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A B S T R A C T

The ubiquity of smart devices enables the foundation for emerging fast-growing ride-sourcing
companies that challenge traditional taxi services. Two design aspects of on-demand mobility
systems are: (i) the matching mechanism between idle ride-sourcing vehicles and passenger
travel requests (i.e., vehicle–passenger matching) and (ii) the repositioning mechanism of idle
vehicles. In this paper, we propose a macroscopic non-equilibrium dynamic model of ride-
sourcing systems with capabilities of investigating the efficiency of vehicle–passenger matching
and idle vehicle repositioning methods. A spatio-temporal vehicle–passenger matching method
is introduced to determine dynamically and jointly the matching time instances and maximum
matching distances to minimize passengers’ waiting time (i.e., from the travel request until the
pickup) while considering the network congestion levels. Designing a controller for repositioning
idle vehicles to balance vehicle supply and passenger travel demand based on the proposed
model is scrutinized in the companion paper (Part II). The accuracy of the proposed model
and the performance of the matching method under noticeable variations of traffic congestion
and passenger travel requests are investigated with microsimulation. The results demonstrate
the accuracy of the model in predicting the evolution of the number of ride-sourcing vehicles
in different states (idle, transferred, dispatched, and occupied) and passengers (waiting and
assigned) in each region of the network. Furthermore, the effectiveness of the proposed
matching method is demonstrated by the decrease in the waiting times of ride-sourcing vehicles
and passengers.

1. Introduction

Advancements in information and communication technologies improve the convenience and affordability of ride-sourcing
services which lead to the growing demand and use of these services. Ride-sourcing service providers such as Uber, DiDi, and Lyft
provide on-demand point-to-point services for passengers through an online platform with a fleet of vehicles owned by self-scheduled
drivers. The platforms (service providers) generally have goals such as profit maximization and/or reducing passenger waiting times
to ensure a satisfactory level of service. The platforms have tools such as vehicle–passenger matching technology and idle vehicle
repositioning (transferring) to achieve these objectives. In this paper, we introduce a dynamic non-equilibrium macro-model as
a set of first-order differential equations to represent the dynamics of a ride-sourcing system. Moreover, we develop a vehicle–
passenger matching method that adaptively changes the matching interval and the maximum matching distance (i.e., discarding
vehicle–passenger matches whose distance is longer than the maximum matching distance) to minimize passengers’ waiting time.
A controller for dynamic idle vehicle repositioning based on the proposed model is developed in the companion paper (Part II).
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Modeling ride-sourcing systems exhibit traits of modeling taxi services. They are studied extensively with the focus of equilibrium
nalysis which reflects the stable steady-state behavior of the system. The initial steps were taken by equilibrium-based macroscopic
odels in Manski and Wright (1967), Orr (1969) and Douglas (1972). Later, in Yang and Wong (1998), a stationary model is

stablished to formulate movements of cruising taxis. This model is further developed by considering the effect of congestion and
assenger demand elasticity in Wong et al. (2001). The steady-state effect of bilateral taxi-passenger searching and meeting behavior
t the equilibrium point is studied in Wong et al. (2005) and Yang et al. (2010b). In Wong et al. (2015), a two-stage equilibrium-based
odel is proposed to predict zonal and circulating movements of cruising taxis. In Yang et al. (2010a) and Yang and Yang (2011),

he effect of search friction between vacant taxis and passengers on the equilibrium of the taxi system is scrutinized. A Ride-sourcing
arket is studied in Zha et al. (2016) by proposing an equilibrium-based macroscopic model to capture the taxi-passenger meeting
ynamics with an external matching function. An equilibrium model in a hybrid market with the coexistence of cruising taxi and
ide-sourcing systems is investigated in Qian and Ukkusuri (2017). Ramezani and Nourinejad (2018) initiates non-equilibrium-based
odeling of cruising taxi systems and proposes a predictive controller to relocate the vacant taxis. A non-equilibrium model for a

ide-sourcing market with a predictive controller is proposed to maximize the overall profit in Nourinejad and Ramezani (2019).
One dominant factor that affects the quality of service of ride-sourcing systems is the vehicle–passenger matching method.

mong the recent studies that address vehicle–passenger matching, Santi et al. (2014) and Vazifeh et al. (2018) focus on high-
apacity vehicle–passenger matching. Zhan et al. (2016) uses bipartite matching to evaluate the efficiency of taxi systems in terms of
ptimal matching and trip integration. A driver-rider matching scheme in a ride-sharing system is proposed in Wang et al. (2017) to
inimize total system-wide vehicle miles. Zha et al. (2018) proposes an aggregate matching model to facilitate the analysis of market

quilibrium and spatial pricing. The bipartite graph approach is utilized in Dandl et al. (2019) to propose a static strategy to jointly
atch autonomous vehicles (AVs) to user requests and reposition AVs. In Hörl et al. (2019), a large-scale agent-based simulation

f vehicle fleet management for dispatching and repositioning is studied. A data-driven dispatching method for autonomous taxi
ystems is proposed in Hu and Dong (2020) to reduce the empty travel distance of autonomous taxis. Chen et al. (2021) develops a
ecentralized cooperative cruising method for autonomous ride-sourcing fleets without communications between the vehicles and
he central dispatcher. Two common traits of most matching methods are assuming unlimited matching distance and fixed matching
requency. This paper tackles these two issues.

The effect of vehicle–passenger matching with unlimited radius has been empirically observed and theoretically analyzed
n Castillo et al. (2017), Xu et al. (2020) and Zhang et al. (2019). The instantaneous joint effect of matching radius and matching
nterval in vehicle–passenger matching is studied in Yang et al. (2020) in a static way. In these articles, the matching interval
s considered fixed and known and is obtained based on the current number of idle vehicles and waiting passengers. This
eglects the intertwined effects between the predicted value of the matching interval (i.e., successive matching instances), the
nstantaneous spatial distribution of idle vehicles and waiting passengers, and the predicted value of average vehicle–passenger
atching distance/time. To get more insight into the literature of shared mobility, interested readers can further refer to Salanova

t al. (2011), Agatz et al. (2012), Ho et al. (2018) and Wang and Yang (2019).
Equilibrium-based modeling of ride-sourcing systems, which is common in literature, considers only the steady-state behavior

f the system and does not consider the temporal variation of the systems’ states (e.g., the number of vehicles and passengers).
urthermore, there are challenges to the existence, uniqueness, and finite-time reachability of equilibrium points of nonlinear
ynamic ride-sourcing models. In this study, we propose a macroscopic non-equilibrium model to dynamically track different
tates of passengers and vehicles in a ride-sourcing system with the potential (i) to consider dynamic vehicle–passenger matching
nd (ii) to reposition idle vehicles. The model is built upon the augmented Cobb–Douglas matching function (Lagos, 2000) and
acroscopic Fundamental Diagrams (MFDs) (Geroliminis and Daganzo, 2008). Impatient passengers and drivers are included in the
odel by defining stochastic cancellation thresholds. Furthermore, to optimize expected passengers’ waiting time, we propose a

ehicle–passenger matching method to dynamically determine (i) the next matching time instance (enabling time-varying matching
requency) and (ii) the maximum matching distance to discard long-distance matchings (avoiding wild goose chase problem and
etting vehicles to remain idle for repositioning).1 Moreover, the proposed method considers the network congestion level, the
redictions of the system’s state in the short-term future, and the joint effect of optimum matching interval and maximum matching
istance. The advantages of the matching method and the model’s validity are investigated via a developed microsimulation
enchmark. In Part II, a Nonlinear Model Predictive Controller (NMPC) is designed based on the model developed in this paper
o proactively and dynamically reposition idle vehicles to suppress the spatial imbalance between idle vehicles (supply) and waiting
assengers (demand).

The remainder of the article is organized as follows. In Section 2, we elaborate on different states of ride-sourcing vehicles
nd passengers in the ride-sourcing system. Also, we illustrate how the proposed model comprises matching and transferring in
ection 2. In Section 3, the proposed adaptive spatio-temporal matching algorithm for dispatching idle ride-sourcing vehicles to
aiting passengers is presented in detail. The proposed non-equilibrium macroscopic model is introduced in Section 4. Section 5

s devoted to assessing the performance of the proposed adaptive spatio-temporal matching method and illustrating the model’s
ccuracy using microsimulation experiments. Finally, the article is concluded in Section 6.

1 If the matching policy allows vehicles to be unassigned from requests and/or requests to be unassigned from vehicles, as the system evolves, the wild goose
hase problem will be effectively immaterial (Hyland and Mahmassani, 2018). This policy would apply perfectly in a homogeneous fleet such as an AV fleet.
owever, this policy might be less practical today with the current composition of human-driven vehicles in TNCs with different vehicle quality (e.g., cleanness),
2

river experience, rating system, and safety issues (communicating the make, model, and registration number of the assigned vehicle and the name of the driver).
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2. Preliminaries

This section defines terminologies used in this article for representing ride-sourcing vehicles and passengers states. Furthermore,
e depict the schema of the proposed ride-sourcing system and describe its components and their interactions.

.1. State definition

We design a ride-sourcing system as a centralized system for dispatching ride-sourcing vehicles to passengers’ origin location and
transferring the idle vehicles to the areas with a higher possibility of finding passengers. Let us assume an urban network that is
partitioned into a few regions. We define four states for the ride-sourcing vehicles (i.e., idle, dispatched, transferred, and occupied)
and three states for the passengers (i.e., waiting, assigned, and on-board). The four states of ride-sourcing vehicles are as follows:

(i) Idle ride-sourcing vehicle refers to a vacant vehicle that is not assigned to any passenger’s travel request. It cruises randomly
(or parks) until receiving a pick-up or transferring command from the ride-sourcing system. The number of idle ride-sourcing
vehicles in Region 𝑖 at time 𝑡 is denoted as 𝑐I

𝑖 (𝑡).
(ii) Dispatched ride-sourcing vehicle is a vacant vehicle assigned to a passenger’s travel request. It is sent to the passenger’s location

through the path recommended by the ride-sourcing system. The dispatched vehicles are not allowed to pick up other
passengers along the recommended path. The number of dispatched ride-sourcing vehicles in Region 𝑖 at time 𝑡 is denoted
as 𝑐D

𝑖 (𝑡).
(iii) Transferred ride-sourcing vehicle is a vacant vehicle sent to a location with an excess of passenger travel requests through the

path recommended by the ride-sourcing system. Transferred vehicles are not assigned to any passenger’s travel request. (Note
that the system considers transferred vehicles in the pool of vehicles that can be assigned to unmatched passengers. Once
such matching happens the vehicle state becomes dispatched). They balance the vehicle supply and travel request demand
in different regions of the network. The ride-sourcing system can assign them to passengers’ travel requests before reaching
the hot-spot locations. The number of transferred vehicles in Region 𝑖 at time 𝑡 is denoted as 𝑐T

𝑖 (𝑡).
(iv) Occupied ride-sourcing vehicle is a vehicle servicing a passenger. We assume each vehicle services only one passenger or one

group of passengers with the same origin and destination. The number of occupied vehicles in Region 𝑖 at time 𝑡 is denoted
as 𝑐O

𝑖 (𝑡).

The three passenger’s states are as:

(i) Waiting passenger refers to a passenger who has requested a ride, but she/he is not assigned to any ride-sourcing vehicle yet.
The number of waiting passengers in Region 𝑖 at time 𝑡 is denoted as 𝑝W

𝑖 (𝑡).
(ii) Assigned passenger is a passenger who is not picked up by a vehicle, but a dispatched ride-sourcing vehicle is assigned to

her/him. The number of assigned passengers in Region 𝑖 at time 𝑡 is denoted as 𝑝A
𝑖 (𝑡).

(iii) On-board passenger is a passenger picked up by a vehicle, but she/he has not reached her/his destination. The number of
on-board passengers in Region 𝑖 at time 𝑡 is equal to the number of occupied vehicles in Region 𝑖 at time 𝑡.

.2. State transitions

Consider the movements of an idle ride-sourcing vehicle in a network that is divided into several regions. Once a waiting passenger
s matched with an idle vehicle, the vehicle becomes dispatched and the passenger becomes assigned. Then, the dispatched ride-
ourcing vehicle starts traveling towards the passenger’s pick-up location with the path recommended by the ride-sourcing system.
nce the dispatched vehicle reaches the location of the assigned passenger, the vehicle and passenger become occupied and on-board,

espectively. Once the occupied vehicle reaches the on-board passenger’s destination, the vehicle’s state is changed to idle.
An idle ride-sourcing vehicle might be requested to reposition to other regions with an excess number of waiting passengers to

alance the vehicle sources and passengers’ travel demand. If the ride-sourcing system determines such region(s), a number of idle
ehicles become transferred and will be guided to travel to that region(s). Note that the system considers transferred vehicles in the
ool of vehicles that can be assigned to unmatched passengers (while transferring). If the transferred vehicle is not assigned to any
assenger while traveling, it becomes idle again once it reaches the recommended transferring location.

To reflect reality more precisely, we assume if an idle ride-sourcing vehicle remains idle for an extended period, the driver leaves
he ride-sourcing system. In addition, if a waiting or an assigned passenger is not picked up for a long time, the passenger cancels the
ravel request and quits the ride-sourcing service for other travel choices. When an assigned passenger cancels their travel request,
he ride-sourcing vehicle matched to the passenger becomes idle.

Fig. 1 illustrates the state diagrams of vehicles and passengers in the ride-sourcing system. The dotted lines emphasize the
ehicle’s/passenger’s state changes instantaneously without a physical trip (e.g., the state of an idle ride-sourcing vehicle becomes
ransferred once the driver receives the transfer command from the ride-sourcing system). The solid lines reflect a physical trip in
he network (e.g., the dispatched vehicle must reach the assigned passenger’s location to become occupied).
3
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Fig. 1. State diagram of ride-sourcing systems’ agents: (a) passengers and (b) ride-sourcing vehicles. Impatient passengers cancel their trips and leave if (i) they
wait for more than a stochastic threshold or (ii) the assigned vehicle does not pick up the matched passenger before their pickup threshold. The second scenario
also affects the dispatched vehicles and changes their state to idle.

2.3. Proposed schema

Interconnections between plant (i.e., traffic network), model, dispatching subsystem, and transfer subsystem are depicted in
Fig. 2. The dispatching subsystem matches idle/transferred ride-sourcing vehicles and waiting passengers as two independent sets
dynamically such that a subset of the idle/transferred vehicles are dispatched to minimize the total cruising time. It includes optimal
myopic matching and adaptive spatio-temporal filtering methods. The former minimizes total matching distances with an assumption
of maximal matching between the two independent sets, i.e., idle/transferred ride-sourcing vehicles and waiting passengers. The
latter method obtains the result of the optimal myopic matching to minimize the total passengers’ waiting time prediction to set
dynamically and jointly: (i) the optimum next matching instance and (ii) the optimum upper bound of the matching distance between
idle/transferred vehicles and waiting passengers at the current instance to avoid long-distance matchings.

The transfer subsystem has two components: Transferred Ride-sourcing Controller and Link-Level Allocation. The main component
of the transfer subsystem is a macroscopic controller that dynamically recommends inter-regional movements of idle ride-sourcing
vehicles in the network to balance the vehicles’ supply and waiting passengers in the network. We propose a Nonlinear Model
Predictive (NMPC) controller for repositioning idle vehicles in Part II of this study.

Link-Level Allocation translates the aggregated rate of idle vehicles in Region 𝑖 that is recommended to be transferred to Region
𝑗 (i.e., the output of the transfer controller) to disaggregated (vehicle-level) commands. It (i) selects a subset from the idle vehicles
in Region 𝑖 (based on their current locations and the accumulative time that they have been idle), (ii) assigns a link in Region 𝑗
to each selected idle vehicle based on the location of the waiting passengers in Region 𝑗, and (iii) determines the shortest distance
path by using Dijkstra’s algorithm for each selected idle vehicle to reach the designated transferred link. The frequency of triggering
transfer and dispatching subsystems are independent of each other. More details of the Transfer Subsystem are investigated in Part II
of this study.

3. Dispatching subsystem

The dispatching subsystem includes optimal myopic and adaptive spatio-temporal filtering methods. It dynamically determines
the optimum maximum matching distance and the next matching instance to minimize passengers’ waiting time. At each matching
instance, it considers the location of the waiting passengers and idle/transferred ride-sourcing vehicles, as well as the aggregated
short-term prediction of the arrival rate of new passengers and idle/transferred vehicles. The optimal myopic method is first applied
to match the waiting passengers and idle/transferred vehicles minimizing the total dispatch distance. Then the optimum maximum
matching distance is determined to filter the long-distance matchings. Lastly, the optimum next matching instance is established
to minimize passenger’s waiting time. In Section 3.1, the optimal myopic method is explained that is built upon the maximum
matching problem of a bipartite graph. It is a classic problem and has been widely studied in the literature, e.g., Agatz et al. (2011),
Zhan et al. (2016), Vazifeh et al. (2018) and Yang and Ramezani (2023). Section 3.2 introduces the proposed method for finding
the optimum matching intervals and maximum matching distances.

3.1. Optimal myopic matching

The optimal matching between idle/transferred ride-sourcing vehicles and waiting passengers at every matching instance is
determined by solving the minimum weighted matching problem for a bipartite graph. It minimizes the total matching distances
between idle/transferred vehicles and waiting passengers (equivalently, pickup times). We construct the problem as a bipartite graph
by considering, (i) 𝑉 as the set of idle and transferred vehicles, (ii) 𝑉 as the set of the waiting passengers, and (iii) 𝐸 as the edges
4
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Fig. 2. Schematic of the proposed ride-sourcing system. The Dispatching subsystem matches the idle/transferred vehicles to the waiting passengers. The
Dispatching Subsystem obtains the required information directly from the plant. The Model is utilized in Transfer Subsystem to predict the effect of idle
vehicle repositioning on the future state of the ride-sourcing system. The output of the transfer subsystem is the idle vehicles that are altered to transferred
vehicles and are guided to designated locations with excess passengers.

connecting each element of 𝑉1 to 𝑉2. The sets of 𝑉1 and 𝑉2 are disjoint and independent. The weight of each edge, 𝑤(𝑒), is the
distance between the idle/transferred ride-sourcing vehicle and the waiting passenger. We obtain the minimum weighted matching
for the bipartite graph using the integer linear programming method:

minimize
∑

𝑒∈𝐸
𝑥𝑒𝑤(𝑒)

s.t.
∑

𝑒∼𝑣
𝑥𝑒 ≤ 1 ∀𝑣 ∈ {𝑉1 ∪ 𝑉2} & ∀𝑒 ∈ 𝐸,

∑

𝑒∈𝐸
𝑥𝑒 = min(‖𝑉1‖, ‖𝑉2‖)

𝑥𝑒 ∈ {0, 1} ∀𝑒 ∈ 𝐸,

(1)

where 𝑤(𝑒) is the weight of each edge 𝑒 ∈ 𝐸, 𝑒 ∼ 𝑣 denotes 𝑒 is an incident on 𝑣, and ‖𝑉1‖ denotes the size of set 𝑉1. Eq. (1)
requires the number of matchings to be the minimum of cardinalities of set 𝑉1 and set 𝑉2. Eq. (1) is a static optimization problem
that minimizes total matching distances. It may suffer from matching vehicles with long-distance passengers. Also, it considers only
the current location of the idle/transferred ride-sourcing vehicles and waiting passengers at fixed matching intervals. In Section 3.2,
we consider the effect of the system’s future state, i.e., the arrival of idle/transferred ride-sourcing vehicles and waiting passengers,
congestion of the network, and the joint relationship of matching intervals and discarding long-distance matchings in the proposed
method.

3.2. Adaptive spatio-temporal matching method

The adaptive spatio-temporal filtering method dynamically determines the maximum value for the matching distance between
idle/transferred ride-sourcing vehicles and waiting passengers, as well as the occurrence time of the next matching. The maximum
matching distance has immediate and future effects on vehicle–passenger matchings. A lower maximum matching distance leads
to discarding more long-distance matchings from the solution of Eq. (1) to be discarded. Thus, it decreases the average distance
of vehicle–passenger matchings at the cost of increasing the vehicles’ and passengers’ unassigned time. On the other hand, a
higher maximum matching distance increases vehicles’ and passengers’ reserved time. When determining the occurrence of the next
matching, a higher matching frequency (i.e., decreasing the time between two successive matching instances) reduces the number
of idle/transferred vehicles and waiting passengers to be considered for matching. Consequently, the optimal myopic method would
produce results with longer matching distances. In other words, a higher matching frequency decreases the unassigned time but
increases the expected reserved time. Unassigned time for a ride-sourcing vehicle (passenger) is the time between the idle (waiting)
state and dispatched (assigned) state. The reserved time for a ride-sourcing vehicle (passenger) is the time it takes for a dispatched
vehicle (assigned passenger) to become occupied (on-board).
5
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The adaptive spatio-temporal matching method aims to minimize the expected total passengers’ waiting time (i.e., unassigned
ime plus the reserved time) by jointly determining the optimum time of the next matching instance and discarding the vehicle–
assenger long-distance matchings. To this end, first, we use the optimal myopic vehicle–passenger matchings (i.e., considering the
atching without discarding long-distance matchings) by solving Eq. (1). Subsequently, we define an expected passengers’ waiting

ime based on the obtained values of the optimal myopic vehicle–passenger matchings. Then, we determine the optimum value
f the next matching instance and the maximum distance for vehicle–passenger matchings to minimize the defined expected total
assengers’ waiting time. The expected total passengers’ waiting time consists of four components: (i) estimated total reserved time,

(ii) estimated total unassigned time, (iii) predicted total reserved time, and (iv) predicted total unassigned time. Fig. 3 illustrates the
relationship among these components. To determine the above components, we assume that the average arrival rates of new waiting
passengers and idle vehicles are known.

The expected total passengers’ waiting time, �̂� 𝑡𝜄+1m −𝑡𝜄m
P , between two successive matching time instances, 𝑡𝜄m and 𝑡𝜄+1m , is sum of

four main parts:

(i) Estimated total reserved time of matchings at 𝑡𝜄m is:

�̂�R(𝑡𝜄m) =
𝑙𝑟(𝑡𝜄m)
�̂�(𝑡𝜄m)

(

𝑚(𝑡𝜄m) − 𝑟(𝑡𝜄m)
)

=
𝑙𝑟(𝑡𝜄m)
�̂�(𝑡𝜄m)

(

min
(

𝑐I(𝑡𝜄m) + 𝑐T(𝑡𝜄m), 𝑝W(𝑡𝜄m)
)

− 𝑟(𝑡𝜄m)
)

, (2)

where �̂�R(𝑡𝜄m) is the estimated total reserved time for the idle/transferred vehicles assigned to the waiting passengers at 𝑡𝜄m.
The number of the matchings before discarding at time 𝑡𝜄m is denoted by 𝑚(𝑡𝜄m) from the solution of Eq. (1) at time instance
𝑡𝜄m. 𝑙𝑟(𝑡𝜄m) is the average distance of optimum vehicle–passenger matchings after discarding 𝑟(𝑡𝜄m) long-distance matchings. The
number of idle vehicles, transfer vehicles, and waiting passengers at time 𝑡𝜄m (before matching) are indicated by 𝑐I(𝑡𝜄m), 𝑐T(𝑡𝜄m),
and 𝑝W(𝑡𝜄m). �̂�(𝑡𝜄m) denotes the estimated network speed at time instance 𝑡𝜄m.

(ii) Estimated total unassigned time of the waiting passengers remaining in the network after the vehicle–passenger matching at
𝑡𝜄m with discarding 𝑟(𝑡𝜄m) long-distance matching, �̂�D(𝑡𝜄m), is:

�̂�D(𝑡𝜄m) =
(

𝑝W(𝑡𝜄m) − 𝑚(𝑡𝜄m) + 𝑟(𝑡𝜄m)
)

(

𝑡𝜄+1m − 𝑡𝜄m
)

. (3)

(iii) Predicted total reserved time for matchings at 𝑡𝜄+1m , �̂�R(𝑡𝜄+1m ), is:

�̂�R(𝑡𝜄+1m ) =
̂̄𝑙𝑟(𝑡𝜄+1m )

�̂�(𝑡𝜄+1m )

(

𝑚(𝑡𝜄+1m ) + 𝑟(𝑡𝜄m)
)

=
̂̄𝑙𝑟(𝑡𝜄+1m )
�̂�(𝑡𝜄m)

(

min
(

𝑐I(𝑡𝜄m) + 𝑐T(𝑡𝜄m) + 𝜌c(𝑡𝜄m)
(

𝑡𝜄+1m − 𝑡𝜄m
)

− 𝑚(𝑡𝜄m), 𝑝W(𝑡𝜄m) + 𝜌p(𝑡𝜄m)
(

𝑡𝜄+1m − 𝑡𝜄m
)

− 𝑚(𝑡𝜄m)
)

+ 𝑟(𝑡𝜄m)
)

,

with
𝜌c(𝑡𝜄m) = 𝜌en

c (𝑡𝜄m) + 𝜌ex
c (𝑡𝜄m),

(4)

where ̂̄𝑙𝑟(𝑡𝜄+1m ) estimates the average matching distance of matched pairs in a bipartite matching program as Eq. (1). This
parameter is defined to predict the average matching distance in the next matching instance, 𝑡𝜄+1m , not reflecting the current
(at 𝑡𝜄m) observed value (𝑙𝑟(𝑡𝜄m)). Since the exact locations of idle/transferred vehicles and waiting passengers at time 𝑡𝜄+1m are
not known, we propose a parsimonious function to estimate the average matching distance of the optimum matching that
is only a function of the number of vehicles and passengers. Section 3.3 explains estimation of ̂̄𝑙𝑟(𝑡𝜄+1m ). 𝑚(𝑡𝜄+1m ) denotes the
number of matchings at time 𝑡𝜄+1m without discarding at time 𝑡𝜄m. The rates of arrival of idle/transferred vehicles and waiting
passengers during interval [𝑡𝜄m, 𝑡𝜄+1m ) are denoted by 𝜌c(𝑡𝜄m) and 𝜌p(𝑡𝜄m), respectively. 𝜌c(𝑡𝜄m) consists of endogenous, 𝜌en

c (𝑡𝜄m), and
exogenous parts, 𝜌ex

c (𝑡𝜄m). 𝜌en
c (𝑡𝜄m) captures the rate that occupied or dispatched vehicles become idle. 𝜌ex

c (𝑡𝜄m) captures the rate
of idle ride-sourcing vehicles leaving from or entering into the network.

(iv) Predicted total unassigned time for waiting passengers remaining in the network after the vehicle–passenger matching at 𝑡𝜄+1m ,
�̂�D(𝑡𝜄+1m ), is:

�̂�D(𝑡𝜄+1m ) =
(

𝑝W(𝑡𝜄m) + 𝜌p(𝑡𝜄m)
(

𝑡𝜄+1m − 𝑡𝜄m
)

−
(

𝑚(𝑡𝜄m) − 𝑟(𝑡𝜄m)
)

−
(

𝑚(𝑡𝜄+1m ) + 𝑟(𝑡𝜄m)
)

)

×
(

𝑡𝜄+2m − 𝑡𝜄+1m
)

=
(

𝑝W(𝑡𝜄m) + 𝜌p(𝑡𝜄m)
(

𝑡𝜄+1m − 𝑡𝜄m
)

− 𝑚(𝑡𝜄m) − 𝑚(𝑡𝜄+1m )
)

(

𝑡𝜄+2m − 𝑡𝜄+1m
)

.
(5)

In Eq. (5), we assume the discarded matchings at time 𝑡𝜄m, i.e., 𝑟(𝑡𝜄m), will be matched at time 𝑡𝜄+1m .

Thus, the expected total passengers’ waiting time is2:

�̂� 𝑡𝜄+1m −𝑡𝜄m
P = �̂�R(𝑡𝜄m) + �̂�D(𝑡𝜄m) + �̂�R(𝑡𝜄+1m ) + �̂�D(𝑡𝜄+1m ). (6)

2 Note that a term representing predicted waiting time of passengers arriving between 𝑡𝜄m and 𝑡𝜄+1m ’ is not considered in Eq. (6). If the exogenous arrival rate of
passengers, 𝜌𝑝(𝑡𝜄m), is assumed to be spread uniformly between 𝑡𝜄m and 𝑡𝜄+1m , then the predicted waiting time of passengers arriving between 𝑡𝜄m and 𝑡𝜄+1m would read
as 0.5𝜌𝑝(𝑡𝜄m)(𝑡

𝜄+1
m − 𝑡𝜄m)

2. If one assumes the exogenous arrival rate of passengers, 𝜌𝑝(𝑡𝜄m), appears at the end of the interval (i.e., 𝑡𝜄+1m ), then the predicted waiting
time of passengers arriving between 𝑡𝜄m and 𝑡𝜄+1m would be zero. Nevertheless, the relative value of this term compared to the other four terms in the objective
function (6) is minor. It is expected that considering this term will result in insignificant changes in the numerical results if a uniform arrival formulation is
used instead of an end-loaded arrival calculation.
6
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Fig. 3. Schematic of relation among estimated total reserved time (Eq. (2)), estimated total unassigned time (Eq. (3)), predicted total reserved time (Eq. (4)),
and predicted total unassigned time (Eq. (5)). Blue boxes represent the time components and black boxes illustrate passengers.

We obtain the optimum value for the next two matching times, 𝑡𝜄+1m and 𝑡𝜄+2m , and the number of discarded long-distance matchings,
𝑟(𝑡𝜄m), by minimizing the total passengers’ waiting time prediction as determined in Eq. (7).

minimize
𝑟(𝑡𝜄m),𝑡𝜄+1m ,𝑡𝜄+2m

(

�̂� 𝑡𝜄+1m −𝑡𝜄m
P

)

s.t. 0 < 𝑡𝜄m < 𝑡𝜄+1m ≤ 𝑡𝜄+2m ≤ 𝑡𝜄m + 𝑡max
m , 0 ≤ 𝑟(𝑡𝜄m) ≤ 𝑚(𝑡𝜄m),

(7)

where 𝑡max
m is a predefined upper bound for the next matching time instance.

One can verify that 𝑡𝜄+2m only appears in Eq. (5), in which an intuitive solution to the minimization program of Eq. (7) would
be 𝑡𝜄+1m = 𝑡𝜄+2m . Hence, Eq. (7) can be reformulated as below to obtain the optimum value for the next matching time, 𝑡𝜄+1m , and the
number of discarded long-distance matchings, 𝑟(𝑡𝜄m):

minimize
𝑟(𝑡𝜄m),𝑡𝜄+1m

(

�̂� 𝑡𝜄+1m −𝑡𝜄m
P

)

s.t. 0 < 𝑡𝜄m < 𝑡𝜄+1m ≤ 𝑡𝜄m + 𝑡max
m , 0 ≤ 𝑟(𝑡𝜄m) ≤ 𝑚(𝑡𝜄m).

(8)

To practically solve the discrete–continuous optimization problem of Eq. (8), after solving the optimal myopic matching program,
we discretize the time domain, [𝑡𝜄m, 𝑡𝜄m + 𝑡max

m ], and iteratively evaluate Equation 6 for any specific 𝑡𝜄+1m and 𝑟(𝑡𝜄m) that satisfies the
criteria of Eq. (8) to determine the optimum values. Choosing 𝑡max

m and sampling period for discretization are crucial factors to reach
an attainable solution computationally. We choose 𝑡max

m =120 [s] and sampling period of 2 [s].
The major time complexity of solving the optimization problem is stemmed from solving the optimal myopic matchings that

can be relaxed significantly from 𝑂((‖𝑉1‖ + ‖𝑉2‖)4) to 𝑂(
√

‖𝑉1‖ + ‖𝑉2‖) by adopting an approximate method instead of an exact
method (Vazirani, 1994). Recall that 𝑉1 is the set of idle and transferred vehicles, 𝑉2 is the set of waiting passengers, and ‖𝑉1‖ denotes
the size of set 𝑉1. The performance of the proposed adaptive spatio-temporal matching method for dispatching idle/transferred
vehicles to waiting passengers is investigated in Section 5.

3.3. Estimating a macro-function for average optimal myopic matching distance

A closed-form macro-function for estimating average optimal myopic matching distance, ̂̄𝑙, is needed for predicting the total
reserved time, see Eq. (4). To this end, we propose Algorithm 1 (as a proxy) to estimate the average optimal myopic matching
distance as a function of the number of idle/transferred ride-sourcing vehicles and waiting passengers, independent of their location.
Algorithm 1 generates the locations of idle/transferred ride-sourcing vehicles and waiting passengers randomly with uniform
distribution inside a network. Then, a bipartite graph, 𝐺(𝑉1, 𝑉2, 𝐸), is built in which the weights of the edges are the Manhattan
distance between idle/transferred ride-sourcing vehicles and waiting passengers. The average optimal matching is determined by
solving the matching problem on graph 𝐺 minimizing the sum of matching weights as in Eq. (1). To tackle the stochasticity of the
spatial distribution of ride-sourcing vehicles and passengers, this procedure is repeated 𝑁 itr times for each number of idle/transferred
ride-sourcing vehicles and waiting passengers. This experiment is conducted for a range of passengers, 1 to 𝑁P, and a range of
vehicles, 1 to 𝑁T, where 𝑁P and 𝑁T denote the maximum numbers of passengers and vehicles that are considered, respectively.

We run the algorithm on a high-performance computer (HPC) for 𝑁 itr=100, 𝑁P=50, and 𝑁T=50. The result, see Fig. 4(b), reveals
that the variations of average optimum matching distance with respect to the number of waiting passengers and idle/transferred
ride-sourcing vehicles are:

⎧

⎪

⎨

⎪

𝜕 ̂̄𝑙
𝜕(𝑐I+𝑐T)

> 0, 𝜕 ̂̄𝑙
𝜕𝑝W < 0 if 𝑐I + 𝑐T < 𝑝W

𝜕 ̂̄𝑙 < 0, 𝜕 ̂̄𝑙 > 0 if 𝑝W < 𝑐I + 𝑐T
7

⎩
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Fig. 4. (a) Estimated average of optimum matching distance [m] and (b) simulated average of optimum matching distance [m].

Accordingly, the following symmetric function is suggested to estimate the average optimum matching distance:

̂̄𝑙 =

{

𝜃(𝑐I + 𝑐T)𝜁1𝑝W𝜁2 if 𝑐I + 𝑐T ≤ 𝑝W

𝜃(𝑐I + 𝑐T)𝜁2𝑝W𝜁1 if 𝑝W < 𝑐I + 𝑐T (9)

where 𝜃>0, 𝜁1>0, and 𝜁2<0 are parameters that can be readily estimated using the Least Square method. By utilizing the generated
data in Algorithm 1, the estimated values of the parameters are: �̂� = 2394.57, 𝜁1 = 0.245, and 𝜁2 = −0.724, where 𝑅2 = 0.93. Fig. 4
compares the simulated and estimated average optimum matching distances.

Algorithm 1: Pseudocode for estimating the average optimum matching distance

Result: { ̂̄𝑙𝑛P×𝑛T | 𝑛p = 1 ∶ 𝑁P, 𝑛T = 1 ∶ 𝑁T}
1 Spatial initialization;
2 for 𝑛T = 1 ∶ 𝑁T do
3 for 𝑛P = 1 ∶ 𝑁P do
4 for 𝑘 = 1 ∶ 𝑁 itr do
5 {(𝑥P

𝑖 , 𝑦
P
𝑖 )| 𝑖 = 1 ∶ 𝑛P} ← Generate coordinates of 𝑛P passengers randomly;

6 {(𝑥T
𝑗 , 𝑦

T
𝑗 )| 𝑗 = 1 ∶ 𝑛T} ← Generate coordinates of 𝑛T ride-sourcing vehicles randomly;

7 𝐺(𝑉1, 𝑉2, 𝐸) ← Initialization a bipartite graph with |𝑉1| = 𝑛P and |𝑉2| = 𝑛T;
8 for 𝑖 = 1 ∶ 𝑛P do
9 for 𝑗 = 1 ∶ 𝑛T do
10 𝑤𝑖𝑗 ← Manhattan distance between passenger 𝑖 and ride-sourcing vehicle 𝑗;
11 𝑑𝑖𝑗 ← Add an edge to connect vertices (𝑣i

1, 𝑣
j
2) with weight 𝑤𝑖𝑗 ;

12 𝑀𝑘 ← Find optimal matching of 𝐺 to minimize the sum of matching weights;
13 𝑙𝑘 ← Find the average of matched weights;

14 ̂̄𝑙𝑛p×𝑛T ← Find the average of {𝑙𝑘| 𝑘 = 1 ∶ 𝑁 itr};

4. Model formulation

Consider a network divided into a set of R regions. The proposed ride-sourcing model formulates the interaction of waiting
passengers, assigned passengers, idle ride-sourcing vehicles, occupied ride-sourcing vehicles, dispatched ride-sourcing vehicles, and
transferred ride-sourcing vehicles in different regions as illustrated in the state diagrams of Fig. 1. We develop the model based on
MFD and Cobb–Douglas meeting function. The ride-sourcing model is a set of first-order differential equations representing mass
conservation dynamics of the ride-sourcing vehicles and passengers.

MFD is a macroscopic relationship between the number of vehicles (accumulation) and aggregated outflow (or weighted flow of
links, production) in homogeneous regions. The existence of this relationship is empirically presented in Geroliminis and Daganzo
(2008). The effect of congestion heterogeneity on MFD properties is studied in Mahmassani et al. (2013) and Ramezani et al.
(2015). A three-step clustering algorithm is proposed in Saeedmanesh and Geroliminis (2016) to partition heterogeneous networks
8

into a few connected homogeneous regions. This offers traffic management opportunities based on MFD modeling such as perimeter
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control (Li et al., 2021; Haddad and Zheng, 2020), regional routing (Ingole et al., 2020), and regional pricing (Zheng et al., 2012),
among others. The applicability of MFD in modeling of on-demand mobility services including cruising taxi systems, ride-sharing
systems, and pricing of ride-sourcing systems, are studied in Ramezani and Nourinejad (2018), Nourinejad and Ramezani (2019),
Alisoltani et al. (2021) and Beojone and Geroliminis (2021).

In this paper, the MFD is used to estimate the internal and inter-regional flows3 of occupied and transferred ride-sourcing vehicles
as well as the inter-regional flow of the dispatched ride-sourcing vehicles. Cobb–Douglas meeting functions are utilized to model
the boarding rate of assigned passengers and the rate at which dispatched ride-sourcing vehicles become occupied. The reason for
differentiating between estimating the internal flow of dispatched ride-sourcing vehicles and occupied/transferred ride-sourcing
vehicles is their travel behaviors. The average trip length for the internal flow of the dispatched ride-sourcing vehicles is highly
sensitive to the number of the dispatched ride-sourcing vehicles and assigned passengers. Assuming that the number of the dispatched
ride-sourcing vehicles is constant, the higher the number of assigned passengers, the lower the average trip length is. Hence, we use
Cobb–Douglas meeting function to estimate the boarding rate within the region, which allows us to infer the number of dispatched
ride-sourcing vehicles and assigned passengers simultaneously. However, the average trip lengths for the occupied/transferred ride-
sourcing vehicles as well as the inter-regional dispatched ride-sourcing vehicles are independent of the number of passengers. That
is, their travel patterns are similar to the normal vehicles. Therefore, we utilize MFDs to estimate their trip completions.

The boarding function between dispatched ride-sourcing vehicles and assigned passengers in Region 𝑖, 𝑏𝑖, is defined by a Cobb–
Douglas type meeting function to consider the friction and congestion (Yang and Yang, 2011; Ramezani and Nourinejad, 2018):

𝑏𝑖(𝑡) = 𝐾𝑖𝑐
D
𝑖𝑖 (𝑡)

𝛼𝑖𝑝A
𝑖 (𝑡)

𝛽𝑖𝑣𝑖(𝑡)𝛾𝑖 ∀𝑖 ∈ R,

𝑝A
𝑖 (𝑡) =

∑

𝑗∈{U𝑖∪𝑖}
𝑝A
𝑖𝑗 (𝑡) ∀𝑖 ∈ R, (10)

where 𝐾𝑖 is the total productivity factor of Region 𝑖. The number of dispatched ride-sourcing vehicles in Region 𝑖 with pickup
location in Region 𝑖 at time 𝑡 is denoted by 𝑐D

𝑖𝑖 (𝑡). The total number of assigned passengers in Region 𝑖 and the number of assigned
passengers in Region 𝑖 with destinations in Region 𝑗 are denoted by 𝑝A

𝑖 (𝑡) and 𝑝A
𝑖𝑗 (𝑡), respectively. U𝑖 is the set of regions in the direct

vicinity of Region 𝑖. 𝑣𝑖(𝑡) is the average speed in Region 𝑖. Note that the average speed is considered in the boarding function to
reflect the effect of congestion on the meeting rate (Ramezani and Nourinejad, 2018). The elasticities with respect to the number of
dispatched vehicles, assigned passengers, and average speed are denoted by 𝛼𝑖, 𝛽𝑖, and 𝛾𝑖, respectively. 𝐾𝑖, 𝛼𝑖, 𝛽𝑖, and 𝛾𝑖 are constant
parameters that can be estimated from the field or simulated data.

By defining the total boarding rate in Region 𝑖 as Eq. (10), the boarding rate in Region 𝑖 with the final destination in Region 𝑗
at time 𝑡 can be approximated from the following equation (assuming the boarding rate is proportional to assigned passengers):

𝑏𝑖𝑗 (𝑡) =
𝑝A
𝑖𝑗 (𝑡)

𝑝A
𝑖 (𝑡)

𝑏𝑖(𝑡) ∀𝑖 ∈ R and 𝑗 ∈ {U𝑖, 𝑖} . (11)

We use the production MFD to obtain the inter-regional flows of occupied vehicles, 𝑀O
𝑖𝑗 (𝑡), transferred vehicles, 𝑀T

𝑖𝑗 (𝑡), and
ispatched vehicles, 𝑀D

𝑖𝑗 (𝑡). We assume the inter-regional flows are proportional to the corresponding accumulations:

𝑀O
𝑖𝑗 (𝑡) =

𝑐O
𝑖𝑗 (𝑡)

𝑛𝑖(𝑡)
𝑃𝑖(𝑛𝑖(𝑡))
𝑙O𝑖𝑗 (𝑡)

∀𝑖 ∈ R and 𝑗 ∈ U𝑖 , (12)

𝑀T
𝑖𝑗 (𝑡) =

𝑐T
𝑖𝑗 (𝑡)

𝑛𝑖(𝑡)
𝑃𝑖(𝑛𝑖(𝑡))
𝑙T𝑖𝑗 (𝑡)

∀𝑖 ∈ R and 𝑗 ∈ U𝑖 , (13)

𝑀D
𝑖𝑗 (𝑡) =

𝑐D
𝑖𝑗 (𝑡)

𝑛𝑖(𝑡)
𝑃𝑖(𝑛𝑖(𝑡))
𝑙D𝑖𝑗 (𝑡)

∀𝑖 ∈ R and 𝑗 ∈ U𝑖 , (14)

where 𝑐O
𝑖𝑗 (𝑡), 𝑐

T
𝑖𝑗 (𝑡), and 𝑐D

𝑖𝑗 (𝑡) are respectively the number of the occupied, transferred, and dispatched vehicles in Region 𝑖 moving
to Region 𝑗 at time 𝑡. 𝑛𝑖(𝑡) is the total accumulation of vehicles in Region 𝑖 including normal vehicles and all types of ride-sourcing
vehicles in Region 𝑖. 𝑃𝑖(𝑛𝑖(𝑡)) is the production MFD in Region 𝑖 that is a function of the total accumulation in Region 𝑖. The average
trip length for occupied, transferred, and dispatched vehicles in Region 𝑖 that travel to Region 𝑗 are denoted by 𝑙O𝑖𝑗 (𝑡), 𝑙

T
𝑖𝑗 (𝑡), and 𝑙D𝑖𝑗 (𝑡),

espectively.
The internal flows for the occupied, 𝑀O

𝑖𝑖 (𝑡), and the transferred ride-sourcing vehicles, 𝑀T
𝑖𝑖 (𝑡), are:

𝑀O
𝑖𝑖 (𝑡) =

𝑐O
𝑖𝑖 (𝑡)
𝑛𝑖(𝑡)

𝑃𝑖(𝑛𝑖(𝑡))
𝑙O𝑖𝑖 (𝑡)

∀𝑖 ∈ R, (15)

𝑀T
𝑖𝑖 (𝑡) =

𝑐T
𝑖𝑖(𝑡)
𝑛𝑖(𝑡)

𝑃𝑖(𝑛𝑖(𝑡))
𝑙T𝑖𝑖(𝑡)

∀𝑖 ∈ R, (16)

3 In MFD literature, this term is typically named transfer flow. However, to avoid confusion with the transfer state of ride-sourcing vehicles, we use the
9

nter-region flow term in this paper.
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where 𝑐O
𝑖𝑖 (𝑡) and 𝑐T

𝑖𝑖(𝑡) are the number of occupied and transferred ride-sourcing vehicles in Region 𝑖 with destination in Region 𝑖.
𝑙O𝑖𝑖 (𝑡) and 𝑙T𝑖𝑖(𝑡) denote the average trip length of occupied and transferred vehicles in Region 𝑖 with destinations in Region 𝑖.

Using the above internal and inter-regional flows, we can derive the dynamics of different system states as mass conservation
formulations. The conservation of the number of occupied ride-sourcing vehicles is modeled as:

d𝑐O
𝑖𝑖 (𝑡)
d𝑡 = 𝑏𝑖𝑖(𝑡) +

∑

𝑗∈U𝑖

𝑀O
𝑗𝑖 (𝑡) −𝑀O

𝑖𝑖 (𝑡) ∀𝑖 ∈ R, (17)

d𝑐O
𝑖𝑗 (𝑡)

d𝑡 = 𝑏𝑖𝑗 (𝑡) −𝑀O
𝑖𝑗 (𝑡) ∀𝑖 ∈ R and 𝑗 ∈ U𝑖. (18)

In RHS of Eqs. (17) and (18), 𝑏𝑖𝑖(𝑡) and 𝑏𝑖𝑗 (𝑡) are the number of the dispatched ride-sourcing vehicles that become occupied with
destinations in Regions 𝑖 and 𝑗 respectively. ∑𝑗∈U𝑖

𝑀O
𝑗𝑖 (𝑡) reflects the rate at which occupied ride-sourcing vehicles from regions in

U𝑖 cross the regional boundary towards Region 𝑖. 𝑀O
𝑖𝑖 (𝑡) is the rate that occupied ride-sourcing vehicles within Region 𝑖 complete

their trips and become idle.
The evolution of the number of dispatched ride-sourcing vehicles over time is:

d𝑐D
𝑖𝑖 (𝑡)
d𝑡 = 𝑊 I-D

𝑖𝑖 (𝑡) +𝑊 T-D
𝑖𝑖 (𝑡) +

∑

𝑗∈U𝑖

𝑀D
𝑗𝑖 (𝑡) − 𝑏𝑖(𝑡) − 𝑅D

𝑖𝑖 (𝑡) ∀𝑖 ∈ R, (19)

d𝑐D
𝑖𝑗 (𝑡)

d𝑡 = 𝑊 I-D
𝑖𝑗 (𝑡) +𝑊 T-D

𝑖𝑗 (𝑡) −𝑀D
𝑖𝑗 (𝑡) − 𝑅D

𝑖𝑗 (𝑡) ∀𝑖 ∈ R and 𝑗 ∈ U𝑖, (20)

where 𝑐D
𝑖𝑖 and 𝑐D

𝑖𝑗 respectively denote the number of the dispatched ride-sourcing vehicles in Region 𝑖 with pickup location in Regions
𝑖 and 𝑗. 𝑊 I-D

𝑖𝑖 (𝑡) and 𝑊 I-D
𝑖𝑗 (𝑡) are the rates at which the matching method dispatches idle ride-sourcing vehicles in Region 𝑖 to Regions

𝑖 and 𝑗 at time 𝑡, respectively. 𝑊 T-D
𝑖𝑖 (𝑡) and 𝑊 T-D

𝑖𝑗 (𝑡) denote the rates that the matching method dispatches transferred ride-sourcing
vehicles in Region 𝑖 to Regions 𝑖 and 𝑗 at time 𝑡. Variables 𝑊 I-D

𝑖𝑖 (𝑡), 𝑊 I-D
𝑖𝑗 (𝑡), 𝑊 T-D

𝑖𝑖 (𝑡), and 𝑊 T-D
𝑖𝑗 (𝑡) are the solution of the dispatching

ubsystem (see Fig. 2) at each matching time instance. 𝑅D
𝑖𝑖 (𝑡) and 𝑅D

𝑖𝑗 (𝑡) are the cancellation rate of dispatched trips at time 𝑡 in Region
with final destinations (i.e., pickup locations) in Regions 𝑖 and 𝑗, respectively. They represent the cancellation of dispatched trips
efore and after crossing the boundary. For example, consider a ride-sourcing vehicle currently in Region 1 with the final dispatching
estination in neighboring Region 4. If the trip is canceled at time 𝑡 before crossing the boundary, it will be considered in 𝑅D

14(𝑡).
nce the ride-sourcing vehicle crosses the boundary and the trip gets canceled, it will be considered in 𝑅D

44(𝑡).
The number of the transferred ride-sourcing vehicles at each time is obtained from the following equations. We assume that the

ransferred ride-sourcing vehicles in Region 𝑖 complete their trips within Region 𝑖:

d𝑐T
𝑖𝑖(𝑡)
d𝑡 =

∑

𝑗∈U𝑖

𝑀T
𝑗𝑖(𝑡) −𝑀T

𝑖𝑖 (𝑡) −𝑊 T-D
𝑖𝑖 (𝑡) ∀𝑖 ∈ R, (21)

d𝑐T
𝑖𝑗 (𝑡)

d𝑡 = 𝑊 I-T
𝑖𝑗 (𝑡) −𝑀T

𝑖𝑗 (𝑡) −𝑊 T-D
𝑖𝑗 (𝑡) ∀𝑖 ∈ R and 𝑗 ∈ U𝑖, (22)

where 𝑊 I-T
𝑖𝑗 (𝑡) is the rate that idle vehicles in Region 𝑖 are advised to transfer to Region 𝑗 by the transfer controller. This external

manipulating (i.e., control) variable is obtained from the transfer subsystem to balance the number of idle ride-sourcing vehicles
and waiting passengers in the network. We propose a predictive controller in Part II to dynamically determine the optimum values
of 𝑊 I-T

𝑖𝑗 (𝑡).
The total number of idle ride-sourcing vehicles in Region 𝑖 is evolved based on the following equation:

d𝑐I
𝑖 (𝑡)
d𝑡 = 𝑞𝑐

+
𝑖 (𝑡) +𝑀O

𝑖𝑖 (𝑡) +𝑀T
𝑖𝑖 (𝑡) − 𝑞𝑐

−
𝑖 (𝑡) +

∑

𝑗∈{U𝑖 ,𝑖}
𝑅D
𝑖𝑗 (𝑡) −

∑

𝑗∈{U𝑖 ,𝑖}
𝑊 I-D

𝑖𝑗 (𝑡) −
∑

𝑗∈U𝑖

𝑊 I-T
𝑖𝑗 (𝑡) +𝑤I

𝑖(𝑡) ∀𝑖 ∈ R, (23)

here 𝑞𝑐+𝑖 (𝑡) is the rate of idle ride-sourcing vehicles exogenously enter to the network at time 𝑡. 𝑞𝑐−𝑖 (𝑡) denotes the rate of idle
ide-sourcing vehicles leaving the network at time 𝑡 because of finishing their working hours. 𝑀O

𝑖𝑖 (𝑡) and 𝑀T
𝑖𝑖 (𝑡) reflect the rate

f occupied and transferred ride-sourcing vehicles completing their trips and becoming idle. The total number of the idle ride-
ourcing vehicles becoming dispatched and transferred in Region 𝑖 are considered in ∑

𝑗∈U𝑖
𝑊 I-D

𝑖𝑗 (𝑡) and ∑

𝑗∈U𝑖
𝑊 I-T

𝑖𝑗 (𝑡) terms. Some
dle ride-sourcing vehicles prefer to park or cruise until they are dispatched to an assigned passenger. 𝑤I

𝑖(𝑡) is a stochastic term
hat represents the rate that idle vehicles enter (or leave) Region 𝑖 at time 𝑡 because of their random cruising; this might happen to
on-dispatched non-transferred idle vehicles that cruise around the boundary of regions. Intuitively, ∑𝑖∈R(𝑞

𝑐+
𝑖 (𝑡) − 𝑞𝑐−𝑖 (𝑡)) = 𝜌ex

c (𝑡),
hich is the (exogenous) rate that idle ride-sourcing vehicles leave from or enter into the network (see Eq. (4)). Moreover,
𝑖∈R 𝑀O

𝑖𝑖 (𝑡) +
∑

𝑖∈R
∑

𝑗∈{U𝑖 ,𝑖} 𝑅
D
𝑖𝑗 (𝑡) = 𝜌en

c (𝑡), which is the (endogenous) rate that occupied or dispatched vehicles become idle (see
q. (4)).

Based on Fig. 1, there are three states for the passengers in the proposed ride-sourcing system: (i) waiting passengers, (ii) assigned
assengers, and (iii) on-board passengers. The conservation of the on-board passengers over time is exactly similar to the occupied
ide-sourcing vehicles. However, we need to formulate the conservation of the number of waiting and assigned passengers. The
ollowing equations describe the dynamics of the waiting passengers:

d𝑝W
𝑖𝑖 (𝑡) = 𝑞𝑝

𝑊 +
(𝑡) − 𝑞𝑝

𝑊 −
(𝑡) −𝑊 W-A(𝑡) ∀𝑖 ∈ R, (24)
10
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a
𝑗
∑

a
𝑊

v

m

d𝑝W
𝑖𝑗 (𝑡)

d𝑡 = 𝑞𝑝
𝑊 +

𝑖𝑗 (𝑡) − 𝑞𝑝
𝑊 −

𝑖𝑗 (𝑡) −𝑊 W-A
𝑖𝑗 (𝑡) ∀𝑖 ∈ R and 𝑗 ∈ U𝑖, (25)

where 𝑝W
𝑖𝑖 (𝑡) and 𝑝W

𝑖𝑗 (𝑡) denote the number of waiting passengers in Region 𝑖 with destinations in Region 𝑖 and Region 𝑗 at time
𝑡, respectively. The exogenous rate of waiting passenger demand in Region 𝑖 traveling to Regions 𝑖 and 𝑗 are denoted by 𝑞𝑝

𝑊 +

𝑖𝑖 (𝑡)
nd 𝑞𝑝

𝑊 +

𝑖𝑗 (𝑡), respectively. 𝑞𝑝
𝑊 −

𝑖𝑖 (𝑡) and 𝑞𝑝
𝑊 −

𝑖𝑗 (𝑡) are the rate that waiting passengers in Region 𝑖 with destination in Regions 𝑖 and
leave the network at time 𝑡 because of their dissatisfaction with the ride-sourcing system. Intuitively, ∑𝑖∈R(𝑞

𝑝𝑊 +

𝑖𝑖 (𝑡) − 𝑞𝑝
𝑊 −

𝑖𝑖 (𝑡)) +

𝑖∈R
∑

𝑗∈U𝑖
(𝑞𝑝

𝑊 +

𝑖𝑗 (𝑡) − 𝑞𝑝
𝑊 −

𝑖𝑗 (𝑡)) = 𝜌p(𝑡), which is the rate of arrival of waiting passengers into the network (see Eq. (4)). The rate
t which the waiting passengers in Region 𝑖 with destinations in 𝑖 and 𝑗 become assigned at time 𝑡 are denoted by 𝑊 W-A

𝑖𝑖 (𝑡) and
W-A
𝑖𝑗 (𝑡), respectively. Parameters 𝑊 W-A

𝑖𝑖 (𝑡) and 𝑊 W-A
𝑖𝑗 (𝑡) are the outputs of the dispatching subsystem.

Finally, the number of assigned passengers is:

d𝑝A
𝑖𝑖 (𝑡)
d𝑡 = 𝑊 W-A

𝑖𝑖 (𝑡) − 𝑞𝑝
𝐴−

𝑖𝑖 (𝑡) − 𝑏𝑖𝑖(𝑡) ∀𝑖 ∈ R, (26)

d𝑝A
𝑖𝑗 (𝑡)

d𝑡 = 𝑊 W-A
𝑖𝑗 (𝑡) − 𝑞𝑝

𝐴−

𝑖𝑗 (𝑡) − 𝑏𝑖𝑗 (𝑡) ∀𝑖 ∈ R and 𝑗 ∈ U𝑖, (27)

where 𝑞𝑝
𝐴−

𝑖𝑖 (𝑡) and 𝑞𝑝
𝐴−

𝑖𝑗 (𝑡) are the rate of impatient assigned passengers in Region 𝑖 with trip destinations in Regions 𝑖 and 𝑗 canceling
their trips. The patience thresholds of passengers are set exogenously as stochastic parameters. 𝑞𝑝

𝐴−

𝑖𝑖 (𝑡) and 𝑞𝑝
𝐴−

𝑖𝑗 (𝑡) are endogenous
parameters that reflect one quality aspect of the dispatching and transfer subsystems. Effective dispatching and transfer subsystems
result in lower values of 𝑞𝑝

𝐴−

𝑖𝑖 (𝑡) and 𝑞𝑝
𝐴−

𝑖𝑗 (𝑡).

5. Results

In this section, we investigate the performance of the proposed vehicle–passenger matching method and evaluate the accuracy
of the proposed dynamic model using a ride-sourcing benchmark developed in Aimsun microsimulation. In Fig. 5, the interaction
between different modules of the developed benchmark is illustrated. The calibrated Aimsun microsimulation model of the city
center of Barcelona (Kouvelas et al., 2017) is plugged into the benchmark. The studied network approximately covers an area of 8.21
squared kilometers containing 1570 sections and 721 junctions. The simulation lasts for 180 [min] in which 2500 ride-sourcing trip
requests are considered. The Aimsun microscopic model includes other travel modes such as normal vehicles and public transport.
The Aimsun microscopic model updates the model state (e.g., position of normal and ride-sourcing vehicles, passengers, and buses)
every 0.5 [s]. In the following, first, we scrutinize the effects of the proposed vehicle–passenger matching method (see Section 3) in
comparison with variants of the optimal myopic method. Subsequently, we assess the accuracy of the proposed model (see Section 4).
The results of the designed controller for transferring idle vehicles are presented in the companion article.

5.1. Analysis of spatio-temporal filtering method

In this section, the proposed vehicle–passenger matching method is compared with optimal myopic and optimal myopic
with greedy discarding under noticeable variations of vehicle supply and passenger demand. In the proposed matching method,
spatio-temporal filtering method works in sequence after the optimal myopic matching to prune inefficient (long-distance) vehicle–
passenger matchings. Note that vehicle transferring (repositioning) is not considered in this part to avoid reporting the intertwined
effect of transferring with matching methods.

Fig. 6 illustrates the variation of the total number of passengers and ride-sourcing vehicles in 10 replications using the optimal
myopic matching method, without considering impatient vehicles and drivers, with different random initializations for each
replication. Furthermore, each replication contains considerable stochasticity in exogenous demand and supply rates. The exogenous
demand and supply used in each replication are set to reflect time-varying patterns and under- and over-supply periods.

The optimal myopic method dispatches vehicles to the passengers by solving Eq. (1) in each matching instance without discarding
long-distance matchings. This approach considers just the current state of the vehicles and passengers and is sensitive to a predefined
matching interval. Moreover, it does not consider the effects of traffic congestion and the dynamics of idle vehicles and waiting
passengers. Fig. 7 depicts the average of matching distances for different matching intervals. The results indicate that increasing the
matching interval results in lower average and variance of vehicle–passenger matching distances (i.e., shorter vehicle’s/passenger’s
reserved time). However, increasing the matching interval increases the unassigned time of vehicles and passengers, see Table 1.

Fig. 8 presents the average of matching distances using the matching with the greedy discarding method. The greedy method
prunes the outcomes of the optimal myopic by discarding 𝑘 long-distance vehicle–passenger matchings if they exceed the predefined
distance threshold. This approach only considers the current number and location of passengers and vehicles. The illustrated results
in Fig. 8 are obtained by choosing 𝑘 = 1 and distance threshold of 900 [m]. The distance threshold is determined using a cut-off
alue of 99% for considering potential outlier matchings, see Fig. 7. The effectiveness of the greedy method is quantified in Table 1.

In the proposed vehicle–passenger matching method, the time-varying optimum values of the matching interval and the
11

aximum matching distance are determined by solving Eq. (8) at each matching instance. Fig. 9 illustrates the number of waiting
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Fig. 5. Schematic interactions between the developed modules of the ride-sourcing microsimulation benchmark.

Fig. 6. The total number of passengers including waiting, assigned, and on-board and the total number of vehicles including idle, dispatched, and occupied in
10 replications.

passengers and idle vehicles in the network by implementing the adaptive spatio-temporal matching method. Fig. 10 elucidates how
the matching interval and the number of discarded matchings are intertwined in the proposed method.

To analyze the results of the adaptive spatio-temporal matching method, we segment the three-hour simulation results in five
time periods: (i) 𝛥𝑡1 ≈ [0 s, 720 s), (ii) 𝛥𝑡2 ≈ [720 s, 2400 s), (iii) 𝛥𝑡3 ≈ [2400 s, 7200 s), (iv) 𝛥𝑡4 ≈ [7200 s, 8400 s), and (v)
𝛥𝑡 ≈ [8400 s, 10 800 s]. In 𝛥𝑡 , the number of waiting passengers is decreasing and is greater than the number of idle vehicles,
12
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Fig. 7. Average of matching distances at each matching time using optimal myopic method with different matching intervals: (a) 15 s, (b) 30 s, (c) 45 s, and
(d) 60 s. The bars represent 2.5% and 97.5% percentiles.

see Fig. 9. Hence, the average optimum matching distance based on Eq. (9) must be increasing as shown in Fig. 10 (a). The average
matching distance moderately increases because the number of idle vehicles is much less than the number of waiting passengers.
In this time period, the number of discarded matching is high and increasing, as shown in Figs. 10 (c), because the density of
idle vehicles is low while the density of waiting passengers is decreasing. When the number of discarded matchings increases,
the matching time interval decreases, as shown in Fig. 10 (d), to compensate for the delay caused by discarded matchings in the
estimated total unassigned time (Eq. (3)) and the predicted total reserved time (Eq. (4)).

In 𝛥𝑡2 ≈ [720 s, 2400 s), the number of waiting passengers, which is greater than the number of idle vehicles, starts to increase
while the number of idle vehicles does not change significantly, see Fig. 9. Hence, as expected based on Eq. (9), the average optimum
matching distance decreases as in Fig. 10 (a). The number of idle vehicles is less than the number of waiting passengers, so the
number of idle vehicles bounds the number of the matchings. On the other side, as the number of waiting passengers increases,
the possibility of short-distance matchings is increased, which results in less discarded vehicle–passenger matching as illustrated
in Figs. 10 (c). Furthermore, the optimum value of the next matching interval is increased, see Fig. 10 (d), to compensate for the
effect of increasing the number of waiting passengers on the predicted total unassigned time (see Eq. (5)). Note that the method by
increasing the matching interval generates fewer discarded matches. This is because longer matching intervals increase the number
of idle vehicles and waiting passengers, which results in lower matching distances and discarding.

In 𝛥𝑡3 ≈ [2400 s, 7200 s), the numbers of idle vehicles and waiting passengers do not change notably. Hence, the average of
matching distances, number of discarded matching, and matching intervals do not fluctuate significantly. The idle vehicles and
waiting passengers trends in 𝛥𝑡4 ≈ [7200 s, 8400 s) are almost the same as 𝛥𝑡1. Hence, the same explanation is valid. The idle
vehicles and waiting passengers trends in 𝛥𝑡5 ≈ [8400 s, 10 800 s] are similar to 𝛥𝑡2 if we use idle vehicles and waiting passengers
interchangeably, because of the symmetric characteristic of the matching problem.

Table 1 presents the quantitative comparison of different matching methods. In this table, the total delay is the sum of reserved
13

time and unassigned time for vehicles and passengers (including impatient passengers and drivers who leave the ride-sourcing
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(

Fig. 8. Average of matching distances in each matching time using greedy discarding method with different matching intervals: (a) 15 s, (b) 30 s, (c) 45 s, and
d) 60 s. The bars represent 2.5% and 97.5% percentiles.

Fig. 9. (a) Total number of waiting passengers and (b) total number of idle vehicles by implementing the adaptive spatio-temporal matching method.

system.) Greater matching intervals decrease the average matching distance, reducing reserved time for vehicles and passengers.
However, this inflates the unassigned time of passengers and vehicles. The proposed method shows significant improvement in
14
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Fig. 10. Output of the adaptive spatio-temporal matching method: (a) average of matching distances after discarding, (b) average distance of discarded matchings,
c) number of discarded matchings, and (d) matching interval. The bars represent 2.5% and 97.5% percentiles and different dotted colors show different
eplications.

educing total delay. It is worth pointing out that the unassigned times of the vehicles in 15-second optimal myopic and 15-second
atching with greedy discarding are less than the proposed method because vehicles’ unassigned time only considers the vehicles

hat are successfully matched to waiting passengers.
The number of (impatient) passengers who leave the network before boarding (i.e., order cancellations) for each method is

eported in Table 1. These values are obtained by averaging over the ten replications. In these experiments, the patience times of
assengers are selected from a normal distribution with a mean value of 600 [s] and a variance of 135 [s2]. In addition, each driver’s

stochastic patience time threshold is randomly generated from a normal distribution with mean value of 1200 [s] and variance of 600
[s2]. The number of order cancellations utilizing the adaptive spatio-temporal method is lower than greedy discarding and optimal
myopic methods. Note that the total number of trip requests in each three-hour simulation replication is 2500. The numbers in
parenthesis show the percentage of change with respect to the average of optimal myopic methods (matching intervals of 15, 30,
45, and 60 [s]).

As shown in Fig. 6, from time 0 [min] to 130 [min], the total number of ride-sourcing vehicles is less than the total number
f passengers (i.e., under-supply period). The effect of the spatio-temporal matching method during this period is investigated in
able 2. In Table 3, the effect of the proposed method when the total number of ride-sourcing vehicles is greater than the total
umber of passengers, i.e., 130 [min] to 180 [min] (over-supply period), is evaluated. The comparison of Tables 2 and 3 reveals
hat the proposed method reduces the number of order cancellations, reserved time, passengers’ unassigned time, and total delay
n both under- and over-supply periods. For an under-supply market, the vehicles’ unassigned time is almost equal to the average
erformance of optimal myopic methods; however, the passengers’ unassigned time is reduced by 7.6%, and the order cancellation is
educed by 20.4%. It is noteworthy that the proposed method improves the quality of vehicle–passenger matchings more during the
15
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Table 1
Comparison of adaptive spatio-temporal method and variants of optimal myopic methods concerning reserved time, unassigned time, total delay, and the number
of order cancellations. The values are averaged over 10 replications. The matching interval for adaptive spatio-temporal method is time-varying and the reported
value is the average of the matching intervals. The numbers in parenthesis represent the percentage of changes with respect to the average performances of
optimal myopic method variants.

Matching
Interval [s]

Number of Order
Cancellation

Passengers’ Unassigned
Time [s]

Vehicles’ Unassigned
Time [s]

Vehicles/Passengers
Reserved Time [s]

Total Delay [s]

Mean SD Mean SD Mean SD Mean SD

Optimal Myopic (No Discarding) 15 49.9 143.7 134.1 38.6 167.9 93.9 85.5 457.3 183.3
Optimal Myopic (No Discarding) 30 53.3 151.7 137.8 45.5 174.6 91.4 83.1 482.2 196.7
Optimal Myopic (No Discarding) 45 47.0 157.4 139.7 51.6 159.7 90.0 81.4 500.9 184.7
Optimal Myopic (No Discarding) 60 48.4 158.9 139.2 55.7 139.8 87.7 81.3 501.0 172.5

Matching with Greedy Discarding 15 49.5 143.4 135.2 38.2 157.8 91.8 82.7 458.0 183.5
Matching with Greedy Discarding 30 50.9 150.1 136.4 44.8 162.8 91.4 81.7 476.8 182.3
Matching with Greedy Discarding 45 42.4 155.3 138.0 51.2 157.1 88.8 79.8 489.9 181.0
Matching with Greedy Discarding 60 47.1 158.3 138.8 58.3 171.3 86.8 81.7 503.7 183.8

Adaptive Spatio-Temporal Method 34.8 (Mean) 38.8 (−21.9%) 143.0 (−6.5%) 128.1 48.1 (−0.5%) 159.0 80.6 (−11.2%) 74.3 371.2 (−23.5%) 158.4

Table 2
Comparison of adaptive spatio-temporal method and variants of optimal myopic methods with respect to the reserved time, unassigned time, total delay, and
number of order cancellations for simulation time from 0 [min] to 130 [min] (i.e., under-supply period). The numbers in parenthesis represent the percentage
of changes with respect to the average performances of optimal myopic method variants.

Matching
Interval [s]

Number of Order
Cancellation

Passengers’ Unassigned
Time [s]

Vehicles’ Unassigned
Time [s]

Vehicles/Passengers
Reserved Time [s]

Total Delay [s]

Mean SD Mean SD Mean SD Mean SD

Optimal Myopic (No Discarding) 15 29.0 168.4 131.2 18.4 135.1 90.7 82.8 459.0 165.9
Optimal Myopic (No Discarding) 30 36.4 172.0 135.5 27.9 162.2 87.2 80.1 486.7 181.5
Optimal Myopic (No Discarding) 45 31.1 186.1 137.8 32.7 126.1 84.9 77.9 504.6 163.8
Optimal Myopic (No Discarding) 60 29.4 185.6 138.1 39.2 118.7 84.4 75.9 509.4 163.1

Matching with Greedy Discarding 15 34.7 172.6 132.3 18.8 128.7 87.9 79.9 460.7 164.2
Matching with Greedy Discarding 30 35.8 176.7 134.5 26.9 138.3 86.9 77.1 481.0 169.2
Matching with Greedy Discarding 45 28.1 182.2 136.6 33.9 145.0 85.1 75.4 496.4 172.5
Matching with Greedy Discarding 60 29.8 184.0 138.6 40.6 138.2 85.5 74.5 510.5 173.6

Adaptive Spatio-Temporal Method 36.0 (Mean) 25.3 (−20.4%) 164.8 (−7.6%) 130.3 29.8 (0.0%) 145.6 82.9 (−4.2%) 68.6 400.8 (−17.9%) 157.3

Table 3
Comparison of adaptive spatio-temporal method and variants of optimal myopic methods with respect to reserved time, unassigned time, total delay, and number
of order cancellations for simulation time between 130 [min] to 180 [min] (i.e., over-supply period). The numbers in parenthesis represent the percentage of
changes with respect to the average performances of optimal myopic method variants.

Matching
Interval [s]

Number of Order
Cancellation

Passengers’ Unassigned
Time [s]

Vehicles’ Unassigned
Time [s]

Vehicles/Passengers
Reserved Time [s]

Total Delay [s]

Mean SD Mean SD Mean SD Mean SD

Optimal Myopic (No Discarding) 15 20.9 8.3 6.9 114.7 122.6 111.7 94.3 372.7 144.3
Optimal Myopic (No Discarding) 30 16.9 16.5 14.0 104.0 123.9 112.4 91.8 363.6 146.5
Optimal Myopic (No Discarding) 45 15.9 24.3 16.7 108.1 129.5 114.1 92.0 376.8 148.1
Optimal Myopic (No Discarding) 60 19.0 32.3 22.2 112.2 125.8 103.1 84.0 365.7 142.2

Matching with Greedy Discarding 15 14.8 9.7 11.3 107.1 123.7 111.6 91.0 355.7 142.4
Matching with Greedy Discarding 30 15.1 17.9 15.11 102.7 131.2 113.9 88.2 367.3 151.0
Matching with Greedy Discarding 45 14.3 24.1 16.6 109.6 128.5 106.9 83.0 363.6 140.6
Matching with Greedy Discarding 60 17.3 33.4 24.2 113.9 126.1 104.8 83.7 376.8 150.4

Adaptive Spatio-Temporal Method 33.1 (Mean) 13.5 (−19.5%) 15.9 (−29.3%) 14.7 97.7 (−10.4%) 128.8 93.0 (−4.4%) 72.0 316.8 (−13.8%) 113.2

under-supply period. This supports the conjecture that the effect of matching algorithms on the system efficiency can be manifested
more in under-supplied markets because matching algorithms can enable the efficient use of resources.

5.2. Model validation

Traffic congestion is heterogeneous in the case study, which results in MFDs with noticeable scatter. As the developed
ormulations are based on MFDs, we need to partition the network into homogeneous regions to observe well-defined low-scatter
FDs. Fig. 11 (a) depicts the partitioning of the network into four homogeneous regions as suggested in Kouvelas et al. (2017) and

irmatel et al. (2021). To validate the proposed model, we consider inter-regional flows for ride-sourcing vehicles (i.e., transfer,
ispatched, and occupied) and passengers (i.e., assigned) between neighbor regions. We do not consider flows from/to non-
eighboring regions because the matching algorithm prevents long-distance matchings between idle/transfer ride-sourcing vehicles
nd waiting passengers in faraway regions. In addition, the travel requests are defined for the neighboring regions (that is, the
estination of the request is not in a non-neighboring region). This assumption is not very limiting for the case study microsimulation
etwork as Regions 1, 2, and 3 are not directly connected. Region 4 is the central region, and the other regions are peripheral. We
onsider the ride-sourcing travel requests from the central region to the peripheral regions and vice versa. However, in real practice,
16
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Fig. 11. (8) Homogeneous regions of the city center of Barcelona. Macroscopic Fundamental Diagram (MFD) for (b) Region 1, (c) Region 2, (d) Region 3, and
(e) Region 4. 𝑛𝑖 denotes the total accumulation including buses, ride-sourcing vehicles, and normal vehicles in Region 𝑖. Trip completion rate in Region 𝑖 is
denoted by 𝐺𝑖. The solid lines show the estimated MFD functions. The dotted colors illustrate the simulation results of different replications.

with different topology of regions, a general form of origins and destinations of ride-sourcing trips should be considered. This would
require defining more traffic states, which is a straightforward yet cumbersome extension of the proposed macro model.

We run the microsimulation model with different demand levels and initial states to obtain the regional MFDs. Figs. 11 (b)
to 11 (e) illustrate the simulated and estimated MFD functions. Different colors distinguish the results of different replications. The
17
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Fig. 12. Comparison of estimated and simulated evolution of the number of waiting passengers for: (a) Region 1, (b) Region 2, (c) Region 3, and (d) Region
4. The black solid lines show the estimated values of regional waiting passengers. The red dotted lines illustrate the simulation results.

Fig. 13. Comparison of estimated and simulated evolution of the number of assigned passengers for: (a) Region 1, (b) Region 2, (c) Region 3, and (d) Region
4. The black solid lines show the estimated values of regional assigned passengers. The red dotted lines illustrate the simulation results.

Fig. 14. Comparison of estimated and simulated evolution of the number of occupied vehicles for: (a) Region 1, (b) Region 2, (c) Region 3, and (d) Region 4.
The black solid lines show the estimated values of regional occupied vehicles. The red dotted lines illustrate the simulation results.

solid lines represent the estimated MFDs with the constrained least square method based on the simulated data. We use the estimated
MFDs in evaluating the proposed ride-sourcing model.

Figs. 12 to 16 assess the accuracy of the proposed macroscopic model of the ride-sourcing system with the adaptive spatio-
emporal matching method as the dispatching subsystem. This model validation aims to study the accuracy of macroscopic
ggregation of boarding rate with Cobb–Douglas meeting function in Eq. (10), homogeneity assumption in Eq. (11), and MFD
ynamics in Eqs. (12) to (16). Fig. 12 depicts the estimated number of waiting passengers (Eqs. (24) and (25)) and the simulated
umber of waiting passengers with dotted red lines. Root mean square error (RMSE) of estimated waiting passengers for regions 1
o 4 are: 1.51, 0.88, 0.82, and 2.17, respectively. The estimated values closely follow the simulated values because the exogenous
erms are dominant in estimating the number of waiting passengers in each region.

For model validation reported in these figures, two sets of information are fed to the model in addition to the exogenous inputs
i.e., the arrival rate of idle vehicles and waiting passengers): initial values of states and the rate of vehicle–passenger matchings.
he main sources of uncertainties in the model are (i) the initial location of new arriving idle vehicles and new passengers in each
egion, (ii) stochastic thresholds of patience time of passengers and drivers, and (iii) cruising movements of idle vehicles. Figs. 12
nd 16 show higher accuracy as the evolution of the waiting passengers and idle vehicles are dominated by exogenous inputs. The
odel cannot capture the abrupt variations in the number of assigned passengers and occupied vehicles (see Figs. 13 and 14). This

s because these states are estimated chiefly by MFD functions that are more valid under slow-varying conditions.
The estimated number of assigned passengers, based on Eqs. (26) and (27), and simulated number of assigned passengers in

egions 1–4 are compared in Fig. 13. The initial peaks in this Figure are due to the high number of idle vehicles and waiting
assengers that are considered in the matching procedure at the beginning of the simulation. The RMSE of estimated number of
18

ssigned passengers of regions 1 to 4 are: 5.66, 2.61, 2.59, and 8.42, respectively. Cobb–Douglas matching function that is used in



Transportation Research Part C 152 (2023) 104158M. Ramezani and A.H. Valadkhani
Fig. 15. Comparison of estimated and simulated evolution of the number of dispatched vehicles for: (a) Region 1, (b) Region 2, (c) Region 3, and (d) Region
4. The black solid lines show the estimated values of regional dispatched vehicles. The red dotted lines illustrate the simulation results.

Fig. 16. Comparison of estimated and simulated evolution of the number of idle vehicles for: (a) Region 1, (b) Region 2, (c) Region 3, (d) Region 4. The black
solid lines show the estimated values of regional idle vehicles. The red dotted lines illustrate the simulation results.

Eqs. (26) and (27) cannot accurately capture the number of assigned passengers when there are abrupt changes in the total number
of passengers (e.g., 15 [min] and 130 [min]), as shown in Fig. 6.

RMSE for estimated number of occupied vehicles (see Fig. 14), based on Eqs. (17) and (18), in regions 1 to 4 are: 4.86, 3.04,
3.24, and 8.57. The occupied vehicles are intrinsically a slow-varying component of ride-sourcing systems, so they can be accurately
estimated using MFDs and Cobb–Douglas functions. RMSE for estimated dispatched vehicles, based on Eqs. (19) and (20), in regions
1 to 4 are: 4.20, 8.21, 1.57, and 6.31, respectively. The estimated and the simulated number of dispatched vehicles are depicted in
Fig. 15. Similar to assigned passengers, the number of dispatched vehicles is dominated by the results of the dispatching subsystem
which lead to high variations.

Fig. 16 illustrates the comparison of the estimated idle vehicles, based on Eq. (23), and simulated idle vehicles. RMSE for
estimation of idle vehicles are: 3.93, 2.08, 4.06, and 4.39 for regions 1 to 4, respectively.

6. Summary and future research

This article has presented a dynamic macroscopic model and a matching method for ride-sourcing systems. The macroscopic
dynamical ride-sourcing model is developed for a network partitioned into a number of homogeneous regions and tracks the spatio-
temporal evolution of different states of ride-sourcing vehicles (i.e., transferred, idle, dispatched, and occupied) and passengers
(i.e., waiting and assigned) between regions. Impatient passengers and drivers are considered in the proposed model endogenously.
The non-equilibrium macroscopic model is built upon the Macroscopic Fundamental Diagram (MFD) and Cobb–Douglas matching
function. Contrary to the conventional approaches, we proposed a non-equilibrium model that overcomes the limitation of stationary
and steady-state analysis of the ride-sourcing systems. The model provides the capabilities of considering vehicle–passenger matching
scenarios and designing a controller to reposition idle ride-sourcing vehicles. The proposed macroscopic model is evaluated with
micro-level data utilizing a microsimulation benchmark of ride-sourcing systems. A Nonlinear Model Predictive Controller is
developed in Part II based on the model constructed in Part I of this study.

In addition to the proposed ride-sourcing model, we proposed an algorithm to dynamically determine the optimum matching
intervals and maximum matching distance to minimize passengers’ waiting time. The algorithm considered (i) the intertwined effect
of matching time interval and maximum matching distance, (ii) level of congestion of the network, and (iii) dynamics of waiting
passengers and idle/transferred vehicles to find the optimum values at each matching time instance. The validity of the macroscopic
model and the benefits of the matching method have been demonstrated with microsimulation.

Several future research directions are envisaged. The passengers and ride-sourcing vehicles arrival profiles can be modeled elastic
(in the short-term) to the market conditions (e.g. passengers’ and vehicle’s waiting time). This will lead to positive and negative
short-term induced demand and supply that requires more behavioral research on both sides of the market (Ramezani et al., 2022).
Furthermore, speed as an indicator of network congestion is considered an exogenous factor. Integrating the network congestion
indicator estimation from the ride-sourcing fleet (e.g., as probe vehicles) is another future research direction. Moreover, the effect of
19

competition between ride-sourcing companies on vehicle–passenger matching and repositioning is a challenging future study. The



Transportation Research Part C 152 (2023) 104158M. Ramezani and A.H. Valadkhani
proposed matching method relies on solving the matching problem of a bipartite graph. Scaling this to obtain the exact solution is
a challenge that requires further research (Bertsimas et al., 2019). Furthermore, extending the proposed framework, method, and
model to ride-splitting (ride-sharing) (e.g., see Jiao and Ramezani, 2022) is a research priority.
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Appendix. Nomenclature

Sets
R Set of homogeneous regions
U𝑖 Set of regions in the vicinity of Region 𝑖

Functions
𝑏𝑖𝑗 (𝑡) Vehicle boarding rate from Region 𝑖 to Region 𝑗 at time 𝑡
𝑃𝑖 Total trip production (MFD) in Region 𝑖

Parameters
𝑙O𝑖𝑗 (𝑡) Average trip length of occupied vehicles in Region 𝑖 with destination in Region 𝑗 at time 𝑡
𝑙T𝑖𝑗 (𝑡) Average trip length of transferred vehicles in Region 𝑖 with destination in Region 𝑗 at time 𝑡
𝑙D𝑖𝑗 (𝑡) Average trip length of dispatched vehicles in Region 𝑖 with destination in Region 𝑗 at time 𝑡
𝛼𝑖 Boarding function elasticity with respect to the number of dispatched vehicles in Region 𝑖
𝛽𝑖 Boarding function elasticity with respect to the number of assigned passengers in Region 𝑖
𝛾𝑖 Boarding function elasticity with respect to average speed of Region 𝑖
𝐾𝑖 Total productivity of boarding function in Region 𝑖

Variables
�̂�R(𝑡𝜄m) Estimated total reserved time of matchings at 𝑡𝜄m
�̂�D(𝑡𝜄m) Estimated total unassigned time of the waiting passengers at 𝑡𝜄m
�̂�R(𝑡𝜄+1m ) Predicted total reserved time for matchings at 𝑡𝜄+1m
�̂�D(𝑡𝜄+1m ) Predicted total unassigned time for waiting passengers at 𝑡𝜄+1m

�̂� 𝑡𝜄+1m −𝑡𝜄m
P Expected total passengers’ waiting time during interval [𝑡𝜄m, 𝑡𝜄+1m )

𝑚(𝑡𝜄m) Number of matchings before discarding of long-distance matchings at 𝑡𝜄m
𝑙𝑟(𝑡𝜄m) Average distance of optimal matchings after discarding at 𝑡𝜄m
̂̄𝑙𝑟(𝑡𝜄+1m ) Prediction of average matching distance
𝑟(𝑡𝜄m) Number of long-distance vehicle–passenger discardings at 𝑡𝜄m
𝜌c(𝑡𝜄m) Total arrival rate of idle/transferred vehicles during interval [𝑡𝜄m, 𝑡𝜄+1m )
𝜌p(𝑡𝜄m) Total arrival rate of waiting passengers during interval [𝑡𝜄m, 𝑡𝜄+1m )
𝑡max
m Upper bound for the next matching time instance
𝑐O
𝑖𝑗 (𝑡) Number of occupied vehicles in Region 𝑖 with destination in Region 𝑗 at time 𝑡
𝑐T
𝑖𝑗 (𝑡) Number of transferred vehicles in Region 𝑖 with destination in Region 𝑗 at time 𝑡
𝑐D
𝑖𝑗 (𝑡) Number of dispatched vehicles in Region 𝑖 with destination in Region 𝑗 at time 𝑡
𝑐I
𝑖 (𝑡) Number of idle vehicles in Region 𝑖 time 𝑡
𝑝W
𝑖𝑗 (𝑡) Number of waiting passengers in Region 𝑖 with destination in Region 𝑗 at time 𝑡
𝑝A
𝑖𝑗 (𝑡) Number of assigned passengers in Region 𝑖 with destination in Region 𝑗 at time 𝑡
𝑀O

𝑖𝑗 (𝑡) Occupied vehicle inter-region flow between Region 𝑖 and Region 𝑗 at time 𝑡
𝑀T

𝑖𝑗 (𝑡) Transferred vehicle inter-region flow between Region 𝑖 and Region 𝑗 at time 𝑡
𝑀D

𝑖𝑗 (𝑡) Dispatched vehicle inter-region flow between Region 𝑖 and Region 𝑗 at time 𝑡
𝑀O

𝑖𝑖 (𝑡) Occupied vehicle internal flow in Region 𝑖 at time 𝑡
𝑀T

𝑖𝑖 (𝑡) Transferred vehicle internal flow in Region 𝑖 at time 𝑡
𝑣𝑖(𝑡) Average speed of Region 𝑖
20
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�̂�(𝑡𝜄m) Estimated network average speed at time 𝑡𝜄m
𝑊 I-D

𝑖𝑗 (𝑡) Rate of idle vehicles in Region 𝑖 that are dispatched to Region 𝑗
𝑊 T-D

𝑖𝑗 (𝑡) Rate of transferred vehicles in Region 𝑖 that are dispatched to Region 𝑗
𝑊 I-T

𝑖𝑗 (𝑡) Rate of idle vehicles in Region 𝑖 that transfer to Region 𝑗
𝑊 W-A

𝑖𝑗 (𝑡) Rate of waiting passengers which become assigned in Region 𝑖 with destination in 𝑗 at time 𝑡
𝑅D
𝑖𝑗 Rate of cancellation of dispatched trips in Region 𝑖 with destination in 𝑗 at time 𝑡

𝑤I
𝑖(𝑡) Rate of idle vehicles that enter (or leave) Region 𝑖 at time 𝑡 because of their random cruising

𝑞𝑐+𝑖 (𝑡) Rate of idle ride-sourcing vehicles exogenously enter to the network in Region 𝑖 at time 𝑡
𝑞𝑐−𝑖 (𝑡) Rate of idle ride-sourcing vehicles leave the network from Region 𝑖 at time 𝑡
𝑞𝑝

𝑊 +

𝑖𝑗 (𝑡) Exogenous rate of waiting passenger demand in Region 𝑖 going to Region 𝑗 at time 𝑡

𝑞𝑝
𝑊 −

𝑖𝑗 (𝑡) Leaving rate of impatient unassigned passengers in Region 𝑖 with final destination in Region 𝑗 at time 𝑡

𝑞𝑝
𝐴−

𝑖𝑗 (𝑡) Leaving rate of impatient assigned passengers in Region 𝑖 with trip destination in Region 𝑗 at time 𝑡
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