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A B S T R A C T

When demand for transportation is low or highly variable, traditional public bus services tend
to lose their efficiency and typically frustrate (potential) passengers. In the literature, a large
number of demand-responsive systems, that promise improved flexibility, have therefore been
developed. At present, however, a comprehensive survey of these systems is lacking. In this
paper, we fill this gap by presenting a unifying framework that classifies all demand-responsive
public bus systems. The classification is mainly based on three degrees of responsiveness:
dynamic online, dynamic offline, and static. For each system we discuss the specific optimization
problem modeled, whether realistic data is considered, and the size of the instances used for
testing. Where possible, we try to draw conclusions on the current state of the literature and
try to identify potential avenues for future research. Different tables are included to structure
and summarize the information of all papers.

1. Introduction

On-demand, dial-a-ride, demand-adaptive, demand-responsive, flexible, flex-route, hybrid, and variable-type are just a few of the names
given to different types of modern bus systems that do not operate using fixed routes and timetables. Such systems offer a more
flexible approach to public bus planning that takes into account the individual demand for transportation. Such systems – which
we will call demand-responsive public bus systems (DR-PBS) – require additional information on where individual passengers are,
where they would like to go, and at what time they wish to travel. This information can be gained in different ways, e.g., by asking
passengers to make an explicit request for transportation using a mobile device, by making use of smart stops, or by predicting it
based on historical or real-time data.

Demand-responsive public bus systems are most useful in situations where conventional public bus systems do not perform well:
when demand for transportation is either low (e.g., in a rural area) or has a large variance (e.g., there is a large difference between
peak and off-peak hours). In these situations, buses that run according to fixed routes and timetables will tend to run either almost
empty or filled to the brim. Both situations are undesirable: empty buses are inefficient for the bus company, whereas overfull buses
are frustrating for the passenger. These systems take into account actual demand in an individual and short-term manner and adapt
bus routes and/or timetables in much shorter time frames than traditional public bus systems.

It is incorrect to say that traditional public bus systems do not take into account demand for transportation, as both routes and
timetables will have been determined based on historical demand data and may change throughout the day (e.g., running with a
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higher frequency during peak hours). However, the relationship between demand and supply in traditional public bus systems is a
long-term and collective one (Schöbel, 2012; Iliopoulou et al., 2019). Short-term, individual user requests for transportation do not
influence either the routes or the timetables of the buses in a conventional public bus system, except on the rare occasions when
bus system operators manually intervene to mitigate problems (vehicle breakdown, road blocks, heavy congestion, etc.) or to better
handle a predicted demand surge (e.g., a sports match).

A large number of DR-PBS has been recently proposed, that differ in the way the routes and/or timetables of the buses may change
hen the system receives a request for transportation. The sheer number of proposed systems, often differing only in a few details,
ake it difficult to draw conclusions from the state of the art. Besides, the lack of a general framework for DR-PBS results in many
ifferent names appearing in the literature, often based on the most dominant characteristics of the proposed or the most closely
elated systems. Although there exists several reviews on certain systems, indeed, a comprehensive survey of all demand-responsive
ublic bus systems is currently lacking. Molenbruch et al. (2017) and Ho et al. (2018) conduct extensive surveys on dial-a-ride
ystems where the state of the art is characterized by discussing the solution methods in detail, Koffman (2004) and Potts et al.
2010) present a general framework and a literature review on demand-adaptive systems where the characterization of the systems
re based on the way the routes can change, and Huang et al. (2020a) provide a structured literature review for the different stages
f the design of a customized bus system. To the best of our knowledge, the survey on semi-flexible demand-responsive systems
y Errico et al. (2013) has the widest scope of the state of the art on demand-responsive systems. Yet, many demand-responsive
ystems are not covered by the term semi-flexible. Therefore, the need for a structured literature review that covers all DR-PBS
ystems under a single unifying framework and that provides the recent developments remains. In this paper, the aim is to fill
his gap by presenting a unifying framework that classifies all demand-responsive public bus systems, and to present an overview
f recent studies guided by this classification. The contribution of this paper is to (1) provide a comprehensive literature review
n demand-responsive public bus system, and (2) develop a taxonomy of all recently proposed systems. We thereby focus on the
roperties of the (optimization) models that are built to support the planning of such systems (decision variables, objective(s),
onstraints), and only briefly discuss the solution methods developed.

We limit our review to public bus systems, i.e., systems that are open to the public. Obviously, these systems might be operated
y private companies. However, systems operated by a private company to facilitate commuting for a select group of people (e.g., a
ompany’s own employees) are considered out of scope. Furthermore, we use the term public bus instead of public transport since

we exclude train, tram, bike sharing, or other modes of public transport from this study. Also systems typically used individually,
such as taxi services, including Lyft or Uber, are not considered in this paper. We acknowledge that the distinction between a bus
and a taxi becomes less clear-cut when the buses used are small (as is often the case in an on-demand public bus system), but
have included all bus systems that are designed to be shared between users, regardless of the maximum number of simultaneous
passengers on a vehicle. Finally, some papers focus on deciding, either in real-time or not, on the level of demand that justifies a
switch from a conventional system to a demand-responsive system or the other way around, e.g., Chien et al. (2001) and Kim and
Schonfeld (2012). If those papers are mentioned below, they are classified based on the demand-responsive system they propose to
operate.

1.1. Structured literature review methodology

In order to gather all relevant papers on this topic, the Web of Science is searched for articles and book chapters published in
operational research or transportation journals from the year 2000 or later. The search terms are constructed such that a term for
‘‘transportation’’ (Filter 1) and a term for ‘‘demand-responsive’’ (Filter 2) should be included in the title and the abstract, and a term
or ‘‘solution’’ (Filter 3) is mentioned in the abstract. Moreover, to limit the studies to the relevant domain, a list of forbidden terms
Filter 4) is used to eliminate irrelevant papers on topics that use similar terminology in a completely different context.

The search terms, per filter, are:

F1: Title and abstract contain at least one of: Transportation, Transit, Transport, Connector, Mobility, Bus; AND
F2: Title and abstract contain at least one of: Demand responsive, Customized, Ride sharing, Ride pooling, Dynamic, Feeder,

Flexible, Flex-route, On demand, Demand adaptive, Dial a ride; AND
F3: Abstract contains at least one of: Optimization, Optimize, Model, Simulation, Simulate, Planning, Assignment, Design; BUT
F4: Title does not contain any of: Dynamics, Kinematics, Spintronics, Polymer, Composite, Perovskite, Tetracene, Concrete, Ion,

Quantum, Chemical, Thermal, Transistor, Production, Manufacturing, Flexible flowshop, Water transport, Heat transport, Air
mobility

This search resulted in more than 300 papers, of which around half were considered out of scope for this survey after a manual
heck. In this phase, papers were excluded mainly because they described individual transport (taxi) systems or systems that are
ot really demand-responsive as discussed in the previous paragraph. This resulted in a total of 151 papers that are included in this
urvey.

.2. Overview

The rest of this paper is organized as follows. In Section 2.1, the concepts that will be used in the classification are defined. The
ain classification of the demand-responsive public bus systems (DR-PBS) is based on the degree of responsiveness: the dynamic

nline, dynamic offline, and static public bus systems are presented in Sections 3, 4, and 5, respectively. In those sections, the DR-PBS
re further classified using a unified structure and conclusions on the respective demand-responsive systems are given. Lastly, in
ection 6, summarizing conclusions on DR-PBS are presented.
2



Transportation Research Part C 137 (2022) 103573P. Vansteenwegen et al.

o

2

m
f
t

r
o
t
d

t
H

2. Definitions and classification

Before presenting the classification used in this paper, some concepts are defined. This section also briefly introduces a number
f well-know demand-responsive systems of which variants appear throughout the classification.

.1. Definitions

In DR-PBS, pickups and drop-offs of passengers can occur on a stop-based basis, using a predefined set of potential stops; or on
a door-to-door basis, where any location within a predefined area can be used for picking up or dropping off passengers.

Some systems are many-to-many, in which passengers can be picked up from any origin and dropped off at any destination, or
any-to-one where the pickup and drop-off locations include a common origin or destination. The latter systems are also known as

eeder lines. The term service is used for each departure of a bus operated on a line or in an area. This means that if a frequency of
hree per hour is offered, three services are offered per hour.

Regarding the communication between passengers and operators, the system is considered to be on-demand if passengers are
equired to make a request in order for a service to be available for them. In this case, the minimum time required between the time
f the request and the preferred departure time is called the lead time and it determines the computation time available for planning
he service. For some systems, this planning may include bus stop assignment. This means that the operator assigns the pickup and/or
rop-off location for each passenger.

An on-demand DR-PBS operates with zero lead time, if last minute bookings are possible and requests may come in real-time. If
he operator allows passengers to make bookings in advance as well as last minute, then the system operates with mixed lead times.
owever, in order for a service to be demand-responsive, it does not necessarily need to be on-demand. For instance, an operator could

register or accurately predict the number of passengers present at each stop and modify the next service based on that information.
This is a demand-responsive system, which is not on-demand.

The demand-responsive system is considered semi-flexible if a standard bus route and timetable is predetermined for the different
services during the planning horizon, but buses can deviate from these standards based on the demand. On the contrary, the system
is fully flexible if the routes and timetables are determined from scratch based on actual demand information.

The operator’s planning horizon is defined as the period for which the demand-responsive operation is planned with optimized
stops, routes, scheduled departures or arrivals, and fleet assignment. This will typically be a whole day or a few hours during a peak
or off-peak period, for instance.

The objective considers the passengers’ perspective if it minimizes the passenger travel time (PTT) or the operator’s perspective if
it minimizes operational costs. Both objectives may be simultaneously optimized in a multi-objective manner. Another approach is
to model one perspective as an objective, while the other is forced to attain a certain level through the constraints imposed. Note
that the passengers’ and the operator’s perspectives do not necessarily conflict (e.g., minimizing the total kilometers traveled of the
buses is likely to benefit both the operator and the passengers).

Finally, demand for the on-demand public bus system may be either exogenous or endogenous. In the latter case, the quality of
the service (possibly as measured by the objective function) has an effect on the level of demand, whereas in the former demand is
independent of the service level provided by the system. Even though endogenous demand is clearly the more realistic alternative,
most papers surveyed in this paper treat demand as exogenous. Exceptions will be mentioned explicitly.

2.2. Classification

In this paper, the DR-PBS will be mainly classified based on the degree of responsiveness, i.e., which demand-responsive
changes are still possible during the planning phase. This degree of responsiveness is also directly related to the calculation time
available for optimizing a system and, therefore, it also determines how challenging this optimization will be. The optimization of
demand-responsive systems can occur statically or dynamically :

• Dynamic Optimization
A basic schedule is made for the planning horizon, but changes to this schedule are made based on actual demand data. A
dynamic operation can be classified as online or offline, according to the moment that changes can be made:

– Dynamic Online Optimization: The basic schedule for each service operated on a line or in an area can change during
operations, even for services which are already running.

– Dynamic Offline Optimization: The basic schedule for some of the services operated on a line or in an area can change
during operations, however, changes are only possible for services which have not started yet.

• Static Optimization
The planning is completed before the start of the planning horizon, i.e., while any of the services are not running yet. A
schedule is made for all services during the entire planning horizon and this schedule is not subject to any changes during
the operations. The difference with fixed or conventional services is that static demand-responsive services offer a different
service every planning horizon. E.g., the service of a given day may be based on the measured or predicted demand of that
particular day.
3
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Fig. 1. Different types of system according to degree of responsiveness; arrows indicate when a request for a service with a certain number (1, 2, 3) appears.

Fig. 2. Map of the paper, by attributes of the studied systems. For example, papers on static, many-to-many, semi-flexible systems studied from the passenger
perspective can be found in Section 5.1.2.1. The rank number at the lowest level may vary because some sections contain no papers.

Since this degree of responsiveness is crucial for this survey but not always easy to grasp, an example is discussed now. Consider
n on-demand DR-PBS with a planning horizon of one day. If the demand-responsive system updates the planning of stops, routes,
cheduled departures, arrivals, etc. during the day of operation, the system is considered as dynamic. With short or zero lead time, the

planning is required to be updated even for the services that are currently running in order to accommodate last-minute bookings.
For instance, an ongoing service might be required to wait longer at a stop or to make a detour to serve a new passenger request that
just came in. Therefore, these dynamic online systems offer the most flexible operation with the shortest lead times. With somewhat
onger lead times, such as one hour, the operator offers to serve the passengers as long as the request is received one hour before
he desired pickup time. To accommodate these newly incoming requests, the planning can be kept as fixed for the services that
re already running and it will be updated only for the services that have not started yet. For example, the departure time of one
f the next services is advanced and an additional pickup is added to the route. In this case, this is considered as dynamic offline.

On the contrary, if the system collects passenger requests a day in advance in order to optimize its operations, passengers face a
day of lead time and the system is considered as static. This means that the stops, routes, scheduled departures, arrivals, and fleet
assignment do not change during the day of operation, but are executed exactly as planned before the day starts. The different
degrees of responsiveness are further illustrated in Fig. 1.

The next three sections will discuss systems with dynamic online optimization (Section 3), dynamic offline optimization
(Section 4), and static optimization (Section 5), respectively. In each of these sections, papers are grouped first considering whether
the system is many-to-many or many-to-one, then whether it is fully flexible or semi-flexible, and lastly based on the objective
(passenger’s perspective, operator’s perspective, or multi-objective). Fig. 2 clarifies the organization of the paper.

For each system we discuss how close the system is to implementation. Some systems are (almost) implemented in practice,
while most are more theoretical. We also discuss if realistic data is considered and the size of the instances used for testing. This
information is also summarized in the tables in Appendix A. The optimization method used to solve the presented system is usually
not explicitly mentioned in the text, but can be found in the accompanying tables.

3. Dynamic online demand-responsive public bus systems (DON-PBS)

Demand responsive public bus systems with the highest levels of responsiveness and flexibility employ a dynamic and online
optimization strategy. This generally means that requests can come in during the planning horizon as last minute bookings, with
4

little to zero lead time. However, it is usually still possible to book a trip in advance as well. Changes to the bus routes and schedules
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can be triggered by online requests, but also, e.g., by an unexpected crowding on a bus or a traffic jam. Dynamic online demand-
responsive public bus systems (DON-PBS) can be reactive or proactive. Reactive systems process demand when it occurs, i.e., they
only take into account the currently known demand. Proactive systems not only process known demand, but also anticipate future
unknown demand. Research is mainly done on reactive DON-PBS, therefore the papers mentioned in this section investigate reactive
DON-PBS, unless stated otherwise.

3.1. Many-to-many

When discussing DON-PBS, we first consider systems of the type many-to-many, where passengers can travel from any bus stop
r location to any other bus stop or location. In Section 3.2, many-to-one systems will be considered where all passengers travel to
or from) the same destination (departure stop).

.1.1. Fully flexible routes and timetables
The fully flexible systems are discussed first, i.e., systems where no standard route or timetable is available. Semi-flexible systems,

here a basic service is modified based on the demand, are discussed in Section 3.1.2.

.1.1.1. Passengers’ perspective. Jokinen et al. (2011) consider systems with a set of potential stops that customers can choose from
s their pickup and drop-off points. Demand is high and requests can be made online, with zero lead time. After sending a request, a
ustomer gets several transport options to choose from. A set of small buses is then operated to pick up customers from these stops
nd bring them to their destination stop without a transfer. Compared to private car usage, the DON-PBS offers a similar service
or a lower price to be paid by the user. Compared to a taxi service, it shows more resiliency to changing demand. Mean travel
imes of the taxi service rise exponentially while those of the DON-PBS rise in an almost linear way with increasing demand. Vallée
t al. (2017) present another high demand DON-PBS adopting the stop-based approach and an optimization from the passengers’
erspective, but with mixed lead times. The algorithm also presents several transport options within the requested time window. It
s possible for a request to be rejected when it cannot be inserted in a feasible way. The authors aim to maximize the number of
erved passengers for a given fleet size, by either minimizing the total travel time or maximizing the slack times. The slack time is
he difference between the latest arrival time of a passenger at a stop and the actual arrival time when the bus drops the passenger
t the arrival stop. It is concluded that using the travel time objective allows to insert the maximum number of requests. The authors
lso perform a comparison between the dynamic and the static version of the DR-PBS. In the static variant, the same requests are
ll known in advance and a time limit of 10 min is implemented as a stop criterion. Counter-intuitively, better results are found for
he dynamic variant. A reason for this finding can be found in the fact that the static optimization problem is rather complicated to
olve in only 10 min. The authors conclude that the difference between the dynamic and static variant rises with the fleet size. The
arger the number of vehicles, the larger the difference in performance in favor of the static variant. Another stop-based mixed lead
ime approach can be found in Melis and Sörensen (2021b). In contrast with the previous study, the authors perform a theoretical
tudy on a grid which represents an urban context. The total user ride time is optimized, which is the time the passengers spend
n the bus. Every request has a time window, and the fleet size and capacity of the vehicles is fixed. The authors include bus stop
ssignment in the algorithm. Every request has a set of bus stops for departure and arrival, all within walking distance of the actual
rigin and arrival locations. In the analysis, the authors examine the influence on the solution quality of the real-time requests,
ompared to an entirely static system. In contrast to the findings of Vallée et al. (2017), it is concluded that the more requests are
nown in advance in the static system, the lower the total user ride time compared to the dynamic system with real-time requests.

Besides a stop-based approach, there are also DON-PBS adopting a door-to-door service with zero lead time. Navidi et al. (2018)
erform a simulation of a high demand door-to-door DON-PBS and compare the results with a conventional stop-based PT system.
he capacity of the DON-PBS-vehicles (4 passengers) is chosen to be substantially lower than the buses used for the fixed transport

ines (75 passengers). The fleet size of the on-demand system is adapted in such a manner that the reject rate is zero. The authors
inimize travel time and the ratio of the scheduled travel time on the direct travel time. It is concluded that the DON-PBS performs

etter for both low and high demand areas in terms of passenger travel time, but passengers do have to wait longer for a vehicle
o pick them up compared to conventional PT. The routing algorithm used is based on the work of Ronald et al. (2013). Contrarily
o Navidi et al. (2018), request rejection is possible. On the one hand, the authors find that especially for long distance, but also for
andom requests, the waiting time increases substantially and the percentage of passenger sharing a ride is high. On the other hand,
mpty kilometers increase for the many-to-one and short distance trips. The door-to-door approach is also simulated by Archetti
t al. (2018), Narayan et al. (2017) and Alonso-Mora et al. (2017). Their work all focuses on high demand transit systems, e.g., in an
rban context. Both Archetti et al. (2018) and Narayan et al. (2017) simulate different transport modes, e.g., fixed PT or private cars,
n co-existence with a dynamic online system to analyze choice behavior and possible travel times. In Archetti et al. (2018) (and
n the more extended version of their work in Archetti et al. (2016)), a user chooses between a fixed public bus and an on-demand
ystem and takes the one with the shortest travel time. Travel time includes walking time. If none of the above can satisfy the
equest, the user takes a private car. Narayan et al. (2017) also run a scenario with fixed PT, private car and shared (autonomous)
n-demand transport, but also one with a private on-demand variant in a high demand network. Regarding the on-demand transport,
o decide which requests are assigned to which vehicles, requests are inserted in the available vehicle that is closest to their pick-up
ocation. Or, in case no vehicles are available, in the vehicle that is firstly done delivering previous requests (Hörl, 2017). To decide
hich transport modes are assigned to requests, the authors maximize a utility function which includes the (dis)utility of travel,
5

aiting times and transfers for the different trip types and their specific monetary distance rates. The main conclusions of both
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studies are that a DON-PBS system would be able to compete with private car usage in terms of costs and travel time, if the fleet
size and the number of requests is high enough. Narayan et al. (2017) also conclude that a shared on-demand transport system is
preferred over a private taxi system when the cost of flexible transport increases compared to the one of the fixed PT. Alonso-Mora
et al. (2017) minimize a cost function containing the travel delay (drop-off time minus request time minus direct driving time) and
a large constant for unassigned requests. Request time is the time when the request is sent. By choosing this, instead of pickup
time, the waiting time is included in the objective. The New York (USA) taxi dataset is used and consequently the authors handle
extremely high demand. In addition, a first step towards a proactive DON-PBS is made by relocating empty vehicles to places where
there is currently a high demand, with a high request rejection rate. It is concluded that 98% of all private taxi rides currently
served with 13,000 taxis, can be served with only 3000 taxis of capacity four.

A medium scale door-to-door, many-to-many, fully flexible DON-PBS can be found in Santos and Xavier (2013, 2015). The
uthors maximize the number of requests served and the number of shared rides. The latter is important because the authors take
nto account the passenger’s maximum willingness to pay for a ride, and shared rides are less expensive compared to private ones.

hile evaluating solutions, shared costs are computed, making the problem more complex. The authors solve the dynamic online
roblem by solving the static version of the problem (with the requests currently known) with a heuristic based on GRASP (greedy
andomized adaptive search procedure, i.e., a metaheuristic based on a semi-greedy insertion procedure) every short period of time.
nce a feasible solution is found, the algorithm performs local search. Other recent dynamic ride-sharing algorithms can be found in,
mong others, Pelzer et al. (2015), Najmi et al. (2017), Li et al. (2018a) and Smet (2019). The main difference between ride-sharing
using private vehicles and car owners as drivers) and taxi/bus-sharing (using operator owned vehicles) is the fact that in the first
he car owner’s destination always has to be the last scheduled stop in the route. Otherwise (s)he would have to hand over his (or
er) private vehicle to the other passengers scheduled in the route. As this is no longer PT and outside the scope of this survey,
iterature on ride-sharing using driver owned vehicles is kept to a minimum.

Liu et al. (2019a) investigate a large-scale bus pooling service. In contrast to previous studies, they focus only on long-distance
rip requests. Real-life taxi data from Shanghai (China) is used to model the problem. The objective is to maximize the ride-sharing
uccess rate and to minimize passenger travel distance. The capacity of each bus is larger than a typical minibus (30 people) but
till limits the clustering of passengers on the same trip. In addition, the authors decide on the single pick-up and drop off point of
ach bus line they create, in between there are no stops because of the focus on long-distance trips. The efficiency of the system is
dentified by a comparison with a taxi ride-sharing service in similar conditions in relation with the time and price for the service.
hey find that the bus pooling service proposed, is more energy- and cost-efficient compared to private car usage and taxi usage
ith and without ridesharing. However, the passenger travel time worsens. What is meant by taxi-ridesharing is a door-to-door

ervice with small-capacity vehicles and possible stops in between for long distance trips.
Finally, a comparison between DON-PBS simulation approaches can be found in Ronald et al. (2017). Passenger inconvenience is

inimized by minimizing the travel time with a DR-PBS divided by the time a passenger would need to traverse the same distance
irectly. It is concluded that over- or underestimation of the predicted travel output (vehicles kilometers, proportion of shared rides,
mpty kilometers etc.) can occur, because the value of the results statistically differs according to the simulation method used.

An overview of many-to-many fully flexible DON-PBS optimizing from the passengers’ perspective can be found in Table 1. Most
uthors generally focus on minimizing passenger travel time, whether or not in relation to the direct travel time, or on maximizing
he service rate. Ronald et al. (2017) is not included in the table because the authors analyze simulation methods for DON-PBS in
eneral without specifying any constraints.

.1.1.2. Operator’s perspective. Many-to-many fully flexible DON-PBS are also frequently optimized from the operator’s perspective,
mostly to make sure the system is profitable. A stop-based approach with zero lead time is adopted by Tsubouchi et al. (2010)
and Bertelle et al. (2009). The first build a heuristic based on efficient vehicle choosing and online insertion and time adjustment.
Their algorithm is more thoroughly explained in Tsubouchi et al. (2009). When a request comes in, the authors rank buses according
to the similarity of their driving direction and the direction of the request, during the time window of the request. Then, they test
the buses in the order of this ranking and the first feasible solution found is implemented. There is no clear objective function
mentioned, but the authors focus on the operator’s perspective throughout their work. Actual field tests of a DON-PBS are carried
out in different Japanese cities, but the number of requests stayed rather low. The authors conclude that the field tests show that
the heuristic can handle large scale problems and customers perceived the system as practical and efficient. The work of Bertelle
et al. (2009) stands in contrast with the previous because this work investigates a theoretical decentralized DON-PBS. The system
emerges from the present fleet of vehicles. The authors minimize the additional vehicle travel time when adding a request to the
current solution. Once a request comes in, every vehicle calculates the additional time it would take to serve this request, plus a
potential penalty cost and sends the answer to the rest of the fleet. To make sure waiting times are reasonable, vehicles are attached
to zones. The penalization refers to a vehicle leaving its zone. Then, every driver ranks the vehicles and the vehicle which is ranked
first the most, wins the new request. The authors also take into account current traffic by putting time-dependent weights on the
travel times between stops. The authors conclude that their algorithm works better with a limited number of passengers having long
distance requests, instead of a large number of passengers having short distance requests.

A comparison between a DON-PBS with autonomous vehicles and conventional, fixed PT is found in Viergutz and Schmidt (2019),
Bischoff et al. (2018) and Leich and Bischoff (2019). The greedy insertion algorithm used for the DON-PBS in these simulation studies
can be found in Bischoff et al. (2017). It focuses on minimizing the total taxi workload, meaning the total vehicle driving time needed
to handle all requests. There are constraints on both the maximum passenger travel time and waiting time, but each vehicle also has
6

a time window of operation. In this work, the authors conclude that the DON-PBS saves 15%–20% vehicle kilometers compared to
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Table 1
An overview of many-to-many fully flexible DON-PBS.

Reference Objective Constraints on ...

C F VTT PT DT PTT

Jokinen et al. (2011) min PTT x x x
Vallée et al. (2017) max P x x x x
Melis and Sörensen
(2021b)

min total user ride time x x x x x

Navidi et al. (2018) min PTT + PTT/DTT x
Ronald et al. (2013) min PTT + PTT/DTT x x
Archetti et al. (2016) min PTT x x x
Narayan et al. (2017) min PTT x
Alonso-Mora et al. (2017) min PTT–DTT and max P x x x x
Santos and Xavier (2013) max P and shared rides x x x x x
Liu et al. (2019a) min PTT + max P x x x

Tsubouchi et al. (2009,
2010)

/ x x x x x x

Bertelle et al. (2009) min VTT x x
Bischoff et al. (2017,
2018), Viergutz and
Schmidt (2019) and Leich
and Bischoff (2019)

min VTT x x x x x

Wang et al. (2019) min VTD for pickup x x x
Simonetto et al. (2019)
and Pandey et al. (2019)

min VTT x x x x

Ma et al. (2013) min VTD x x x x x
Kawamura and Mukai
(2009)

min VTD x

Bruni et al. (2014) min costs x x x x x x
Horn (2002b,a) min VTT x x x x x

Liyanage and Dia (2020) min PTT and costs x x
Jäger et al. (2018) min PTT and costs x x
Winter et al. (2018) min PPT and costs x x
Gomes et al. (2014, 2015) min PPT and costs, and

max P
x x x

Hyland and Mahmassani
(2020)

min PPT, P and VTT x x x

Atasoy et al. (2015b,a) and
Ikeda et al. (2015)

max profit or max CS or
max profit and CS

x x x

Ronald et al. (2015) min PTT/DTT or min VTD x
Dessouky et al. (2003) min costs and

environmental impact, max
P

x x x

Van Engelen et al. (2018) min PPT and VTT, and
max P

x x x x x x

(P = The number of passengers served, C = Capacity, F = Fleet size, VTT = Vehicle travel time, VTD = Vehicle travel distance, PT = Pickup time, DT = Drop-off
time, PTT = Passenger travel time, CS = Customer surplus, DTT = Direct travel time).

a non-shared taxi system. Viergutz and Schmidt (2019) perform a simulation study in a rural town. As a consequence, the number
of requests is relatively low. Even though the DON-PBS performs better from a passenger, ecological and societal perspective, it is
concluded that a DON-PBS would not be beneficial in a rural context, caused by the high operational costs. In addition to testing
their model by using a set of potential stops, the authors also test a door-to-door service, which resulted in even worse results.
For rural areas, a DON-PBS which starts from a standard route with possible deviations or extra stops on demand is proposed in
Section 3.1.2. Bischoff et al. (2018) perform the same study in an urban context, with a data set for the city of Cottbus (Germany).
The authors also compare a stop-based and door-to-door DON-PBS with conventional PT. It is found that the fleet size necessary to
fulfill all constraints for a door-to-door service needs to be 1.33 times as large as the fleet size needed for a stop-based approach
(400 vs. 300 vehicles). It is also concluded that both DON-PBS approaches are tremendously cheaper to operate than a fixed-line
PT system. However, the authors assume that the DON-PBS is operated by automated vehicles while the fixed-line system needs
drivers and the authors only calculated the costs using peak-hour traffic. In addition, travel times for passengers are lower, with
the lowest travel times for the door-to-door approach. Lastly, Leich and Bischoff (2019) do the simulation using a real-life suburban
Berlin (Germany) data set. In the service area, the existing bus lines are replaced with a DON-PBS. In this study only a door-to-door
approach is used. The results are less spectacular compared to the previous study, but still in favor of the DON-PBS. In contrast
to Viergutz and Schmidt (2019) and Bischoff et al. (2018) the authors vary, next to the fleet size, also the capacity of the vehicles
used in the DON-PBS.

Wang et al. (2019) switch between a stop-based and door-to-door approach depending on the time of day (peak or off-peak hours)
and preferences of the users. The travel times between two locations vary depending on traffic and congestion. When assigning
7
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requests to vehicles, the algorithm minimizes the empty-vehicle travel distance for pickups, by using the Hungarian method, an
algorithm to solve an assignment problem in polynomial time (Kuhn, 1955). Autonomous vehicles are simulated in a theoretical
urban context, but the capacity of the vehicles is only two. A time dependent system can provide decent quality of service, while
needing less energy and traveled vehicle distance.

Simonetto et al. (2019) improve the work of Alonso-Mora et al. (2017) (mentioned in Section 3.1.1.1) and solve a linear
ssignment problem for a door-to-door DON-PBS with automated vehicles. The same New York taxi data set is used. The objective
s slightly different compared to the one of Alonso-Mora et al. (2017): the route duration of the vehicles is minimized. Because
he authors use a one to one assignment instead of a one to multiple assignment, there are less possibilities to consider and the
lgorithm needs four times less computation time, while the quality of the solution remains. The work also makes a first move
owards investigating competition among two DON-PBS operators, with a 75% and 25% market share respectively. The objective
unction of their request assignment procedure is adapted to impose these market shares and find that especially vehicle travel
ime, but also passenger waiting time increases. Pandey et al. (2019) picked up the idea of competition and examine optimization-
ased approaches to model cooperation and competition between multiple ride-/taxi-sharing companies. The authors use the same
ssignment problem as Simonetto et al. (2019) to assign requests to vehicles. It is found that competition, where the passenger
hooses the best offer between different ride-sharing firms, lowers the quality of the service, but that cooperation counteracts this
ecline. Pandey et al. (2019) prove they can still solve the problem very close to optimality, even when, as in reality, noise occurs,
.g. a company sends discounted prices to attract more requests.

Ma et al. (2013) minimize the total travel distance of a large-scale door-to-door taxi-sharing DON-PBS with a given fleet size.
ach passenger has two time windows, one for the pickup and one for the arrival. To limit the passenger waiting time, a passenger
eeds to be picked up five minutes after the request was send. The algorithm first compiles a taxi candidate list that would be able
o satisfy a new request by taking into account the spatio-temporal location of taxis near only the origin and, both the origin and
rop-off point/time window of the request. It is concluded that by taking into account both the origin and drop-off, the computation
ime halves as less vehicles need to be considered. The authors find that the travel distance is reduced with 13% compared to a
on-sharing alternative. A DON-PBS with electrical vehicles is optimized by Kawamura and Mukai (2009). The algorithm minimizes
ehicle travel distance and the battery usage by using an insertion algorithm combined with a genetic algorithm, that takes into
ccount the need for battery recharging. The authors only test their algorithm in a low demand setting and do not implement
apacity constraints. It is found that the system reduces carbon emissions with 80% and the cost with 60% compared to traditional
ystems.

As mentioned before, research is mainly done on reactive DON-PBS, but a proactive DON-PBS system, stop-based and with mixed
ead times can be found in Bruni et al. (2014). Probabilistic information about future demand is used to build robust routes in a
ow demand theoretical context. When the algorithm builds routes based on the requests known beforehand, it already takes into
ccount the probability of future requests to make the routes more steady. A tabu search heuristic (i.e., a metaheuristic that uses
he history of the search, and usually maintains a list of forbidden recent moves) is used to solve each scenario as a sub-problem.
n a second stage, the scenario solutions are merged with routes based on the static requests by looking at similarities. The authors
inimize the routing, vehicle usage and recourse cost with constraints on the passenger travel times through time windows. The

esults of their heuristic are compared with CPLEX for instances with only 4–6 requests and found a 6.6% gap on average. It is
ound that the cost decreases when the percentage of real-time requests decreases. Also, the advantage of taking into account the
ncertainties rises when the percentage of real-time requests is relatively lower. Also Horn (2002b) anticipates future demand and
imulates several transport modes in a high demand context, among which a door-to-door shared taxi system and a stop-based
n-demand bus system. Also multi-leg journeys are possible, consisting of different transport modes (among which semi-flexible
imetabled bus lines and fixed-line public transport). The goal of this research is to analyze the LITRES-2 modeling system. Vehicle
ravel time is minimized and the vehicle occupancy rate is maximized. Passenger travel time is constrained by a time window. The
ocal search heuristic used, is explained in Horn (2002a). The simulator also introduces trip cancellations, vehicle breakdowns and
elays, causing trips to be rescheduled. The authors compare the results for a static or dynamic DR-PBS to the results obtained with
nly a static or dynamic private taxi system. The authors find 91% and 33% longer ride times for a dynamic private taxi system
ompared to an S-PBS and DON-PBS, respectively.

An overview of the literature optimizing many-to-many fully flexible DON-PBS from the operator’s perspective can be found in
able 1. Most literature focuses on minimizing the vehicle travel time or distance, which has a direct impact on the operating costs.
o make sure the passenger travel times do not increase too much, all authors place constraints on either the pickup time, delivery
ime and/or the maximum passenger travel time.

.1.1.3. Multi-objective. Liyanage and Dia (2020) and Jäger et al. (2018) both simulate a stop-based, zero lead time DON-PBS.
oth works make another comparison with an existing fixed bus service and take into account current traffic conditions. The first
imulation focuses equally on the passenger’s experience (waiting times, trip completion rates and passenger kilometers traveled)
nd the operator’s perspective (vehicle utilization). The results show benefits for both passengers and operator. Waiting times are
educed 78 to 95% depending on the time of day and vehicle utilization increases. Also the trip completion rate increases from
7% for the traditional PT to 85% for the DON-PBS. The total passenger-kilometers traveled stays the same for both systems of the
omparison. Jäger et al. (2018) simulate a DON-PBS with autonomous vehicles. A central dispatch calculates a cost function based
n the expected passenger travel time (including waiting time), vehicle utilization rates, operation time and energy consumption
o determine the best vehicle assignment. Determining where the pick-up and drop-off of a request will be inserted in a certain
ehicle, will be optimized by looking at the caused delay. It is found that the energy consumption improves compared to a fixed,
tatic system, but no passenger service improvement is found.
8
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Winter et al. (2018) simulate a high demand stop-based, mixed lead time, DON-PBS and minimize operational costs and passenger
ravel time with equal importance. The latter includes both in-vehicle time and the waiting time at the pickup stop. The authors
eep increasing the fleet size until all passengers can be served within a predefined average and individual passenger waiting time
nd they consider autonomous vehicles. The authors compare the DON-PBS with an existing bus system in the city of Arnhem (The
etherlands) and find that the operational costs of the DON-PBS lie in the same range as the fixed bus system, while the average
assenger waiting time of the DON-PBS is only four minutes. It is also found that economies of scale play an important role in
ON-PBS. Higher passenger demand decreases operational costs and travel times.

Gomes et al. (2014) also adopt a stop-based approach with mixed lead times and start by solving the static part of the problem.
or the dynamic part, when a new request arrives, the algorithm solves the static scenario again with a GRASP-based approach,
ncluding an improvement phase. Hard constraints are set on the pickup time window and soft constraints on the delivery time
indow. Request rejection is possible. Their algorithm is tested on instances with a maximum of 500 requests and optimizes the

olution from the passengers’ as well as from the operator’s perspective. It is found that computation time is strongly dependent on
he number of requests but not on the number of possible stops. Also, it is concluded that the objective function value increases
ith 45% when going from an entirely static scenario to one where there are 90% real-time and 10% static requests. Later, their
lgorithm is integrated in a simulation study of the DR-PBS system in Porto (Portugal). A fixed night-time bus line is replaced
ith an existing DON-PBS, called Gato, which considers the operating costs (Gomes et al., 2015). A request for Gato must be made
h 30 in advance. Due to this lack of flexibility, demand is low and the high cost of operation of the Gato-system makes the

ON-PBS financially unsustainable. The authors try to improve the existing Gato-service by simulating an improved version. In this
ersion, a request can be made at least 15 min in advance and the ticket price is halved. From the operator perspective, a mini-bus
s used instead of a normal-sized one. Due to the increased flexibility, the demand rises and operating costs decrease due to the
se of another vehicle. However, even though average profit increases with 25% compared to the original Gato-service, it remains
egative.

Hyland and Mahmassani (2020) adopt a door-to-door zero lead time multi-objective approach. The method minimizes the vehicle
ravel time and passenger travel time and maximizes the number of assigned requests to vehicles. Constraints are placed on the
aximum detour distance. A limitation of the proposed algorithm is that it only considers vehicles which are empty or currently

oing to a drop-off point. The authors simulate a high-demand system with a fixed fully automated fleet size, but each vehicle only
as a capacity of two people. The New York taxi data set, also used by, among others, Alonso-Mora et al. (2017), is once again
hosen as an input. It is found that allowing shared rides significantly improves operation efficiency, even when the maximum
etour distance is relatively low. The waiting time, system cost and fleet kilometers decrease, especially when overall demand is
igh.

Atasoy et al. (2015b), Ikeda et al. (2015) and Atasoy et al. (2015a) investigate the Flexible Mobility On Demand concept with
ixed lead times. A request can be made for an immediate ride, or can be sent in advance for a later ride. A user can choose in

eal-time between a taxi, shared taxi or on-demand fixed line bus, all operated by the same company, but offered at different prices.
he (shared-)taxi service is a door-to-door service and is scheduled with the insertion heuristic of Jung et al. (2013). The operator
ants to maximize profit, maximize consumer surplus or both. The fleet of vehicles can switch roles during the day, which has a
ositive influence on the objective function value (both profit and consumer surplus). The system is simulated in the Tokyo suburbs
Japan). The authors find that optimizing the operator’s profit causes profit to increase with 74% compared to the scenario where
hey optimize consumer surplus. In the multi-objective scenario this increase is 54%.

Ronald et al. (2015) compare a fully flexible many-to-many DON-PBS to a semi-flexible system in a small network of two adjacent
owns. (More on semi-flexible many-to-many DON-PBS in Section 3.1.2). The focus of their work is on the fully flexible scheme.

set of potential bus stops and a real-time scheduling approach are used. Actually, the authors do not consider a multi-objective
ptimization, but they compare two different objective functions separately: minimize passenger travel time compared to a direct
istance travel time and minimize driving distance. It is concluded that the objective chosen is less important. The semi-flexible
ystem where this DON-PBS is compared to, exists. There are three to six services a day, each starting from the same first stop at
ixed times. The rest of the route is flexible (but stop-based) and demand-responsive. Customers have to make a reservation at least
0 min before the service is scheduled to depart from the first stop (depot) or by arriving at the first stop in person to begin their
rip. The authors conclude that this semi-flexible system performs better from the operator’s point of view, compared to the fully
lexible one. When demand is high, the fully flexible DON-PBS results in extensively high vehicle distance kilometers compared
o the semi-flexible system. However, from the passengers’ point of view, the fully flexible system is quicker and delivers a more
ndividual experience.

Dessouky et al. (2003) model a mixed lead time paratransit service considering a real-time scheduling heuristic in order to
aximize the number of served requests while minimizing the economic and environmental costs. The focus lies on the latter and is

aken into account through a life cycle analysis (LCA) of the paratransit system. The authors conclude that by using a heterogeneous
leet consisting of e.g., CNG/gasoline/diesel minibuses or regular buses, significant environmental performance improvements can
e achieved with only a slight decrease in service and increase in operational costs. A homogeneous fleet could not achieve these
nvironmental improvements.

Lastly, Van Engelen et al. (2018) solve a stop-based DON-PBS-problem proactively and develop an online greedy insertion
lgorithm with demand forecasts and empty vehicle rerouting that can handle relatively big instances. The algorithm minimizes the
assenger travel time, the number of rejected requests and the overall travel time of the vehicles. The authors use weights to differ
n importance among those three (3 for the vehicle travel time, 1 for the passenger travel time and 40 for every rejected request).
9

t is concluded that the empty vehicle rerouting and demand forecasts drastically reduce the number of rejected requests by 98%,
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but also decrease the travel time and waiting time (by 11 and 46%). However, the vehicle distance driven increases with 25%. In
addition, after testing different fleet sizes and capacities, it is also concluded that the DON-PBS performs better with a large fleet of
small vehicles instead of with a small fleet of large vehicles. The authors assume the vehicles to be autonomous. Consequently, the
increase in vehicle distance driven by using a larger fleet size does not result in operational costs that are as significant, compared
to the costs of non-automated vehicles.

Table 1 gives an overview of the literature optimizing many-to-many fully flexible DON-PBS from a multi-objective perspective.
ecause both perspectives are included in the objective, typically only a few extra constraints are present. In general, literature that
ptimizes a many-to-many fully flexible DON-PBS from a multi-objective perspective, adopts an equal focus on both the passengers’
nd operator’s perspective. Only Dessouky et al. (2003) adopt a focus on environmental impact and Van Engelen et al. (2018)
nclude weights with a strong focus on avoiding rejected requests.

.1.1.4. Conclusion many-to-many fully flexible DON-PBS. Already quite some research is done on many-to-many fully flexible DON-
BS. System-wise many-to-many fully flexible DON-PBS are relatively the same. A fleet of, mostly small-capacity, vehicles brings
assengers from A to B as efficiently as possible with routes that are build from scratch. It is common that the vehicle makes
dditional stops between the pick-up and drop-off of a single passenger, only Liu et al. (2019a) do not allow stops in between and
ocus only on pooling long distance trips.

Although most literature deals with demand in a reactive manner. A proactive approach is only found in Bruni et al. (2014),
orn (2002a,b) and Van Engelen et al. (2018). Also, there are only a few papers mentioning that they take into account real-time

raffic and congestion. For the pickup and drop-off locations, both the door-to-door and the stop-based approach are commonly
sed. However, a comparison concludes that a stop-based approach can save costs with a lower required fleet size (Viergutz and
chmidt, 2019; Bischoff et al., 2018). Only one paper is found on many-to-many fully flexible DON-PBS that includes bus stop
ssignment (Melis and Sörensen, 2021b), even though this has proven to yield better results in static many-to-many fully flexible
R-PBS (Melis and Sörensen, 2021a; Czioska et al., 2019).

Most optimization solution methods used, are based on a greedy insertion, whether or not in combination with an efficient
ehicle choosing algorithm. Only few more advanced metaheuristic approaches are used, but most of these are only tested on low
o medium sized instances (local search, Horn (2002a), GRASP and local search (Santos and Xavier, 2013; Gomes et al., 2014, 2015),
A)LNS (Vallée et al., 2017; Simonetto et al., 2019; Melis and Sörensen, 2021b), TS (Bruni et al., 2014), GA (Kawamura and Mukai,
009)). In general, the instances used are mostly based on real cities in high demand areas. For these scenarios, it is found that
large fleet of minibuses works best for a fully flexible many-to-many DON-PBS. The capacity of these minibuses differs among

apers, with an average of ten seats per vehicle and a median of eight. More recent literature imagines these minibuses to be electric
nd autonomous, eliminating the drivers’ cost. However, except for Kawamura and Mukai (2009), authors mostly ignore the need
o recharge during the day.

A lot of work is done in testing whether or not fully flexible many-to-many DON-PBS would yield better results compared to
onventional, fixed PT systems or compared to private taxis. For the first comparison, results are not entirely unanimous, however
enefits for the DON-PBS are always found. On the one hand, some literature finds the travel time to be halved compared to
onventional PT (Navidi et al., 2018; Viergutz and Schmidt, 2019; Bischoff et al., 2018). On the other hand, Jäger et al. (2018)
ind travel times to increase with 17% compared to conventional PT. A reason for this finding might be the extremely high demand
n the city of Singapore and the well established, high frequency fixed PT in the city. Most authors find lower waiting times for
he DON-PBS (Viergutz and Schmidt, 2019; Bischoff et al., 2018; Liyanage and Dia, 2020). Only Navidi et al. (2018) find waiting
imes to be higher compared to the conventional PT, however this can be explained by the fact that a door-to-door approach is used
nstead of a stop-based one. A door-to-door approach causes detours and consequently waiting times to be slightly higher (Viergutz
nd Schmidt, 2019; Bischoff et al., 2018). Furthermore, vehicle utilization more than doubles in the DON-PBS, but the fleet size
ecessary to serve the same requests as in the conventional PT increases (Jäger et al., 2018; Liyanage and Dia, 2020). Lastly, energy
onsumption, CO2-emissions and pollutants are lower in the DON-PBS compared to conventional PT (Jäger et al., 2018; Viergutz
nd Schmidt, 2019; Liyanage and Dia, 2020). For the comparison with a private taxi system, it is clear a DON-PBS performs better
nd that economies of scale have a positive impact on the DON-PBS and not on a private taxi system. When the demand (density)
ises, the cost per trip with a DON-PBS decreases and a lower price can be asked. This in turn will invoke an increase in demand,
tarting a positive spiral (Jokinen et al., 2011; Hyland and Mahmassani, 2020; Horn, 2002a). For both the DON-PBS and the private
axi system, travel times rise when demand increases with a fixed fleet size, however the DON-PBS shows more resiliency (Jokinen
t al., 2011). In a high demand area, the total kilometers driven with the DON-PBS are 13%–20% lower compared to the kilometers
riven with a private taxi fleet (Bischoff et al., 2017; Ma et al., 2013). Also, the fleet size necessary to serve every request with the
ON-PBS is a lot lower (Alonso-Mora et al., 2017; Jokinen et al., 2011).

Apart from direct comparisons, some authors analyze together with other transportation systems, a fixed PT, DON-PBS, and a
rivate taxi system in co-existence. Horn (2002b) simulates several transport systems in co-existence, but instead of focusing on
hoice behavior the work analyzes the LITRES-2 modeling system and focuses on integrating these different transport systems in
ulti-modal journeys. Leich and Bischoff (2019) examine a DON-PBS that can be combined with a fixed PT-trip and compare these

esults with a base case where there is only the fixed PT. It is concluded that the DON-PBS add-on slightly lowers the waiting
ime and overall travel time. Archetti et al. (2018) simulate a DON-PBS, private car and a fixed PT, but only allow the use of a
rivate car when the other two transport systems are unavailable. Consequently the authors find that most trips are served by the
ON-PBS. On the other hand, Narayan et al. (2017) find private cars to have the highest modal shares, followed by the DON-PBS
10

r a private taxi system and lastly the fixed PT has the lowest modal share. Lastly, Atasoy et al. (2015a,b) and Ikeda et al. (2015)
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examine a DON-PBS, private taxi system and an on-demand fixed PT system, where all systems are served by the same vehicle fleet.
The modal shares depend on the objective function chosen, the costs of the services and the perceived utility of travel. For these
co-existing systems, the demand for the DON-PBS should be considered as endogenous since the number of passengers will depend
on the quality of the system.

Furthermore, we can see a tendency towards to use of autonomous vehicles in more recent papers. Especially works optimizing
rom the operator or multi-objective perspective mention the use of this type of vehicles. This of course has a major influence on
he costs as drivers’ costs vanish.

Lastly, it can be concluded that allowing real-time requests, instead of imposing all requests to be sent in advance, deteriorates
he solution quality, independent of the optimization perspective (Gomes et al., 2014; Melis and Sörensen, 2021b; Bruni et al., 2014;
orn, 2002a). Of course allowing real-time requests increases the flexibility for passengers and it is found that imposing large lead

imes increases the cancellation rate which also increases the costs of operation (Gomes et al., 2015).

.1.2. Semi-flexible routes and/or timetables
In this section, many-to-many bus systems with semi-flexible routes and/or timetables are considered. In these systems, a standard

ine or timetable is available and deviations are considered dynamically.

.1.2.1. Passenger perspective. Cortés and Jayakrishnan (2002) use a stop-based, mixed lead time approach and include bus stop
assignment for the pickup points. In their simulation, a set of hub regions is used and vehicles with fixed capacity are assigned to
such a region. Within the hubs, the routes are fully flexible, but every vehicle is also assigned to drive to a neighboring hub on a fixed
route. The authors allow passengers to make one transfer and aim to minimize the passenger travel time. The system is proposed as
a better alternative to the classical two-transfer DR-PBS where the middle part of the route is carried out by a high-speed transport
system. This design concept improves the travel time and quality of service. Hickman and Blume (2001) investigate the before-
mentioned classical two-transfer DON-PBS with a door-to-door zero lead time approach. A fully flexible many-to-many DON-PBS is
integrated with fixed lines and two transfers are allowed. To eliminate some of the different routing alternatives, a geographical
circle is drawn around the origin and destination of each request and the fixed PT stops lying in these regions are identified. Next,
the method checks whether or not there is a fixed line going from the origin region to the destination region within the passengers’
requested time window. If this is not the case, the trip is served entirely by the fully flexible DON-PBS, otherwise the integrated trip
is proposed to the passenger. It is found that time savings are especially present for shorter trips and that the size of the geographical
circle has a major influence as the number of possible trips grows substantially when the circles are expanded.

Another semi-flexible many-to-many DON-PBS is presented by Pei et al. (2019c). The authors start from a fixed bus line, and
minimize passenger travel time, including waiting time, by deleting unnecessary stops and possibly shortening the line. A simulation
study is performed to compare this flexible system with a fully-fixed bus line. The authors conclude that there is a 10% reduction
in total travel time by implementing the flexible system. However, this reduction disappears when demand increases up to 40
passengers per hour or more, making the system more attractive in a low-demand area.

Table 2 gives an overview of the many-to-many semi-flexible DON-PBS optimizing from the passengers’ perspective. None of the
two papers places constraints on the vehicle travel time and both papers minimize the classical passenger travel time objective.

3.1.2.2. Multi-objective. Pei et al. (2019a) adopt another semi-flexible many-to-many DON-PBS with a stop-based zero lead time
approach, but they optimize in a multi-objective matter. The total system income is maximized, which they define as the income
minus the operating costs minus the passenger time costs. However, the first two terms have a weight of 1 in the objective function,
while the latter has a weight of 0.25. The authors propose a system with fixed A-level bus stops, that are guaranteed to be served,
and a set of B-level bus stops, only served on demand. There is a constraint on the maximum number of B-level bus stops served
between two A-level bus stops. The solution methods used are either a tabu search heuristic or the enumeration method. The former
is chosen when the number of B-level bus stops in between two A-level bus stops exceeds 12, otherwise, when using the enumeration
method, the computation time increases too much. Their system is tested in an off-peak, low demand setting. It is concluded the
income of such a system increases compared to a classical bus line. A similar optimization problem can be found in Quadrifoglio
et al. (2007). The problem also has a fixed set of A-level bus stops that form a standard route, however the bus can deviate within
a certain deviation area. There are no B-level bus stops. Thus, requests can be door-to-door. The algorithm minimizes a weighted
average of the vehicle driven kilometers, the total user ride time and waiting time, where the first two terms separately are weighted
double compared to the waiting time. There are no time window constraints but the route has a certain amount of incorporated
slack time to make the deviations. The results of their heuristic are compared with CPLEX for the static version of the problem and
find only small optimality gaps ranging from 0 to 16%.

Inturri et al. (2018) also start from a fixed route and take into account possible flexible route segments served in case of demand.
Their simulation model focuses on the distribution of a given number of vehicles with a given capacity over the fixed and flexible
routes. A constraint is placed on the maximum waiting time. If the waiting time of a customer exceeds this threshold, the request
is declared ‘‘unsatisfied’’. It is found that many vehicles with a small capacity induce lower passenger travel times, while from the
operator’s perspective a few large buses are more cost-efficient. Also, a clever assignment of vehicles to routes helps to avoid empty
kilometers and reduce operating costs.

An overview of the many-to-many semi-flexible DON-PBS optimized with a multi-objective approach can be found in Table 2.
11

The focus of the multi-objective approach lies generally on the operator’s perspective for the many-to-many semi-flexible DON-PBS.
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Table 2
An overview of many-to-many semi-flexible DON-PBS.

Reference Objective Constraints on ...

C F VTT PT DT PTT

Cortés and Jayakrishnan (2002) min PTT x x x
Hickman and Blume (2001) min PTT x x x x
Pei et al. (2019c) min PTT x

Pei et al. (2019a) max income - costs of operation and costs of PTT x x x
Quadrifoglio et al. (2007) min VTD and PTT x
Inturri et al. (2018) min costs of operation and PTT x x x

(C = Capacity, F = Fleet size, VTT = Vehicle travel time, VTD = Vehicle travel distance, PT = Pickup time, DT = Drop-off time,
PTT = Passenger travel time).

.1.2.3. Conclusion many-to-many semi-flexible DON-PBS. Literature on many-to-many semi-flexible DON-PBS is rather scarce and
eally diverse. On one side there are systems combining fully flexible DON-PBS, mostly at the beginning and ending of the journey,
ith a fixed route segment or fixed PT line in between. On the other hand, there are systems starting from a standard route with

he possibility to deviate from it, using a deviation area, potential (B-level) bus stops or flexible route segments. Two solution
ethods are mostly used: insertion heuristics (Cortés and Jayakrishnan, 2002; Quadrifoglio et al., 2007) and the enumeration
ethod (Hickman and Blume, 2001; Pei et al., 2019a). In contrast to fully flexible many-to-many DON-PBS, in this section we see
ore studies performed in a low demand area and in real-life networks. Only Cortés and Jayakrishnan (2002) perform a theoretical

tudy in a high demand context and this work is also the only one including bus stop assignment for the pickup. Another difference
ith the previous section, is the higher allowance of transfers. Except for Horn (2002b), none of the literature found includes traffic

onditions.
When comparing semi-flexible to fully flexible DON-PBS, the latter of course gives more flexibility to the passengers and results

n lower passenger travel times (Ronald et al., 2015). From the operator’s perspective, on the one hand a semi-flexible DON-PBS is
roposed as a better alternative for low demand areas (Viergutz and Schmidt, 2019), but on the other hand in a high demand area a
ully flexible system can cause vehicle kilometers to increase substantially making a semi-flexible service an interesting alternative
s well (Ronald et al., 2015). However, the cost of vehicle kilometers decreases so much when using autonomous electrical vehicles,
hat the last argument can probably be ignored.

.2. Many-to-one or feeder systems

In this section, many-to-one DON-PBS systems are considered. In such systems, requests are made to (or from) the same location.

.2.1. Fully flexible routes and timetables
We start with discussing the fully flexible feeder lines. In these DON-PBS systems routes are build from scratch, but they all

egin or end in the same location.

.2.1.1. Passenger perspective. Perera et al. (2018a) do a simulation of a stop-based, zero lead time, fully flexible feeder line with
n underlying heuristic algorithm, on university grounds. The number of requests is low and they all have a common destination,
ust outside the university area. In the simulation, the authors primarily focus on scenario generation, the execution of the heuristic
lgorithm and on the visualization of the solution. A hybrid genetic algorithm is used with local search to minimize passenger
ravel time, described in Perera et al. (2018b). The problem is solved periodically, meaning that each short period of time the static
roblem is solved in a fast way.

.2.1.2. Operator perspective. In contrast to the previous two mentioned works, Perera et al. (2017) solve the first mile problem
ith a fully flexible DON-PBS on a door-to-door basis, optimizing from the operator’s perspective. The authors propose a greedy
euristic algorithm, which they compare with CPLEX-results of the static problem. Each request has a pickup time window and all
equests have a common destination, the nearest rapid transit node. The fleet is homogeneous with fixed size and capacity, where
he number of vehicles is presumed large enough to serve all requests. The objective is to minimize the total vehicle miles traveled.
equests arrive in real-time but are only periodically addressed every 2 min. From an instance scale of 132 requests, the exact
ethod needs 39 h to come up with a solution, while the heuristic method only needs 168 ms on average. Performance-wise the
euristic finds solutions with 18% higher objective function values compared to the exact method.

.2.1.3. Multi-objective. Both Yu et al. (2015) and Li et al. (2018b) tackle the last mile problem with a stop-based, fully flexible
eeder bus, with zero lead time. The first solve the problem with an adaptive TS heuristic using different local search strategies
nd neighborhoods, while minimizing the passenger travel time, including walking time, and operating costs. All demand for a
ertain destination area in the graph is aggregated and only one bus stop per destination area is chosen. Every local search iteration
irst determines the set of bus stops to be visited before building a route with the selected bus stops. For relatively small instances
ith only 20 possible stops, their results are compared with results obtained with the enumeration method and find only a 1%
ap in solution quality, while the computation time is drastically lower. It is also concluded that the adaptive search procedure
12

utperforms the non-adaptive one of Lownes and Machemehl (2010). The authors do not go into much detail about how they cope



Transportation Research Part C 137 (2022) 103573P. Vansteenwegen et al.

w
T
p
p
r
i

a
i
i
h
a
a
f
t
i
t
i

D
d
S
e
v
i
p
s
a
t
t
s
s
t

3
T
p
a
m
s

P
s
w

Table 3
An overview of fully flexible many-to-one DON-PBS.

Reference Objective Constraints on ...

C F VTT PT DT PTT

Perera et al. (2018b,a) min PTT x x x

Perera et al. (2017) min VTT x x x

Yu et al. (2015) min PTT and costs x
Li et al. (2018b) min access time pickup and costs x x
Koh et al. (2018) min PTT or min C and fleet size (x) (x) x x
Shen et al. (2017) min PTT and VTT x x x x
Wang et al. (2019) min PTT and max profit x x x x x

(C = Capacity, F = Fleet size, VTT = Vehicle travel time, VTD = Vehicle travel distance, PT = Pickup time, DT = Drop-off time,
PTT = Passenger travel time).

ith real-time demand, but rather state that they want to find a heuristic that is able to cope with real-time demand in a fast way.
he same statement is true for Li et al. (2018b). A genetic algorithm is developed and the algorithm minimizes operational costs and
assenger access time to a pickup location, with a slight focus on the first. In addition to the routes, the algorithm also optimizes
ickup locations (bus stop assignment). When comparing their algorithm with a CPLEX solver, a 10%–30% gap is found. Also, their
esults obtained by using real-time passenger information, are compared to results obtained with historical data and find a saving
n operating costs and reduced walking distances for the passengers.

Koh et al. (2018) also adopt a stop-based, zero lead time approach, but instead of optimizing one feeder line, the authors optimize
set of high demand feeder lines. Every passenger has a maximum waiting and travel time and some degree of bus stop assignment

s used. No multi-objective optimization is performed but two different objective functions are tried. In a first scenario the objective
s to minimize passenger travel time and the fleet size where the bus capacity is seen as an input variable. An existing insertion
euristic made for the static multi-vehicle dial-a-ride problem is modified to incorporate dynamic demand. The model is tested in
high demand residential town in Singapore, and aims to replace four fixed feeder lines where transfers are often necessary, with
set of dynamic lines without transfers. The same fleet size as used in the fixed feeder lines, is adopted. The capacity is reduced

rom 90 to 30 passengers per vehicle. In this case a decline in average travel time of 30% is observed and a decrease in waiting
ime of 5%. In a second scenario, the authors minimize the fleet size while maintaining the travel time constraints. In this scenario,
t is found that the fleet size can be reduced with 12.5%. Even though waiting and travel times increase slightly, the average travel
imes in this scenario are still lower compared to the fixed feeder lines with transfers. Because the fleet size is an important factor
n the cost of the system, the authors recommend to use the second objective.

Shen et al. (2017) also use a stop-based approach and allow mixed lead times for a Demand Responsive Connector (DRC). The
RC is a demand-responsive system connecting a residence area with low demand to a transportation hub. Next to having a low
emand spread over a large area, this demand is mostly concentrated in peak hours and in one direction (Ceder, 2013; Lee and
avelsbergh, 2017; Li and Quadrifoglio, 2009, 2011; Zheng et al., 2018). The DRC typically operates a door-to-door system. In Shen
t al. (2017) the pre-booked requests are scheduled first (stage 1), then the real-time requests (stage 2), if not rejected due to fixed
ehicle capacities. The method minimizes the total travel time of both the vehicles and passengers. The optimization algorithm
s based on changing the order of stops in the routes in stage 1. The simulation is done in a district of the city Nanjing (China),
icking up passengers near their homes to drop them off at a common metro station. The demand is relatively low. Their results
how that the mixed lead time feeder line would be able to serve medium-sized demand with low trip density. A door-to-door
pproach with mixed lead times is investigated by Wang et al. (2020). The operator’s profit is maximized and the passengers’ travel
ime is minimized. The static scenario is firstly solved with the requests known beforehand using a genetic algorithm. Afterwards,
he algorithm starts adding the real-time requests, if not rejected. The research is also done in a low demand area with one transfer
tation. The authors compare the performance of this mixed lead time on-demand feeder line to a feeder line with a fixed time
chedule and find that the total system utility increases with 38.1%. The fleet size required is equally large in case of mixed lead
imes or in a static feeder line system, where all requests are known in advance, while the routes of the vehicles vary.

.2.1.4. Conclusion many-to-one fully flexible DON-PBS. The fully flexible many-to-one dynamic online systems are summarized in
able 3. Literature on fully flexible feeder line DON-PBS is not that extensive. Authors mostly focus on low demand areas, bringing
eople from close to their homes to a transport hub. Only Koh et al. (2018) perform an optimization of multiple feeder lines in
high demand area. It is noteworthy that the capacity of the vehicles used is significantly larger compared to the ones used in a
any-to-many fully flexible system. On average, authors presume 65 seats per vehicle (median is 45). Except for the theoretical

tudy of Wang et al. (2020), all systems are optimized in a real-life based network.
In terms of solution methods, more metaheuristic approaches are present such as GAs (Wang et al., 2020; Li et al., 2018b,a;

erera et al., 2018b,a) and adaptive TS (Yu et al., 2015). Most authors also compare their results with the results of an exact
olution approach using CPLEX or an enumeration method. This is possible because of the small scale of the instances. The only
ork found optimizing a large scale feeder line problem uses once again a quick insertion-based heuristic (Koh et al., 2018).
13
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Table 4
An overview of semi-flexible many-to-one DON-PBS.

Reference Objective Constraints on ...

C F VTT PT DT PTT

Pratelli et al. (2018) min PTT x x

(C = Capacity, F = Fleet size, VTT = Vehicle travel time, VTD = Vehicle travel distance, PT = Pickup time, DT = Drop-off time,
PTT = Passenger travel time).

.2.2. Semi-flexible routes and/or timetables
In addition to feeder lines built from scratch, feeder lines starting from a standard route or timetable but deviating from this

chedule also exist.
Only one dynamic feeder line optimization using semi-flexible lines is found in Pratelli et al. (2018), considering the passenger

erspective. Instead of building routes from scratch, the authors start from a standard route and deviate from it. This means that a
art of the stops in the route is fixed, while others are only served while deviating from the route if a request is made. Each route
as a minimum and maximum number of deviating stops. The objective function focuses on the passengers’ perspective, including
he minimization of (1) the extra waiting time for passengers who want to get on the bus after the deviations from the standard
oute, (2) the time elapsed on board during deviations and (3) the extra time on foot of users who have to walk to a fixed bus stop
ecause their deviation-bus stop is decided to be not served. Each term is multiplied by a weight coefficient because the value of
ach time component is perceived differently. The fleet size and capacity is fixed. CPLEX is used to solve the problem in an exact
anner. The stop-based semi-flexible feeder line system, with different numbers of deviation stops, is compared to an existing fully

lexible door-to-door service in Florence (Italy). In the existing system most demand is known in advance, but real-time demand is
ealt with as well. It is found that waiting times are lower in the semi-flexible system, but there is a larger share of lost demand.

The semi-flexible many-to-one dynamic online systems are summarized in Table 4.

. Dynamic offline demand-responsive public bus systems

Dynamic offline demand responsive public bus systems (DOFF-PBS) only allow changes to an already defined schedule for some
ervices, as long as these changing services have not started yet. Once a certain service by a bus has started, no more changes to
his service are allowed. These changes can be motivated by incoming data from passengers or (un)expected circumstances. This
trategy is only possible if the solution method for the optimization problem is fast enough to optimize (part of) the planning again,
ased on new last minute data. The same structure is used as in the previous section to classify the DOFF-PBS.

.1. Many-to-many

.1.1. Fully flexible routes and timetables

.1.1.1. Passengers’ perspective. Optimizing fully flexible DOFF-PBS of the many-to-many type from the passengers’ perspective is
ssential in making them competitive with private transport. Hadas and Ceder (2008) deal with a request-based bus system, where
assengers state their desired pickup and drop-off locations. The system works with predefined bus stops and takes transfers into
onsideration. Transfers to other bus lines do not take place at designated bus stops, but rather at any point along a road segment.
he objective of this bus system is to minimize the total travel time of the passengers, by maximizing the encounter probability of
uses at a transfer point. The encounter probability is the probability of two transit vehicles arriving at the same time alongside
road segment. The travel time of the buses and their encounter probability are estimated based on real-time information. Based

n these estimations, the route and deployment tactics are updated for the next group of operating buses. In Fatnassi et al. (2015),
hared goods as well as passengers are transported on a stop-based, on-demand bus system. The bus system periodically receives
equests, which consist of pickup and delivery locations for either a single passenger, a group of passengers, or a set of parcels of
oods. In each period, the planning is determined and the requests are assumed to be known before the service starts. The goal is
o minimize the waiting time of requests as well as empty vehicle moves. This system makes use of electric vehicles with limited
attery capacity, i.e. the range of the vehicles is constrained and the vehicles need to be recharged. The model is tested on an
nstance based on the passenger rapid transit network in Corby town in Northampton (UK).

Masoud et al. (2017) present a stop-based ride-sharing service that, besides private cars, also considers timetabled transport
ervices, such as local buses or trains. The transit services can enter the ride-sharing model as inflexible drivers. The authors aim
o minimize the total travel cost of the passengers. Moreover, there are vehicle capacity constraints and a maximum number of
llowed transfers. The system is subject to time window constraints for passenger journeys and it is tested on the red metro line in
14

os Angeles (USA) during peak demand.
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4.1.1.2. Operator’s perspective. Bus systems can also be optimized from the operator’s perspective. In these cases, the objective is to
make such systems as profitable or as least costly as possible for the operator. Zhao et al. (2018) study a ride-sharing system that
picks up and drops off passengers at their desired location. However, the passengers can be reassigned to a different pickup and/or
delivery location to increase the efficiency of the system. The pickup location and time, as well as the drop-off location and time are
stated by the passengers as a request for transportation. The requests are received in real-time, before the vehicles start operating,
in order to optimize the vehicle routes and dispatching plans. The goal of this ride-sharing service is to minimize the operational
costs, which consist of fixed vehicle dispatching costs, vehicle routing costs and inconvenience costs for picking up or dropping off a
passenger. The bus system is subject to vehicle capacity constraints, fleet size constraints, and time window constraints. The system
is tested on three theoretical grids.

In Rigas et al. (2018), a fleet of electrical vehicles transports passengers from origin bus stops to destination bus stops. These
pickup and drop-off locations are stated by the passengers, as well as their desired departure times. Most requests are assumed to be
known beforehand and requests in the future are predicted using an algorithm in order to increase the vehicle utilization. However,
once a vehicle task is planned it cannot be changed. The goal of this system is to maximize the number of accepted requests in
order to increase the operator’s profit. The electric vehicles have a limited range and their batteries need to be swapped or charged
at charging stations. Real-world data of locations of shared vehicle pickup and drop-off stations (Washington DC (USA)), with high
demand levels, is used to test this system.

Lotfi et al. (2019) study a door-to-door ride-sharing system with transfer services. Passengers need to make a request for
transportation between their pickup and drop-off locations, their earliest departure time, and their latest arrival time. Furthermore,
passengers state a desired maximum trip duration, and their willingness to pay a fare for the ride-sharing and/or transfer services.
The system’s objective is to maximize the utilization of the vehicles and minimize the vehicles’ route distances in order to maximize
the operator’s profit. The system is subject to restrictions, such as the vehicle capacity, the fleet size and a maximum passenger ride
time. The system is tested on a real-life, moderate-sized, network in Dallas (USA), with up to 70 passenger requests.

In Huang et al. (2020a), the Customized Bus (CB) is studied. The CB was operated in practice in 22 Chinese cities, before it
was thoroughly and scientifically analyzed for the first time by Liu and Ceder (2015). Typically, an origin area is connected to a
destination area with an express service and mostly dedicated lanes, but the routes inside both areas are flexible. Moreover, the CB
users are actively involved in the planning activities, using interactive and integrated information platforms. In Huang et al. (2020a),
the CB is a door-to-door service, where passengers can make requests for transportation until one hour before operation. The solution
method consists of two phases: a dynamic phase and a static phase. In the dynamic phase, new incoming passenger requests are
dynamically inserted into an existing solution in an interactive manner. The objective of the dynamic phase is to maximize the
operator’s profit. In the static phase, the service network is optimized statically based on the overall demand and the objective is to
minimize the operating costs. The system is subject to vehicle capacity constraints and to time window constraints. The demand is
considered to be endogenous, e.g., the demand depends on the service quality that the system delivers. The system is tested on the
Sioux Falls network (Bar-Gera, 2001), with up to 30 passenger requests. The system is also used on a real-life case study in Nanjing
(China), with up to 200 passenger requests.

4.1.1.3. Multi-objective. Bus systems can also be optimized from both the passengers’ and the operator’s perspective. Winter et al.
(2016) study a stop-based system of shareable rides in automated vehicles. Passengers make requests stating their pickup and drop-off
location, as well as their desired departure time. Requests are received in a real-time manner, however once a vehicle is dispatched,
its route and timetables cannot be changed. The objective is to minimize the operational and travel costs. The solution space is
a Pareto optimum. The system was implemented in a pilot project in the Netherlands, with different demand patterns, vehicle
capacities and other operational factors.

In Amirgholy and Gonzales (2016), a door-to-door bus system is studied with the goal of finding a management strategy that
stimulates users to adapt their requests to be more uniform over time. Analytical expressions for the expected operation costs
and the passenger costs are provided. Different cases, where different variables are constrained, are studied to obtain the best
management strategy. The demand is determined endogenously. Guo et al. (2018) deal with a Customized Bus design problem that
aims to determine which optional bus stops to visit and in which sequence, for each bus, based on real-time passenger requests.
The objective is to minimize both the user cost and the operation cost. The objective function is modeled as a weighted sum of both
costs. In the experiments, the authors give a greater weight to operational costs than user costs. The system is tested on an instance
that is created from real life historical smart card data from Beijing, China. Ji-Yang et al. (2020) study a stop-based bus system with
passenger requests. The passengers state their desired origin and destination stops, together with their desired arrival time at their
destination. The goal is to minimize vehicle operating times, passenger waiting times before boarding, and the difference in actual
arrival time and desired arrival time. In the experiments, the passengers’ perspective is prioritized.

4.1.1.4. Conclusion on fully flexible many-to-many DOFF-PBS. The majority of DOFF-PBS studied in the literature is dedicated to fully
flexible many-to-many DOFF-PBS. Both door-to-door and stop-based systems are used, however, the majority of these systems work
with bus stops. Bus stop systems are likely preferred over door-to-door systems because, generally, the use of bus stops can reduce
the modeling and optimization complexity of a system by limiting the number of decisions on routing and passenger assignment.
For many-to-many systems, realistic instances are expected to be more difficult to solve compared to many-to-one systems. The
larger number of possible routes compared to many-to-one systems implies that there are more choices to make, and thus increase
the optimization complexity. Most of the multi-objective systems take the vehicle capacity and the fleet size into consideration.
Many-to-many systems generally transport a larger number of passengers compared to many-to-one systems, which make vehicle
15
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Table 5
An overview of many-to-many fully flexible DOFF-PBS.

Reference Objective Constraints on ...

C F VTT VTD PT DT PTT

Hadas and Ceder (2008) min PTT x x
Fatnassi et al. (2015) min PWT x x
Masoud et al. (2017) max PTC x x x

Zhao et al. (2018) min operational costs x x x x
Rigas et al. (2018) max P x x x x
Lotfi et al. (2019) max P x x x x x
Huang et al. (2020a) max operators profit x x x

Winter et al. (2016) min PTT + F x x x
Amirgholy and Gonzales (2016) min PTT + F + VTT x
Guo et al. (2018) min VTD + PTT + PWT x x x
Ji-Yang et al. (2020) min VTT + PWT + arrival delay x x x

(P = The number of passengers served, C = Vehicle capacity, F = Fleet size, VTT = Vehicle travel time, VTD = Vehicle travel
distance, PT = Pickup time, DT = Drop-off time, PTT = Passenger travel time, PWT = Passenger waiting time, PTC = Passenger
transportation costs).

capacity and fleet size more important in the modeling of these systems. Other constraints are not common and are often used to
take the passengers’ or the operator’s perspective into account when both are not optimized simultaneously.

Most studies optimize the system taking both the needs of the operators and the passengers into account. In this case, the fleet
size, passenger travel times and vehicle operating costs are often optimized. When the system is optimized from the operator’s
perspective, the fleet size is often minimized in order to decrease operational costs. These studies also aim to satisfy as many
passenger requests as possible to increase the operator’s revenue. The passengers’ service quality is taken into account by imposing
restrictions on the pickup and drop-off times of the passengers. In the literature, optimizing the system solely from the passengers’
perspective is uncommon. The travel time of the passengers or the waiting times of the requests are minimized. The operator’s needs
are taken into account by limiting the fleet size, the vehicle mileage and/or the vehicle capacity.

The majority of the studies about fully flexible many-to-many DOFF-PBS use metaheuristics to optimize public transport systems.
Most often, these studies optimize their systems on large, realistic instances based on real networks and demand levels. Most studies
make use of historical data and survey data to sample realistic demand. Only Guo et al. (2018) make use of newer technologies, such
as smart card data, to sample more realistic demand levels and patterns. Heuristics seem to be essential in solving larger instances for
fully flexible many-to-many DOFF-PBS, since the solution speed greatly affects their ability to operate. Lotfi et al. (2019) make use of
a matheuristic and comment on how their system could be implemented as an online service, e.g., as a DON-PBS, if their algorithm
is sped up. Amirgholy and Gonzales (2016) construct closed-form mathematical expressions for their objective functions. Winter
et al. (2016) use primarily simulation models to determine the best planning for their system. Some studies, such as Huang et al.
(2020a), use exact methods like mathematical programming and branch-and-price algorithms. However, these solution methods are
tested on relatively small networks and/or low demand levels. An overview of the fully flexible many-to-many DOFF-PBS is given
in Table 5.

4.1.2. Semi-flexible routes and/or timetables
4.1.2.1. Passengers’ perspective. Horn (2004) studies a system that combines different modes of transportation to construct a
sequence of journey-legs. The system works with requests, in which passengers state their origin and destination, together with their
desired arrival and departure times. These requests are assumed to be received in advance at any time before the operation starts.
New incoming requests allow the system to adjust its current planning, however, once the vehicles are in operation, the planning of
these vehicles cannot be changed. Passengers are encouraged to combine walking, ‘‘smart shuttle’’ buses, ‘‘roving’’ buses, taxis and
fixed transportation services to get to their destination. Smart shuttles offer a fixed timetabled service with flexible routing, which
is a form of semi-flexible transport. Roving buses are a fully flexible service. The taxis provide a door-to-door service, while the
other modes provide a stop-based service. The objective is to minimize the walking costs, the waiting costs in transfers and at the
origin locations, and the travel costs of the passengers. A simulation study of transport options for the Gold Coast, an urban region
in Queensland (Australia), is used to test the system.

Qiu et al. (2014) study a many-to-many Mobility Allowance Shuttle Transit Service (MAST). MAST was introduced by Quadri-
foglio and Dessouky (2004) as a system where the vehicles have a basic route from which they can deviate in case of sufficient slack
time. MAST is discussed in detail by Errico et al. (2013). The authors present a unifying framework for these semi-flexible many-to-
many systems using the demand-responsive characteristics: route deviation, point deviation, demand-responsive connector, request
stops, flexible route segments, and zone routes, defined in the book of Koffman (2004). In Qiu et al. (2014), the MAST system
considers passengers making curb-to-curb requests that may or may not be accepted. Accepted curb-to-curb stops are labeled as
‘‘temporary stations’’, which can be utilized by rejected requests for their pickup or drop-off locations. The objective is to minimize
a weighted sum of the walking time, the waiting time and the on-board travel time of the passengers. Buses follow a predefined
16

route, from which they can deviate in order to serve nearby requests. Buses are not allowed to deviate more than a certain distance
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from the mandatory route and there is a preset schedule at the mandatory bus stops. Requests arrive in real-time, before the buses
start operating. The system is tested on a real-life network in Los Angeles (USA), with up to 70 passenger requests per hour.

Sheu (2002) implements a real-time demand-responsive bus dispatching control methodology for a DOFF-PBS. The dispatching
ystem considers a short-term forecasting of demand to initially plan the routes and service frequency, and a fuzzy clustering to
dentify variance in passengers demand and identify the best suitable service strategy for each service dispatched. With the gathered
nformation, it is possible to determine the most suitable service among four options: regular, express, short-turn, or zonal services.

hile the regular service serves all the stops in a line, express serves only a few stops. Short-turn only serves part of the route and
zonal service skips part of the route in between origin and destination. The passenger waiting time is used to select the most

uitable service for the fuzzy clustering algorithm. Synthetic data of a bus line in Taipei (Taiwan) is used to assess the performance
f the proposed model.

.1.2.2. Operator’s perspective. Crainic et al. (2005) propose a stop-based, semi-flexible transportation system. In this system, flexible
outes are created for passengers that make a request for transportation, while the buses still serve mandatory stops at fixed
chedules. The objective of this system is to maximize the profit of the operator. The profit is defined as the difference between
assenger fares, and the cost of operation. Requests are received in a real-time manner and can be rejected if they make the tour
nfeasible or unprofitable. Once the vehicles start operating, the planning of the vehicles cannot be changed. The constraints of this
roblem are time window constraints, defined by the desired pickup and drop-off times of the passengers, and the fixed schedules
t the mandatory stops.

Similarly, Pei et al. (2019b) study a system with mandatory and optional stops. However, in Pei et al. (2019b), the optional stops
re only visited if there is a minimum willingness to pay for an extra fare. Passengers make requests for transportation with their
rigin and destination bus stop, and their willingness to pay a certain transportation fare. The goal of the service is to maximize
rofit, defined as total revenue obtained from the fares minus total operational costs. The system is tested on a small numerical
xample, as well as on a large network based on a real-life bus line in Guangzhou (China).

.1.2.3. Multi-objective. Fu et al. (2003) study a stop-based semi-flexible bus system, in which vehicles operate in pairs. The lead
ehicle provides an all-stop local service, while the following vehicle is allowed to skip some stops depending on the demand for
ransportation. The schedule and route of the pair of vehicles are determined right before the first vehicle is dispatched, after which
he planning cannot be changed. The system optimizes the routes and the schedules of a pair of buses at a time. The goal is to
inimize a weighted sum of the on-board travel time of all passengers, the waiting time of all passengers and the vehicle travel

ime. The vehicle waiting time is given more importance in the experiments. Fu et al. (2003) test the system on a real-life network
n Waterloo (Canada), with high demand levels between 700 and 1400 passengers per hour.

Quadrifoglio et al. (2008) study a many-to-many MAST system, in which one vehicle visits a set of mandatory stops a certain
umber of times. Vehicles are allowed to deviate from the main route within a given maximum distance in order to serve door-
o-door requests nearby. Passengers make a request, before the vehicle starts its operation, by stating their pickup and drop-off
ocation, together with their ready time for pickup. The departure times of the vehicle at the stops in the main route are predefined
nd fixed. The objective is to minimize a weighted sum of three different factors: the total distance driven by the vehicle, the total
ide time of all customers and the total waiting time of all customers. The system is tested on a network based on a real-life network
n Los Angeles (USA), with up to 17 passenger requests. The passengers’ perspective is given priority in these experiments.

Crainic et al. (2012) examine a stop-based semi-flexible DOFF-PBS. The routes include compulsory stops and efficiently select
dditional stops from a set of predefined locations. The goal is to provide sufficient time between mandatory stops to serve all
equests that arrive, but with the shortest travel time possible. Since this system is a mix of traditional transit and a demand
esponsive system, its scheduling encompasses two planning processes. Initially, a master scheduling partially defines routes and
ime windows. At operation time, the actual schedule of each service is built to include optional stops.

Gkiotsalitis et al. (2019) propose a rule-based method to generate line alternatives for a given service, such as short-turning
nd merging lines. These flexibility options are efficient to adapt lines to demand variation. The objective function is to reduce
assengers’ waiting times and operational costs using a demand estimation for the next six hours. The operational costs are given
onsiderably more weight, when the system is optimized.

Kim and Schonfeld (2015) consider a bus system that integrates both a fixed route and flexible-route service in multiple dissimilar
egions and periods. Both services operate with a fixed timetable, which means that the service with flexible routes is a semi-flexible
ervice. A region is subdivided into zones, and each zone is dedicated to either a fixed route service or a flexible route service. In
ach period, requests are received dynamically until the buses are dispatched. The flexible route service is a door-to-door service,
hile the fixed route service works with bus stops. The ‘‘system welfare’’, i.e., the consumer surplus plus the producer surplus, is
aximized. The producer surplus is the total revenue minus the operating cost. The consumer surplus is the total user benefit minus

he prices that transit users actually pay. The number of zones dedicated to flexible or fixed transportation services is a decision
ariable of the optimization model and thus is determined in order to maximize the system welfare. The system is subject to vehicle
apacity constraints, upper and lower bounds for the fleet size, a maximum headway for the buses, and the fixed schedules of the
ixed route service. Furthermore, demand is considered to be endogenous.

Chen and Nie (2017) is an extension of Kim and Schonfeld (2015). In this system, however, both services operate in the same
rea. The system is tested with numerical examples of a small and a mid-size city in the USA.
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Table 6
An overview of many-to-many semi-flexible DOFF-PBS.

Reference Objective Constraints on ...

C F VTT PT DT PWD

Horn (2004) min PTT + PWT + PWL x x x x
Qiu et al. (2014) min PTT + PWT + PWL x

Crainic et al. (2005) max operator’s profit x x
Pei et al. (2019b) max operator’s profit x x

Fu et al. (2003) min PWT+PTT+VTT x x
Quadrifoglio et al. (2008) min PWT+PTT+VTD x x
Crainic et al. (2012) max P x x x x x
Gkiotsalitis et al. (2019) min PTT + operation costs x
Kim and Schonfeld (2015) max CS + PS x x x x
Chen and Nie (2017) min CS + Operation costs x x

(P = The number of passengers served, C = Capacity, F = Fleet size, VTT = Vehicle travel time, VTD = Vehicle travel distance,
PT = Pickup time, DT = Drop-off time, PTT = Passenger travel time, PWT = Passenger waiting time, PWL= Passenger walking
time, PWD = Passenger walking distance, PTC= Passenger travel cost, CS = Consumer surplus, PS = Producer surplus).

4.1.2.4. Conclusion on semi-flexible many-to-many DOFF-PBS. The number of papers on semi-flexible many-to-many DOFF-PBS is
comparable to the number of papers on fully flexible systems. None of these systems offer a pure door-to-door service; each system
works either solely with bus stops or it offers a door-to-door service alongside a stop-based service. Pure door-to-door systems limit
the predictability and the resource efficiency of a transportation system in order to give the passengers a more customized service.
However, semi-flexible systems trade off part of their flexibility in order to increase the predictability and the resource efficiency.
This can explain why pure door-to-door services are not common in semi-flexible systems. Contrary to fully flexible many-to-many
systems, semi-flexible systems more often take other constraints, such as vehicle travel time and time window constraints, into
account. Since these systems are less customized compared to their fully flexible variants, these additional constraints help guide
the service quality and the operational costs in the right direction.

Semi-flexible many-to-many DOFF-PBS are more focused on satisfying both the passengers’ and the operator’s needs, with the
majority of these studies optimizing both perspectives. Similarly to fully flexible many-to-many DOFF-PBS, metaheuristics are most
often used to solve the optimization problem of the semi-flexible many-to-many DOFF-PBS. However, Fu et al. (2003) use complete
enumeration, Horn (2004) uses a branch-and-bound algorithm and Quadrifoglio et al. (2008) use a branch-and-cut algorithm. Most
often, the semi-flexible many-to-many DOFF-PBS are optimized on large, realistic instances based on real networks and demand
levels. Similarly to fully flexible many-to-many DOFF-PBS, the use of smart card data and other new technologies to sample the
demand is limited. An overview of the semi-flexible many-to-many DOFF-PBS is given in Table 6. Compared to fully flexible
many-to-many DOFF-PBS, there are fewer studies that consider demand to be endogenous.

4.2. Many-to-one or feeder systems

4.2.1. Fully flexible routes and timetables
4.2.1.1. Passengers’ perspective. The work of Li and Quadrifoglio (2010) is an extension of the work of Quadrifoglio and Li (2009),
which is discussed in Section 4.2.1.3. The study presents analytical and simulation models to help service providers choose between
a fixed feeder service and a DRC (see Section 3.2.1.3), depending on operational circumstances. The objective is to minimize the
travel time, walking time and waiting time of the passengers. Passengers are able to notify their presence by means of a phone or
internet booking service. Immediately before the beginning of each trip, waiting customers are scheduled and the route for the trip in
the service area is constructed. Sun et al. (2018a) present an extension of Sun et al. (2018b), which is discussed in Section 4.2.1.3.
However, this system takes transfers between the feeder bus and a shuttle with fixed timetables into account. Passengers make
transportation requests in real-time through a cell phone app. The app considers real-time traffic conditions to provide an optimal
plan for the passengers. The system is tested on an instance with a real distribution of passenger demand, aggregated from cellular
data of a network in Nanjing (China), with 30 passenger requests within half an hour.

Sun et al. (2019a) present a feeder system that feeds passengers to a single destination from several depots in different locations.
The authors introduce ‘‘pickup locations’’, where some passengers can be picked up collectively, while other passengers are picked
up at their doorstep. The objective is a weighted sum of the passenger walking time to the ‘‘pickup locations’’ and the in-vehicle
ride time. The system is tested on a real life network in Chongqing (China), with 40 passenger requests within 40 min.

Unlike Sun et al. (2019a) and Wei et al. (2020) study a stop-based feeder system, without a door-to-door service. This system
assigns passengers to a bus stop based on their real-time locations during peak hours. The goal is to minimize passenger walking
times, passenger in-vehicle ride times, and passenger waiting times at the pickup locations. This system is tested on a test instance
in Chongqing (China) with 779 passenger requests within one hour.

4.2.1.2. Operator’s perspective. Marković et al. (2019) study a one-to-many transportation system that transports passengers from
a train station to the doorstep of their home. In this system, available vehicles are only dispatched when the number of boarded
passengers reaches or exceeds a certain threshold. The objective of this system is to maximize the system’s profit, i.e., the revenue
from fares minus the operational costs. The system is tested on numerical examples, which include realistic cost estimates for
18

Washington metropolitan area (USA), with demand levels up to 120 passengers in a time-span of four hours.
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Table 7
An overview of many-to-one fully flexible DOFF-PBS.

Reference Objective Constraints on ...

C F VTD PT DT PTT PWT

Li and Quadrifoglio (2010) min PTT + PWT + PWL x x
Sun et al. (2018a) min PTT x x x
Sun et al. (2019a) min PTT + PWL x x x
Wei et al. (2020) min PTT + PWT + PWL x x

Marković et al. (2019) max operator’s profit x x

Quadrifoglio and Li (2009) min OC + PTT + PWT + PWL x x
Sun et al. (2018b) min PTT + OC x x x x
Dou and Meng (2019) max P + OC + min transfer waiting times x
Liu et al. (2019b) max operator’s profit + min PWT x x x
Lee et al. (2019) min VTD+ PTT x x x
Huang et al. (2020b) min PTT + PWT + OC + schedule deviations x x

(P = The number of passengers served, C = Capacity, F = Fleet size, VTT = Vehicle travel time, VTD = Vehicle travel distance,
PT = Pickup time, DT = Drop-off time, PTT = Passenger travel time, PWT = Passenger waiting time, PWL = Passenger walking
time, OC = Operational costs).

.2.1.3. Multi-objective. In Sun et al. (2018b), a flexible stop-based feeder system is presented. The objective of this system is to
inimize the operational costs related to the vehicle mileage and to minimize passenger ride times. The operational costs are

enerally given more weight. The system is tested on an instance with a demand level of 42 passengers in a two hour time-span.
he network is based on a real life network in Nanjing (China).

Quadrifoglio and Li (2009) present an analytical model to help service providers choose between a fixed feeder service and a
RC. They consider two scenarios: one where each service is operated in a different region and another where both services operate

n the same region simultaneously. The objective is to minimize the operational costs of the vehicles, together with the travel time,
alking time and waiting time of the passengers. Passengers using the DRC are able to notify their presence by means of a phone
r internet booking service. Immediately before the beginning of each trip, waiting customers are scheduled and the route for the
rip in the service area is constructed. When the fixed service and the DRC are operated in the same area, the demand for the DRC
an be considered as endogenous.

Dou and Meng (2019) extend the work of Sun et al. (2018b). The study presents a stop-based feeder system. However, it focuses
n transfers between the feeder buses and the trains at the terminal. The planning is optimized for a short planning horizon,
.g., 30 min. The goal is to minimize transfer waiting times, as well as failure costs of non-served passengers and operational
osts. Liu et al. (2019b) study a stop-based feeder system that operates in a bi-modal context with bike sharing. The system has fixed
outes and timetables during the morning rush hour, but switches to a demand-responsive system with dynamic frequencies during
he evening hour. The passengers using the demand-responsive system need to state their estimated arrival time at their closest
us stop. Furthermore, demand is endogenous. The objective is to minimize the average passenger waiting time and maximize the
perator’s profit. The system is modeled as a multi-objective optimization problem, with a Pareto optimum. A feeder bus planning
roblem of a metro station and three nearby communities in Chengdu (China) are used to test the system. In Lee et al. (2019), a
oor-to-door feeder system that works with small autonomous vehicles is presented. In this system, the feeder buses can be relocated
o serve multiple lines that feed different train stations. The goal of this service is to minimize the total distance traveled by each
ehicle, as well as the in-vehicle travel time of the passengers.

Huang et al. (2020b) study a door-to-door feeder service. The objective function is a weighted sum of operating costs and
assenger costs. The authors provide closed-form analytical expressions for the cost function that makes it possible to find the
ptimal scheduling of the vehicles.

.2.1.4. Conclusion on fully flexible many-to-one DOFF-PBS. There are several fully flexible many-to-one DOFF-PBS in the state of
he art. About half of these systems work with bus stops, while the other half works with a door-to-door service. In many-to-one
ystems, door-to-door services are more common since all passengers have the same destination. This makes it easier to plan the
oute of the buses, while increasing the service quality. Only Sun et al. (2019a) work both with bus stops and door-to-door requests.
he optimization models of Sun et al. (2019a) and Wei et al. (2020) take bus stop assignment into consideration, which can increase
he service quality.

Most fully flexible many-to-one DOFF-PBS are optimized from both the passengers’ perspective as well as from the operator’s
erspective. All the multi-objective DOFF-PBS minimize the operational costs of the operator. The number of studies optimizing the
ystem solely from the operator’s perspective is limited. Only Marković et al. (2019) optimize their system solely from the operator’s
erspective, by maximizing the operator’s profit. Contrastingly, more authors optimize their system solely from the passengers’
erspective. The passenger travel time is always minimized in these systems. All systems are optimized with the use of metaheuristics
nd most are tested on realistic networks, with moderate to high demand levels. Demand levels are, in general, lower compared to
he many-to-many systems. Compared to many-to-many DOFF-PBS, the fully flexible many-to-one systems more often make use of
mart card data and geolocation tools to sample the demand. This results in a more accurate depiction of real demand levels and
19

atterns. An overview of the many-to-one fully flexible DOFF-PBS is given in Table 7.
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Table 8
An overview of many-to-one semi-flexible DOFF-PBS.

Reference Objective Constraints on ...

C F VTT PT DT PWL

Kim and Schonfeld (2014) min delay costs x x
Qiu et al. (2015b) min PTT+ PWT + PWL x x

Lu et al. (2016) min VTT x
Kim and Schonfeld (2013) min OC + PTT + PWT x x
Qiu et al. (2015a) min OC + PTT + PWT + PWL x

(P = The number of passengers served, C = Capacity, F = Fleet size, VTT = Vehicle travel time, VTD = Vehicle travel distance,
PT = Pickup time, DT = Drop-off time, PTT = Passenger travel time, PWT = Passenger waiting time, PWL = Passenger walking
time).

.2.2. Semi-flexible routes and/or timetables

.2.2.1. Passengers’ perspective. The work presented in Kim and Schonfeld (2014) combines coordinated transfers with the inte-
ration of conventional and flexible feeder systems. The system is designed to be optimized during a short planning horizon,
ypically 30 min. It considers several regions where passengers are picked up from. In each region, either a conventional feeder
ystem or a semi-flexible system operates. The semi-flexible system offers a door-to-door service and has a preset schedule to make
imed transfers, however, it works with a flexible route policy to pick up passengers. The model minimizes the transfer cost of
he passengers. The vehicle capacity, the headway and the fleet size of this system are optimized with a probabilistic optimization
odel.

Qiu et al. (2015b) study a feeder system that is already implemented in a suburban area of Zhengzhou City (China). The feeder
ystem has two operation policies. In the flag-stop policy, the buses pick up or drop off passengers upon request alongside a
redefined road. In the fixed route policy, the buses can deviate from the fixed route to offer a door-to-door service to passengers.
owever, passengers can be rejected. The authors propose a new policy, the dynamic-station policy. In this policy, passengers that
re rejected by the deviation service can make use of accepted curb-to-curb stops for their pickup and drop-off. The goal is to
inimize the expected in-vehicle travel time, walking time and waiting time of the passengers.

.2.2.2. Multi-objective. In Lu et al. (2016), feeder buses in a stop-based feeder service can temporarily deviate from their current
oute to serve demand at the requested locations. When multiple feeder buses are operating in the target service area, the system
rovides an optimal plan to locate the nearest one to respond to the demand. The objective is to minimize the total bus travel time,
ith the aim of reducing travel time costs of both the passengers and the operators. The system is optimized every two hours with
ew incoming requests. However, the number of accepted requests is limited. The system is used for a case study in Jinan (China),
ith 39 passenger requests.

Kim and Schonfeld (2013) study a feeder system, in which one terminal is fed by six regions nearby. In each region, either
fixed transit system or a flexible system operates. The fixed transit system works with fixed routes and timetables. The flexible

ystem is a door-to-door service and works with a flexible route. However, the schedules of the buses have a preset headway. The
bjective of the system is to minimize the operators cost, the user in-vehicle cost and the user waiting cost. Qiu et al. (2015a)
resent a model to determine the upper bound on the demand for implementing a MAST flex-route policy instead of a fixed route
olicy. The MAST service (see Section 4.1.2.1) is used as a feeder service, where the base route consists of a set of mandatory stops
ocated at high-demand sites with preset schedules. The buses can deviate from this route within a given distance in order to serve
assengers nearby. The objective is to minimize the vehicle operation costs and the transit cost per passenger. Both costs are given
qual importance. The system is tested on a real life case in Salt Lake city (USA), with demand levels of up to 95 passenger requests
er hour.

.2.2.3. Conclusion on semi-flexible many-to-one DOFF-PBS. Research on many-to-one semi-flexible DOFF-PBS is limited (See Ta-
le 8). There are no studies that optimize a system solely from the operator’s perspective. Kim and Schonfeld (2014) and Qiu et al.
2015b) optimize DOFF-PBS from the passengers’ perspective, and work with both bus stops and door-to-door requests. More studies
ake a multi-objective approach. Lu et al. (2016) optimize stop-based systems, taking the operator’s and the passengers’ needs into
ccount. They minimize the vehicle travel times and by proxy, the passengers’ travel times. Kim and Schonfeld (2013) and Qiu
t al. (2015a) minimize the operator’s costs together with the passengers’ costs. All of the many-to-one semi-flexible DOFF-PBS are
ptimized with a metaheuristic. They also consider demand to be exogenous, which can be viewed as a shortcoming. With the
xception of Kim and Schonfeld (2014), all these systems are tested on real networks, with realistic demand. There are no papers
hat sample the demand from smart card data or geolocation tools.

. Static demand-responsive public bus systems

Compared to the systems considered in Sections 3 and 4, static demand-responsive public bus systems (S-PBS) do not allow
hanges to individual services during operation. S-PBS operations are scheduled before the system starts running. Therefore, requests
or the S-PBS should arrive before a certain deadline, the day before or some hours before the services start running, otherwise the
20

ystem should rely on accurate data or predictions available beforehand, in order to optimize the performance. Once the operational
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period starts, no more changes are possible. This implies that an S-PBS requires no real-time data. Therefore, the planning is much
less complicated and often does not differ from the planning of a traditional bus system. However, typically less computation time
is available compared to the time needed for traditional systems.

It should be noted that many of these S-PBS can easily be transformed into a DOFF-PBS, e.g., Stiglic et al. (2018), Melachrinoudis
t al. (2007), and Galarza Montenegro et al. (2021). This can be done, for instance, by introducing the rolling horizon principle,
here the next planning horizon considered overlaps with the part of the planning horizon which has already been planned. As a

esult, some not-yet-departed services in the earlier parts of the planning horizon can still be modified. This requires fast optimization
pproaches and a way to communicate (modified) departure times to passengers last-minute. Furthermore, part of the literature
ocuses on identifying under which conditions it is suitable to switch from a traditional bus system to an S-PBS (Zhang et al., 2017;
iana et al., 2009; Li and Quadrifoglio, 2009; Kim and Schonfeld, 2012; Papanikolaou and Basbas, 2020; Lakatos et al., 2020). All
entioned papers identify and compare costs as well as passenger travel times for both systems.

.1. Many-to-many

.1.1. Fully flexible routes and timetables
First we discuss papers on fully flexible systems without predefined routes or timetables. The most common type of S-PBS known

n this category is the Dial-a-Ride service (DAR). In the well-known DAR problem (Wilson et al., 1971), passengers make requests
ith desired pickup and drop-off locations and the aim is to accommodate as many passengers as possible with the least operating

ost. It operates as a door-to-door service in low demand areas with requests received in advance. Passengers must typically request
trip the day before. Sometimes late requests can still be included, but only if they can be served within the scheduled route of the

ervice.

.1.1.1. Passengers’ perspective. Only one fully flexible many-to-many S-PBS, optimizing from the passengers’ perspective is identi-
fied: Melis and Sörensen (2021a) introduce the on-demand bus routing problem. Given are a fleet of buses with fixed capacity, a set
of bus stops in a grid and a set of requests. Each request has a time window within which the transportation needs to take place and
a set of close-by bus stops for both departure and arrival. The algorithm decides on both the routing of the buses and the assignment
of stops to requests. The authors use a large neighborhood search heuristic with embedded local search and optimize the total user
ride time, which is the time passengers spend on the bus. By assigning bus stops to requests, within walking distance, instead of
letting passengers choose their bus stops, the objective function value decreases with 24% for an instance of 1500 requests. The
authors end by comparing on-demand bus routing to a traditional public transport network and find significant improvements in
user ride time in favor of on-demand bus routing.

5.1.1.2. Operator’s perspective. Stiglic et al. (2018) study a ride-sharing system that integrates public transit. The ride-sharing system
serves as a feeder system that connects less densely populated areas to public transit. The public transit system extends the reach
of ride-sharing and reduces the detours. The objective of the system is to maximize the number of matched passengers and drivers,
and to minimize the extra trip duration that results from matching a rider to a driver. The system works with a limited vehicle
capacity of 2 persons per vehicle. Furthermore, the walking distance of the passengers and the trip time of the passengers and
drivers must not exceed a certain limit. The passengers also have time windows in which they need to be picked up and dropped
off. The matching system is optimized with a branch-and-bound algorithm.

Luo et al. (2019) study a Dial-a-Ride (DAR) problem that offers a stop-based service for patient transportation. The system
takes the lunch breaks of drivers into consideration, as well as their working hours. The seating configuration for patients and
availability of drivers in the vehicles is also taken into consideration. Passengers make requests stating their pickup and drop-off bus
stop, together with their desired departure time. These requests are received before the operation starts and the optimal operation
is determined for the next two hours. The profit of the operator is maximized by increasing the number of satisfied passenger
requests, and by decreasing the total distance traveled by the vehicles. To optimize this system, a two-phase branch-and-price-and-cut
algorithm is utilized.

Guo et al. (2019) develop a Customized Bus (CB) system, introduced in Section 4.1.1.2, and use an exact model with time
windows similar to the DAR problem. The solution includes intermediate stops where passengers can transfer to other lines and
systems. The objective function is to minimize the total cost of the service and to maximize the revenue from the passengers served
by the CB. Compared to a conventional bus system, the main gains are reductions in total cost, travel time, route length, and number
of vehicles. A case study in Beijing (China) compares the branch-and-cut results with a genetic algorithm (GA) and a tabu search
(TS) algorithm for an instance with 1228 requests. CB problems are often categorized as semi-flexible services, if passengers can
request a trip on a predefined route (e.g., Zhang et al. (2017) and Cao and Wang (2017) discussed in Section 5.1.2). However, this
here is an example of a CB system with time windows and no predefined routes, i.e., a fully flexible service.

Another variant of the door-to-door DAR problem, proposed by Garaix et al. (2010), models an optimal route design considering
the concept of alternative paths. In this approach, the road network is represented as a weighted multigraph with several attributes
such as travel time and travel costs. The objective function of the mathematical model is to minimize costs guaranteeing an
acceptable quality of service for the users while respecting the pickup time and the time window for the drop-off. An insertion
heuristic is developed to solve the problem. Tong et al. (2017) implement an on-demand shuttle similar to a CB. They aim to optimize
the load rate in the vehicles to reach profitability and to optimize routing and scheduling in order to satisfy users’ constraints.
However, in the CB commuters are considered relatively fixed and updates mostly occur only with a monthly frequency. In the system
considered here, however, the authors propose more regular optimization to update or generate new routes when the number of
bookings for non-served demand meets a threshold. A Lagrangian relaxation-based algorithm is designed to identify potential stops
based on passengers walking time and the assignment of buses to a service.
21
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Table 9
An overview of fully flexible many-to-many S-PBS.

Reference Objective Constraints on ...

C F VTT VTD PT DT PTT PWL

Melis and Sörensen (2021a) min total user ride time x x x x x

Stiglic et al. (2018) max P + min VTT x x x x x x x
Luo et al. (2019) max P + min VTD x x x
Guo et al. (2019) min operational costs + max P x x x x x
Garaix et al. (2010) min operational costs x x x
Tong et al. (2017) min operational costs x x x

Bakas et al. (2016) max P + min operational costs x x
Nourbakhsh and Ouyang (2012) min VTD + F + PTT x
Chevrier et al. (2012) min F + PTT + arrival delay x x x

(P = The number of passengers served, C = Vehicle capacity, F = Fleet size, VTT = Vehicle travel time, VTD = Vehicle travel
distance, PT = Pickup time, DT = Drop-off time, PTT = Passenger travel time, PWL = Passenger walking time).

5.1.1.3. Multi-objective. Bakas et al. (2016) address a static DAR with time windows. In the static DAR, all requests are known
beforehand, and users indicate a pickup time window and location. The objective is to maximize the number of passengers served
and the quality of the service. A secondary objective is to minimize the operator costs. To maximize the number of passengers
included, the algorithm uses a best-insertion routine. An experimental setup in a medium-sized city in Greece for two time slots
(peak and off-peak) is discussed. Nourbakhsh and Ouyang (2012) propose a flexible-route transit system, in which each bus offers
a door-to-door service to passengers across a predetermined area. The system works based on requests, in which passengers state
their desired origin, destination and desired time window. The requests are assumed to be known before the operation starts. The
optimal planning is then determined for the planning horizon. The objective is to minimize both operator and user costs for different
design parameters of the system, such as the size of the area of operation, the number of buses and the bus headway. The optimal
design is then obtained by solving a simple constrained nonlinear optimization problem with a steepest decent method.

Chevrier et al. (2012) solve a door-to-door DAR problem as a multi-objective optimization problem. The system makes use of
requests that are known before the start of the operation. The goal of this DAR problem is to simultaneously minimize the number
of vehicles that are used, minimize the journey duration of the passengers, and minimize the delay of delivery. The DAR problem
is optimized through the use of a multi-objective population-based heuristic that is hybridized with a local search procedure. Two
sets of numerical examples, with 100 and 1000 requests, are performed in order to test the system.

5.1.1.4. Conclusion on fully flexible many-to-many S-PBS. S-PBS for fully flexible services generally consider route design or service
scheduling for DAR or taxi-like services. The literature on fully flexible many-to-many S-PBS is surprisingly scarce, given the fact
that such systems do appear in practice. This can be partially explained by the fact that most of these highly flexible systems will
tend to be dynamic. As a result, the static model is used mainly for comparative purposes or as a first step in the development of
more dynamic systems.

An overview of all contributions is presented in Table 9. In this category, Melis and Sörensen (2021a) are the only to focus on
the passenger perspective. All other papers consider the operator perspective or use a multi-objective approach. Except for Bakas
et al. (2016), all contributions include a constraint on the vehicle capacity. The vehicle travel time is only considered in Stiglic et al.
(2018), the vehicle travel distance in Melis and Sörensen (2021a) and Guo et al. (2019). Only Stiglic et al. (2018) and Luo et al.
(2019) propose an exact algorithm to optimize the performance of the S-PBS.

5.1.2. Semi-flexible routes and/or timetables
A stop-based service in this category is again the Customized Bus (CB — see Section 4.1.1.2). In this mode of operation, passengers

submit their requests through an online platform. If the request matches with an already existing CB line, passengers can buy a travel
seat. Unsuccessful requests are stored to improve the system in the longer term (Liu and Ceder, 2015).

5.1.2.1. Passengers’ perspective. Hrnčíř et al. (2015) present a stop-based ride-sharing service that, besides private cars, also considers
timetabled transport services, such as local buses or trains. The transit services can enter the ride-sharing model as inflexible
drivers. Hrnčíř et al. (2015) minimize the total travel cost of the passengers. A passenger is able to use different modes of transport
during his or her journey: walking, trains, and coaches. They use a multi-agent algorithm to optimize the system. This solution
method is tested on a large and complex public transport network in the UK, with realistic travel demand. Zheng et al. (2019) work
with a door-to-door system where passengers state their pickup and drop-off locations. The system has a certain number of stops
that need to be visited at predetermined times. Furthermore, along with a door-to-door service, ‘‘meeting points’’ are introduced,
i.e., locations where passengers can be picked up or dropped off collectively. Only a limited number of these meeting points are
determined and assigned to passengers. The optimization model maximizes the number of requests that are satisfied and minimizes
the total trip time of the passengers. The optimization model is restricted by predefined departure times at the bus stops and by a
maximum walking distance for passengers that are assigned to a meeting point. The optimization problem is solved with a heuristic
that incorporates characteristics of a genetic algorithm and local search. Simulation experiments are performed based on a real-life
22

flex-route.



Transportation Research Part C 137 (2022) 103573P. Vansteenwegen et al.
Table 10
An overview of semi-flexible many-to-many S-PBS.

Reference Objective Constraints on ...

C F VTT VTD PT DT PTT

Hrnčíř et al. (2015) min PTC x x
Zheng et al. (2019) max P + min PTT x x
Zhang et al. (2020) min PTT x x x
Cao and Wang (2017) min PTT x x x

Lyu et al. (2019) max profit x
Fu (2002) max P x x x x x

will

(P = The number of passengers served, C = Vehicle capacity, F = Fleet size, VTT = Vehicle travel time, VTD = Vehicle travel
distance, PT = Pickup time, DT = Drop-off time, PTT = Passenger travel time).

Zhang et al. (2020) aim at reducing the passengers’ travel time by deciding on the distance between the stops along a 3 km route.
Constraints limit the number of vehicles in order to limit the operational costs, considering a passenger density varying up to 50
passengers/km along the route. More stops reduce the average speed of the buses and thus increase the travel time. However, fewer
stops increase walking distance for passengers. Passengers have different time perceptions and the authors try to find the optimal
stop spacing considering both. Cao and Wang (2017) aim to reduce passengers’ in-vehicle time, waiting time and delay penalty for
a CB. They propose a technique to assign passengers to buses. First, the shortest path for each CB line is determined by a branch
and prune algorithm. Then, passengers are assigned in order to minimize the travel time.

5.1.2.2. Operator’s perspective. Considering the operator’s perspective, a CB optimizes bus routes with the lines’ total profit as
objective (Lyu et al., 2019). Here, three steps are performed consecutively. First, demand is clustered to identify potential users
for the CB system and travel patterns are created. The second step selects the locations where the bus will stop. In the third step,
both routing and timetabling of the lines are decided, where parts of the routes are fixed beforehand. The system periodically plans
new CB lines or re-plans existing lines. The routes and timetable can vary from day to day, based on the requests for that day.
This service combines a door-to-door service when collecting passengers in the origin area, and a stop-based service when bringing
passengers to their destination. The objective is to maximize the total profit of all buses, calculating the total revenue and subtracting
the operational costs. Data used for the prediction of demand are taxi trajectories in Nanjing (China). Results present a moderate
increase in travel time, however, passengers save significantly in travel fares.

Fu (2002) design a hybrid semi-flexible system merging a traditional fixed-route transit system and a demand-responsive
paratransit operation. The model optimizes services with mandatory stops, including the possibility to deviate for door-to-door
paratransit requests. The benefits are that the operator does not require an additional service and includes these requests in the
regular service. From the users’ perspective of the traditional system, this system increases travel time, but the system explicitly
limits the additional time for these passengers. The simulations estimate the number of deviations allowed on each trip to identify
the optimal slack time for the trips. The slack time is identified based on the trade-off between the number of possible paratransit
users that can be included in a trip, and the increase of waiting time for all transit users. It should be noted that many more
paratransit systems are developed, offering mobility solutions for people with disabilities. However, most of these systems are used
individually and run in parallel to the traditional transit system, and therefore only a few of these systems appear in this survey.

5.1.2.3. Conclusion on semi-flexible many-to-many S-PBS. S-PBS for semi-flexible services are typically designed to improve a CB
system or to develop a hybrid system, with an initial fixed route and the possibility of including deviations. These deviations are
mostly related to clustering passengers in a door-to-door service. Only a limited number of papers on semi-flexible many-to-many
S-PBS is available. An overview is presented in Table 10.

5.2. Many-to-one or feeder systems

Many-to-one or feeder systems generally operate in low demand areas. The purpose is to gather passengers and bring them to a
transit hub or city center. Almasi et al. (2015) include a literature review on the design and implementation of feeder bus lines and
the integration with high demand services like train or metro stations. Sets of traditional feeder bus lines are considered combined
with one or more rail stations. The authors further present a detailed list of the cost for users and operators, and social costs. Ceder
(2013) examines different operational strategies for feeder shuttle transit. These strategies can use fixed or flexible routes, fixed or
flexible timetables, single or bi-directional lines, short-turns and short-cuts. These concepts, when applied to feeder S-PBS, increase
operational efficiency and require the use of intelligent transportation technologies.
23
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5.2.1. Fully flexible routes and timetables
The problem statement typically is: given an area, and considering a time slot, a shuttle bus performs a route collecting passengers

nd bringing them to a terminal. In the other direction, passengers go from this terminal to their destination. Both door-to-door
nd stop-based systems are considered. A fully flexible feeder system occurs mostly as a demand-responsive connector (DRC — see
ection 3.2.1.3). It is one of the most used flexible transit systems currently in use Koffman (2004).

.2.1.1. Passengers’ perspective. To the best of our knowledge, no papers on fully flexible feeder lines optimize the passengers’
erspective.

.2.1.2. Operator’s perspective. Pan et al. (2015) study a stop-based demand-responsive feeder system that serves irregularly shaped
nd gated communities. In this system, passengers make a request for transportation stating their origin location. The goal of this
esearch is to determine an appropriate service area and routing plans for this feeder system. Designated pickup locations for
assengers are determined as well. Furthermore, the scheduling of the feeder buses must be in coordination with the timetable
f the urban rail transit that is connected to the feeder system. Passenger requests are received before a small number of buses start
o operate. The optimization problem for this system has a bi-level objective. In the upper level, the number of satisfied requests
eed to be maximized. In the lower level, the operator’s cost is minimized. The fleet size and the vehicle capacity are limited.
urthermore, passengers have a maximum travel time and waiting time at their origin stop. The system is optimized with the use
f a constructive heuristic inspired by the gravity model. The system is tested on a network of a district in Jinan (China), with 130
assenger requests.

While the previous paper focuses on the fleet size and the optimal size of the service area for the feeder system, Lee and
avelsbergh (2017) consider a DRC to minimize operator costs, considering the time window for pickups and drop-offs. The authors
onsider the train frequency at the station and use these time windows as parameters of the operation, allowing the S-PBS to select
he best operation period for servicing passengers. The operator’s benefits are measured for different demand, number of stations
nd widths of the time windows. The authors discuss a heuristic to solve DRC routing and scheduling problems. The objective is to
inimize operator costs with the constraint of serving all passengers. Small instances are used to validate the heuristic by comparing

he results with the results obtained by an exact mathematical model.
Chien et al. (2001) develop an exact method to optimize both a conventional system during peak hours and a demand-responsive

ystem during off-peak hours. The model optimizes vehicle size and zone area for the 10-h operation of the demand-responsive
ystem. The authors also identify a switching point between a conventional system and an S-PBS in order to optimize costs
onsidering demand variation, different vehicle sizes and service headways. Sun et al. (2019b) design an ant colony optimization
ACO) heuristic for a demand-responsive system to optimize a feeder line towards a rail station. The objective is to minimize total
ravel time for all buses, considering a boarding time window and an expected ride time. A case study in Nanjing (China) compares
he proposed algorithm with a particle swarm optimization and genetic algorithm to prove its validity.

.2.1.3. Multi-objective. Melachrinoudis et al. (2007) study a DAR system that transports passengers between their doorstep and
Health and Recovery Center (HRC). Passengers can make requests stating either their pickup location and their desired arrival

ime at the HRC, or their drop-off location and desired departure time from the HRC. The requests can be received up until the
ay before. The authors minimize a convex combination of total vehicle transportation costs and total clients’ inconvenience time.
he optimization model of this system is solved with a branch-and-bound algorithm, as well as a tabu search algorithm. Real world
ata of two busy care centers is used to test the system. Li and Quadrifoglio (2009) compare a fixed-route and a demand-responsive
ystem operating a door-to-door feeder service in a large residential area. The purpose is to optimize the zone size for the feeder lines.
he comparison aims to minimize total costs, composed of user and operator costs, and maximize transit service performance in the
one design problem. Furthermore, Li and Quadrifoglio (2011) apply the same optimal zone design optimization for a two-vehicle
ystem, which means that instead of optimizing the number of zones, there are now two vehicles operating. Considering a fixed zone
erved by a conventional service during peak hour and switching to a flexible door-to-door service during low demand periods, Kim
nd Schonfeld (2012) analyze this variable-type system based on demand variation. The objective is to minimize the total cost,
ncluding operator and user costs. In a variation of a demand-responsive system with the terminal inside the serving area, Wang
t al. (2018) optimize how a large area should be divided into zones for each cycle of service. Each zone is served by a feeder
emand-responsive system line assigned to a selected terminal within the area. The mathematical model optimizes zone division
inimizing operational costs. A case study in Calgary (Italy) identifies the impact of the vehicle travel time on costs, headway

nd service area. Chandra and Quadrifoglio (2013) consider a DRC while focusing on the cycle length. The objective is to find the
ptimal cycle length so vehicles have enough time to serve all requests received during each cycle. The authors compare five routing
ethods (Nearest-neighbor, approximate TSP, No-backtrack, Random and insertion heuristic) to identify the optimal cycle length

ased on the size of the area and the demand.
Kim et al. (2019) study a flexible door-to-door feeder system, where the goal is to minimize the average cost per passenger. The

ost per passenger is defined as the operating cost of the vehicles, the in-vehicle time of the passengers and the waiting time of
24

he passengers. The authors develop complex analytical cost functions with the service zone size and the headway of the buses as
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Table 11
An overview of fully flexible many-to-one S-PBS.

Reference Objective Constraints on ...

C F VTD PT DT PTT PWL

Chien et al. (2001) min operational costs x
Pan et al. (2015) max P, then OC x x x x x
Lee and Savelsbergh (2017) min operational costs x x x
Sun et al. (2019b) min VTT

Uchimura et al. (2002) min VTD + onboard distance x x
Melachrinoudis et al. (2007) min OC + passenger inconvenience time x x x
Li and Quadrifoglio (2009) min PTT + operational costs x
Li and Quadrifoglio (2011) min PTT + operational costs x
Kim and Schonfeld (2012) min PTT + operational costs x x
Kim et al. (2019) min PTT + PWT + OC x
Chandra and Quadrifoglio (2013) Optimal cycle x x
Wang et al. (2018) Optimal zone x x
Papanikolaou and Basbas (2020) min PTT + operational costs x x
Shi and Gao (2020) min PTT + operational costs x x

(P = The number of passengers served, C = Vehicle capacity, F = Fleet size, VTT = Vehicle travel time, VTD = Vehicle
travel distance, PT = Pickup time, DT = Drop-off time, PTT = Passenger travel time, PWL = Passenger walking time).

ariables. Service zones contain passengers that need to be picked up and transported to the terminal. The minimum cost is found
y solving a sixth order polynomial objective function using Newton’s method. The system is tested on a theoretical instance, with
4 passenger requests per hour.

In order to obtain a generic feeder system for interurban areas, Papanikolaou and Basbas (2020) model the S-PBS for a rectangular
rea with a fixed low demand rate. The objective is to minimize operator and user costs with smaller vehicles in a door-to-door
ervice. For low-demands, the S-PBS tries to find the optimal trade-off of costs by changing the service headway. The case study is
20 thousands inhabitants small city in Greece, near Thessaloniki. Demand varies during the day from 40 to 100 pax/hr/direction.
he conclusion is that it is worthwhile to invest in the S-PBS for off-peak hours. For low demand, the S-PBS remains the most
referable option, but as demand reaches its peak, larger traditional bus services become more efficient.

Another aspect to consider in the many-to-one system is the pattern of the network. The road network layout of cities tends
o follow widely different patterns. Most American cities and new metropolises like Beijing (China) have a square or rectangular
rid street pattern. Meanwhile, older European cities have a circular or radial street pattern. This variation has a significant impact
n feeder systems since transfers in a grid network occur in any crossing of lines, in a radial street pattern these typically take
lace in a central transfer station. While there are many studies of S-PBS in grid pattern cities, only a few focus on radial street
atterns. Shi and Gao (2020) propose an S-PBS with a radial route structure, where buses operate with high speed radial lines and
circular door-to-door feeder service. The objective is to minimize operational costs and users’ travel, waiting and transfer times.

t makes metro and rapid transit more competitive by generating extra demand from the fast-moving feeders. A genetic algorithm
btains a flexible service during low-demand operation for a door-to-door service while considering operator and passenger costs.
o complement the high-level public transportation system typical for intercity transportation networks, Uchimura et al. (2002)
rganize a door-to-door S-PBS as a feeder system at the lower level. A genetic algorithm optimizes routing and scheduling of the
ully flexible operation of this DAR type service.

.2.1.4. Conclusion on fully flexible many-to-one S-PBS. All papers modeling a fully flexible feeder S-PBS operate a door-to-door
ervice, which leaves a research gap in the study of stop-based systems. Models typically include at least a vehicle capacity or fleet
ize constraint, but not many other constraints are considered. Exact solution approaches are only presented in Chien et al. (2001),
elachrinoudis et al. (2007), and Wang et al. (2018). No papers were found that optimize the passengers’ perspective only. All

apers are summarized in Table 11.

.2.2. Semi-flexible routes and/or timetables

.2.2.1. Passengers’ perspective. Zheng et al. (2018) compare two possible modifications considered in semi-flexible systems:
electing from a limited set of route deviations or designing new partial routes for a door-to-door service. Both are more constrained
han fully flexible services since they operate along a well-defined path including a set of stops with the possibility to deviate from
25

he original route. However, the problem description remains the same as for the DRC (see Section 3.2.1.3): a given area with
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Table 12
An overview of semi-flexible many-to-one S-PBS.

Reference Objective Constraints on ...

C F VTT VTD PT DT PTT

Zheng et al. (2018) min PTC x x x
Galarza Montenegro et al. (2021) min VTT + PWL + DT difference x x x x

Lakatos et al. (2020) min operational costs x x
Mehran et al. (2020) min operational costs x x x

(C = Vehicle capacity, F = Fleet size, VTT = Vehicle travel time, VTD = Vehicle travel distance, PT = Pickup
time, DT = Drop-off time, PTT = Passenger travel time, PTC = Passenger transportation costs, PWL = passenger
walking time).

a specific size connected to terminal stations where all passengers want to go. The objective of the mathematical model is the
users’ cost, comparing both systems to expected and unexpected demand variation and setting the best suitable policy according to
operation’s limitations.

Galarza Montenegro et al. (2021) study a semi-flexible stop-based feeder service. Passengers make a request for transportation,
before the buses start operating, in which they state a desired arrival time at the destination and their origin location. There are
two types of bus stops present: optional and mandatory. Mandatory bus stops are visited by each service in the system and serve as
a safety-net for passengers that did not make a formal request for transportation. Optional bus stops are only visited when there is
a request for transportation nearby. The objective is to minimize a weighted sum of the walking time of the passengers, the travel
time of the buses and the absolute difference in the actual arrival time and the desired arrival time of each passenger. The system
is optimized with the use of a large neighborhood search heuristic. The system is tested on a theoretical network with up to 67 bus
stops and demand varying between 12 and 510 passenger requests.

5.2.2.2. Operator’s perspective. Lakatos et al. (2020) analyze the hypothesis of replacing a traditional bus by an S-PBS in small rural
villages with dead-end lines and smaller vehicles. This network configuration can be considered a many-to-one system because it
is a connection from an urban center to surrounding villages, and deciding not to visit some of the villages reduces the travel time
significantly. The aim is to make the service more cost efficient, offering the same service level for the users. The paper presents a
case study in Hungary to determine when it is feasible to operate the traditional bus system or the S-PBS and to find an operation
with the same costs but an increased frequency.

Mehran et al. (2020) explore the possibility to replace traditional bus services with an S-PBS in low-demand areas. In this S-
PBS, passengers need to book their trips in advance, choosing a pickup and drop-off location. The model implements a stop-based
semi-flexible system minimizing operational costs. The case study is a low-demand bus route in a medium-sized city in Canada. The
proposed semi-flexible system enables transit agencies to estimate operating costs and compare this system with a traditional transit
service.

5.2.2.3. Conclusion on semi flexible many-to-one S-PBS. The few semi-flexible many-to-one static systems are summarized in Table 12.

6. Conclusions

This survey clearly shows that between the extremes of conventional public bus systems with fixed routes and timetables, and
individual on-demand systems such as taxi or Lyft, many types of demand-responsive public bus systems (DR-PBS) can be (and have
been) developed in the last decades. As can be expected, demand-responsive systems usually feature small vehicles: many with at
most 10 passengers or less and only a few systems with buses with 40 seats or more.

In this survey, we structure and classify over a hundred papers based on three different degrees of responsiveness: (1) For the
dynamic online DR-PBS, the planning of each service can be modified during the planning horizon, even if that particular service has
already started; (2) For the dynamic offline DR-PBS, the planning of each service can still be modified during the planning horizon,
as long as that particular service has not started yet; (3) For static DR-PBS, the planning is optimized for the entire planning horizon
before the services start running.

A distinction is also made between systems optimized from the passenger’s perspective, the operator’s perspective or both
perspectives. Moreover, different concepts are defined that allow further classification and comparison of different DR-PBS: many-
to-many or many-to-one, fully-flexible or semi-flexible, door-to-door or stop-based, based on lead time, etc. For each paper we
discuss the optimization model, the instances that are used, and the possible implementation in practice. We want to repeat here
that many traditional systems or feeder systems are also designed while taking the (potential) demand into account. Sometimes
these systems are even called on-demand. However, the papers related to these systems are only included in this survey if they are
ctually demand-responsive. Just designating the system as on-demand and then operating it with a fixed route and timetable during
26

he next weeks or months does not make it demand-responsive, at least not according to the definitions put forward in this paper.
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In our paper, we have attempted to draw some conclusions for each of the large problem classes. Tables are included to structure
nd summarize the information, hopefully making clear in which areas research is still lacking and which types of systems have
een explored less than others. We refrain from repeating each of these sub-conclusions here, but refer the reader to each of the
pecific subsections.

Three main conclusions can be drawn that span the full width of the scientific field. (1) There is a considerable gap between
heory and practice; (2) notwithstanding its importance, data management in demand-responsive systems is still an underdeveloped
ubject; (3) the current state of the literature offers many impressive modeling and algorithmic advancements, but knowledge and
nsight into the characteristics of the different systems is still mostly lacking. These gaps are discussed in some more detail in the
ext subsections.

.1. Gap between theory and practice

As a general conclusion, we must note that there seems to be a considerable gap between theory and practice. On the one hand,
large number of different systems have been proposed in the literature, of which only a small fraction is also implemented in

ractice. On the other hand, more and more systems become available in practice, mostly without a link to scientific papers. This
s illustrated in Appendix B, where a non-exhaustive set of real-life DR-PBS is discussed, and classified in a summarizing matrix.

Most papers reviewed offer no explanation for this fact, but we can deduce several reasons for the existence of this gap. First,
he fact that publication of a scientific study does not generally hinge on the real-life implementation of the studied system might
nfluence researchers to focus on theoretical rather than practical studies, since these come with less practical issues.

Second, from a practical viewpoint, even though most of the systems discussed in the literature seem to offer some advantages
ver more traditional public transport systems, there are no doubt considerable practical, technical, legal, organizational, and other
urdles that need to be taken before such systems can be implemented in practice. More research is therefore needed on identifying
ways to overcome) the impediments to implementation of the various studies on-demand public bus systems. A notable exception
o this lack of practical implementation is the ‘‘Customized Bus’’ system, that was discussed extensively in this paper, and that was
irst implemented in practice and only then studied in the scientific literature.

A third reason for the gap between theory and practice is that most on-demand public bus systems, especially the more recent
roposals, assume a large fleet of small and autonomous vehicles. A broad adoption of this vehicle type is clearly necessary to close
he gap between fully flexible many-to-many DON-PBS and reality, especially because the drivers’ costs are currently preventing
uch systems to be economically viable.

Finally, the fact remains that research on on-demand public bus systems is still young. In all likelihood, we can expect to see
any more of the described systems implemented in the future. This conclusion is supported by the fact that more recent studies

end to have real life examples more often. As a side note, it also means that more recent studies generally focus on the development
f heuristics to solve the larger, more realistic problem instances. Such recent studies also make increasing use of data from GIS
ools, cellular data, and smart card data, which makes the data used for the experiments closer to reality.

.2. Data use and management

An important issue in the optimization of on-demand public transport systems is the availability and handling of data
e.g., specific characteristics of the demand for transportation), yet the literature offers little insights into these issues. In fact, Kim
nd Schonfeld (2015) specifically mention the lack of real life data as a shortcoming in their research and propose this to be a goal
n future research.

Some clear conclusions can be drawn from this survey. First, it is clear that systems with a higher degree of responsiveness
equire more (real-time) data, are more complex to operate and require much faster optimization techniques. This also explains the
elatively low number of exact techniques implemented, and even the apparent preference for relatively simple (meta)heuristics.
econd, when looking at the size of the instances considered, expressed by the number of requests and/or vehicles, it is remarkable
hat the many-to-one systems typically deal with smaller instances compared to the many-to-many systems. This is probably due to
he low demand areas that are often served with many-to-one feeder lines.

When it comes to benchmark instances, the New York taxi data are used by several authors since this seems to be the only
ublicly available data set, but whether this data set could be used as a common benchmark for most (or even many) of the proposed
pproaches is doubtful, given the differences in requirements of these different systems. Stop-based approaches, for example, require
he locations of bus stops, which the taxi data does not offer. Moreover, the New York taxi data sets are specific to a very uncommon
ontext, i.e., demand for taxi services in the city of New York, and conclusions drawn using only these data sets might not generalize
ell.

Several authors discuss sources of real-life data. Guo et al. (2018), Pei et al. (2019b), Liu et al. (2019b) and Gkiotsalitis et al.
2019) make use of smart card data. Liu et al. (2019b) mine the data with clustering techniques. Guo et al. (2018) and Pei et al.
2019b) discuss how missing data is extrapolated, errors are corrected and some data is excluded. These papers also mention some of
27

he shortcomings of the data processing, since more detailed data about individual time periods and passenger requests is difficult
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to obtain. The data processing in Gkiotsalitis et al. (2019) is done by a third party and is not further specified. Sun et al. (2018a,
2019a), and Wei et al. (2020) make use of a GIS tool. Sun et al. (2018a) also makes use of cellular data, but does not discuss the
data preparation or storage. Sun et al. (2019a) and Wei et al. (2020) briefly discuss the data preparation but there is no mention
about the challenges or shortcomings.

Contrary to other fields of vehicle routing, most instances found in the literature are at least based on real life networks and
ot on hypothetical grids. The term ‘‘real-life’’, however, hides many different meanings depending on the source. Specifically for
any-to-many fully-flexible DON-PBS, we find this term to signify:

1. Network based on e.g., Open Street Maps, but synthetic demand data

(a) based on socio-demographic information (Narayan et al., 2017),
(b) (semi-) random (Santos and Xavier, 2013; Winter et al., 2018; Atasoy et al., 2015b; Van Engelen et al., 2018)
(c) via survey (Liyanage and Dia, 2020)

2. Network based on e.g., Open Street Maps, demand data from existing regular PT (smart card data) (Navidi et al., 2018;
Bischoff et al., 2018; Leich and Bischoff, 2019; Jäger et al., 2018; Gomes et al., 2015)

3. Network based on e.g., Open Street Maps, demand data from taxis (GPS trajectories) (Alonso-Mora et al., 2017; Liu et al.,
2019b; Bischoff et al., 2017; Simonetto et al., 2019; Pandey et al., 2019; Ma et al., 2013; Hyland and Mahmassani, 2020)

4. Network based on e.g., Open Street Maps, demand data from semi-flexible DON-PBS system (Ronald et al., 2015)
5. Network based on e.g., Open Street Maps, demand data with actual field tests/existing fully-flexible many-to-many DON-

PBS (Tsubouchi et al., 2010; Vallée et al., 2017)

Clearly, a need for realistic data sets for on-demand public transport problems is present. In our view, the literature might benefit
rom an artificial instance generator that can be parametrized to generate artificial yet realistic instances for different problems and
ifferent situations (transport demand patterns, traffic patterns, city layouts, and so on).

.3. Lack of insights

The literature on (algorithms for) on-demand public bus systems also suffers from the fact that very few papers focus on providing
aluable insights into the characteristics of the systems they model. Even though powerful algorithms are developed, these are
enerally considered the main artifact of the paper, rather than as a tool with which the on-demand public bus system can be
tudied. As a result, research questions such as ‘‘What are the benefits and drawbacks of bus stop assignment?’’, ‘‘Are passengers
etter off if buses can stop anywhere along their routes?’’, ‘‘What is the ideal bus capacity for this specific system?’’, ‘‘How long in
dvance should requests be made?’’, etc., remain largely without an answer.

Further to this issue, and given the obvious importance of the performance comparison between the various levels of dynamism
static/dynamic online/dynamic offline), it is surprising that only a few papers explicitly study their system with different levels
f dynamism. Rigas et al. (2018) compare between an ‘‘offline’’ and an ‘‘online’’ version of their system, and develop different
lgorithms to solve each system. Lotfi et al. (2019) further mention that a dynamic online version would technically be possible
f their algorithm was faster but do not make a comparison. They themselves use a matheuristic. Vallée et al. (2017) find that a
ynamic online system has worse results than a comparable static system, and attribute this to the fact that the stop criterion of
he heuristic is set too early. Melis and Sörensen (2021b), in a comparison of a dynamic online and a static system, find that better
esults are obtained if more requests are known beforehand. In addition, requests that are sent beforehand have lower user ride
imes. Even though some insights can be found in the literature, we find it surprising, especially given the literature’s size, that such
onclusions are still few and far between.

Research in the domain of demand-responsive public bus systems has grown organically and in a bottom-up manner, with authors
roposing systems they believe (or know) to be both realistic and interesting to study. As a result, a large number of systems have
een proposed, with an almost equally large number of names, that often differ only in a few details. As a result, it is hard to
ee the forest for the trees in the literature on demand-responsive public bus systems. We hope this paper will be able to partially
emedy this situation and encourage and help researchers to clearly mention aspects such as the lead time for requests, the fleet
ize and vehicle capacity, the number of requests, the planning horizon, whether the system is stop-based or not, and the degree of
esponsiveness.
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ppendix A. Tables on solution methods and test instances

See Tables 13–18.
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Table 13
Solution methods according to different demand levels for DON-PBS.

1. Exact methods

1.1 Mathematical programming (e.g. CPLEX)
L Bruni et al. (2014), Li et al. (2018b,a) and Pratelli et al. (2018)

1.2 Enumeration method
L Hickman and Blume (2001), Pei et al. (2019a), Shen et al. (2017) and Yu et al. (2015)

1.3 Hungarian method
H Wang et al. (2019)

2. (Meta)heuristic methods

2.1 Greedy insertion
L Ronald et al. (2015), Shen et al. (2017) and Perera et al. (2017)
M Atasoy et al. (2015b,a), Dessouky et al. (2003) and Ikeda et al. (2015)
H Archetti et al. (2018), Bischoff et al. (2018, 2017), Jokinen et al. (2011), Leich and

Bischoff (2019), Koh et al. (2018), Narayan et al. (2017), Navidi et al. (2018), Ronald
et al. (2013) and Viergutz and Schmidt (2019)

2.1 Efficient vehicle assignment with greedy insertion
L Bertelle et al. (2009)
M Tsubouchi et al. (2009, 2010)
H Cortés and Jayakrishnan (2002), Hyland and Mahmassani (2020), Jäger et al. (2018),

Liu et al. (2019a), Ma et al. (2013), Van Engelen et al. (2018) and Winter et al. (2018)

2.3 Metaheuristics based on local search
L Bruni et al. (2014) and Yu et al. (2015)
H Horn (2002a,b)

2.4 Metaheuristics based on construction
H Vallée et al. (2017)

2.5 Metaheuristics based on population search
L Kawamura and Mukai (2009) and Wang et al. (2020)
M Li et al. (2018b,a)

2.6 Hybrid metaheuristics
L Perera et al. (2018b,a) and Gomes et al. (2014, 2015)
M Santos and Xavier (2013)
H Melis and Sörensen (2021b)

2.7 Matheuristic
H Alonso-Mora et al. (2017), Simonetto et al. (2019) and Pandey et al. (2019)

2.8 Simulation without using heuristics
L Inturri et al. (2018) and Pei et al. (2019c)
H Liyanage and Dia (2020)

(L = Low demand level (e.g. rural area), M = Medium demand level (e.g. suburban area), H = High demand level (e.g. urban
area)).
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Table 14
Solution methods according to different demand levels for DOFF-PBS.

1. Exact methods

1.1 Mathematical programming
L Quadrifoglio et al. (2008) and Huang et al. (2020a)
M Horn (2004)

1.2 Dynamic programming
L Hadas and Ceder (2008)
H Masoud et al. (2017)

1.3 Enumeration method
H Fu et al. (2003)

1.4 Differentiation techniques
H Amirgholy and Gonzales (2016)

2. (Meta)heuristic methods

2.1 Insertion algorithms
M Quadrifoglio and Li (2009), Li and Quadrifoglio (2010), Qiu et al. (2014,

2015a) and Marković et al. (2019)
H Huang et al. (2020a)

2.2 Metaheuristics based on local search
H Crainic et al. (2005, 2012), Rigas et al. (2018), Pei et al. (2019b) and Lee

et al. (2019)

2.3 Metaheuristics based on construction
L Qiu et al. (2015b)
M Ji-Yang et al. (2020)
H Crainic et al. (2005) and Huang et al. (2020b)

2.4 Metaheuristics based on population search
L Lu et al. (2016)
M Kim and Schonfeld (2015), Chen and Nie (2017) and Sun et al. (2018a,b)
H Kim and Schonfeld (2014), Guo et al. (2018), Dou and Meng (2019) and

Gkiotsalitis et al. (2019)

2.5 Hybrid heuristics
M Sun et al. (2019a)
H Kim and Schonfeld (2013), Liu et al. (2019b) and Wei et al. (2020),

2.6 Matheuristics
L Lotfi et al. (2019)
M Chen and Nie (2017)
H Zhao et al. (2018)

2.7 Simulation without the use of heuristics
M Winter et al. (2016)
H Fatnassi et al. (2015)

(L = Low demand level (e.g. rural area), M = Medium demand level (e.g. suburban area), H =
High demand level (e.g. urban area)).
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Table 15
Solution methods according to different demand levels for S-PBS.

1. Exact methods

1.1 Mathematical Programming (e.g. CPLEX)
L Li and Quadrifoglio (2009, 2011), Luo et al. (2019), Lakatos et al. (2020),

Mehran et al. (2020) and Bakas et al. (2016)
M Cao and Wang (2017), Fu (2002), Chandra and Quadrifoglio (2013) and

Zheng et al. (2018)
H Wang et al. (2018), Stiglic et al. (2018) and Tong et al. (2017)

1.2 Dynamic programming
L Garaix et al. (2010) and Zhang et al. (2020)

1.3 Numerical analysis
L Papanikolaou and Basbas (2020)
M Kim and Schonfeld (2012) and Shi and Gao (2020)

2. (Meta)heuristic methods

2.1 Metaheuristics based on local search
M Nourbakhsh and Ouyang (2012) and Lee and Savelsbergh (2017)
H Melachrinoudis et al. (2007) and Guo et al. (2019)

2.2 Metaheuristics based on population search
H Guo et al. (2019), Sun et al. (2019b) and Uchimura et al. (2002)

2.3 Metaheuristics based on construction
M Pan et al. (2015)
H Hrnčíř et al. (2015) and Galarza Montenegro et al. (2021)

2.4 Hybrid metaheuristics
M Zheng et al. (2019)
H Chevrier et al. (2012), Lyu et al. (2019), Czioska et al. (2019) and Melis and

Sörensen (2021a)

2.5 Simulation without using heuristics
L Chien et al. (2001)

2.6 Numerical approximation
M Kim et al. (2019)

(L = Low demand level (e.g. rural area), M = Medium demand level (e.g. suburban area), H =
High demand level (e.g. urban area)).
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Table 16
Instance scale of DON-PBS literature.

Reference S/D PH C R V S N Location

Many-to-many fully flexible DON-PBS

Jokinen et al. (2011) S 10 14 5000–50 000 236 n.m. T
Vallée et al. (2017) S Day 8 148–2200 5–75 213–286 B Paris (France), Bristol (UK)
Melis and Sörensen (2021b) S 4 8 2000 0–600 121 T
Navidi et al. (2018) D Day 4 720–10 800 3–31 d.n.a. T+B Belgrave (Australia)
Ronald et al. (2013) D 5 4 7500 8–18 d.n.a. T
Archetti et al. (2018) D 1 8 500–5000 200–500 d.n.a. T
Narayan et al. (2017) D Day ∞ 84 110 1000–3000 d.n.a. B Sioux Falls (USA)
Alonso-Mora et al. (2017) D Week 2–10 3 million 1000–3000 d.n.a. B New York (USA)
Santos and Xavier (2013) D Day 4 540–744 1–200 d.n.a. B São Paulo (Brazil)
Liu et al. (2019a) S Day 30 65 065 10 585 d.n.a. B Shanghai (China)

Tsubouchi et al. (2010) S Day n.m. 40–170 3–10 209–384 B Kashiwa, Sakai, Moriyama (Japan)
Bertelle et al. (2009) S n.m. 4 47–315 4–8 50 T
Bischoff et al. (2017) D Day 2–4 27 336 4212 d.n.a. B Berlin (Germany)
Viergutz and Schmidt (2019) S+D Day 6–14 500 5–10 n.m. B Colditz (Germany)
Bischoff et al. (2018) S+D Day 8 21 346 200–600 400 B Cottbus (Germany)
Leich and Bischoff (2019) D Day 1–20 18 664 120–1000 d.n.a. B Berlin (Germany)
Wang et al. (2019) S+D Day 2 110 000 2000–4500 n.m. T
Simonetto et al. (2019) D Day 4–10 382 779–460 700 150–3000 d.n.a. B New York (USA)
Pandey et al. (2019) D Day 4 382 779–460 700 500 d.n.a B New York (USA)
Ma et al. (2013) D 0.5 n.m. n.m. 3000 d.n.a. B Beijing (China)
Kawamura and Mukai (2009) D n.m. ∞ n.m. 2 d.n.a. B (Japan)
Bruni et al. (2014) S Day 1–8 24–144 10 n.m. T
Horn (2002b) S+D Day mb 14 000 n.m. n.m. T

Liyanage and Dia (2020) S Day 7 13 550 n.m. n.m. B Melbourne (Australia)
Jäger et al. (2018) S Day 6 2.3 million 43 000 4923 B (Singapore)
Winter et al. (2018) S 4 2–40 11 697 400–600 d.n.a. B Arnhem (the Netherlands)
Gomes et al. (2015) S 4 27 32 1 n.m. B Porto (Portugal)
Hyland and Mahmassani (2020) D 5 2 3620–7240 650–10 000 d.n.a. B New York (USA)
Atasoy et al. (2015b) D Day mb 5000 60 d.n.a. B Tokyo (Japan)
Ikeda et al. (2015) D Day mb 4600 25–150 n.m. B Tokyo (Japan)
Atasoy et al. (2015a) D Day mb 5000 60 n.m. B Tokyo (Japan)
Ronald et al. (2015) S Day ∞ 10–50 1 n.m. B (Australia)
Dessouky et al. (2003) D Day n.m. 1000 150–210 d.n.a. B LA (USA)
Van Engelen et al. (2018) S 3 5 2000 100 36 B Ijmouden (the Netherlands)

Many-to-many semi-flexible DON-PBS

Cortés and Jayakrishnan (2002) S 3 7 n.m. 2000 n.m. T
Hickman and Blume (2001) D Day n.m. 3500 n.m. d.n.a B Houston (USA)
Pei et al. (2019c) S 1 n.m. 120 4 9 B Guangzhou (China)

Pei et al. (2019a) S Day 75 702 1 162 B Guangzhou (China)
Quadrifoglio et al. (2007) D 1 ∞ 2–25 n.m. d.n.a B LA (USA)
Inturri et al. (2018) n.m. n.m. n.m. n.m. 0–30 d.n.a B Ragusa (Italy)

Many-to-one fully flexible DON-PBS

Perera et al. (2018b) S n.m. 8 300 45 1–25 T
Perera et al. (2018a) S n.m. n.m. 10–15 2–4 5 B Nanyang Technological University (Singapore)

Perera et al. (2017) D n.m. 12 48–144 4–12 d.n.a. B Nanyang Technological University (Singapore)

Yu et al. (2015) S mp ∞ 0–170 n.m. 50–118 B Austin (Texas, USA)
Li et al. (2018b) S n.m 200 125–1750 ∞ 16 B Chongqing (China)
Koh et al. (2018) S 4 30–90 3700 24 n.m. B (Singapore)
Shen et al. (2017) S 1 36–60 41 n.m. 11 B Nanjing (China)
Wang et al. (2020) D 1 15 226 4–16 d.n.a T

Many-to-one semi-flexible DON-PBS

Pratelli et al. (2018) S Day n.m. 38–147 n.m. n.m. B Campi Bisenzio (Italy)

(S/D = Stop-based approach or door-to-door approach, PH = Planning horizon (in hours), C = Capacity vehicles, R = Number of requests, V = Number of
ehicles, S = Number of stops, N = Type of network used, T = Theoretical, B = Network based on real city, n.m. = not mentioned in the paper, d.n.a. = does
ot apply to this work, mb = minibus-size, mp = morning peak hour).
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Table 17
Instance scale of DOFF-PBS literature.

Reference S/D PH C R V S N Location

Many-to-many fully flexible DOFF-PBS

Hadas and Ceder (2008) S n.m. d.n.a. n.m. d.n.a. 14 T
Fatnassi et al. (2015) S 2 h n.m. 1900 80–400 19 B Corby (England)
Masoud et al. (2017) S 3 h 4 1000 1000 1000 B Los Angeles (USA)

Zhao et al. (2018) S 40 min 2 20–40 30 100–900 T
Rigas et al. (2018) S 11 h d.n.a. 400–3000 5–35 8 B Washington D.C. (USA)

Lotfi et al. (2019) D mp 4 4–70 2–25 d.n.a. B Dallas (USA)
Huang et al. (2020a) D 2.5 h 15 100–200 30 d.n.a. B Nanjing (China)

Winter et al. (2016) S 1 day 10 1740–1953 d.n.a. 2 B Wageningen (The Netherlands)
Amirgholy and Gonzales (2016) D 3 h d.n.a. 150 5 d.n.a. T
Guo et al. (2018) S 1 h 30–40 620 12 24 B Beijing (China)
Ji-Yang et al. (2020) S n.m. 7 90 18 18 T

Many-to-many semi-flexible DOFF-PBS

Horn (2004) S+D 24 h n.m. 40 000 120 n.m. B Queensland (Australia)
Qiu et al. (2014) S+D 1 h d.n.a. 10–70 n.m. 6 B Los Angeles (USA)

Crainic et al. (2005) S n.m. d.n.a. 125–250 1 >10 T
Pei et al. (2019b) S 17 h 75 697 d.n.a. 162 B Guangzhou (China)

Fu et al. (2003) S 5 h d.n.a. 3500–7000 n.m. 14 B Waterloo (Canada)
Quadrifoglio et al. (2008) S+D n.m. d.n.a. 3–17 1 10–30 B Los Angeles (USA)
Crainic et al. (2012) S+D n.m. n.m. 300–500 n.m. 20–50 T
Kim and Schonfeld (2015) S+D 24 h 20–25 158 400 166–268 d.n.a. T
Chen and Nie (2017) S+D 1 h d.n.a. 20 000 d.n.a. n.m. B Chicago (USA)
Gkiotsalitis et al. (2019) S 6 h d.n.a. n.m. 220 n.m. B The Hague (NL)

Many-to-one fully flexible DOFF-PBS

Li and Quadrifoglio (2010) D 1 h d.n.a. 24–48 n.m. d.n.a. T
Sun et al. (2018a) S 30 min 10 30 3 22 B Nanjing (China)
Sun et al. (2019a) D 40 min 10 34 3 3 B Chongqing (China)
Wei et al. (2020) S 1 h 35 779 23 42 B Chongqing (China)

Marković et al. (2019) D 4 h 10 20–120 3–20 d.n.a. B Washington D.C. (USA)

Quadrifoglio and Li (2009) D 1 h d.n.a. 0–90 n.m. d.n.a. T
Sun et al. (2018b) S 2 h 12 42 3 15 B Nanjing (China)
Dou and Meng (2019) S 30 min 40–120 300 10 10 T
Liu et al. (2019b) S mp+ep 15 418 5–14 4 B Chengdu (China)
Lee et al. (2019) D n.m. 8 317 64 4 T
Huang et al. (2020b) D n.m. 30 50–1500 10–50 d.n.a. T

Many-to-one semi-flexible DOFF-PBS

Kim and Schonfeld (2014) S+D 30 min 10–16 150 19 5 T
Qiu et al. (2015b) S+D 1 h d.n.a. 26–50 1 2 B Zhengzhou (China)
Lu et al. (2016) S n.m. d.n.a. 39 d.n.a. 20 B Jinan (China)

Kim and Schonfeld (2013) D 4–8 h 19 38–1200 5–41 d.n.a. T
Qiu et al. (2015a) S+D 1 h d.n.a. 20–65 n.m. 4 B Salt Lake City (USA)

(S/D = Stop-based approach or door-to-door approach, PH = Planning horizon (in hours), C = Capacity vehicles, R = Number
of requests, V = Number of vehicles, S = Number of stops, N = Type of network used, T = Theoretical, B = Network based
on real city, n.m. = not mentioned in the paper, d.n.a. = does not apply to this work, mb = minibus-size, mp = morning peak
hour, ep = evening peak hour).
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Table 18
Instance scale of S-PBS literature.

Reference S/D PH C R V S N Location

Many-to-many fully flexible S-PBS

Melis and Sörensen (2021a) S 4 8–16 2000 0–400 121 T

Stiglic et al. (2018) S+D n.m. 2 500–1000 500–1000 49 B San Francisco (USA)
Luo et al. (2019) S 2 h n.m. 16–23 3–21 52–74 B (Hong Kong)
Guo et al. (2019) S per 50 ≈1000 4 36 B Beijing
Garaix et al. (2010) S serv 6 25–100 3–10 d.n.a. T

Nourbakhsh and Ouyang (2012) D 1 h mb 100–5000 80–307 3–35 T
Chevrier et al. (2012) D 1 h n.m. 100–1000 n.m. 63 T
Bakas et al. (2016) D per 6 2500 4 d.n.a. T
Tong et al. (2017) S 1 week 10 20 3 24 T

Many-to-many semi-flexible S-PBS

Hrnčíř et al. (2015) S 24 h d.n.a. 2 million d.n.a. n.m. B Yorkshire (UK)
Zheng et al. (2019) S+D per d.n.a. 5–25 d.n.a. 3 B Los Angeles (USA)
Zhang et al. (2020) S per 40 100 d.n.a. d.n.a. B Beijing
Cao and Wang (2017) S per 40 d.n.a. 3 4 B Harbin

Lyu et al. (2019) D per 10 n.m. n.m. d.n.a. B Nanjing
Fu (2002) D serv 20 10 1 n.m. T

Many-to-one fully flexible S-PBS

Pan et al. (2015) S n.m. 20 130 5 21 B Jinan (China)
Lee and Savelsbergh (2017) S per 5–10 50–200 1–2 3–5 T
Chien et al. (2001) D per n.m. ≤ 30 n.m. d.n.a. T
Sun et al. (2019b)

Melachrinoudis et al. (2007) D 20 days 10–15 58 n.m. d.n.a. B Danvers (USA)
Li and Quadrifoglio (2009) D per n.m. d.n.a. d.n.a. d.n.a. T
Li and Quadrifoglio (2011) D per n.m. d.n.a. d.n.a. d.n.a. T
Kim and Schonfeld (2012) D per 40 d.n.a. 3–10 d.n.a. T
Wang et al. (2018) D per n.m. d.n.a. d.n.a. d.n.a. B Calgary
Chandra and Quadrifoglio (2013) D serv n.m. d.n.a. 1 d.n.a. T
Papanikolaou and Basbas (2020) S per 16–22 40–100 n.m. n.m. B Lagkadas
Kim et al. (2019) D 1 h 45 54 n.m. d.n.a. T
Shi and Gao (2020) S serv n.m. 1–1000 n.m. d.n.a. T
Uchimura et al. (2002) D 15 min 10–20 n.m. d.n.a. d.n.a. B Seattle’s district

Many-to-one semi-flexible S-PBS

Zheng et al. (2018) D per n.m. n.m. 1 n.m. T
Galarza Montenegro et al. (2021) S 3 h 10–50 12–510 2–26 9–67 T

Lakatos et al. (2020) S per 8 n.m. 1 n.m. B Hungary
Mehran et al. (2020) S serv n.m. ≈30 1 26 B Regina

(S/D = Stop-based approach or door-to-door approach, PH = Planning horizon (in hours), C = Capacity vehicles, R = Number
of requests, V = Number of vehicles, S = Number of stops, N = Type of network used, T = Theoretical, B = Network based
on real city, n.m. = not mentioned in the paper, d.n.a. = does not apply to this work, serv = one service period, per = daily
operation period).

ppendix B. DR-PBS in practice

To further illustrate the gap between research and reality, Table 19 shows a list of real-life DR-PBS. The list is non-exhaustive,
s the matrix mainly aims to indicate the rising interest in DR-PBS and give some insight in real-world possibilities. The systems
re grouped in the same way as the papers, shown in Fig. 2. We do not make a distinction regarding level D, the optimization
erspective, as this information is often not publicly available for real-life systems.

Most systems mentioned in the matrix are operated by a fleet of fixed-capacity minibuses within a restricted service area and
ervice time, typically during the day. If a system deviates from this description, this will be noted in the paragraphs beneath.

Most examples of real-life DR-PBS have the highest levels of flexibility and are fully-flexible dynamic online systems. Such
ystems are typically operated using minibuses (LPP, 2022; Mary Beth Corcoran, 2022; Karlstadsbuss, 2022; LADOT Transit, 2022;
yMobigo, 2022; Pikmi, 2022; TAO, 2022; Padam Mobility, 2022b; The Bus on Demand, 2022; Kotz, 2022), but also cars (Padam
obility, 2022a; Shuttle, 2022; Uber, 2022), and regular-sized buses (Barrie, 2022; fflecsi, 2022; Blundell, 2022) are possible. Systems

perated by cars engage in less passenger pooling, e.g., UberX Share only pools 2 passengers in the same car. Uber cars are often
riven by private individuals (instead of drivers on payroll) and are active 24/7. Systems operated by regular-sized buses are often
ntroduced as a replacement for one or more fixed public bus lines and the available fleet is re-used. It should be noted that most
perators do not give any details about their optimization algorithm. In addition, it is often unclear whether or not a short lead time
s imposed on the customers. If no lead time is mentioned, we assumed zero lead time as a possibility and classified the systems
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Table 19
Matrix of DR-PBS in practice.

DON-PBS DOFF-PBS S-PBS

Many-to-many

Fully flexible: Fully flexible: Fully flexible:
Barrie TOD, Birdj, Brengflex, Cavalier, CKTransit On Request, Fabulos, Fflesci, Holibri, Karlstadsbuss
Nära, LAnow, MyMobigo, On-demand bus Japan, Padam Paris & Bristowilll, Pikmi, Résa tao, SAM
on-demand, Shuttle GT, Tadex, The Bus On Demand, The Suffolk Transit On Demand, UberX

Flex’Hop, Kutsuplus,
TCL à la demande,
Tele-bus

Dial-a-bus DeLijn, Icilà
d’Envibus, MobiliTad,
Montenbus, Mouvéo

Semi-flexible: Semi-flexible:
289 line Surrey connect

Many-to-one

Fully flexible: Fully flexible: Fully flexible:
Keoride Hüpper Flexipév’ailes, Resago

Semi-flexible:
SandyFlex

under dynamic online. Even though requests are accepted last minute, it is hard to extract information on how routes are adapted
in real time (if at all).

The on-demand bus in Japan and the Padam service in Paris and Bristol are investigated in Section 3.1.1 by Tsubouchi et al.
2010) and Vallée et al. (2017), respectively. The list of many-to-many fully flexible DON-PBS also includes three finished pilot
rograms, all operated by minibuses: Birdj (Ford, 2016), Brengflex (Breng, 2019), and Fabulos (Fabulos, 2021). The latter is a
uropean pilot study using autonomous or self-driving vehicles. Both Birdj and Fabulos mention an extension of the service area

(and time) might have been more beneficial, and Brengflex failed because of financial reasons. Keoride is an example of a many-
to-one fully flexible DON-PBS, where passenger are brought to one of the four possible major transport hubs (the closest one is
chosen) (Keolis Downer, 2021).

The difference between static and dynamic offline for real-life systems is rather hard to detect. Operators of real-life DR-PBS do
not tend to give away their optimization approach. We classified the systems in the matrix as dynamic offline, when the service
eeds to be requested at least 15 to 45 min in advance. The contemporary examples found for many-to-many fully flexible DOF-PBS,
re all stop-based (CTS, 2022; Sytral, 2022; Telebus, 2022). Kutsuplus is a stop-based pilot project, initially introduced by Aalto
niversity in Helsinki, and ended in 2015 (Gray, 2022). Kutsuplus is frequently mentioned in literature and failed, just like Brengflex,
ecause of financial reasons (Mladenović et al., 2020; Jokinen et al., 2019; Weckström et al., 2018). The semi-flexible example of
he 289 Line is investigated in Qiu et al. (2015b) and already explained in Section 4.1.2. Hüpper is classified as a many-to-one
ully flexible DOFF-PBS, however there are four possible destination stops instead of one. The service runs 24/7, but is handled by
inibuses during the day and taxis during the night. The semi-flexible example of SandyFlex is investigated in Qiu et al. (2015a)

nd mentioned in Section 4.2.2.
The many-to-many fully flexible static DR-PBS can typically be booked by phone or via a mobile application, usually about one

ay in advance. Most systems are stop-based (DeLijn, 2022; Envibus, 2022; Montenbus, 2022; Mouvéo, 2022). MobiliTad is the only
oor-to-door system, and also integrates on-demand buses with existing fixed lines (RTA, 2022). Surrey Connect is an example of
real-life many-to-many semi-flexible S-PBS. It concerns a weekly scheduled bus service which can deviate within a certain radius

f a group of at least 8 passengers has requested a pick up or drop off (Mole Valley Life, 2022). The service is mostly aimed at
ransporting the elderly. Flexipév’ailes and Resago are examples of many-to-one fully flexible S-PBS. Both are stop-based systems
hich bring passengers to the nearest train station (Pévèle Carembault, 2022; SITAC, 2022).

In conclusion, real-life DR-PBS systems can be already found all over the world. In general, however, their service area (and time)
re severely restricted to specific areas of a city. In addition, two pilot projects were found which failed because of financial reasons.
sing autonomous vehicles might tip the balance to implement a DR-PBS profitably, because of vanishing drivers’ costs (Enoch et al.,
006; Winter et al., 2018).
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