
European Journal of Operational Research 170 (2006) 844–862

www.elsevier.com/locate/ejor
Production, Manufacturing and Logistics

Vehicle and crew scheduling for urban bus lines

Maikol M. Rodrigues a,b, Cid C. de Souza b,1, Arnaldo V. Moura b,*,2

a Departamento de Informática, Universidade de Fortaleza, Fundação Edson Queiroz,

Avenıda Washington Soares 1321, 60.811-905 Fortaleza, Brazil
b Instituto de Computação, Universidade Estadual de Campinas, P.O. Box 6176, 13084-971—Campinas, Brazil

Received 29 August 2002; accepted 18 June 2004
Available online 30 November 2004
Abstract

A solution to the urban transportation problem is given by vehicle and crew schedules. These schedules must meet
the passenger demand and satisfy technical and contractual restrictions stemming from the daily operation of the lines,
while optimizing some measure of operational cost. This work describes a computational tool developed to solve the
urban transportation problem in the large metropolitan area of São Paulo, Brazil. The techniques used are based on
integer programming models coupled with heuristics. The former produces good feasible solutions, and the latter
improves the quality of the final solutions. While the operational and labor restrictions are specific to the city of
São Paulo, the same ideas can inspire similar approaches for solving the urban transportation problem arising in other
metropolitan areas.
� 2004 Elsevier B.V. All rights reserved.

Keywords: Scheduling; Crew; Vehicle; Transportation; Timetabling
0377-2217/$ - see front matter � 2004 Elsevier B.V. All rights reserv
doi:10.1016/j.ejor.2004.06.035

* Corresponding author. Tel.: +55 19 3788 5859; fax: +55 19
3788 5847.

E-mail addresses: maikol@unifor.br (M.M. Rodrigues),
cid@ic.unicamp.br (C.C. de Souza), arnaldo@ic.unicamp.br
(A.V. Moura).

URL: http://goa.pos.ic.unicamp.br/otimo
1 Supported by FINEP (ProNEx 107/97), and CNPq

(300883/94-3).
2 Supported by FAPESP, grant 99/05999-4.
1. Introduction

The urban transportation problem (UTP) has
been the focus of several studies [34,8,32,17]. Most
of its variations give rise to NP-hard problems
[16,32,19]. Generally, the difficulties stem from a
large set of complex and conflicting restrictions
that must be satisfied by any solution. Most of
these restrictions are reflected in a sizable number
of operational conditions that involve specific
characteristics of each bus line, among which are
ed.

mailto:maikol@unifor.br
mailto:cid@ic.unicamp.br
mailto:arnaldo@ic.unicamp.br

M.M. Rodrigues et al. / European Journal of Operational Research 170 (2006) 844–862 845
the number of vehicles, the number of passengers
that must be transported, the varying duration of
each trip along the day and the vehicle capacities.
Also, a number of local labor and safety regula-
tions, such as the maximum number of work hours
in a day and mandatory rest periods, further re-
strict the construction of viable journeys. The solu-
tions must also optimize some objective function,
which includes precisely measured items, such as
operational costs, but may also involve other items
whose measures may not be completely clear, such
as maintaining trip departure times well spaced
along the day.

In one possible strategy for solving the UTP,
short term vehicle and crew schedules can be ob-
tained first. Next, the long term planning of crew
rostering is addressed. Of course, this particular se-
quence of steps admits variations [2,5,35,36]. In
this work, we will concentrate on the vehicle and
crew scheduling subproblems for which, broadly
speaking, there are two approaches.

First, we have the sequential approach where
these subproblems are treated separately [13,14].
In vehicle scheduling, the problem is to construct
blocks of consecutive trips. Each block must start
and end at a depot, while satisfying appropriate
operational restrictions. The set of blocks so con-
structed must also meet the passenger demand
and minimize some objective criteria, such as the
distance traveled or fuel consumed [8,18,19,22–
24]. A number of computational tools have been
developed to construct vehicle blocks [7,31,19,28].
For the crew scheduling problem, a set of work
schedules is sought, a work schedule being a se-
quence of consecutive trips, maybe interspersed
with rest time [14,13]. Besides covering all trips
occurring in the vehicle blocks, work schedules
must also satisfy a number of labor and opera-
tional restrictions. In general, the objective func-
tion tend to be more complex in crew scheduling,
it being a combination of fixed cost items, such as
wages, and variable cost items, such as extra duty
time. As a result, crew scheduling is usually harder
to solve than vehicle scheduling, and simple heuris-
tics for this problem often run into poor local opti-
ma [32]. Earlier codings for crew scheduling have
been based on heuristics [30,20]. More recent re-
sults are based on mathematical programming
techniques [3,34,12], or have used a hybrid ap-
proach [35,36]. After both subproblems have been
solved, the solutions are unified by mapping work
schedules, possibly separated by relief periods, into
vehicle blocks, while still preserving the quality of
the solutions [17,21,35,4,34,26]. The sequential ap-
proach has been applied in a number of practical
cases [33,11], and such experiences revealed that
while it may work well in certain situations, it
may not yield adequate results when exercised over
slightly different scenarios. Also, often the solu-
tions obtained must be manually adjusted before
they can be enforced in practice.

When there are interdependent restrictions that
involve crew and vehicles, solving both problems
independently may not lead to operational solu-
tions [14]. A second alternative for solving the
UTP resorts to more integrated approaches, which
tend to yield more adequate final solutions [13].
Since the set of restrictions that apply to crews is
usually more stringent than those that apply to
vehicles, some of the restrictions inherent to the
former may be shifted to the latter, leaving the
final crew scheduling for a second step [9,27]. Ear-
lier attempts towards an integrated approach used
heuristics [1] and graph pairing techniques
[29,25,10]. More recently, linear programming par-
tition models have been proposed [15], combined
with column generation techniques. The results
indicated that problems with up to 25 trips could
be solved, while problems with 30 or more trips re-
mained intractable. A combination of Lagrangian
relaxation and column generation techniques have
also been implemented to simultaneously solve
vehicle and crew scheduling problems with multi-
ple depots for real instances of the UTP, in Italy
[6]. Since full integration between vehicle and crew
scheduling usually results in a much more complex
problem, this approach has received less attention
[13,14]. In this work, a loosely integrated approach
is developed into a computational tool that can be
used to automatically solve the UTP for large
urban areas in and around the city of São Paulo,
in Brazil. Since, for a typical company operating
in that area, about 50% of the operational costs
comes from wages and related items, even small
improvements in the schedules can produce sizable
savings.

846 M.M. Rodrigues et al. / European Journal of Operational Research 170 (2006) 844–862
The algorithms proposed here are based on a
combination of integer programming models com-
bined with some end game heuristics that improve
upon intermediate results. The combination was
able to deliver quite adequate final results, when
compared to solutions produced manually by ex-
perts, for a number of real instances. Due to pecu-
liarities in the problem restrictions, algorithms that
produce good solutions for some urban area may
not yield appropriate solutions when applied to
other areas operating under slightly different con-
ditions. Even so, the general ideas developed here
might still be applicable to other regions, once they
are adjusted to take into account discrepancies in
the objective function or in the set of restrictions.

The article is organized as follows. The specific
UTP investigated here is described in Section 2. A
model for the UTP is discussed in Section 3. The
next section presents results obtained by executing
the algorithms over real data sets. The final section
offers some concluding remarks.
2. The urban transportation problem

It will be assumed that there is a single depot. A
control point (CP) is a previously defined location,
along the line, where drivers can make a stop and
rest. A trip is the act of driving the bus between
two CPs. Each trip has both a duration and a
direction, that is, an origin CP and a destination
CP.
7:00AM

n
u

m
b

er
 o

f
p

as
se

n
g

er
s

Fig. 1. Passengers to be transpo
In the area under consideration, two kinds of
urban lines are responsible for the bulk of the pas-
senger traffic. Of the first kind are lines that go
from a central region of the city to a point in the
periphery, and back to the central region. In this
case, two CPs are defined, usually located at a cen-
tral terminal in the city and at the farthermost
neighborhood point reached by the line. The other
important kind are the lines that travel in a closed
circuit through a certain neighborhood. In this
case, only one CP is defined, at some stop conven-
iently located along the line.

The input data to the UTP consists of the fol-
lowing set of items: (i) a table, describing the num-
ber of passengers to be transported, in each hour
of the day and in each direction; (ii) the number
of vehicles available, all vehicles being identical;
(iii) a parameter, referred to as the vehicle capa-
city, indicating the number of passengers that can
be transported by one vehicle; (iv) the maximum
number of vehicles that can be stationed at a CP,
assumed uniform among all CPs; (v) the average
trip duration between CPs, per hour and in each
direction; and (vi) the average trip duration be-
tween CPs and the depot, per hour and in each
direction. Fig. 1 illustrates the typical passenger
demand distribution along a day.

The vehicle restrictions are: (i) the number of
trips, in each hour and direction, must be enough
to cover the passenger demand; (ii) the number
of vehicles waiting at CPs must not exceed the
allowed limit; (iii) the number of vehicles can not
6:00PM hours in a day

rted along a typical day.

M.M. Rodrigues et al. / European Journal of Operational Research 170 (2006) 844–862 847
exceed the stated maximum; (iv) the departure
times of the first and last daily trips, at each CP,
must obey the respective times stipulated by the
city authorities, these times being input as problem
parameters; (v) a contractual requirement dictates
that at the morning and the afternoon peaks, 7:00
AM and 6:00 PM, respectively, see Fig. 1, all vehi-
cles must be out of the depot; and (vi) consecutive
trip departure times, at each CP and in each hour,
must be as uniformly spaced as possible, in which
case the schedule is said to be well spaced, with a
typical tolerance of two minutes from the ideal
uniform distribution.

Crew restrictions are: (i) the maximum daily
working time, excluding extra duty time, is 440
minutes; (ii) there is a limit on the number of extra
duty minutes a crew can work on a day, this num-
ber being input as a problem parameter; (iii) every
crew is entitled to 30 minutes of rest time; (iv) rest
times must start no earlier than the second and no
later than the sixth working hour; (v) the company
might opt for a crew schedule with no rest time,
provided that the maximum daily working time
is reduced to 410 minutes; (vi) crews can start their
work shifts at the depot or at a CP; (vii) a crew is
designated to a single vehicle for the entire dura-
tion of its daily work schedule; and (viii) a con-
stant relief time should be added to the duration
time of the last trip assigned to each crew, unless
this trip ends at the depot.

The objective is to construct vehicle and crew
schedules satisfying the problem restrictions, while
optimizing some operational criteria such as the
number of vehicles, crews, or extra duty minutes.
3. An algorithm for solving the UTP

In this section, a hierarchical algorithm for solv-
ing the UTP is presented. The algorithm has four
phases: (i) a preliminary schedule generator; (ii) a
vehicle block generator; (iii) a final schedule gener-
ator; and (iv) a heuristics that adjusts trip depar-
ture times. Using an informal style, we now offer
brief comments about each phase, since it is con-
venient to convey the overall idea before present-
ing specific algorithms for each phase. We
assume that there are two CPs, designated CP1
and CP2—this being, by far, the most common
case in practice.

In the first phase, a bipartite graph is con-
structed. Each node partition is associated with a
distinct CP, and contains 1440 nodes, one for each
minute of a day. Nodes are numbered from 1 to
1440, and we use node names in arithmetic expres-
sions with the obvious meaning. For example, if s
is a node then s + 30 stands for the time 30 min-
utes ahead of the minute denoted by node s. Using
information about the duration of a trip between
CPs, in each hour and direction, all viable edges
are inserted in the graph. Let t and s be nodes in
this graph associated with distinct CPs, say CPi

and CPj, respectively. Edge (t, s) is viable if
D 6 (s � t) 6 D + W, where D is the duration of
a trip from CPi to CPj, at the hour corresponding
to minute t, and W is the maximum allowed wait
time for vehicles stationed at CPj, at hour corre-
sponding to minute t + D. Recall that the con-
stants D and W are input data available to the
algorithms. Now, the problem is to select vertices
of this graph, representing trip departure times,
in such a way as to satisfy the demand in each hour
and at each CP. At the same time, the number of
edges that are covered by the selected vertices
should be maximized, where an edge is covered if
both of its end nodes have been selected. Note
that, for such an edge, the two trips associated
with its end nodes can be done by the same vehicle
without requiring too much waiting time on a CP,
therefore reducing stationing. An integer linear
programming model is constructed to solve this
problem. The departure times so obtained are
called primary start times. We stress that the set
of primary start times will not necessarily coincide
with the trip departure times in the final schedule.
In the next phase, the primary start times are used
to generate vehicle blocks.

A vehicle block comprises a sequence of consec-
utive trips designated to one vehicle, from the time
it leaves the depot till it returns to the depot, where
all vehicle blocks originate and end. When generat-
ing vehicle blocks, if a vehicle arrives in a CP at
time t, possible continuations for this block are
all primary start times from the same CP and lying
the interval [t, t + d]. The choice of d depends on
the maximum wait times in the corresponding

848 M.M. Rodrigues et al. / European Journal of Operational Research 170 (2006) 844–862
CPs, and on the hour corresponding to minute t.
Small values for d tend to prevent the accumula-
tion of vehicles stationed at CPs. Also, during this
phase, a small constant is added to the duration of
each trip. The stretching of trip durations will be-
come important in the last phase, when an adjust-
ment on the trip departure times is attempted.

In the third phase, the vehicle blocks are used in
a classical packing or covering model in order to
construct vehicle schedules satisfying the passenger
demand in each CP and each hour. In the objective
function, costs are computed by adding a bonus
for each trip that departs from a primary start time
and subtracting a penalty for each trip that does
not depart from a primary start time.

Often, the schedule obtained at the end of phase
three comprises a number of trip departures that
do not coincide with primary start times and, also,
are not well spaced. In these cases, the set of all
present departure times is used to start the cycle
again, at phase one. This is done by assuming that
the demand, given in terms of number of trips at
each CP and at each hour, is the maximum be-
tween the corresponding values computed at the
initialization step and the number of trips in the
solution at hand. Tests have demonstrated that,
in these cases, a much better schedule results at
the end of the second cycle. However, repeating
the cycle more times produces an excessive number
of primary start times, at phase one, and computa-
tion becomes inefficient.

After once or twice through the cycle involving
phases one, two and three, the fourth and final
phase starts. Here, a simple greedy heuristic ad-
justs the trip departure times that are still not ade-
quately well spaced by the end of the cycle.

In what follows, each of the four phases is des-
cribed in more detail.
3.1. Obtaining a set of primary start times

Suppose that there are two CPs. In the sequel,
variables i and j will index one of the CPs; varia-
bles g and h, 0 6 g, h 6 24 will denote hour values
along a day; and variables t and s, 0 6 t, s 6 59,
will denote minutes. Before the first phase starts,
the algorithm adds a constant D to the duration
of each trip that starts at a CP. The effect is that,
at later phases, each trip can have its duration time
diminished by D minutes without violating the
condition on the duration of each trip. The typical
value for D, determined by experimenting, was five
minutes. The new trip duration values so obtained
will be indicated by Dih, for CPi and hour h. As
mentioned earlier, parameters Wih will represent
the maximum stationing time for a vehicle at CPi

at hour h, and these values are given as input.
When stationing is highly restricted, the parameter
is usually set to one or two minutes, otherwise it
may take a value from 1 up to 15 minutes. The
number of departures from CPi that are needed
in order to meet the passenger demand in hour h

will be indicated by dih. These values can be readily
calculated from the input data.

The bipartite graph is G = (V1 [V2,E), where
(i) Vi contains all nodes nihs representing a possible
departure time in CPi at hour h and minute s and
(ii) E contains all arcs (nihs,njgt) for which
Dih 6 (60g + t) � (60h + s) 6 Dih + Wih, i5 j, see
Fig. 2. In what follows, variables u and v will also
be used to denote nodes in V1 [V2, when the
internal structure of the nodes, namely, the corre-
sponding CP, hour and minute, is not important.

Given G, the problem is to select subsets
U1 � V1 and U2 � V2 such that the number of ver-
tices in Ui, corresponding to hour h, is equal to dih.
Moreover, the number of arcs of E that connect
vertices between U1 and U2 is to be maximized. Be-
fore presenting an IP model for this problem, some
extra notation is needed. Usually, the UTP is
solved for a number of consecutive hours during
the day, starting at early morning and ending at
late evening. These hours will be denoted by
1, . . .,H. Tolerances are defined to control the min-
imum and maximum spacing between consecutive
trip departures. For each CPi and hour h,
h 2 {1, . . .,H}, the upper and lower tolerances are
given by Tih and tih, respectively, where Tih =
b60/(dih + 1)c + b + 1 and tih = b60/(dih + 1)c � b.
The values chosen for the constant b decreases as
the value of dih increases, as shown in Table 1.

Returning to the IP model, for each node
u 2 V1 [V2, a binary variable xu is defined to be
1 when u is in U1 [U2. For all nodes u and v the
binary variable yuv is defined to be 1 when u 2 Ui

Fig. 2. Compatible start times.

Table 1
Constants for tolerances

dih >15 P9, 615 P4, 68 P1, 63

b 0 1 2 4

M.M. Rodrigues et al. / European Journal of Operational Research 170 (2006) 844–862 849
and v 2 Uj with i5 j. The objective function is
written as max

P
(u,v)2Eyuv. There are three sets

of restrictions. First, xu and yuv must be compati-
ble, that is, yuv P xu + xv � 1, yuv 6 xu and
yuv 6 xv, for all (u,v) 2 E. Next, departure times
must be properly spaced:

Xtþtih�1

s¼t

xnihs 6 1; h ¼ 1; . . . ;H ;

t ¼ 0; . . . ; 60� tih; i ¼ 1; 2;

Xtþtih�1

s¼t

xnihs P 1; h ¼ 1; . . . ;H ;

t ¼ 0; . . . ; 60� tih; i ¼ 1; 2:

If a trip is required from CPi at hour h and min-
ute s, then the restriction xnihs ¼ 1 is added to the
model. Third, the number of departures must meet
the demand, for each CP and in each hour:

X59

s¼0

xnihs ¼ dih; h ¼ 1; . . . ;H ; i ¼ 1; 2:

The output of this phase is the set of primary
start times whose corresponding x variables have
value of 1 in the optimal solution for the IP model.
3.2. Constructing a set of vehicle blocks

The output of this phase is a set of vehicle
blocks computed from the set of primary start
times generated in the previous phase.

The algorithm creates three types of blocks,
similar to those produced by experts who solve
the UTP manually. Blocks that span only the
morning and afternoon peaks, see Fig. 1, are of
type IA and IP, respectively. The third type of
block comprises a longer journey, spanning both
demand peaks. We call these blocks of type IL.
Any sequence of trips that form a shorter block
is guaranteed to satisfy all restrictions that apply
to crew shifts. The same holds for the sequences
of trips separated by relief points in the longer
blocks. As a consequence, once the vehicle blocks
of a solution have been selected, a complete solu-
tion to the crew assignment problem is at hand.
Vehicles assigned to shorter blocks will be oper-
ated by a single crew and, of course, vehicles as-
signed to longer blocks will be driven by two
distinct crews, with a relief period in between.
Also, blocks of type IA and IP are initially treated
as independent entities. After all blocks have been
chosen, the algorithm attempts to pair shorter
blocks to form longer blocks, of type IL. In the
next paragraphs, we describe the three steps of
vehicle block construction: initiation, iteration
and termination.

Block initiation: For each CPi consider the
interval [t 0, 420 � c], where 420 is the time, in min-
utes, of the morning peak, t 0 corresponds to one

850 M.M. Rodrigues et al. / European Journal of Operational Research 170 (2006) 844–862
minutes before the earliest primary start time com-
puted for CPi, and c is an internal constant whose
typical value is 30 minutes. For each primary start
time t 2 [t 0, 420 � c], blocks of both types IA and IL
are initiated by a single trip starting at the depot
and ending at CPi, at time t � 1. Departure times
for these initial trips can be computed from the
input data and the hour corresponding to time
t � 1. In a similar way, for each CP and each pri-
mary start time in the interval [1080 � c 0, 1080 � c],
a block of type IP is initiated. Here, 1080 corre-
sponds, in minutes, to the afternoon peak, c is the
same constant as before, and c 0 is another internal
constant, with a typical value of 150 minutes. Val-
ues for c and c 0 were established by
experimentation.

Block iteration: To see how the next trip is se-
lected, suppose that the last trip ended in CPi, at
time t. Consider the interval [t, t + d], where d rep-
resents a fraction of the maximum allowed wait
time, Wih, for vehicles stationed at CPi and at hour
h corresponding to minute t. For all primary start
times t 0 2 [t, t + d], a possible continuation for the
current block is attempted by adjoining to it the
trip that starts at time t 0 and goes from CPi to
the other CP, each such possible continuation giv-
ing rise to a different vehicle block. If no primary
start time exists in this interval, a trip departing
at time t + 1 is added to the block, thereby pre-
venting the vehicle from being stationed at the
CP. A constant d was selected for each hour, in
such a way that a smaller value was used at those
hours that required more departures. Typical val-
ues for d ranged from 5 to 10 minutes. Some var-
iations of this method were also implemented, but
they all proved to be inferior, in the sense that the
set of blocks produced lead to final solutions that
were not as adequate as those obtained with the
algorithm presented. In particular, using a con-
stant value for d, or choosing only one of the pos-
sible primary start times within the corresponding
time interval, did not lead to better final solutions
to the UTP.

Block termination: Consider a block with
elapsed time t‘ and whose last trip ended at CPi

at time t. Let t 0 be the primary start time selected
for the next attempt at adding a trip to this block,
and let td be the duration of such a trip. From the
input data, the algorithm retrieves tp, the duration
of a trip from CPi to the depot at the hour corre-
sponding to minute (t + td + 1). If this trip were
added to the block, its new elapsed time would
be given by f = (t‘ + (t 0 � t) + td + 1 + tp). If the
block is a short one, i.e. of type IA or IP, the algo-
rithm checks if f exceeds the total working time,
tw, permitted for a crew. If so, the block is termi-
nated by adding to it a trip from CPi to the depot,
departing at time (t + 1). Otherwise, the selected
trip is added to the block and its construction
proceeds. Here, the value of tw is the sum of
two terms: the regular daily work time, given as
input, and the maximum amount of extra time
that the company is willing to compensate for.
This last term, set by the user, is a parameter that
allows for a certain degree of control over the
costs incurred by extra time. Typical values for
this parameter were from one to two hours.
Now, consider a longer block, of type IL. When
these blocks are initiated they are marked as hav-
ing one crew assigned to them. If this is the case
when the next trip is selected, the algorithm
checks if f 6 tw. If so, this trip is added to the
block. Otherwise, the minimum relief time is
added to the block, and it is now marked as hav-
ing two crews assigned to it. In any case, the
block construction continues. Finally, if by the
time the next trip is selected the block is already
marked as a two-crew block and f 6 2tw, then
the trip is added to the block and construction
continues. Otherwise, the construction is termi-
nated by adding a trip to the depot, departing
at time (t + 1) from CPi. The minimum relief time
is a parameter also given as input data and is usu-
ally set to 10 minutes.

Manually generated solutions may also include
a fourth kind of block, which encompasses the du-
ties of three different crews, separated by two inter-
mediate relief points. But the latter is used much
more rarely and, therefore, is not considered by
the algorithm.

Tests have shown that the behavior of the algo-
rithm is sensitive to the values of the minimum re-
lief time and the maximum wait time between two
consecutive trips, and most critically to the latter.
If the wait time is too long, the number of blocks
generated could be excessive, and the procedure

M.M. Rodrigues et al. / European Journal of Operational Research 170 (2006) 844–862 851
used to select promising blocks, discussed in the
next subsection, could stall.

3.3. Constructing the schedule

The input data is the set of vehicle blocks enu-
merated in the preceding phase. The output will
be a solution to the problem, namely, a subset of
blocks that constitutes an adequate schedule. The
schedule is constructed by solving an IP model,
which is described next.

First, we describe the variables of the model.
Assume that there are two control points, CP1

and CP2. Let B be the total number of vehicle
blocks obtained in the second phase. Let NP‘

and NT‘ be the number of primary start times
and trips, respectively, that occur in block ‘, for
‘ = 1, . . .,B. The total number of primary start
times in the solution is NP ¼

PB
‘¼1NP ‘ and

the total number of trips is NT ¼
PB

‘¼1NT ‘.
Define the binary matrix A by letting Ak‘ be 1 if
and only if block ‘ has a trip departing at primary
start time k, where k 2 [1, NP] and ‘ 2 [1, B]. De-
fine the binary variable z‘ to be 1 if and only if
the ‘th block is in the solution, for ‘ 2 [1, B].

The first set of restrictions avoids multiple
departures at the same primary start time by
requiring

PB
‘¼1Ak‘z‘ 6 1, for k 2 [1, NT]. If trip k

is a required trip, this constraint is written as an
equality. Let V be the number of vehicles available
to operate the line. Recall from Section 3.2 that
there are three kinds of blocks. Let VA be the set
of short blocks of type IA that span the morning
peak, let VP be the set of short blocks of type IP
that span the afternoon peak, and let VL be the
set of long blocks of type IL, spanning both peaks.
It is clear that only blocks from VA and VP can be
designated to the same vehicle. The restriction on
the number of vehicles can be written as
(
P

‘2VAz‘) + (
P

‘2VLz‘) 6 V and (
P

‘2VPz‘) +
(
P

‘2VLz‘) 6 V.
It remains to describe the objective function.

Having fixed, in the previous phases, the constants
which directly affect the cost of the solution, such
as maximum number of vehicles, the number of
crews per block and the limit for extra duty time,
we seek to maximize the occurrences of primary
start times in the final solution. Ideally, all depar-
ture times would coincide with primary start times.
The objective function is written as
max

P‘¼B
‘¼1 ðC � NP ‘ � P ‘Þz‘, where P‘ is a penalty

associated with block ‘, for ‘ 2 [1, B], and C is
an internal constant. We note that NP‘ can be
computed by the end of the previous phase. As will
be seen, the same is true for the P‘ values, which
will measure how distant the actual departures
are from the primary start times, in block ‘. By
varying P‘, a large number of possibilities can be
tried. The internal constant C was chosen to satisfy
C >

P‘¼B
‘¼1P ‘. Therefore, between two solutions,

the algorithm will always prefer the one with more
occurrences of primary start times. In addition, the
objective function should also lead the algorithm
toward solutions where departure times are as uni-
formly spaced as possible. Two different strategies
to compute P‘ were implemented, as discussed
below.

Maxmin: Here, we let P‘ = NT‘ � NP‘, charg-
ing a constant penalty of one for each departure
time which is not a primary start time. Fig. 3(a)
illustrates this cost function. Clearly, P‘ can be
computed by the end of the previous phase of
the algorithm.

Quadratic: In this case, each departure time that
is not a primary start time imposes a penalty that
decreases quadratically with the distance to the
nearest primary start time in the same block. The
idea is depicted in Fig. 3(b). More precisely, we
let P‘ =

P
e2DB‘

pe, where DB‘ represents the set
of departures in block ‘, for ‘ 2 [1, B], and pe is a
penalty associated with departure e, whose value
is computed as follows. Suppose that t and t 0,
t < t 0, are the two consecutive primary start times
such that e 2 [t, t 0]. Let a1x

2 + a2x + a3 be the un-
ique parabola passing through the points (t,C 0),
(t 0,C 0) and ((t + t 0)/2,0), with C 0 being a constant
that, in our experiments, was set to 10. Then,
pe = a1e

2 + a2e + a3.
Table 2 gives some results when three real in-

stances of the UTP were put through the first pass
of the cycle. In this table, column labeled ‘‘Deficit’’
registers how many additional trips were needed in
order to meet the demand. Column under ‘‘Trips’’
shows the total number of trips in the solution,
and column labeled ‘‘% Opt’’ shows the deviation
from the optimal solution of the corresponding IP

C C C
Cost

minute

Cost

minute

C C C

(a)

(b)

Fig. 3. Two cost strategies: (a) Maxmin strategy and (b)
Quadratic strategy.

Table 2
Comparing strategies

Instance Maxmin Quadratic

Deficit Trips % Opt Deficit Trips % Opt

OSO1 0 220 0 3 190 0
OSO2 2 199 0 0 193 0
OSO3 0 257 0 3 190 0

852 M.M. Rodrigues et al. / European Journal of Operational Research 170 (2006) 844–862
packing problem. Note that the number of trips is
significantly smaller when the quadratic strategy is
used. This same tendency was present when other
real instances were tested. In some cases, the num-
ber of trips generated was not enough to satisfy the
passenger demand, although this deficit was often
reduced after the second pass through the cycle.
Also, the solutions obtained using the quadratic
strategy were substantially better with respect to
the spacing between trips. Using the maxmin strat-
egy, from 15 to 30 trips were not well spaced. With
the quadratic strategy, this number was always
under 10. Here, ‘‘well spaced’’ reflects a subjective
indication of ‘‘uniform spacing’’, as expressed by
trained personnel who build schedules by hand
on a daily basis.

3.4. A heuristic for spacing consecutive departures

Usually, after the second pass through the cycle,
the algorithm yields a fairly adequate solution.
However, it may still happen that the spacing be-
tween consecutive trips, at some hour intervals, is
not yet satisfactory. In order to obtain a better
spacing, a greedy strategy was implemented as
the fourth and final phase. The heuristics moves
along the day, adjusting departure times within
each hour interval in turn. The whole process is
iterated a number of times in order to obtain a
cumulative effect. In this section, the heuristic is
described in more detail.

The input is the schedule obtained in the pre-
ceding phase. The output is a similar schedule,
were departure times may appear shifted by small
amounts.

Let NT be the total number of trips. Recall
from Section 3.1 that, before the first phase begins,
D minutes are added to the duration of each trip.
The effect is that, at the present stage, each trip
can have its duration time diminished by D min-
utes without violating the restrictions on trip dura-
tion. The heuristics moves along the minutes of the
day maintaining a set of values la and ra represent-
ing, respectively, the maximum left and right shifts
that can be added to the departure time of trip a.
Initially, both la and ra are set to D, for a 2 [1,NT],
unless a is a required trip in which case, la = 0 and
ra = 0.

Suppose that all trips have been ordered in a se-
quence and let b, c 2 [1,NT] also represent trips.
Suppose that the algorithm is now considering trip
b, occurring in hour h. Let a and c be the trips that
come before and after b, respectively, and depart-
ing from the same CP. Let tw be the departure time
of trip w, for w 2 {a,b,c}, with the proviso that ta
is the first minute of h if b is the first trip in that
hour, and tc is the last minute of h when b is the
last trip of h. Note that the heuristics has just repo-
sitioned trip a. Let r = b(t � ta)/(n + 1)c, where t is
the last minute in h and n is the number of trips

Table 3
Urban lines characteristics

Instance CP1 CP2 Region Comment

OSO1 182 181 SP Large number of trips at peaks
OSO2 183 170 SBC Initial and final trips at CP1

OSO3 78 42 SBC A micro-bus line
OSO4 100 75 SP Limited number of stationed vehicles at CP2

OSO5 85 60 SP –
OSO6 100 – SP Only one CP
OSO7 95 97 SP Trips must start at CP1

Table 4
Input data for test instances OSO3 and OSO7

Item OSO3 OSO7

M.M. Rodrigues et al. / European Journal of Operational Research 170 (2006) 844–862 853
that were not yet repositioned in h. Clearly,
t 0 = ta + r is the ideal departure minute for trip
b. If t 0 < tb, the new departure time for trip b is
set to t0b ¼ maxðlb; t0Þ, otherwise it is set to
t0b ¼ minðrb; t0Þ. It is also necessary to prepare for
the next iteration. When t0b < tb, the new values
of ra and lc are set to r0a ¼ ra � ðtb � t0bÞ and
l0c ¼ lc þ ðtb � t0bÞ. Similarly, when t0b P tb the new
values of ra and lc are r0a ¼ ra þ ðt0b � tbÞ and
l0c ¼ lc � ðt0b � tbÞ. Notice that these updates do
not take place when a or c are required trips.

There are several ways to sequence the trips:
order them by departure times; list the trips from
one CP followed by the trips from the other CP;
interleave the trips from both CPs based on their
departure times, to name just a few. Experimenta-
tion showed that the best results with respect to the
final spacing between consecutive departure times
were obtained by listing first the departure times
from CP1, followed by the departure times from
CP2.

After a few passes of this left to right scanning
and repositioning cycle, the departure times tend
to reach a stable position. Experience showed that
three iterations through the cycle were enough to
reach a much better solution. Tests over real data
have shown that the heuristics is very effective in
improving the distribution of departure times in
the final schedule, as discussed in the next section.
Number of vehicles 15 26
Vehicle capacity 27 80
First trip at time 5:30 AM 4:30 AM
Mandatory trip at time 23:00 PM 24:00 PM
Rest time 30 minutes 30 minutes
Time from depot to CP1 25 minutes 25 minutes
Time from depot to CP2 – 50 minutes
Maximum on duty time 465 minutes 430 minutes
Vehicle schedules must start at CP1 CP2
4. Results on real data

This section reports on some results obtained by
running the algorithm over seven real instances of
the UTP. All data was collected from three compa-
nies that operate in the large metropolitan regions
of São Paulo and São Bernardo do Campo, in
Brazil.

Table 3 presents the test instances. Columns
labeled ‘‘CP1’’ and ‘‘CP2’’ give the minimum num-
ber of trips necessary to meet the passenger de-
mand at each CP; column marked ‘‘Region’’
gives the region were the lines operate, SP standing
for São Paulo and SBC for São Bernardo do
Campo; and column labeled ‘‘Comments’’ display
peculiarities of the corresponding line. Instances
OSO3 and OSO7 are typical and will be the most
used when presenting results. More details about
these instances appear in Table 4. The maximum
on duty time is smaller for line OSO7, as a result
of different local union agreements in the corre-
sponding regions. Table 5 shows the trip input
data for these two instances, where the ‘‘Hours’’
column indicates the hour, in a 24 hour clock. Col-
umns labeled ‘‘T(1-2)’’ and ‘‘T(2-1)’’ indicate the
duration of trips, in minutes, from CP1 to CP2

and from CP2 to CP1, respectively. Columns
marked ‘‘P(1-2)’’ and ‘‘P(2-1)’’ indicate the num-
ber of passengers to be transported, at each hour
interval, between the two CPs. It is clear that trip

Table 5
Input data for test instances OSO3 and OSO7

Hour OSO3 OSO7

T(1-2) P(1-2) T(2-1) P(2-1) T(1-2) P(1-2) T(2-1) P(2-1)

04–05 – – – – 60 23 0 50
05–06 50 60 50 00 65 144 50 50
06–07 50 128 50 35 70 358 55 218
07–08 55 189 55 62 90 596 70 304
08–09 55 135 55 51 90 320 80 380
09–10 55 99 55 48 90 312 80 270
10–11 55 79 50 35 90 340 80 260
11–12 55 101 50 30 90 264 80 250
12–13 50 80 50 38 90 304 75 270
13–14 50 98 50 29 95 445 75 300
14–15 50 102 60 55 100 348 80 354
15–16 50 138 60 72 105 373 85 355
16–17 50 182 60 86 105 265 85 360
17–18 60 155 50 101 110 320 85 560
18–19 60 160 50 145 100 160 85 400
19–20 60 122 50 140 85 109 70 160
20–21 50 115 50 78 80 63 70 85
21–22 50 80 50 69 65 58 65 96
22–23 50 50 50 8 65 34 65 15
23–24 – – – – 65 11 55 11

854 M.M. Rodrigues et al. / European Journal of Operational Research 170 (2006) 844–862
durations are more uniform in line OSO3, due to
less intense traffic in that region.

The general UTP is a complex optimization
problem. In practice, experts relax the problem
and consider only a small number of candidate
blocks when constructing manual solutions.
Blocks are constructed by using the full length of
a crew working day, including extra duty hours
the company is willing to pay for. While the pro-
blem restrictions have to be observed, its complexity
and size often force experts to tolerate violations, to
a certain extent.

4.1. Vehicle schedules

Fig. 4 shows the details of a manual and an
automatic solution for the vehicle schedule, using
data from OSO7. The vertical axis displays the
blocks, one per line. The horizontal axis displays
the time, using a 24 hour clock. For each block,
a horizontal scan along the corresponding line
shows its trips. Each blue rectangle represents
one trip and the diagonal lines inside the rectan-
gles show the alternation of trips that depart from
both CPs. The gray rectangles stand for rest times
and the green rectangles at the extremities indi-
cate trips from and to the depot. In Fig. 4(a),
blocks from lines 1 to 6 are short blocks of type
IA, while from lines 7 to 12 we have IP type
blocks. Clearly, these blocks can be paired to
form longer vehicle blocks. Thus, the total num-
ber of vehicles used both in the manual and auto-
matic solutions was 26. This was the case for all
tested instances. In fact, the algorithm was able
to construct a solution that used only 25 vehicles
for the OSO7 instance. Similarly, for the OSO3
instance a solution with one less vehicle than the
manual solution was also found. In both cases,
however, departure times were not as evenly dis-
tributed when compared to the solutions that
used the same number of vehicles. We stress again
that the automatic solutions, of course, obeyed all
of the problem restrictions, while in the manual
solutions a certain degree of violation was always
present. Also, as can be seen, the algorithmic
solution shows a preference for pairing shorter
blocks. This facilitates the scheduling of preven-
tive vehicle servicing, since short blocks bring
the cars back to the depot for a number of hours
around midday.

Fig. 4. Comparing vehicle schedules for OSO7. (a) Vehicle
schedule, manual solution for OSO7. (b) Vehicle schedule,
algorithmic solution for OSO7. (For interpretation of the
references in color in this figure, the reader is referred to the web
version of this article.)

Fig. 5. Total number of vehicles stationed at CP1 for OSO3. (a) Manu
solution, vehicles stationed at CP1 for OSO3. (For interpretation of t
web version of this article.)

M.M. Rodrigues et al. / European Journal of Operational Research 170 (2006) 844–862 855
It is also important to verify the number of
vehicles stationed at each CP and if all vehicles
are out of the depot by the morning and afternoon
peaks. As discussed in Section 3, the packing for-
mulation for the vehicle block generator does not
explicitly enforce the rule for the maximum num-
ber of vehicles stationed at CPs. What the models
do require is that the maximum allowed wait time
at CPs is not exceeded. When the maximum wait
time is fixed to a small constant, the algorithm is
able to exercise some control over the number of
vehicles stationed at CPs. Fig. 5 shows the total
number of vehicles stationed at CP1, for instance
OSO3. The vertical axis depicts the number of
vehicles, and the horizontal axis shows the time
in a 24 hour clock. It is clear that in the algorith-
mic solution the number of vehicles stationed in
both CPs was smaller, when compared with the
same number derived from the manual solutions.
The same effect was observed with most of the
other test instances. In some cases, however, the
same number of maximum-stationed vehicles was
attained by both solutions. Such was the case with
instance OSO7 at CP1, in which both solutions
showed a maximum of five stationed vehicles, at
some moments.

4.2. Crew schedules

Fig. 6 shows both the manual and the algorith-
mic solutions. Legends are the same as for Fig. 4
with the difference that the vertical axis displays
the crew and the red bars indicate extra duty
hours. Clearly, the automatic solution uses one less
al solution, vehicles stationed at CP1 for OSO3. (b) Algorithmic
he references in color in this figure, the reader is referred to the

Fig. 6. Comparing crew schedules for OSO3: (a) Manual
solution and (b) Algorithmic solution. (For interpretation of
the references in color in this figure, the reader is referred to the
web version of this article.)

856 M.M. Rodrigues et al. / European Journal of Operational Research 170 (2006) 844–862
crew to operate OSO3, when compared with the
solution produced manually. This behavior was
typical when testing several other instances.

The automatic solution showed a sizable gain in
the number of extra duty hours. This was one of
the most important advantages of the automatic
solution over manually constructed ones, since
labor costs are responsible for more than 50% of
the total operational cost.

Fig. 7 compares the total working hours in
the manual and the algorithmic solutions, using
instance OSO3. The vertical axis lists crews and
the horizontal axis shows the workload, mea-
sured in hours. The blue color stands for hours
spent in driving, the yellow color shows inactive
time that accumulated along the day, and the red
color measures extra duty hours. As can be seen,
the automatic solution showed a larger number
of inactive hours, but reduced the extra duty
hours.

4.3. Number of passengers transported

Here, the instance used in these tests was
OSO7. Fig. 8 shows the result of the manual
and automatic schedules. As usual, the horizontal
axis shows the time, in a 24 hour clock. The ver-
tical axis shows the number of passengers trans-
ported, per hour. In each hour interval, the first
bar refers to CP1 and the second to CP2. A red
bar indicates a demand that was not met, while
the blue bar indicates transported passengers. As
can be seen, the automatic solution did not meet
the demand in a few hour intervals close to the
beginning and the end of the day, although the
deficit was small. On the other hand, the algo-
rithm always respected the maximum work time
for all crew and the maximum number of passen-
gers transported in each trip, never exceeding the
vehicle capacities. In the manual solutions, it was
not rare to encounter trips were the number of
passengers transported was above the vehicle
capacity or the crew was working beyond its
maximum daily working hours, including extra
duty hours. By extending a little the number of
extra working hours of only two crew, the algo-
rithm was able to construct a schedule where all
passengers were indeed transported. This strategy
always produced adequate results, in all tested
cases.

Table 6 shows the result of running the algo-
rithm over all test instances. Columns labeled
‘‘HI’’ and ‘‘HT’’ show the number of hour inter-
vals were the demand was not met, and the total
number of hour intervals considered, respectively,
summing up for both CPs. Columns labeled
‘‘TMax.’’ and ‘‘TTot.’’ indicate, respectively, the
maximum number of trips that were not scheduled
in an hour interval and the total number of trips
that were not scheduled, over all hour intervals.
The last column shows the number of passengers
that were not transported. Clearly, in all cases,
with the exception of OSO2, the maximum num-
ber of trips not scheduled was two.

Fig. 7. Comparing work hours for OSO3: (a) Manual solution and (b) Algorithmic solution. (For interpretation of the references in
color in this figure, the reader is referred to the web version of this article.)

M.M. Rodrigues et al. / European Journal of Operational Research 170 (2006) 844–862 857
4.4. Interval between consecutive trips

Trips lumped together at small intervals make
for a bad schedule and can cause discomfort to
passengers that may have to wait too long for
the next trip. Tables 7 and 8 show the manual
and algorithmic departure times, respectively, at
CP1 and when taking OSO3 as the input instance.
The top horizontal line marks the hours, in a 24
hour clock. The vertical list below each hour gives
the trip departure times, in minutes within that
hour. The manual solution produced a somewhat
more uniform spacing between consecutive trips,
although the automatic solution was also quite
adequate except, possibly, when the hour barriers
were crossed. This reflects the fact that the heuris-
tics works by taking each hour interval at a time,
independently, and does not consider discrepan-
cies that might occur when there is a change to
the next hour interval. For CP2, essentially the
same characteristics were present in the solutions,
although the spacing between trips in the algorith-
mic solution at CP1 was always somewhat more
uniform when compared with the automatic solu-
tion at CP2. This can be attributed to the scanning
strategy used by the heuristics, which sweeps the
departure times at CP1, and only after all of these
have been considered it scans the times at CP2.

When examining data from other instances, it
was noticed that the interval between trips is more
evenly distributed when there is a larger number of
trips in an hour interval. One possible reason for
such behavior is that the small displacements
introduced by the heuristics can cause more impact
in the overall distribution of the spacings between
trips in an hour interval with more departures.

4.5. Processing time

Fig. 9 shows the processing times over four of
the tested instances, namely OSO2, OSO3, OSO5
and OSO7. The vertical axis shows the time, in
hours. For each instance, the lighter bar shows
the time required when running on a powerful
DEC-DS20 server, and the darker one indicates
the running times when using a PC platform.
The DEC server was a 675MHz machine, with
4GB of main memory and equipped with an
Alpha 2264 processor with 64bit capability. The
PC platform was a PENTIUM III 450MHz proc-
essor with 384MB of main memory. The LP solver
used was cplex-7.0 on the DS20 server and

Fig. 8. Passengers transported using OSO7: (a) Manual solu-
tion and (b) Algorithmic solution. (For interpretation of the
references in color in this figure, the reader is referred to the web
version of this article.)

Table 6
Passengers not transported, automatic solutions

Inst. HI HT TMax. TTot. TPass.

OSO1 0 40 0 0 0
OSO2 4 40 2 6 150
OSO3 1 38 1 2 26
OSO4 0 40 0 0 0
OSO5 0 40 0 0 0
OSO6 1 39 2 2 130
OSO7 2 39 1 2 50

858 M.M. Rodrigues et al. / European Journal of Operational Research 170 (2006) 844–862
cplex-6.5 on the PC. Such processing times,
although in the range of a few hours, are still quite
an improvement over the corresponding times, in
Table 7
Departure times at CP1, manual solution for OSO3

5 6 7 8 9 10 11 12 13 14

30 05 03 06 07 05 05 07 07 07
45 15 10 14 15 15 14 17 17 15
55 25 17 22 23 25 24 27 28 25

35 23 33 30 35 31 37 38 35
45 28 43 39 45 38 47 47 45
55 33 51 46 55 47 57 57 55

38 59 55 56
45
52
59
the range of a few days, that the company experts
take to construct the manual solutions. Moreover,
the processing times in the PENTIUM PC, a mod-
est machine by today standards, shows that the
algorithm can be run on a typical and affordable
office machine.

4.6. Summary

This section offers a summary of the strong and
weak points of the automatic solutions. Tables 9
and 10 group some important data. The second
and third columns list the number of inactive
hours and the number of extra duty hours, respec-
tively, in the corresponding solution. A time inter-
val is inactive if the crew is on duty but not
working at that interval. Columns labeled ‘‘Trips’’
and ‘‘DTrips’’, respectively, indicate the number of
trips and the deficit of trips in the solution. The
deficit indicates the number of trips that must be
added to the schedule in order for the passenger
demand to be met. Column labeled ‘‘NVS’’ indi-
cates if the restrictions about vehicles simultane-
15 16 17 18 19 20 21 22

03 00 00 05 05 05 08 00
13 07 08 14 13 17 18 10
23 15 15 24 21 30 30 22
32 23 22 32 30 40 40 35
42 32 29 44 38 50 48 50
52 45 36 55 48 58

53 43 56
50
58

Table 8
Departure times at CP1, algorithmic solution for OSO3

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

30 05 06 06 12 08 12 05 06 10 10 06 05 08 05 10 37 08
53 14 09 12 20 16 26 15 15 20 20 12 12 16 13 20 55 18

24 17 18 28 27 41 26 24 31 30 19 20 24 21 30
33 24 25 37 36 54 37 33 42 40 26 28 33 30 43
42 30 32 46 44 48 44 51 50 33 36 42 38 54
54 38 39 54 52 54 42 44 51 48

46 48 48 54 56
53 54 54

Fig. 9. Processing times.

Table 9
Characteristics of the manual solutions

Inst. NIH EDH Trips DTtrips NVS TNV TNC

OSO1 12:54 12:44 412 00 Yes 40 80
OSO2 03:55 52:50 437 00 Yes 23 46
OSO3 03:45 18:25 232 00 Yes 15 30
OSO4 – – – – – 28 –
OSO5 – – – – – 25 –
OSO6 – 26:48 177 00 Yes 21 42
OSO7 16:23 25:28 235 00 Yes 26 52

Table 10
Characteristics of the algorithmic solutions

Inst. NIH EDH Trips DTtrips NVS TNV TNC

OSO1 15:20 12:05 395 00 Yes 40 80
OSO2 10:07 24:23 351 06 Yes 23 46
OSO3 25:53 06:25 193 02 Yes 15 29
OSO4 44:54 02:09 291 00 Yes 28 56
OSO5 32:45 04:29 274 00 Yes 25 50
OSO6 27:03 07:31 133 02 Yes 20 39
OSO7 42:01 02:30 200 02 Yes 26 51

M.M. Rodrigues et al. / European Journal of Operational Research 170 (2006) 844–862 859

860 M.M. Rodrigues et al. / European Journal of Operational Research 170 (2006) 844–862
ously stationed at CPs were observed. Columns
labeled ‘‘TNV’’ and ‘‘TNC’’ show the total num-
ber of vehicles and crew, respectively, in the corre-
sponding solutions. A dash indicates unavailable
data.

Positive points in favor of the automatic solu-
tions are: (i) The number of extra duty hours is
an important component in the operational costs
for the companies. The algorithmic solutions
showed a quite large reduction in the number of
extra duty hours needed to operate the corre-
sponding solutions. The decrease was by at least
20% and, in some cases, it reached 90%. (ii) In
some cases, the algorithmic solutions used less
crew. In one case, the algorithmic schedule even
showed one less vehicle, a very difficult goal to
reach. (iii) In general, the workloads in the algo-
rithmic solutions are much better balanced among
all the crew. (iv) With respect to the time needed to
reach a solution, of course, the algorithmic method
was orders of magnitude faster than the manual
process. (v) The total number of trips, usually, is
smaller in the algorithmic solutions. This is impor-
tant when the public transportation authority pays
a bonus for schedules that cover the demand with
less trips, thereby improving the traffic and pollu-
tion marks. (vi) The maximum number of sta-
tioned vehicles was not violated in any of the
algorithmic solutions constructed. In fact, in many
cases, this number was lower than the correspond-
ing number showed by the manual solutions. (vii)
The duration of each trip was always faithfully re-
spected. This was not the case in the manual solu-
tions, were some trips had their durations
artificially shortened, or had their departure times
not respected. Such practice may lead to the com-
panies being fined by the public transportation
authority.

Some negative aspects of the algorithmic solu-
tions are: (i) Sometimes, not all the necessary trips
were scheduled, and some passengers would not be
transported, if the maximum number of passen-
gers in each trip was to be strictly observed. This
may typically happen at the beginning or at the
end of a day. This effect may be corrected by small
modifications in the input data, attributing some
extra duty minutes of working time to a small
number of selected crew. Or, alternatively, by
slightly increasing the number of passengers per-
mitted in a trip. (ii) In some cases, the spacing be-
tween consecutive trips is not as uniform in the
algorithmic solution as it is in the corresponding
manual solutions. This effect is more acute in the
borderline between consecutive hour intervals.
(iii) The number of inactive hours was smaller in
the manual solutions.
5. Conclusions

The article presents a suite of integrated algo-
rithms and heuristics that can be used to construct
adequate automatic solutions to the urban trans-
portation problem. The algorithms were tested
over real data, collected from urban transporta-
tion companies that operate in large metropolitan
areas.

The problem in its entirety is difficult to be trea-
ted mathematically, since it involves a sizable set
of conflicting restrictions that stem from opera-
tional conditions and labor agreements. In order
to cope with such restrictions, mathematical pro-
gramming models and heuristics were combined.
This hybrid strategy was able to produce quite
adequate solutions, in a fraction of the time that
experts take to construct manual solutions. Also,
the operational cost of the automatic solution
showed considerable gains over the manual ones.
The algorithm may fail to schedule a few trips at
the beginning and at the end of a day and, in some
extreme cases, the spacing between consecutive
trips in the final solution may not be the best pos-
sible. These inconveniences could be corrected
by small adjustments in the input parameters,
although, in a few cases, at the expense of some
additional minutes of extra working time, over
the minimum required by the automatic solutions.

Even not being the focus of this work, it should
be mentioned that a friendly user interface has also
been implemented. It allows a non-expert user to
input the data, activate the algorithms and exam-
ine the final solution. The interface also endows
the user with the capacity of making local adjust-
ments to the algorithmic solutions, in order to per-
fect the final schedule. Most of the figures shown
in Section 4, such as Figs. 6–8, were generated

M.M. Rodrigues et al. / European Journal of Operational Research 170 (2006) 844–862 861
by the interface. The intention now is to submit
both the algorithm and the interface to intensive
field tests at selected companies.
References

[1] M.O. Ball, L.D. Bodin, R. Dial, A matching based
heuristic for scheduling mass transit crews and vehicles,
Transportation Science 17 (1983) 4–31.

[2] L. Bianco, M. Bielli, A. Mingozzi, S. Ricciardelli, M.
Spandoni, A heuristic procedure for the crew rostering
problem, European Journal of Operational Research 58 (2)
(1992) 272–283.

[3] J.Y. Blais, J.M. Rosseau, Overview of HASTUS current
and future versions, in: J.R. Daduna, A. Wren (Eds.),
Computer-Aided Transit Scheduling, Springer-Verlag,
1988, pp. 175–187.

[4] A. Caprara, M. Fischetti, P. Toth, D. Vigo, P.L. Guida,
Algorithms for railway crew management, Mathematical
Programming 79 (1–3) (1997) 125–141.

[5] A. Caprara, M. Fischetti, P. Toth, D. Vigo. Modeling
and solving the crew rostering problem, Technical
Report OR-95-6, DEIS, University of Bologna, Italy,
1995.

[6] P. Carraresi, L. Girardi, M. Nonato, Network models,
Lagrangean relaxation and subgradients bundle approach
in crew scheduling problems, in: I. Branco, J.R. Daduna,
J.M.P. Paixao (Eds.), Proceedings of the Sixth Interna-
tional Workshop on Computer-Aided Transit Scheduling,
1995, pp. 188–212.

[7] M. Chamberlain, A. Wren, Developments and recent
experience with the BUSMAN and BUSMAN II system,
in: M. Desrochers, J.-M. Rousseau (Eds.), Computer-
Aided Transit Scheduling, Springer-Verlag, 1992, pp. 1–16.

[8] J.R. Daduna, J.M.P. Paixão, Vehicle scheduling for public
mass transit—an overview, Lecture Notes in Economics
and Mathematical Systems 430 (July) (1993) 76–90.

[9] K. Darby-Dowman, J.K. Jachnik, R.L. Lewis, G. Mitra,
Integrated decision support systems for urban transport
scheduling: Discussion of implementation and experience,
in: A. Wren, J.R. Daduna (Eds.), Proceedings of the Fourth
International Workshop on Computer-Aided Transit
Scheduling, Springer-Verlag, Berlin, 1988, pp. 226–239.

[10] J.C. Falkner, D.M. Ryan, Express: Set partitioning for bus
crew scheduling in Christchurch, in: M. Desrochers, J.-M.
Rousseau (Eds.), Proceedings of the Fifth International
Workshop on Computer-Aided Transit Scheduling,
Springer-Verlag, Berlin, 1992, pp. 359–378.

[11] M.A.N.A. Filho, R.S.K. Kwan, A. Wren, Scheduling and
their drivers in Brasil: Some pratical experience, in: Anais
do VII Congresso de Pesquisa e Ensino em Transportes,
1994, pp. 231–242 (in Portuguese).

[12] S. Fores, L. Proll. Driver scheduling by integer linear
programming—the tracs ii approach, Technical Report
98.01, University of Leeds, January 1998.
[13] R. Freling, D. Huisman, A.P.M. Wagelmans, Models and
algorithms for integration of vehicle and crew scheduling,
in: 8th International Conference of Computer-Aided
Scheduling of Public Transport, 2000, pp. 441–460.

[14] R. Freling, A.P.M. Wagelmans, J.M.P. Paixão, An over-
view of models and techniques for integrating vehicle and
crew scheduling, in: N.H.M. Wilson (Ed.), Computer-
Aided Transit Scheduling, 1999, pp. 441–460.

[15] C. Friberg, K. Haase. An exact algorithm for the vehicle
and crew scheduling problem, Technical Report 416,
Universität Kiel, 1996, pp. 36–52.

[16] M.R. Garey, D.S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness, W.H.
Freeman and Company, San Francisco, CA, 1979.

[17] K.L. Hoffman, M. Padberg, Solving airline crew-schedul-
ing problems by branch-and-cut, Management Science 39
(6) (1993) 657–682.

[18] R.S.K. Kwan, M.A. Rahin, Bus scheduling with trip
coordination and complex constrains, Lecture Notes in
Economics and Mathematical Systems 430 (1995) 91–
101.

[19] R.S.K. Kwan, M.A. Rahin, Object oriented bus vehicle
scheduling—the boost system, in: Proceedings of the 7th
International Workshop on Computer-Aided Scheduling
of Public Transport, August 1997, pp. 36–52.

[20] B. Manington, A. Wren, A general computer method for
bus crew scheduling, Preprints of the Workshop on
Automated Techniques for Scheduling of Vehicle Opera-
tors for Urban Public Transportation Services, 1975.

[21] R.E. Marsten, F. Shepardson, Exact solution of crew
scheduling problems using the set partitioning model:
Recent successful applications, Networks 11 (1981) 165–
177.

[22] J.M.P. Paixão, I.M. Branco, A quasi-assignment algorithm
for bus scheduling, Networks 17 (1987) 249–269.

[23] J.M.P. Paixão, I.M. Branco, Bus scheduling with a fixed
number of vehicles, in: Computer-Aided Transit Schedul-
ing: Proceedings of the Fourth International Workshop,
vol. 308, 1988, pp. 28–40.

[24] J.M.P. Paixão, A.P.M. Wagelmans, Models and algo-
rithms for vehicle scheduling, Transportation Science 18
(1996) 1138–1162.

[25] I. Patrikalakis, D. Xerocostas, A new decomposition
scheme of the urban public transport scheduling problem,
in: M. Desrochers, J.-M. Rousseau (Eds.), Proceedings of
the Fifth International Workshop: Computer-Aided
Transit Scheduling, Springer-Verlag, Berlin, 1992, pp.
407–425.

[26] L. Sarah, L. Proll, A. Wren, A column generation
approach to bus driver scheduling, in: Proceedings of the
4th Meeting of the EURO Working Group on Transpor-
tation, September 1996, pp. 36–52.

[27] D. Scott, A large linear programming approach to the
public transport scheduling and cost model, in: J.M.
Rousseau (Ed.), Computer Scheduling of Public Trans-
port, Amsterdam, North Holland, vol. 2, 1985, pp. 473–
491.

862 M.M. Rodrigues et al. / European Journal of Operational Research 170 (2006) 844–862
[28] B.M. Smith, A. Wren, VAMPIRES and TASC: Two
successfully applied bus scheduling programs, Computer
Scheduling of Public Transport (1981) 97–129.

[29] E. Tosini, C. Vercellis, An interactive system for extra-
urban vehicle and crew scheduling problems, in: J.R.
Daduna, A. Wren (Eds.), Proceedings of the Fourth
International Workshop on Computer-Aided Transit
Scheduling, 1988, pp. 41–53.

[30] E.B. Wilhelm, Overview of the RUCUS package driver run
cutting program (RUNS), Preprints of the Workshop on
Automated Techniques for Scheduling of Vehicle Opera-
tors for Urban Public Transportation Services, 1975.

[31] A. Wren, The development of Micro-BUSMAN: Schedul-
ing on micro-computers, in: J.R. Daduna, A. Wren (Eds.),
Computer-Aided Transit Scheduling, Springer-Verlag,
Berlin, 1988, pp. 160–174.

[32] A. Wren, Heuristics ancient and modern: Transport
scheduling through the ages, Journal of Heuristics 4
(1998) 87–100.
[33] A. Wren, N.D.F. Gualda, Integrated scheduling of buses
and drivers, in: Seventh International Workshop on
Computer-Aided Scheduling of Public Transport, 1997,
pp. 53–75.

[34] A. Wren, J. Rousseau, Bus driver scheduling—an over-
view, in: J.M.P. Paixão, J.R. Daduna, I. Branco (Eds.),
Computer-Aided Transit Scheduling, 1995, pp. 173–
187.

[35] T.H. Yunes, A.V. Moura, C.C. Souza. Solving large scale
crew scheduling problems with constraint programming
and integer programming, Technical Report IC 99-19,
Institute of Computing, University of Campinas,
1999.

[36] T.H. Yunes, C.C. Souza, A.V. Moura, Modeling and
solving a crew rostering problem with constraint logic
programming and integer programming, Technical Report
IC-00-04, Institute of Computing, University of Campinas,
2000. Available from: <http://goa.pos.dcc.unicamp.br/
otimo>.

http://goa.pos.dcc.unicamp.br/otimo
http://goa.pos.dcc.unicamp.br/otimo

	Vehicle and crew scheduling for urban bus lines
	Introduction
	The urban transportation problem
	An algorithm for solving the UTP
	Obtaining a set of primary start times
	Constructing a set of vehicle blocks
	Constructing the schedule
	A heuristic for spacing consecutive departures

	Results on real data
	Vehicle schedules
	Crew schedules
	Number of passengers transported
	Interval between consecutive trips
	Processing time
	Summary

	Conclusions
	References

