (e.g., payments) has become the second largest component of the total operating costs of an airline, just after the fuel expenditure 
(Barnhart et al., 2003; Sibdari et al., 2018). Even a slight improvement in crew scheduling solutions may lead to a million-dollar cost 
saving. Besides, the research of airline crew scheduling provides an opportunity to investigate many of the components common to 
other crew scheduling problems, while the airline planning involves more efforts and uncertainties. However, due to the vast number 
of rigorous working rules and regulations imposed by diverse authorities such as labor unions, governments, and airlines (Button et al., 
2019), the millions or even billions of possible crew schedules, as well as enormous variables (most of which are integers) generated in 
the solution process, the airline crew scheduling problem is still unmanageable. Moreover, the unpredictable disruptions bring great 
challenges to the optimization of airline scheduling, which call for robust or recoverable schedules. Besides the general disruptions like 
the extreme weather or propagated delay, the current global epidemic situation can be regarded as a huge disruption to the entire 
global aviation transportation system, which propose broad impacts and further requirements on domestic or international flights 
scheduling as well as the qualifications and arrangement of crews, and therefore, further refinements or even new models or ap
proaches are demanded. 

The airline crew scheduling is commonly decomposed into a crew pairing problem and a crew assignment/rostering problem to 
make it tractable (Barnhart & Cohn, 2004). The crew pairing problem is to generate sufficient anonymous feasible pairings to satisfy all 
flight’s manpower requirements while minimizing the total operating costs. A feasible pairing is a sequence of flights to be served by the 
same crew member which starts from and ends at the crew member’s home base. Then, in the crew assignment/rostering problem, the 
pairings constructed in the crew pairing problem are connected to form monthly assignments/rosters to be assigned to specific crew 
members (Zeighami & Soumis, 2019). More specifically, the assignment/rosters problem determines the individual crew schedules to 
cover a set of crew pairings. It should be guaranteed that each pairing is served by the needed number of crews so that the flights could 
be fully staffed. To optimize the experience of both the crews and the customers, the crew assignment should also consider crew 
specialties and demands, such as crew qualifications, rest status and crew preferences. In the literature, the crew pairing problem is 
studied more than the crew assignment/rostering problem, as the former problem is the first stage of the airline crew scheduling 
problem which is especially critical for the overall quality of the final crew schedules. Therefore, in this study, we mainly focus on 
reviewing the advancements in the crew pairing problem. 

The airline crew pairing problem can be divided into single-base problems and multi-base problems according to the number of 
home bases considered (Wang & Wang, 2019b). This classification depends on the scale and deployment of airlines. Smaller airlines 
like those operated by cities might have only one base where to perform operating activities such as scheduling and maintenance. 

Fig. 1. The categories of the airline scheduling problems.  
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While airlines that serve a large geographical area often establish multiple bases distributed in different regions to broaden spatial 
coverage and improve operating efficiency (Wang & Wang, 2019b). Note that the crew pairings generated for both the single-base and 
multi-base problems share the same character that a crew pairing should start and end at the same base. Besides, two categories of 
flight networks are used in the literature for pairing generation (Tu et al., 2020; Wang & Wang, 2019a; Wong et al., 2020; Wu & Law, 
2019). They are flight-based networks and duty-based networks. The latter type is commonly applied because the optimization effi
ciency is enhanced by considering some of the regulations during network construction (Vance et al., 1997). In other words, as the 
detailed regulations or rules between flights have been satisfied and encapsulated in duties, the optimization efficiency of the duty- 
based network could be greatly improved since only the relationships between duties rather than between individual flights should 
be managed. A typical duty-based flight network is demonstrated in Fig. 3. A duty is composed of a sequence of flights separated by 
transits (or sits), coupled with a briefing period at the start and a debriefing at the end. A duty period refers to the elapsed time from the 
start of the duty to the end of the duty. A rest is a continuous time period between two consecutive duties, during which crew members 
are free from any duty. A legal pairing can then be regarded as a sequence of duties connected by rests, operated by the same crew, 
which starts/ends at the home base, and satisfies diverse working rules and regulations such as the maximum elapse time and 
maximum number of flights allowed in a pairing. The total elapse time of a pairing is known as the time away from base (TAFB) in the 
literature. In some cases, crew members are placed on a scheduled flight as passengers for repositioning to an airport where they are 
required to operate duties. This type of flights is called as deadhead. A typical pairing generally lasts for two to five days, while a crew 
member commonly flies four to five pairings in a month. 

Regarding the solution methodology, date back to 1970s, Marsten et al. (1979) reported a successful application of the integer 
programming approach for the crew planning problem. From then on, the airline crew pairing problem is generally modelled as a set- 
covering problem or a set-partitioning problem. As the number of possible pairings is enormous, researchers traditionally adopted a 
“once for all generation technique”. In this technique, a sufficiently large number of “good” pairings are generated by using heuristics. 
Then, a set-covering or set-partitioning problem is applied to identify a sub-set of pairings with a minimum cost through using integer 
programming techniques like branch-and-bound, cutting planes, and sub-gradient optimization. However, due to the high problem 
complexity, many studies solve the problem heuristically (Azadeh et al., 2013; Cohn and Barnhart, 2003; Levine, 1996). For example, 
to deal with the airline crew scheduling, Azadeh et al. (2013) developed a hybrid particle swarm optimization (PSO) algorithm 
synchronized with a local search heuristic and compared the performance of the hybrid PSO algorithm with other heuristic algorithms 
developed based on genetic algorithm and ant colony optimization. However, the quality of solutions generated by heuristic ap
proaches cannot be guaranteed. Levine (1996) proposed a hybrid genetic algorithm that combines the genetic algorithm with a local 
search heuristic for airline scheduling, while experiments demonstrated that results obtained by optimization approaches (i.e., branch- 
and-cut and branch-and-bound) outperformed the hybrid algorithm. Moreover, Cohn and Barnhart (2003) formulated the integrated 
problem of crew pairing and aircraft maintenance routing with an extended model and solved the model both heuristically and 
optimally, which explored the trade-off between the calculation time and the result quality. Later in 1980s, Lavoie et al. (1988) made a 

Fig. 2. The stages of airline scheduling.  

Fig. 3. A typical duty-based flight network.  
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remarkable progress in the solution approach for the crew pairing problem by proposing a column generation based technique to deal 
with this large-scale problem. The column generation (CG) technique is a continuous optimization technique to deal with large-scale 
linear programming problems. To be specific, the CG can implicitly consider all variables without the challenge of explicitly dealing 
with all variables (Desaulniers et al., 2005). Accordingly, in the CG, the whole optimization problem is divided into a restricted master 
problem with a limited number of pairings and a sub-problem that is used to generate new potential pairings. To obtain integer so
lutions, the branch-and-price methodology is often applied (Barnhart et al., 1998; Luo et al., 2016). 

1.2. Contribution and paper structure 

In recent years, a large body of research has been devoted to the airline crew scheduling problem due to the significance of air crew 
for airlines’ profitability and survival in the current highly volatile and competitive market conditions. In the literature, there are a 
number of review studies on the problem. For example, Barnhart et al. (2003) and Gopalakrishnan and Johnson (2005) provide 
tutorial-based reviews for the problem. Deveci and Demirel (2018) provide a survey on the general problem settings and the operations 
research (OR) techniques for the modelling and solution methodologies. Moreover, some studies review the advances for more than 
one stage of the airline scheduling problems, like Eltoukhy et al. (2017) which review the works related to flight scheduling, fleet 
assignment, aircraft maintenance routing, and crew scheduling, and Parmentier and Meunier (2020) which focus on aircraft main
tenance routing and crew scheduling. Besides, concentrating on the airline disruption management, Clausen et al. (2010) review the 
model features of the recovery studies for aircraft, crew, and passenger, while Chung et al. (2015) provide a comprehensive overview 
from both the recovery and robustness perspectives. 

In this paper, we aim to review some selected important and representative research studies on the airline crew scheduling 
problem. In terms of the structure of the review, we organize the selected research papers according to the type of crew studied and the 
planning stage of the problem considered. The logic and contribution of this taxonomy are explained as follows. Airlines are operating 
with two distinct types of air crew. They are cockpit crew and cabin crew. These two crew types are very different in operating 
characteristics, which greatly affects the scheduling (pairing) problems for them, including the modelling approaches, the format of 
decision variables, and the structure of constraints. As will be discussed later in Section 2, the problem scale and complexity of the 
cabin crew pairing problem are much higher than those of the cockpit crew pairing problem due to the various distinctive operating 
characteristics of cabin crew (e.g., multiple classes, mixed-qualification, heterogeneous manpower requirements, crew substitution). 
Therefore, the existing scheduling studies on cabin crew are mainly traditional cost-minimization pairing problems without disruption 
considerations. On the other hand, due to the relatively simpler operating features, studies on cockpit crew can be extended to consider 
robustness or recovery operations in addition to cost minimization. Therefore, in this paper, we review the advancements of the 
selected studies based on the crew types and planning stages investigated. To the best of our knowledge, our study is the first paper in 
the literature which examines the modelling and methodological advancements in the scheduling problem for each type of air crew 
and in the different planning stages. By applying this review structure, we are able to obtain a profound understanding regarding the 
state-of-the-art status of the domain in terms of the significant advances in model development and solution algorithm construction for 
each crew type and planning stage, which provides a solid foundation for us to propose a future research agenda. To be specific, the 
reviewed literature is classified into four categories as demonstrated in Fig. 4: the scheduling for cabin crew, the scheduling for both 
types of crew (cabin/cockpit crew), the robust scheduling for cockpit crew, and the recovery for cockpit crew. Based on the critical 
review for each category, we then propose promising future research directions. 

The remaining of this paper is structured as follows. Section 2 discusses the differences between the scheduling problems for cockpit 
crew and cabin crew. Section 3 reviews the selected representative scheduling studies for cabin crew. Next, the research on both 
cockpit crew and cabin crew is discussed in Section 4, which is followed by the robust scheduling studies on cockpit crew in Section 5. 
Section 6 then examines several studies for cockpit crew recovery. Last, Section 7 recommends a future research agenda, while Section 
8 concludes for this work. 

Fig. 4. Core elements under investigation.  
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2. Differences between the scheduling for cockpit crew and cabin crew 

The scheduling problems for cockpit and cabin crew are different in various aspects as discussed below. First of all, we summarize 
the operating characteristics of cockpit crew and cabin crew in Table 1. 

Cockpit crew members are essential for the operations of an aircraft. Therefore, the training for cockpit crew is long-term and 
capital-intensive. Generally speaking, cockpit crew is single-qualified to operate one type of aircraft (family) with license. Accordingly, 
the scheduling problem for cockpit crew is decomposed according to the type of aircraft, so that the problem scale can be reduced. 
Although cockpit crew is classified into various classes (such as captain, first officer, and second officer) according to their experiences 
and skills, they are modelled as teams (i.e., the team modelling approach) due to the fact that the manpower requirements of flights 
operated by the same aircraft type is homogeneous as regulated by the aircraft operating manual (Shebalov & Klabjan, 2006). 
Accordingly, the flight coverage requirement is simplified to ensure that each flight is covered by (at least) one team. The general form 
of the mathematical model for the team-modelling crew pairing problem is shown in Eq. (1) to Eq. (3). The binary decision variable xp 

represents whether to select Pairing p from the whole pairing pool (denoted by P), while each pairing is for a cockpit crew team. The 
cost of Pairing p is indexed by cp. The objective function Eq. (1) is to minimize the total operating costs for all the pairings selected, 
while Constraint Eq. (2) ensures that each flight (∀f ∈ F) is covered (at least) once (i.e., each flight is covered by (at least) one cockpit 
crew team). Therefore, Eq. (2) is also named as the flight coverage constraint in the literature. The flight coverage coefficient apf is equal 
to 1 if Pairing p covers Flight f . Otherwise, apf takes the value of zero. In Eq. (2), if the “equal to or larger than” sign is used, it is a set- 
covering problem. Instead, if the “equal to” sign is applied, it is a set-partitioning problem. 

Min
∑

p∈P
cpxp (1)  

s.t.
∑

p∈P
apf xp ≥ ( = )1,∀f ∈ F (2)  

xp = 0 or 1, ∀p ∈ P (3) 

Cabin crew members are responsible for the safety of passengers in the aircraft cabin, and they are mixed-qualified to serve several 
types of aircraft with proper training (ICAO, 2010). Similar to cockpit crew, cabin crew members are also categorized into various 
classes such as pursers, flight attendants, stewards, and cabin mates. Different from cockpit crew, due to the cross-qualification, the 
scheduling problem for cabin crew is not able to be decomposed by aircraft types with the aim of reducing problem scale. Besides, the 
manpower requirements for each class of cabin crew on different types of aircraft are distinct. For example, in addition to the minimum 
requirements to guarantee passengers’ safety as required by authorities (e.g., at least one cabin crew member for each pair of doors of 
the aircraft), airlines commonly provide high service levels by assigning more cabin crew members to flights. Actually, even for the 
same aircraft type, different cabin layouts would lead to different cabin crew requirements. Accordingly, the flight coverage constraint 
of the pairing problem for cabin crew is different from that for cockpit crew (i.e., Eq. (2)). To be specific, it is critical to ensure that the 
heterogeneous manpower requirement for each class of cabin crew of each flight is satisfied. If we use r ∈ R to represent the cabin crew 
classes, and apply br

f to denote the number of Class r cabin crew members required by Flight f , then, the flight coverage constraint for 
the cabin crew pairing problem can be formulated as Eq. (4). Note that the subscript r for Pairing pr is utilized to represent the pairings 
for Class r cabin crew. 

∑

pr∈Pr

apr f xpr ≥ brf , ∀f ∈ F,∀r ∈ R (4) 

Based on the above discussion, it is undoubtable that characterizing distinctive operating features of cabin crews is critical in crew 
scheduling problems. More specific summarize of consequences resulted by neglecting such features is provided in Table 2. 

In conclusion, the problem scale and complexity of the cabin crew scheduling problem are much higher than those for cockpit crew. 
Besides, due to the relatively higher payment for cockpit crew than cabin crew, the scheduling problem for cockpit crew has gained 
much more attention in both the literature and the industry. However, the scheduling decisions for cabin crew are also critical for an 
airline as they occupy a major component of airline manpower. Therefore, the overall cabin crew related costs are significant. Besides, 
they are important to ensure the comfort and satisfaction of passengers, as well as provide emergency and evacuation functions to 
guarantee passengers’ safety, which is essential for the image development of an airline. Therefore, enhancing the decision making for 
cabin crew scheduling is also of great importance. 

Table 1 
Operating characteristics for two types of aircrew.  

Characteristics Cockpit crew Cabin crew 

Aircraft qualification Single-qualified Cross-qualified 
Manpower requirement Homogeneous within an aircraft type Heterogeneous across aircraft types and cabin layouts 
Crew substitution NA Existing in some airlines  
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3. Scheduling for cabin crew 

In the literature, there are only a few studies that concentrate on improving the decision making for cabin crew pairings which are 
reviewed in this section. The problem and model features of these studies are listed in Table 3 and Table 4, respectively. 

In the literature, the crew pairing problem is generally formulated as a set-partitioning problem or a set-covering problem (as 
shown in Section 2). Differently, Yan and Tu (2002) develop a pure network model to solve a cabin crew pairing problem for a small- 
scale Taiwan-based airline as shown from Eq. (5) to Eq. (9), which is distinct from the commonly used approaches. In the pure network 
model of Yan and Tu (2002), the decision variables (xij,(i,j) ∈ A) are for each arc in the flight network (G = (N,A)), instead of for each 
potential pairing. Therefore, the flight coverage constraint Eq. (2) is modified into network flow balance restrictions and arc coverage 
constraints. To be specific, Eq. (6) is the flow conservation constraint, while Eq. (7) ensures that each scheduled flight or work duty 
(contained in the arc set L) is to be served by a crew. Besides, Eq. (8) and Eq. (9) restrict that all decision variables are non-negative 
integers. Different from the common flight networks in which a source-sink path is not necessarily a feasible pairing (as some pairing- 
related working rules and regulations might be violated), the network constructed by Yan and Tu (2002) can ensure that every source- 
sink path is a legal pairing as all working rules and regulations are considered and satisfied during network construction. Therefore, the 
optimization objective of Yan and Tu (2002) is to identify a sub-set of pairings from all the source-sink paths contained in the con
structed network in order to cover all flights with a minimum cost. Accordingly, a minimum-cost pure network flow model is 
formulated in Yan and Tu (2002), which is solved by the network simplex method. Yan and Tu (2002) insist that their proposed pure 
network modelling approach is advantageous than the traditional set-covering/set partitioning models which are generally solved by 
column generation as the solutions obtained are completely integers. However, for large-scale problems, the construction of a pure 
network which can ensure that all source-sink paths are feasible pairings is an extremely challenging task. 

Min
∑

(i,j)∈A

cijxij (5)  

s.t.
∑

j∈O(i)

xij −
∑

k∈I(i)

xki = 0, ∀i ∈ N (6)  

xij = 1, ∀(i, j) ∈ L (7)  

xij ≥ 0, ∀(i, j)∈ A\L (8)  

xij are non − negative integers, ∀(i, j) ∈ A (9) 

Recently, Quesnel et al. (2020a) integrate the language requirements for cabin crew members into the decision framework of the 
crew pairing problem. Traditionally, the language constraints are considered in the crew assignment stage, which implies that the 
pairings generated in the crew pairing stage might not be compatible with the skills of the available cabin crew members. In order to 
reduce the language-violated pairings produced in the crew pairing problem, Quesnel et al. (2020a) thus propose a new crew pairing 
problem variant with language constraints (named as the CPPLC) in which two types of soft language restrictions (i.e., monthly and 
daily constraints) are considered. The specific manpower requirement for cabin crew members for each flight leg is considered in the 
crew assignment/rostering problem proposed by Quesnel et al. (2020a). However, the multiple classes of cabin crew are not specified, 
and the pairings generated in the crew pairing problem are still in a team format. In the crew pairing model developed by Quesnel et al. 
(2020a), in addition to the flight coverage constraint and the language constraint, the base working time limitation is also considered, 
to ensure that the base constraint can be satisfied. A branch-and-price heuristic solution algorithm is developed. Real-world validation 
shows that the solutions produced by the proposed CPPLC are more suitable for the crew assignment/rostering stage, leading to a 
significant reduction in the number of language-violated constraints (Quesnel et al., 2020a). 

Different from the literature discussed above, Yan et al. (2002) and Wen et al. (2020a) construct pairings for individual cabin crew 
members. Wen et al. (2020a) point out that failing to consider the distinctive operating characteristics of cabin crew (i.e., multiple 

Table 2 
Consequences of failing to consider the cabin crew features.  

Consequences Explanations 

Impairing Operating 
Efficiency 

Different from the cockpit crews who are restricted in the fleet type that they can fly, a cabin crew can serve mixed types of aircrafts. 
Scheduling the cabin crews in the same way as the cockpit crews will miss this diversity. 
As flights are facing with heterogeneous manpower requirement for each class of cabin crew, the team modelling approach for 
cockpit crew is no longer applicable for cabin crew. Otherwise, manpower resource waste as well as high operating costs will be 
incurred as the actual manpower required by a team must satisfy the maximum requirements among all flights in the team pairing ( 
Wen et al., 2020a). 

Problematic Schedules Different aircrafts have distinct requirements in terms of the number or the qualifications of the cabin crews. Ignoring the distinct 
characteristics of the cabin crews can lead to problematic schedules. 

Unexplored Recovery 
Strategies 

The special features of the cabin crews can facilitate the development of different operations recovery strategies for cabin crews 
when facing a disruption, such as the crew substitution (i.e., assign cabin crew members to substitute the ones from other classes in 
a shortage). The operations manager may lose chances to obtain efficient recovery plans without the considerations of cabin crew 
characteristics.  
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classes, cross-qualification, heterogeneous manpower requirements) during pairing generation will lead to a high expenditure related 
to pairing re-construction during the crew assignment stage for solution feasibility. Besides, through comparing the solutions obtained 
from the traditional team-modelling approach with those from the individual-modelling approach, Wen et al. (2020a) demonstrate 
that modelling the multi-class cabin crew in the team basis can lead to lower manpower utilization and high operating costs. The 
heterogeneous manpower requirements for each class of cabin crew for each flight are considered in both Yan et al. (2002) and Wen 
et al. (2020a). Therefore, the flight coverage constraint in these two studies are more than just to ensure that each flight is covered (at 
least) once. Besides, these two studies formulate the real airline operation, i.e., crew substitution (i.e., to assign a cabin crew member 
from other classes to substitute the originally required one). However, they are different in the following aspects. First, Wen et al. 
(2020a) consider the manpower availability constraint in the stage of crew pairing problem. The crew substitution in Wen et al. 
(2020a) is utilized to deal with the problem of manpower shortage. A penalty cost will be incurred in the objective function along with 
a substitution to avoid the abuse of crew substitution. We use Fig. 5 to demonstrate the mechanism of the so-called controlled crew 
substitution proposed in Wen et al. (2020a). In this example, Flight 10 demands two Class 1 cabin crew members and only one for Class 
2. However, there is only one available crew member for Class 1, leading to a manpower shortage for this cabin class on Flight 10. 
Fortunately, there is an extra Class 2 cabin crew member who operates a deadhead duty on Flight 10 for positioning purposes, who can 
be assigned to serve as a “temporary” Class 1 crew to ensure the normal operations of this flight. Accordingly, the strategy of controlled 
crew substitution can help alleviate the dilemma of manpower shortage in Wen et al. (2020a). On the other hand, the crew substitution 
developed by Yan et al. (2002) is mainly for cost minimization. Second, in the crew substitution scheme of Wen et al. (2020a), at least 
one cabin crew member from the originally required class will be assigned to each flight, to ensure a certain service level, while this is 
not guaranteed in Yan et al. (2002). It is possible that for a certain cabin crew class on a certain flight, all crew members assigned are 
from other classes in Yan et al. (2002). Third, extra manpower is introduced in Wen et al. (2020a) to ensure solution feasibility, in case 
that the flight manpower requirements can’t be fully satisfied even with the assistance of crew substitution, which is not considered in 
Yan et al. (2002). As a result, the crew substitution constructed in Wen et al. (2020a) is controlled for the purpose of solving the 
dilemma of manpower shortage, instead of merely for cost minimization. As for the solution approach, both studies apply a column- 
generation based methodology. However, as multiple cabin crew classes and extra manpower are considered, the problem scale of Wen 
et al. (2020a) is very high in terms of the number of constraints and number of variables. Accordingly, a genetic algorithm is also 
constructed in Wen et al. (2020a) to deal with real-world problems with large sizes. 

4. Scheduling for both cockpit crew and cabin crew 

In this section, we review four representative crew pairing studies that consider both cabin crew and cockpit crew.1 The problem 

Table 3 
Problem features for the literature reviewed in Section 3.  

Literature Home base Modelling approach Manpower requirement Crew substitution 

Multi-base Single-base Team Individual Homogeneous Heterogeneous Controlled Not-controlled 

Yan and Tu (2002)  √ √  √    
Yan et al. (2002) √   √  √  √ 
Wen et al. (2020a)  √  √  √ √  
Quesnel et al. (2020a) √  √  √     

Table 4 
Model features for the literature reviewed in Section 3.  

Literature Model format Objective Flight coverage constraint Solution approach 

Cost 
minimization 

Others Each flight is 
covered by (at 
least) once 

Specific 
requirements are 
considered 

Column 
generation 
based 

Others 

Yan and Tu 
(2002) 

Network flow 
problem 

√  √   Network 
simplex 
method 

Yan et al. 
(2002) 

Set-covering 
problem 

√   √ √  

Wen et al. 
(2020a) 

Set-covering 
problem 

√ Substitution penalty, 
extra manpower 
penalty  

√ √ Genetic 
algorithm 

Quesnel et al. 
(2020a) 

Set-partitioning 
problem 

√ Constraint penalties √  √ Branch-and- 
price heuristic  

1 In these selected studies, both cockpit and cabin crew are mentioned in areas like problem definition and computational experiments. We thus 
categorize these studies as for both cabin and cockpit crew. 
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and model features of these studies are listed in Table 5 and Table 6, respectively. As discussed in Section 2, the operating charac
teristics of cabin crew and cockpit crew are very different. However, due to the relatively lower payment and the large problem scale, 
cabin crew is usually assumed to be identical with cockpit crew when conducting scheduling. For example, in Quesnel et al. (2020b), 
Saddoune et al. (2013), and Erdoğan et al. (2015), cabin crew members are implicitly assumed to be single-qualified. The manpower 
requirements for cabin crew are thus assumed to be homogeneous, and each flight is needed to be covered by (at least) one (team) 
pairing. Moreover, none of these studies considers the practical operation of crew substitution for cabin crew. Detailed discussions for 
each of these selected studies are presented in the following. 

In order to improve the decision making of the crew assignment/rostering problem, Quesnel et al. (2020b) study a crew pairing 
problem in which the preferences of crew members are considered, with the aim of alleviating the deficiency of the rigorous separated 
two-stage crew scheduling problem to some extent, as well as improving employee’s job satisfaction by developing schedules that are 
more welcomed by crew members. In the study of Quesnel et al. (2020b), six pairing features associated with crew member preferences 
are identified. Therefore, the objective function of the pairing model developed by Quesnel et al. (2020b) is formulated to encourage 
the selection of the pairings containing the identified features (i.e., rewards are given). A column generation based solution algorithm 
is proposed to solve the complex model. Accordingly, a new path resource is designed to handle the complex pairing features for the 
sub-problem of the column generation, which is transformed into a resource-constrained shortest path problem. In the study of 
Erdoğan et al. (2015), it is pointed out that although the crew-related cost is the second-largest expenditure for airlines which follows 
fuel costs, it is the biggest cost component that an airline can control as the crude oil price is usually uncontrollable. Focusing on the 
crew pairing problem for European airlines, Erdoğan et al. (2015) construct a large-scale mathematical model which considers the 
specific flight structure, planning horizon, and objectives for a European airline. To be specific, Erdoğan et al. (2015) find that a great 
percentage of the flights operated by the considered European airline are round-trip flights. An optimization-based heuristic solution 
algorithm combining large neighborhood search, exact enumerative algorithms and integer programming is developed to solve large- 
scale problems in Erdoğan et al. (2015). Computational experiments show that the proposed heuristic has the ability to handle monthly 
problems involving more than twenty thousand flights efficiently. Moreover, the results demonstrate that the round-trip flight 
structure helps simplify the solution algorithms and facilitates the overall scheduling process (Erdoğan et al., 2015). Saddoune et al. 
(2013) claim that the crew pairing problem in the aviation industry is often solved by a three-phase method in which a daily problem, a 
weekly problem, and a monthly problem are solved sequentially. They claim that this heuristic three-phase approach prohibits the 
repetition of the same flight number in a pairing for the daily pairing problem. As a result, the monthly schedules generated from the 
daily solutions involves no flight number repetitions. Therefore, Saddoune et al. (2013) develop an alternative methodology which can 
deal with the flight number repetitions in a single pairing. A complex pairing cost function is applied to approximate the real practice 
as shown in Eq. (10), which consists of the waiting cost, the deadhead cost, and the guaranteed minimum flying time paid per duty. To 
be specific, the waiting cost (g(δw)) is a function of the waiting duration δw for wait period w ∈ Wp. For a deadhead arc h ∈ Hp, its cost is 
composed of a fixed component γ, together with the deadhead duration δh multiplying the unit cost μ. The last part in Eq. (10) rep
resents the guaranteed minimum flying time paid per duty, where v is the payment for each flying hour, Vmin is the guaranteed 
minimum flying time paid per duty, and vd is the total credited flying time in duty d ∈ Dp. The authors find that the solution quality can 
be enhanced with less computational time when the daily problem and the weekly problem are skipped while the monthly problem is 
directly solved through a column generation based rolling-horizon approach if an irregular flight schedule is given. On the other hand, 
for regular flight schedules, better solutions (with lower costs) are obtained if the weekly problem is directly solved without the daily 
problem due to the fact that flight number repetitions become possible (Saddoune et al., 2013). The computational experiments 
conducted in Saddoune et al. (2013) show that the with-repetition solutions illustrate less fat than the no-repetition solutions, with a 
significant average reduction of around 16%. Besides, the percentage of pairings containing flight number repetitions can even reach 
100% for some instances, showing the weakness of the no-repetition approach (Saddoune et al., 2013). 

cp =
∑

w∈Wp

g(δw)+
∑

h∈Hp

(γ + μδh)+ v
∑

d∈Dp

max{0,Vmin − vd} (10) 

Differently, Medard and Sawhney (2007) distinguish the two types of air crew when constructing pairings. Actually, Medard and 
Sawhney (2007) solve the crew scheduling problem in a single step by integrating the pairing construction and pairing assignment 
procedures. Besides, the recovery problem in the operational stage is also considered in Medard and Sawhney (2007). Instead of 
modelling cabin crew members in a team basis or in an individual basis, a novel concept, named as crew slice, is developed by Medard 
and Sawhney (2007) to satisfy the heterogeneous manpower requirements of different flights. To be specific, the manpower- 
requirement vector for all flights are decomposed into a set of sub-manpower-requirement vectors (i.e., slices). Then, the flights to 
be scheduled can be grouped according to the slice category. Accordingly, the pairing problem can be solved within each flight group. 

Fig. 5. A typical example of controlled crew substitution.  
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This method can ensure that the specific manpower requirement for each cabin crew class of each flight can be fully satisfied (Medard 
& Sawhney, 2007). However, as cabin crew members are bundled within the “slices”, the solution flexibility is limited in Medard and 
Sawhney (2007). In terms of the crew pairing modelling, Medard and Sawhney (2007) not only consider the flight coverage constraint, 
but also formulate the base maximum workload restriction to make the model developed more realistic. 

5. Robust scheduling for cockpit crew 

During the tactic planning stage, the airline crew scheduling problem aims to keep the planned crew costs low by removing the 
slacks in crew schedules, resulting in many tight flight connections. However, flight delays are common in real operations. Tight crew 
connections can thus be easily disrupted under the uncertain operational environment, causing propagated flight delays or flight 
cancellations, leading to a significant gap between the planned and operational crew costs. Therefore, airlines are moving from cost- 
minimization planning to robustness-oriented planning in recent years. As discussed, robust scheduling problems are relatively more 
complex than the traditional scheduling problems. Therefore, the robust crew scheduling research is mainly based on cockpit crew. We 
review several representative robust crew scheduling studies in this section2. The problem and model features of these studies are 
summarized in Table 7 and Table 8, respectively. 

Uncertainties are inevitable in the daily airline operations, which are incurred by both external and internal factors. It is reported 
by FAA that, in 2018 and 2019, the direct operating costs (i.e., crew, fuel, maintenance, etc.) induced by flight delay reached 7.7 and 
8.3 billion USD3, respectively. The cost mainly came from two sources: schedule buffers and unforeseen delays. Rather than adopting 
recovery operations after the happening of disruptions, taking uncertainties into consideration during the airline tactic crew sched
uling stage helps obtain more robust solutions to mitigate the negative impacts of disruptions and maintain the feasibility of the 
original plan as much as possible. However, more computational efforts are required to obtain the solutions. Root delay and propa
gated delay are commonly considered for robust airline scheduling problems as the measure of robustness. To be specific, propagated 
delay is commonly referred to the delay caused by the late-arrival of aircraft or the absence of crews. Fig. 6 illustrates the cases under 
which the propagated delay is incurred. As the propagated delay is induced by either aircraft or crew, in some studies, the two types of 
propagated delay are considered separately. For example, Yen and Birge (2006) focus on the investigation of the interactions among 
the potential crew schedules, in which the disruption cost, i.e., the measure of robustness, is formulated as the cost of delays due to 
crew switching planes. A typical two-stage stochastic integer program is modeled to solve the robust model in which the recourse 
indicates the disruption cost under different scenarios. Although the authors apply the state-of-the-art set-partitioning solver for the 
deterministic part, with the size growth of the scenarios considered, the computational burdens become increasingly heavy. A novel 

Table 5 
Problem features for the literature reviewed in Section 4.  

Literature Home base Modelling approach Manpower requirement Crew substitution 

Multi-base Single-base Team Individual Homogeneous Heterogeneous Controlled Not-controlled 

Quesnel et al. (2020b) √  √  √    
Saddoune et al. (2013) √  √  √    
Erdoğan et al. (2015)  √ √  √    
Medard and Sawhney (2007) √  Crew slice   √    

Table 6 
Model features for the literature reviewed in Section 4.  

Literature Model format Objective Flight coverage constraint Solution approach 

Cost 
minimization 

Others Each flight is 
covered by (at 
least) once 

Specific 
requirements are 
considered 

Column 
generation 
based 

Others 

Quesnel et al. 
(2020b) 

Set-partitioning 
problem 

√ Constraint 
penalties 

√  √ Rolling horizon 

Saddoune et al. 
(2013) 

Set-partitioning 
problem 

√  √  √ Rolling horizon 

Erdoğan et al. 
(2015) 

Set-partitioning 
problem 

√  √   Model-based 
metaheuristics 

Medard and 
Sawhney 
(2007) 

Set-covering 
problem 

√   √ √ Tree search  

2 Some studies do not state clearly what type of air crew they are considering. However, the distinctive operating characteristics of cabin crew are 
not formulated in the models developed by these works. Therefore, we categorize these studies into the “cockpit crew” type.  

3 The detailed information is available at https://www.faa.gov/data_research/aviation_data_statistics/media/cost_delay_estimates.pdf (Accessed 
on 20 November 2020) 
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algorithm called flight-pair branching is developed to improve the computational efficiency by producing smaller branching trees. It is 
concluded that significant savings can be achieved if the delay effects on crew schedules and the resulting effects on the entire system 
are considered during the planning phase. However, this study focuses on a small flight network with a sample of only 100 scenarios of 
the flying time realizations. 

Robust optimization is another main stream to deal with uncertainty. The major advantage of robust optimization is that it is 
unnecessary to know the distribution information of the random factors, such as root delay and propagated delay. Taking the 
advantage of robust optimization, Antunes et al. (2019) develop a robust pairing model for airline crew scheduling in which a robust 

Table 7 
Problem features for the literature reviewed in Section 5.  

Literature Crew-induced delay Modelling approach Manpower requirement Flight time characteristics 

Separate Integrated Data- 
driven 

Scenario- 
based 

Worst- 
case 

Homogeneous Heterogeneous Considered Not- 
considered 

Yen and Birge 
(2006) 

√   √  √   √ 

Chung et al. 
(2017)  

√ √   √   √ 

Antunes et al. 
(2019) 

√    √ √   √ 

Sun et al. (2020b)  √ √   √  √   

Table 8 
Model features for the literature reviewed in Section 5.  

Literature Model format Objective Robust measurement Solution approach 

Cost 
minimization 

Others Expected 
delay cost 

Other 
cost 

Column 
generation 
based 

Others 

Yen and 
Birge 
(2006) 

Two-stage stochastic 
program with recourse 

√ Disruption cost Crew- 
induced  

√ Flight-Pair branching 

Chung et al. 
(2017) 

Set-covering problem √ Reserve crew cost √ √ √ Modified multi-label 
correcting algorithm 

Antunes et al. 
(2019) 

Set-partitioning 
problem 

√ Additional crew 
costs due to delays 

√  √  

Sun et al. 
(2020b) 

Set-covering problem √ Robustness cost √ √ √ Problem featured based 
multi-label correcting 
algorithm  

Fig. 6. Illustration of the propagated delay.  
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pay-and-credit salary structure for crew is considered. Different from the existing literature, Antunes et al. (2019) not only consider the 
additional crew cost due to delays, i.e., the increased duty and pairing elapsed time, but also measure the robustness by the flight delay 
costs due to the propagated delay. The proposed model is converted into a standard set partitioning problem to make it solvable by 
using the column generation technique. A case study based on a moderate-size real flight network is conducted with the conclusion that 
a significant reduction of both averages and the variability of delay and disruption costs can be obtained with a small increase in the 
planned crew cost which is often below 3%. 

Although the implementation of robust optimization seems to be easier than stochastic optimization, it is still a challenging task to 
characterize the uncertainty set to avoid overly-conservative schedules. With the technological advancements of the big data analytics, 
data-driven robust optimization becomes a prosperous trend for airline scheduling. For example, Chung et al. (2017) incorporate a new 
machine learning based method into the crew pairing robust optimization model to improve the robustness of the solutions. With the 
learning ability of the cascading neural network, it is revealed that the arrival delay is correlated with the departure delay as the arrival 
delay prediction can be improved with the input of the departure delay forecast. It is verified that the machine learning based approach 
is better than the traditional regression method or ARIMA. In addition, a dynamic reserve crew allocation strategy is further combined 
with the robust optimization model to help determine the optimal number of reserve crew for the possible disruptions due to prop
agated delays. It is critical for airlines to maintain the feasibility of flight schedules and reduce disruption costs. However, in Chung 
et al. (2017), the uncertainty is analyzed under a discrete form with no considerations of the flying time characteristics under different 
circumstances. 

Inspired by the results of Chung et al. (2017), Sun et al. (2020b) investigate further into the characteristics of the flying time and 
verify the interdependency of the departure time and arrival time in a continues form. Based on data analytics, Sun et al. (2020b) find 
that, for more than 23% flights explored, the expected flying times are significantly affected by its actual departure times. Accordingly, 
the flying time of Flight f is modeled into a regression relationship as follows: 

FTf (T) = μf (T) + σf (T)∊.

Here, T is a random variable, which represents the departure time of Flight f. Given T = t, μf (t) = E
(
FTf (T)

⃒
⃒T = t

)
is the regression 

mean function, while σf (t) = Var
(
FTf (T)|T = t

)
is the regression variance function. ∊ is a white noise. Fig. 7 illustrates a specific case 

when the interdependency between the departure time and the flying time for Flight f follows a linear function. 
In addition, in Sun et al. (2020b), a novel robustness measure is introduced, which is composed of both the expected departure and 

arrival delays and the overtime cost for the crew members due to flight delays. It is somehow similar with the additional crew cost in 
Antunes et al. (2019), but in fact they are different. First of all, in Antunes et al. (2019), it is assumed that the root delay and propagated 
delay are uncorrelated. However, in Sun et al. (2020b), with the data analytics by using the heteroscedastic regression model, it is 
verified that the flying time is affected by both the expected value of departure time and its variability. In other words, the propagated 
delay is interacted with the root delay when the timing of the departure and arrival has a great impact on the flight delay. With the 
considerations of both the first and second moments of the flight time, the over-estimates or under-estimates on the propagated delay 
can be greatly eliminated. Experiment results show that a significant improvement in the reliability of the crew pairings derived can be 
achieved with a slight increase of the total basic operations cost. 

Except for the robust measurements aforementioned, different robust optimization criteria can be explored for solving robust crew 
scheduling under distinct situations. For instance, min–max regret approach was applied by Ng et al. (2017) for solving a robust 
aircraft sequencing and scheduling problem. The principle of min–max regret approach is to find the solution with the minimum regret 
value of the worst-case under different scenarios, i.e., minX∈ΩRegretmax(X), where X is a feasible solution belonging to the feasible set Ω. 
A regret value is defined as the deviation from the optimal value under a given scenario s ∈ S, i.e., 
Regret(X, s) = F(X, s) − minX∈ΩF(X, s). For crew scheduling problems, the regret value can be defined as cost-oriented and time-oriented 
according to the specific preference for the decision maker. Thus, a well-designed iterative algorithm is essential to solve such a worse 
case based approach efficiently, which becomes even more challenging when the problem scale increases. 

6. Recovery for cockpit crew 

In this section, we review four representative crew recovery studies. Similar to the robust scheduling studies, the recovery problems 
are also mainly based on cockpit crew4. The problem and model features of these studies are listed in Table 9 and Table 10, 
respectively. As discussed in Section 5, robust plans help mitigate the risks of severe disruptions. However, in the real world, the daily 
disruptions cannot be fully avoided even with the support of robust plans. This is because that uncertainties cannot always be fore
casted as the disruptions may come from both exogenous and endogenous factors. For example, due to bad weather and air traffic 
control, the flow rate reduction and temporary closure of airports are incurred for safety considerations, which directly affects the 
ongoing flights and the corresponding crew schedules. Once the disruption happens, airlines have to make a recovery plan with the 
minimum recovery cost in a short time. For instance, Lettovský et al. (2000) proposes an optimization-based approach for the airline 
crew recovery problem. The recovery actions proposed in Lettovský et al. (2000) include crew swaps, standby/reserve crew and 
deadheading. Fig. 8 displays an example of crew swapping. 

4 Some studies do not state clearly what type of air crew they are considering. However, the distinctive operating characteristics of cabin crew are 
not formulated in the models developed by these works. Therefore, we categorize these studies into the “cockpit crew” type. 
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Fig. 7. Illustration of the interdependency between the departure time and the flying time.  

Table 9 
Problem features for the literature reviewed in Section 6.  

Literature Recovery actions Modelling approach Manpower requirement Recovery horizon 

Flight cancellation & 
deadheading 

Others Separate Integrated Homogeneous Heterogeneous Single Multiple 

Lettovský et al. 
(2000) 

√  √  √  √  

Abdelghany et al. 
(2008) 

√   √ √   √ 

Petersen et al. (2012) √   √ √  √  
Arıkan et al. (2017) √ Cruise speed 

control  
√ √  √   

Table 10 
Model features for the literature reviewed in Section 6.  

Literature Model format Objective Scope of Recovery Solution approach 

Cost 
minimization 

Others Disrupted 
flights 

Others Column 
generation 
based 

Others 

Lettovský et al. 
(2000) 

Set covering 
problem 

√   Disrupted crews  Branching 
techniques 

Abdelghany 
et al. 
(2008) 

Mixed integer 
program 

√ Delay cost √   Greedy 
optimization 
strategy 

Petersen et al. 
(2012) 

String-based 
model 

√ Aggregate 
passenger delay 

√ Retiming flights √ Row generation 

Arıkan et al. 
(2017) 

Conic quadratic 
mixed integer 
program 

√ Fuel cost / 
passenger 
disruption cost 

√ Aircraft and crew 
networks 
limitation  

Partial network 
generation 
algorithm  

Fig. 8. Illustration of crew swapping.  
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The optimization objective proposed by Lettovský et al. (2000) is to minimize the overall crew assignment cost, flight cancellation 
cost and deadheading cost. As the full-scale optimization is ruled out due to the highly efficient computational requirement for the real- 
time recovery plans, the premise to optimize the crew recovery problem is the determination of the recovery horizon and the scope of 
recovery. The recovery horizon is usually exogenous, and the objective of the recovery problem is to bring the operations back to the 
schedule by the end of the recovery horizon. Lettovský et al. (2000) proposes a deadhead selection heuristic by categorizing dead
heading options, e.g., multiple assignments, out of flying time, catching up and repositioning, to realize the reduction of the recovery 
problem size. Then the crew recovery problem is formulated by an integer program. A primal–dual subproblem simplex method 
combined with the customized three-stage branching strategy is developed to solve it. However, the proposed optimization-based 
method is only applicable for small to medium sized disruptions. 

In real-time airline operations, the interdependency among different entities indicates that the optimal recovery actions of the crew 
members will affect the recovery plans for the aircraft and passengers involved. Obviously, global optimization cannot be realized by 
separated or sequential decisions. In recent years, more researchers explore the interdependency among the recovery actions of crew, 
aircraft, passengers and schedules. Abdelghany et al. (2008) develop an integrated airline recovery approach within a rolling horizon 
modelling framework. Different from the traditional single-period recovery problem, Abdelghany et al. (2008) introduce a new 
objective to realize the trade-off between the delay savings and the number of flights with swapped resources. To the best of our 
knowledge, it is the first academic study to analyze the impact of the integrated recovery plans on flight delays in a dynamic network 
operational environment. Abdelghany et al. (2008) argue that it is critical for the airline to seek for the balance between the number of 
swapped resources and flight delay/cancellation savings to guarantee the quality-of-life of its crew members. But the problem setting 
in Abdelghany et al. (2008) is based on the deterministic environment and the greedy optimization strategy, which limits its appli
cations to large-size problems in real situations. Petersen et al. (2012) further incorporate the schedule recovery into the integrated 
airline recovery problem by retiming the departure time. The full integrated recovery problem is based on a string-based model, in 
which column generation techniques are applied for string generation, followed by a Benders decomposition scheme in which the 
schedule recovery model is the master problem and the other recovery models are subproblems. Petersen et al. (2012) control the 
recovery scope by limiting flights disrupted from different resources. Besides, instead of using the traditional uniform flight copy 
approach, an event-driven delay approach is developed to reduce the total generated flight strings. Although the authors made great 
efforts on reducing the scope of the recovery operations, it is still challenging to solve the full integrated problem. In particular, 
repairing the crew duty network is the major bottleneck, as the decision maker has to identify a tradeoff between the computational 
tractability and the quality of the crew network connectivity by considering more information along with a longer time window. In 
fact, preprocessing the scope without sacrificing the optimality before recovery is crucial to help airlines to obtain a cost-effective 
recovery plan in real time. 

In addition to the traditional recovery actions for crew and aircraft, Arıkan et al. (2017) further investigate the impacts of cruise 
speed control on the recovery of delayed flights. With the information shared among airlines and airports, following the slot allocation 
guideline provided by the International Air Transport Association (IATA), for the situations with limited slot resources, an airport can 
allocate the slots to airlines after coordination. Arıkan et al. (2017) propose a novel integrated recovery model for a flight network in 
which all the entities are represented in the same manner. The objective is to identify a tradeoff between the total assignment cost, 
additional fuel cost and passenger delay cost. By taking the advantage of the activity-on-node network, the departure/arrival times and 
cruise speeds are modeled as continuous variables which facilitate the reduction of the solution space. Different from the existing 
studies, a novel partial network generation algorithm is proposed to further help eliminate the infeasible recovery actions before 
solving the optimization model. The impacts of the problem size control and the length of the recovery horizon on the solution 
optimality are discussed. The results indicate that the tradeoff between the computational complexity and the recovery quality cannot 
be avoided. Cruise speed control is a good recovery action to reduce flight delays and facilitate more passenger connections with the 
increasing disrupted flights. However, to guarantee the service quality as well as the profit, how to determine the optimal recovery 
horizon and coordinate among different entities to realize different recovery actions is an open question which needs deeper 
explorations. 

7. Future research agenda 

Based on the review of some prior studies presented above, in this section, we propose a future research agenda for the airline crew 
scheduling problem which is summarized in Table 11. 

7.1. Disruption management for cabin crew 

Due to the diverse distinctive operating characteristics of cabin crew, the problem scale and complexity for the scheduling opti
mization problem for cabin crew are much higher than those for cockpit crew. Therefore, the existing cabin crew scheduling studies 
mainly concentrate on minimizing operating costs without disruption considerations. That is, little attention has been paid to improve 
the solution robustness for cabin crew schedules constructed during the tactic planning stage or the recovery solutions during the 
operational stage. However, the various uncertainties in the operations environment of the aviation industry are unavoidable, bringing 
great challenges for cabin crew management. Therefore, it is of great value to explore the disruption management strategies for cabin 
crew. As each flight might require different numbers of cabin crew members regarding each crew class, exploring how to apply the 
commonly used robustness enhancement strategies for cockpit crew pairings (like crew swaps) to cabin crew is a promising future 
research direction. Moreover, applying the specific operations characteristics of cabin crew, like crew substitution, to develop a new 
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robustness enhancement strategy is an interesting area. For crew recoveries, as cabin crew members are allowed to substitute others 
under some conditions, it is valuable to investigate how to utilize crew substitution to bring the disrupted flights back to the schedule as 
soon as possible. However, as cabin crew members shall be considered with their classes and the heterogeneous manpower re
quirements on different flights, how to obtain the optimal recovery solutions efficiently is a critical challenge. As we all know, airlines 
usually need to find recovery solutions within a short time (e.g., a couple of hours). Therefore, efficient solutions algorithms are needed 
for cabin crew recovery operations to reduce the negative impact of disruptions as fast as possible. More importantly, the fast 
development of advanced information technologies (like big data and Intelligent Transport Systems) brings new opportunities for 
airlines to improve the cabin crew recovery decisions. For example, when the crew swap strategy is applied, the airline can select the 
most appropriate cabin crew member to swap by evaluating the delay probability of his/her scheduled flight through analyzing a huge 
amount of real-time data. 

7.2. The impacts of COVID-19 on the airline crew scheduling problem 

The existing airline crew scheduling problems have considered various disruption sources like crew absence and flight delays. 
However, the recent widespread of COVID-19 brings new challenges for the area (Amankwah-Amoah, 2020). For example, to satisfy 
the governmental requirements, special training (e.g., sanitation operations) is required for flight crews. Some countries, like China, 
impose a great penalty on airlines which fail to satisfy the epidemic prevention requirements and bring the virus in. Therefore, it is 
important to consider the related manpower skills in the airline crew scheduling problem during the pandemic, especially for the flight 
routes to and from risky areas. New optimization models are thus needed. For instance, during the period of the COVID-2019 
pandemic, crew members’ absence due to the self-isolation is essential to be considered for the optimization modelling, in which 
the flexibility of the crew scheduling is inevitably restricted. In addition, whenever there is a confirmed case during a flight, the 
original crew scheduling will be disrupted as the corresponding crew members have to be isolated for a certain period for medical 
observation. Moreover, in case an overlong rest time is involved in the crew scheduling, extra stay time may be incurred for necessary 
testing and medical observation. Therefore, how to model the situations of the absence of the specific crew members for a certain time 
period so as to realize cost-effective recovery plans for the following flights in the low-risk areas is critical and challenging when 
developing the mathematical optimization models. It is also challenging to model a robust crew scheduling optimization framework 
with the consideration of the potential risks caused by the passengers coming from high-risk areas and multiple rest periods outside 
crew base. 

Moreover, it is a promising direction for airlines to improve their schedules by incorporating the risk data into the planning 
framework. For instance, through advanced data analytics methodologies (like neural networks learning algorithms), airlines can 
evaluate the risk level of flight origins/destinations, thus reducing or avoiding the flight connections involving risky areas. Besides, a 
majority of global airlines cancelled their domestic and international flights due to the pandemic. It is reported by ICAO that, 
throughout 2020, the number of seats offered by airlines is estimated to reduce by 51%, while the overall decrease of passengers would 
be 2877 to 2888 million, and the impacts are forecasted to last to 2021 (ICAO, 2020). Therefore, many flight crew members lost their 
jobs or took a no-pay leave. According to CBC News, Air Canada dismisses more than 5,100 members of its cabin crew amid a steep fall 
in travel demand5. Air New Zealand lays off a third of its employees and Qantas Airways place 20,000 workers on leave according to 
Reuters6. The manpower resource of airlines is thus disrupted significantly. It will thus be an extremely challenging task to carry out 
crew planning operations during the recovery of the aviation industry. 

Table 11 
Summary of the future research agenda.  

Areas Topics Examples 

Disruption management for cabin crew Robust cabin crew 
scheduling 

Crew swaps among cabin crew members 

Recovery for cabin crew Crew substitution recovery operations 
The impacts of COVID-19 on the airline crew scheduling problem The special scheduling 

problem under/after 
pandemic 

Special manpower skills 
Disrupted manpower resource 
Recovery problem 

The impacts of blockchain 
technologies on the airline crew 
scheduling problem 

Blockchain based information 
sharing for crew operational risk 
management 

Airline operational risk 
management 

Information sharing 
Cooperative operations 
Information security 

Blockchain based information 
updating and risk perception for 
crew recovery 

Crew recovery in a 
cooperative operating mode 

Recovery strategies with quick response 
Dynamic and stochastic operating environment 
the operational information updating and risk 
forecasting  

5 https://www.cbc.ca/news/canada/british-columbia/more-than-5–100-air-canada-flight-attendants-to-be-laid-off-amid-massive-covid-19- 
slowdown-1.5504051 (Accessed on 4 December 2020)  

6 https://www.reuters.com/article/us-health-coronavirus-australia-factbox/factbox-layoffs-in-corporate-australia-new-zealand-as-coronavirus- 
crisis-deepens-idUSKCN21Y05H (Accessed on 4 December 2020) 
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7.3. The promising application of blockchain technologies in airline crew operations  

I. Blockchain based information sharing for crew operational risk management 

From the review presented above, it is seen that the existing airline crew scheduling problem is usually solved by the airline itself. 
The efficient and effective cooperation among multiple agents, i.e., air traffic control, airports, airlines, is limited due to the lack of the 
information sharing. However, with the development of the big data analytics, the cooperative operation among multiple agents is a 
growing trend for the aviation industry (Choi et al., 2019; Fairbrother et al., 2020), which facilitates the operational risk management 
of airlines. For example, the development of the Airport Collaborative Decision-Making (A-CDM) is a promising solution to help realize 
information sharing and cooperative operations among diverse related parties. However, information security is vital in the aviation 
industry. The blockchain technology can thus play a critical role to guarantee the security and privacy issues during the information 
sharing among multiple agents, such as the crew information, flight manifests, and passenger data. Based on information sharing, the 
blockchain technology will contribute to establishing an integrated database and form a cooperative operational agreement. This will 
further help enhance the quality of the analyses in terms of the interactive factors among crew, aircraft, airports, and air traffic control 
departments during the airline network planning stage, e.g., aircraft maintenance routing, crew scheduling, and slot allocation. It will 
be a promising but challenging future research direction to characterize the interactions between the crew operations decision making 
and the delay status via big data analytics, by which a data-driven optimization model with crucial robustness measures can be built to 
mitigate the operational risks, such as delay and flight cancellation, under high uncertain environment (Khan et al., 2019a, 2019b; 
Wang et al., 2020).  

II. Blockchain based information updating for time–space resources coordination 

Real-time information updating is also crucial to deal with airline schedules disruptions in real practice, which has received little 
attention in the existing literature. There is no doubt that disruptions cannot be completely avoided in the real world which is full of 
uncertainty and volatility (Sun et al., 2015, 2018, 2020b). Disruptions bring considerable damages to service operations such as the 
aviation industry (Choi, 2020). The existing literature demonstrates that the recovery strategies with quick response can greatly 
contribute to the airline operating efficiency and performance (Choi et al., 2019). Instead of modelling the crew recovery problems 
under a static environment, making the crew recovery decisions with the consideration of a dynamic and stochastic operations 
environment is much more in line with the real world, and the solutions generated in this way are more reliable and useful. For 
example, the restrictions on the flying time and working hours during each duty and pairing may incur potential disruptions of the 
successive flights due to exogenous factors from the airport side. Driven by the advanced information technologies, such as blockchain 
technology, the real-time information sharing platform can help predict the delay risks due to the uncertainties coming from the 
airport side and the delay propagation in the overall airline network. It will further facilitate the design of optimal recovery strategies 
in a dynamic and stochastic environment by analyzing various potential operational risks, like the infeasibility of crew recovery 
decisions due to the violation of working rules and regulations (e.g., the maximum working hours). In the future, it will be a very 
promising research direction to study the crew recovery problem in a cooperative operating mode with the operational information 
updating and risk forecasting in the airline network. However, how to design and model the strategies for multi-party cooperative 
operations, in terms of information sharing and resources coordination, is essential to formulate the mathematical optimization for 
real-time crew recovery. 

In conclusion, from the analyses presented above, it is seen that the disruption management for cabin crew, the impact of COVID- 
19, and the information sharing/updating among diverse participants, together with the application of advanced information tech
nologies (e.g., big data analytics, blockchain, and Intelligent Transport Systems) are promising and valuable future research topics for 
airline crew scheduling problems. Moreover, it is worthwhile to notice that these research directions are interrelated with each other 
and can serve a common objective of improving the disruption management efficiency. It is also worthwhile to note that the appli
cation of advanced information technologies can play a pivotal role in alleviating the negative impacts brought by the uncertain and 
volatile operations environment in the aviation industry. 

8. Concluding remarks 

With the growing importance of the air transportation industry for the global economic development, the airline scheduling 
problem has become one of the most crucial but challenging tasks for modern airlines due to the large problem scale and high problem 
complexity. Airlines are operating with two distinct types of air crew. They are cockpit crew and cabin crew. These two crew types are 
very different in operating characteristics, which greatly affects the corresponding scheduling problems. For example, cockpit crew is 
single-qualified while cabin crew is mixed-qualified. The manpower requirement for cockpit crew is homogeneous within an aircraft 
type. However, the manpower configuration for the multi-class cabin crew is heterogeneous across aircraft types and cabin layouts. 
Additionally, according to the planning stage, the airline crew scheduling problem can be classified as tactical planning problems and 
operational planning problems. To be specific, the tactical planning is conducted weeks or months before the actual operations. 
Traditionally, cost-minimization is the focus of the tactical planning problem. In recent years, due to the highly volatile operating 
environment, airlines are moving from the cost-minimization scheduling to the robust scheduling, with the aim of enhancing the 
solution robustness to better hedge against the potential disruptions in real operations. On the other hand, in the operational stage, 
recovery is used to bring the disrupted operations back to schedule in order to alleviate the negative impacts of various disruptions that 
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have happened. Realizing the significance of the airline crew scheduling problems and a lack of review on the modelling and algo
rithmic advancements in terms of each crew type and planning stage, we develop this paper to examine the related literature from four 
aspects: the scheduling for cabin crew, the scheduling for both cabin crew and cockpit crew, the robust scheduling for cockpit crew, 
and the recovery for cockpit crew. We summarize the key findings as follows. 

First, the scheduling studies concentrating on improving the decision making for cabin crew are reviewed. We have highlighted the 
unique model features for cabin crew scheduling problems. To be specific, it is identified that in addition to the set-covering or set- 
partitioning modelling approach, a pure network model can also be applied to solve small-scale problems. Besides, side constraints 
can be proposed to improve the pairing solutions for cabin crew. On the other hand, if the distinctive operating characteristics of cabin 
crew (e.g., multiple classes, mixed-qualification, heterogeneous manpower requirements, crew substitution) are considered, the 
problem scale will increase significantly, making the column-generation based solution approaches less applicable. 

Second, we have examined the studies that consider the scheduling for both cockpit crew and cabin crew. Actually, the cabin crew’s 
unique operating features are often ignored to make the problem tractable. However, a concept named as crew slice can be applied to 
formulate the specific manpower requirements for each class of cabin crew and cockpit crew on each individual aircraft. Besides, a 
rolling horizon approach which divides the airline crew scheduling problem into a daily problem, a weekly problem, and a monthly 
problem that are solved sequentially can help reduce the problem complexity. 

Third, some typical studies on robust scheduling of cockpit crew are reviewed. It is found that there is no standard and best robust 
measurement for crew scheduling. However, the importance of decision makers to pursue the tradeoff between the traditional 
operating cost and the investment cost for the future potential disruptions has been revealed. With the development of the big data 
analytics technology, risk forecasting and analysis for the interactive relationship among different types of flight delays is a trend to 
help explore new robust measurements for more reliable and flexible plans without increasing the complexity of the solution 
algorithm. 

Fourth, we have further examined the studies on crew recovery which serves for the situations when severe disruptions have 
happened during the operations. Different from the planning stage, the recovery actions usually take place in real-time which needs 
quick response with low recovery costs. Although there are many studies focusing on both costs and time efficiency of the recovery 
solutions, it is still challenging to guarantee the service quality as well as the profit, to determine the optimal recovery range, and to 
coordinate different parties to realize different types of recovery actions. 

After investigating the literature and examining some related models & solution algorithms, we have established a future research 
agenda which includes the disruption management for cabin crew, the impact of COVID-19, and the impact of blockchain technology. 
It is believed that this paper can provide useful information to both practitioners and academics on the modelling and algorithmic 
advancements in the airline crew scheduling problems. 
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Tekiner, H., Birbil, Ş.İ., Bülbül, K., 2009. Robust crew pairing for managing extra flights. Comput. Oper. Res. 36 (6), 2031–2048. 
Tu, N., Li, Z.C., Fu, X., Lei, Z., 2020. Airline network competition in inter-continental market. Transport. Res. Part E: Logist. Transport. Rev. 143, 102117. 
Vance, P.H., Atamturk, A., Barnhart, C., Gelman, E., Johnson, E.L., Krishna, A., Mahidhara, D., Nemhauser, G.L., Rebello, R., 1997. A heuristic branch-and-price 

approach for the airline crew pairing problem. preprint. 
Wang, C., Wang, X., 2019a. Airport congestion delays and airline networks. Transport. Res. Part E: Logist. Transport. Rev. 122, 328–349. 
Wang, C., Wang, X., 2019b. Why do airlines prefer multi-hub networks? Transport. Res. Part E: Logist. Transport. Rev. 124, 56–74. 
Wang, K., Jacquillat, A., 2020. A stochastic integer programming approach to air traffic scheduling and operations. Oper. Res. 68 (5), 1375–1402. 
Wang, Z., Khan, W.A., Ma, H.L., Wen, X., 2020. Cascade neural network algorithm with analytical connection weights determination for modelling operations and 

energy applications. Int. J. Prod. Res. 58 (23), 7094–7111. 
Wen, X., Chung, S.H., Ji, P., Sheu, J.B., Choi, T.M., 2020a. Multi-class cabin crew pairing problems with controlled crew substitution in airline operations, working 

paper. 

X. Wen et al.                                                                                                                                                                                                            

http://refhub.elsevier.com/S1366-5545(21)00078-8/h0065
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0065
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0070
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0070
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0075
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0075
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0080
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0085
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0085
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0090
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0095
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0100
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0100
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0105
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0105
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0110
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0115
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0120
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0125
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0130
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0135
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0135
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0140
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0145
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0160
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0165
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0170
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0170
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0175
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0175
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0180
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0180
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0185
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0190
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0195
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0200
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0200
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0205
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0210
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0215
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0220
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0225
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0225
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0230
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0230
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0235
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0240
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0245
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0245
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0250
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0250
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0255
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0260
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0265
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0270
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0270
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0275
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0275
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0280
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0280
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0285
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0285
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0290
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0290
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0300
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0305
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0315
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0320
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0325
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0330
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0330


Transportation Research Part E 149 (2021) 102304

18

Wen, X., Ma, H.L., Chung, S.H., Khan, W.A., 2020. Robust airline crew scheduling with flight flying time variability. Transport. Res. Part E: Logist. Transport. Rev. 
144, 102132. 

Wen, X., Xu, X., Choi, T.M., Chung, S.H., 2019. Optimal pricing decisions of competing air-cargo-carrier systems–impacts of risk aversion, demand, and cost 
uncertainties. IEEE Trans. Syst., Man, Cyberne.: Syst. 50 (12), 4933–4947. 

Wong, A., Tan, S., Chandramouleeswaran, K.R., Tran, H.T., 2020. Data-driven analysis of resilience in airline networks. Transport. Res. Part E: Logist. Transport. Rev. 
143, 102068. 

Wu, C.L., Law, K., 2019. Modelling the delay propagation effects of multiple resource connections in an airline network using a Bayesian network model. Transport. 
Res. Part E: Logist. Transport. Rev. 122, 62–77. 

Yan, S., Tu, Y.P., 2002. A network model for airline cabin crew scheduling. Eur. J. Oper. Res. 140 (3), 531–540. 
Yan, S., Tung, T.T., Tu, Y.P., 2002. Optimal construction of airline individual crew pairings. Comput. Oper. Res. 29 (4), 341–363. 
Yen, J.W., Birge, J.R., 2006. A stochastic programming approach to the airline crew scheduling problem. Transport. Sci. 40 (1), 3–14. 
Zeighami, V., Soumis, F., 2019. Combining benders’ decomposition and column generation for integrated crew pairing and personalized crew assignment problems. 

Transport. Sci. 53 (5), 1479–1499. 

X. Wen et al.                                                                                                                                                                                                            

http://refhub.elsevier.com/S1366-5545(21)00078-8/h0340
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0340
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0345
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0345
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0350
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0350
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0355
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0355
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0360
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0365
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0370
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0375
http://refhub.elsevier.com/S1366-5545(21)00078-8/h0375

	Airline crew scheduling: Models and algorithms
	1 Introduction
	1.1 Background
	1.2 Contribution and paper structure

	2 Differences between the scheduling for cockpit crew and cabin crew
	3 Scheduling for cabin crew
	4 Scheduling for both cockpit crew and cabin crew
	5 Robust scheduling for cockpit crew
	6 Recovery for cockpit crew
	7 Future research agenda
	7.1 Disruption management for cabin crew
	7.2 The impacts of COVID-19 on the airline crew scheduling problem
	7.3 The promising application of blockchain technologies in airline crew operations

	8 Concluding remarks
	CRediT authorship contribution statement
	Acknowledgements
	References


