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A B S T R A C T   

The use of electric buses is expected to rise due to its environmental benefits. However, electric vehicles are less 
flexible than conventional diesel buses due to their limited driving range and longer recharging times. Therefore, 
scheduling electric vehicles adds further operational difficulties. Additionally, various labor regulations chal-
lenge public transport companies to find a cost-efficient crew schedule. Vehicle and crew scheduling problems 
essentially define the cost of operations. In practice, these two problems are often solved sequentially. In this 
paper, we introduce the integrated electric vehicle and crew scheduling problem (E-VCSP). Given a set of 
timetabled trips and recharging stations, the E-VCSP is concerned with finding vehicle and crew schedules that 
cover the timetabled trips and satisfy operational constraints, such as limited driving range of electric vehicles 
and labor regulations for the crew while minimizing total operational cost. An adaptive large neighborhood 
search that utilizes branch-and-price heuristics is proposed to tackle the E-VCSP. The proposed method is tested 
on real-life instances from public transport companies in Denmark and Sweden that contain up to 1109 time-
tabled trips. The heuristic approach provides evidence of improving efficiency of transport systems when the 
electric vehicle and crew scheduling aspects are considered simultaneously. By comparing to the traditional 
sequential approach, the heuristic finds improvements in the range of 1.17–4.37% on average. A sensitivity 
analysis of the electric bus technology is carried out to indicate its implications for the crew schedule and the 
total operational cost. The analysis shows that the operational cost decreases with increasing driving range 
(120–250 km) of electric vehicles.   

1. Introduction 

The UN Paris climate agreement 2015 (United Nations Climate 
Change, 2015) that deals with mitigating greenhouse gas emissions 
worldwide influences policy makers and regulators to impose stringent 
emission standards. The European Union aims to reduce greenhouse gas 
emissions by at least 80% by 2050. Electric buses offer benefits such as 
improving overall air quality and reducing greenhouse gas emissions. 
The electric bus technology has been making its transition from niche to 
mainstream as its market share in Europe was estimated to be around 
9% in 2018 (Transport and Environment, 2018). Most major cities in 
Europe are part of the C40 Fossil Fuel Free Street Declaration (C40 
Cities, 2017) and have pledged to procure only zero-emission buses from 

2025; Paris aims to electrify all of its 4,500 buses by 2025, all Dutch 
provinces are committed to procuring only zero-emission buses from 
2025 (Transport and Environment, 2018) and Copenhagen city buses 
will be electric by 2025 (Copenhagen Capacity, 2019). Although electric 
buses provide significant environmental benefits, they are less flexible 
than the conventional diesel buses due to their limited driving range and 
longer recharging times (Transport and Environment, 2018). Public 
transport companies and authorities are now faced with the challenge of 
making strategic decisions, for example on investment in battery pack-
age, charging infrastructure and placement of charging points in the city 
network. 

Providing bus services requires solving several planning problems 
such as line planning, timetabling, vehicle scheduling and crew 
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scheduling. In practice, these problems are solved in a sequential 
manner since solving them in one integrated step is too complex. Given a 
public transportation network that describes the underlying streets and 
bus stops in a city, Schöbel (2012) defines a line as a path along which a 
bus service is offered. The frequency of a line says how often the bus 
service is offered along the line within a given time period (e.g. an hour). 
The line planning problem determines a set of lines and their respective 
frequencies based on passenger demand. Next, timetabling determines 
the departure and arrival times of trips at bus stops of all lines. Subse-
quently, in the vehicle scheduling problem (VSP), the timetabled trips 
are assigned to the available buses such that every trip is covered by a 
bus. The schedule of a single bus is referred to as a block. Similarly, the 
work of a crew member or driver for a day is called a duty. The crew 
scheduling problem (CSP) aims to cover all bus trips with a set of duties 
that satisfies numerous labor union regulations. The VSP and CSP are the 
primary drivers of operational cost, and the public transport companies 
aim to minimize the total operational cost. 

The VSP with multiple depots (MDVSP) is known to be an NP -hard 
problem (Bertossi et al. (1987)) and has been studied extensively in the 
Operations Research (OR) literature. Some examples include Carpaneto 
et al. (1989), Ribeiro and Soumis (1994), Hadjar et al. (2006) and Pepin 
et al. (2009). Since the use of electric buses is on the rise in most 
countries, studies have been carried out on the electric vehicle sched-
uling problem (E-VSP) that determines the schedules of buses under 
limited driving ranges and fixed charging locations (Li, 2013; Wen et al., 
2016; Adler and Mirchandani, 2017; van Kooten Niekerk, et al., 2017). 
Rogge et al. (2018) focus on strategic electric bus planning that mini-
mizes the total cost of ownership (TCO) of electric vehicle fleets. The 
TCO consists of the initial investments in vehicles and charging infra-
structure, as well as the operational cost within a defined time period. 
Here, the crew cost is estimated to be the time-related operational cost of 
a bus. However, the true impact of electric vehicles on the CSP has not 
been studied in the OR literature to the best of our knowledge. An in-
tegrated approach that simultaneously handles the conventional vehicle 
and crew scheduling aspects has provided benefits such as reduction in 
number of drivers required and total operational cost when compared to 
the traditional sequential approach (Freling et al., 2003; Huisman et al., 
2005; Borndörfer et al., 2008). Therefore, given the additional opera-
tional challenges of electric vehicles, integration of the E-VSP and CSP is 
an interesting field of research that could potentially contribute to 
improving the efficiency of transport systems. 

In this paper, we introduce the integrated electric vehicle and crew 
scheduling problem (E-VCSP). Given a set of timetabled trips and 
recharging stations, the E-VCSP is concerned with finding vehicle and 
crew schedules that cover the timetabled trips and satisfy operational 
constraints, such as limited driving range of electric vehicles and labour 
regulations for the crew while minimizing total operational cost. An 
adaptive large neighborhood search (ALNS) algorithm (Ropke and 
Pisinger, 2006) is proposed to solve the E-VCSP. ALNS is a metaheuristic 
that gradually improves an initial solution by destroying and repairing 
the solution repeatedly using multiple destroy and repair methods. 
ALNS has gained popularity in recent years and has been applied to 
many transportation and scheduling problems (see e.g. Pisinger and 
Ropke, 2007; Wen et al., 2016). Column generation, more precisely 
branch-and-price (B&P), is effective for solving large routing and 
scheduling problems (Lübbecke and Desrosiers, 2005). For the MDVSP, 
Pepin et al. (2009) studied the impact of utilizing a B&P heuristic as the 
repair method of an ALNS algorithm. The authors reported that 
combining the two methods provided high-quality solutions in short 
computation times. Similarly, in this paper, the ALNS algorithm relies 
heavily on B&P heuristic methods for exploration of large neighbor-
hoods. Real-life instances from public transport companies operating in 
cities in Denmark and Sweden are acquired to study the E-VCSP and 
evaluate the proposed ALNS algorithm. 

In summary, the contributions of this paper are i) the introduction 
and examination of the E-VCSP with aid of real-life instances, ii) the 

development of an ALNS algorithm, which utilizes B&P heuristic 
methods, to solve the E-VCSP and indicate potential benefits of inte-
grating the two scheduling problems when compared to the traditional 
sequential approach, and iii) a sensitivity analysis that provides mana-
gerial insights into the implications of the electric bus technology for the 
crew schedule and the total operational cost. 

The remainder of this paper is organized as follows. In Section 2, we 
give a detailed description of the existing literature on the E-VSP and the 
integrated vehicle and crew scheduling problem (VCSP). Section 3 de-
scribes the electric vehicle and crew operational rules considered in this 
study. In Section 4, the E-VCSP is described with the help of a mathe-
matical model. In Section 5, the methods for computing lower bounds 
and upper bounds in short computation times for the E-VCSP are dis-
cussed. The proposed ALNS heuristic is described in Section 6. Section 7 
evaluates the ALNS heuristic based on experiments performed on in-
stances from public transport companies in Denmark and Sweden. The 
section also discusses the practical impact of the limited driving range of 
electric vehicles on the crew schedule and the total operational cost. 
Finally, Section 8 concludes the paper and addresses future research 
directions. 

2. Related Literature 

The scheduling of electric vehicles in public transportation has been 
extensively studied in the recent literature. Li (2013) address the single- 
depot VSP for electric buses with battery swapping or fast charging at 
given battery stations. The author presents an arc formulation of the 
problem that includes maximum distance before recharging or battery 
renewal constraints. Any resource constrained VSP is known to be 
NP -hard (Bodin et al. (1983)). The arc model is solved using a com-
mercial mixed integer programming (MIP) solver. By applying Dantzig- 
Wolfe decomposition to the arc formulation, the problem is reformu-
lated as a set partitioning problem or a path-based model. The model is 
solved by means of column generation and a variable fixing strategy is 
used for solving large instances. The author tested the arc model and the 
column generation method on instances from a bus company in Bay 
Area, California that contained up to 947 timetabled trips. Two different 
values of maximum operational distance of electric buses (120 and 150 
km) are tested and the battery service time is set to 10 min. The author 
assumes that there exists one battery service station located at the depot 
and that it can service up to two vehicles at a time. For the large in-
stances, the linear programming (LP) relaxation of the arc model is not 
solved to optimality by the commercial MIP solver in 12 h. The column 
generation based method provided solutions that have an average 
optimality gap of 7% and the average computation time is found to be 
72 h. Adler and Mirchandani (2017) present the alternative-fuel MDVSP, 
where a set of fueling stations and fuel capacity for the vehicles are 
considered. A B&P algorithm and a heuristic that is based on the con-
current scheduler algorithm (Bodin et al., 1978) are proposed to solve 
the problem. Instances from a bus company in Phoenix, Arizona are used 
to evaluate both methods. The buses are assumed to have a range of 120 
km before needing to be refueled and the refueling time is set to 10 min. 
However, the B&P algorithm is tested only on subsets of the original 
data, which contained 4,373 timetabled trips. The subsets of the data 
had up to 72 trips, eight refuelling stations and four depots. The B&P 
algorithm took between two and 12 h of computation time to solve the 
small instances. The heuristic took less than a second, but the average 
optimality gap is found to be 11.80%. Wen et al. (2016) address the E- 
VSP with full or partial recharging at any of the given recharging sta-
tions. The driving range of the vehicle is set to 150 km. The recharging 
process of the battery is assumed to be linear and a complete charging 
from empty to full takes two hours. The authors propose an ALNS heu-
ristic for solving the E-VSP. The method is tested on instances with up to 
500 trips, eight depots and 16 stations. The authors use the optimal 
solutions of the MDVSP as lower bounds to evaluate the ALNS heuristic. 
The heuristic provided solutions in less than 15 min and the average gap 
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is found to be less than 7%. van Kooten Niekerk, et al. (2017) incorpo-
rate non-linear charging behaviour of the batteries and time-dependent 
prices of energy in the E-VSP. The authors present column generation 
algorithms that are based on LP and Lagrangian relaxations. The 
methods are tested on instances from a bus company operating in 
Leuven, Belgium that contained up to 543 trips, one depot and four 
charging locations. Rogge et al. (2018) present the electric vehicle 
scheduling fleet size and mix problem with optimization of charging 
infrastructure, where the objective is to minimize the total cost of 
ownership of electric vehicle fleets. Given a set of timetabled trips and 
vehicle types, the problem determines the vehicle schedule to serve all 
trips and investment decisions such as the number of vehicles to buy per 
vehicle type. The charging infrastructure is considered to be installed at 
the depot and hence, the problem also focuses on the number of chargers 
to buy per depot. The authors propose a group genetic algorithm in 
combination with a MIP formulation. The authors tested the method on 
instances from two cities (Aachen, Germany and Roskilde, Denmark) 
and the instances had up to 200 trips. 

In recent years, there has been an increasing focus on integrating two 
or more public transport planning problems. Several approaches have 
been proposed to integrate timetabling and the VSP, where the overall 
goal is to improve passenger service and reduce operational cost of ve-
hicles (see e.g. Ibarra-Rojas et al., 2014; Fonseca et al., 2018). Schöbel 
(2017) designs an iterative sequential algorithm to integrate line plan-
ning, timetabling and the VSP. The need to integrate the VSP and CSP 
was first recognized in the 1980s (Ball et al., 1983), since the crew cost 
was known to dominate the vehicle cost. For transport systems in 
Northern Europe, the crew cost contributes to approximately 60% of the 
total operational cost (Perumal et al., 2019). The cost structure neces-
sitates the need for an integrated planning approach rather than a 
sequential approach which may lead to an inefficient crew schedule. 

Methods in the OR literature for tackling the integrated vehicle and 
crew scheduling problem (VCSP) fall into two categories, namely partial 
and complete integration. Inclusion of crew considerations in the VSP 
and inclusion of vehicle considerations in the CSP are determined as 
partial integration methods. For an overview on partial integration 
methods, see Freling et al. (2003). Friberg and Haase (1999) propose an 
exact algorithm for the VCSP, where both the vehicle and crew aspects 
are formulated as a set partitioning problem. A branch-and-price-and- 
cut algorithm is proposed, where column generation and cut genera-
tion are combined in a branch-and-bound procedure. The authors tested 
the methodology on instances that contained up to 30 trips. However, 
only few instances with 20 trips could be solved to optimality within a 
reasonable computation time of five hours. Only the LP relaxation could 
be solved for the instance with 30 trips. Haase et al. (2001) also propose 
an exact approach for solving the single depot case of the VCSP. The 
authors present a set partitioning model with side constraints that only 
involves crew variables. Inclusion of vehicle cost and the side constraints 
in the formulation ensure that an overall optimal solution is found after 
deriving a compatible vehicle schedule. The model is solved by a B&P 
algorithm. For solving large instances, a heuristic version is devised 
where the branch-and-bound (B&B) tree is explored in a depth-first 
manner without backtracking. The method is tested on instances that 
contained up to 350 trips and the maximum integrality gap is found to 
be 1.5%. Freling et al. (2003) are the first authors to tackle complete 
integration of vehicle and crew scheduling problems of practical size. 
The authors are also the first to make a comparison between the inte-
grated and the traditional sequential approaches. The mathematical 
formulation of the single depot VCSP is a combination of a quasi- 
assignment formulation for the VSP, and a set partitioning formulation 
for the CSP. The authors propose a solution approach that is based on 
Lagrangian relaxation in combination with column generation. The 
columns that are generated to compute the lower bound are used to 
construct a feasible solution either by heuristic approaches or using a 
commercial MIP solver. The authors used subgradient optimization to 
solve the Lagrangian dual problem approximately. Instances from RET, 

the public transport company in Rotterdam, the Netherlands, were ob-
tained to test the proposed method. The instances contained up to 238 
trips. The primary objective was to minimize the sum of vehicles and 
drivers used in the schedule. The proposed integrated approach pro-
vided savings of at most one driver when compared to the sequential 
approach. Huisman et al. (2005) consider the VCSP with multiple depots 
and extend the solution approach proposed by Freling et al. (2003). Real 
life instances from the largest bus company in the Netherlands were 
obtained to test the method. The instances had up to 653 trips and four 
depots. The results showed that the integrated approach has a significant 
impact when compared to the traditional sequential approach; for an 
instance with 220 trips, the integrated approach provided a solution 
with 10 drivers less than that of the sequential approach. Borndörfer 
et al. (2008) propose a similar method to that of Freling et al. (2003) and 
Huisman et al. (2005) to solve the VCSP. However, the authors use 
bundle techniques for the solution of Lagrangian relaxations. The au-
thors applied the proposed method to real life instances of a German 
city, Regensburg, which had up to 1,414 trips. The objective function 
used by the authors is a mix of fixed and variable vehicle cost, fixed cost 
and paid time of duties and various penalties related to operational re-
quirements of the CSP. For the largest instance, an improvement of 
3.69% in the objective value was provided by the integrated approach 
when compared to that of the sequential approach. 

Steinzen et al. (2010) present a new modeling approach for the VCSP 
that is based on a time–space network representation of the underlying 
vehicle scheduling problem. The authors also propose a column gener-
ation method based on Lagrangian relaxation. Furthermore, a heuristic 
B&P method is proposed to construct feasible solutions. The authors 
tested the proposed solution approach on randomly generated instances 
considered by Huisman et al. (2005) that contained up to 400 trips and 
four depots. The proposed solution approach outperforms the ap-
proaches of Huisman et al. (2005) and Borndörfer et al. (2008) in terms 
of solution quality and computation time. Kliewer et al. (2012) inves-
tigate an extension of the VCSP that involves the application of time 
windows, where the timetabled trips can be shifted within a specified 
interval. The extension can be seen as a partial integration of timetabling 
into the VCSP that offers further flexibility for scheduling vehicles and 
crews. The authors extend the solution approach proposed by Steinzen 
et al. (2010) and state that trip shifting enables additional break possi-
bilities between trips for the drivers. Even with very short time windows 
(up to four minutes) for the timetabled trips, the authors show that 
enormous savings in the number of planned vehicles and drivers can be 
achieved. 

In this paper, we utilize a B&P heuristic that explores the B&B tree in 
a depth-first manner without backtracking. Such an approach has been 
applied for solving the MDVSP (see e.g. Desaulniers et al., 1998; Pepin 
et al., 2009), the E-VSP (see e.g. Li, 2013; van Kooten Niekerk, et al., 
2017) and the VCSP (Haase et al., 2001). Furthermore, we adapt the 
approach proposed by Pepin et al. (2009) that embeds a B&P heuristic in 
an ALNS heuristic. In the E-VSP literature, the recharging duration and 
the limited driving range of the electric buses have commonly been re-
ported as the most critical constraints (see e.g. Li, 2013; Wen et al., 
2016). In this paper, we incorporate the critical constraints of the E-VSP 
into the VCSP. Additionally, in the VCSP literature, researchers have 
shown that the efficiency of transport systems in terms of operational 
cost can be improved by applying an integrated approach. Huisman 
et al. (2005) and Borndörfer et al. (2008) have considered real-life in-
stances for the VCSP that contain up to 653 and 1,414 timetabled trips, 
respectively. However, the main drawback of the integrated approach 
has been reported to be the immense increase in computation time; for 
the largest instance tackled by Borndörfer et al. (2008), the integrated 
approach had a computation time of 125 h, whereas the computation 
time of the sequential approach was only eight hours. We consider real- 
life instances that contain up to 1,109 timetabled trips and, similar to the 
studies conducted in the VCSP literature, we aim to compare our inte-
grated approach to the traditional sequential approach. By tackling the 
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E-VCSP, we contribute valuable findings to the OR community and the 
public transport industry. 

3. Problem Description 

Let L be the set of lines and T be the set of timetabled trips that need 
to be covered by vehicles and drivers. Each line l ∈ L consists of a set of 
timetabled trips denoted by Tl⊆T. Each trip t ∈ T is defined by a de-
parture bus stop, arrival bus stop, departure time and arrival time. A 
block, which represents the schedule of a vehicle, covers a subset of 
trips. The VSP determines the set of blocks that covers all timetabled 
trips T. Each block always starts with an empty move, i.e. a move 
without passengers, from the depot and ends with an empty move to the 
depot. Additionally, empty moves are placed between trips that do not 
end and start at the same bus stop. These empty moves are often referred 
to as deadheads. The cost of a block includes a fixed cost and a variable 
cost that is based on the total distance, in kilometers (km), covered by 
the vehicle during the day. In a multiple depot setting, the VSP typically 
includes only one operational constraint that requires the vehicles to 
start and end at the same depot. In this study of the E-VSP, similar to Li 
(2013), only one depot is investigated and the following operational 
rules are considered to ensure feasibility of an electric vehicle or E- 
vehicle schedule:  

1. Maximum distance without recharging 
An E-vehicle can cover a limited distance (km) before it has to be 

recharged at any of the given recharging stations.  
2. Minimum recharging duration 

Traditional plug-in charging at the depot and pantograph charging 
at bus stops are the two most common charging infrastructures 
(Transport and Environment, 2018). In this paper, only the depot 
charging facility is considered. Furthermore, this paper considers 
only full battery recharging with a minimum recharging duration. 
We assume that the E-vehicles are fully charged at the start of the day 
and that there are no restrictions on the number of E-vehicles that 
can be simultaneously recharged. 

Each timetabled trip has to be assigned to a driver. Additionally, if a 
deadhead is used in the final vehicle schedule then it needs to be 
assigned to a driver as well. The cost of a driver duty includes a fixed cost 
and a variable cost that is based on the number of hours the driver works 
during the day. Labor unions often impose various regulations that 
govern the working conditions of the drivers. The following operational 
rules are considered to ensure feasibility of a crew schedule:  

1. Maximum duration of a duty 
Duration of a duty is defined as the period of time between the 

start and end of a driver’s duty. The duration of a driver’s duty can 
never exceed a certain limit. Additionally, drivers are required to 
start and end their duties at the same depot. A driver could travel by 
foot or car between bus stops and the depot in order to start/end 
duty. However, the travel activities are also considered to be part of 
the driver’s duty.  

2. Minimum break duration 
A driver often has multiple break periods during the day. A min-

imum duration is considered for a break and, in most cases, breaks 
are allowed only at certain bus stops.  

3. Maximum duration without break 
The maximum duration without break rule ensures that drivers 

have sufficient breaks during their working period.  
4. Maximum number of vehicle changes 

A driver duty typically consists of trips on multiple vehicles. A 
driver could potentially make several vehicle changes during the 
day. Too many vehicle changes could lead to operational challenges 
and hence, a maximum number of vehicle changes per driver duty is 
imposed. 

Essentially, a vehicle change interchanges responsibilities for a 
vehicle between two drivers. A takeover is described as an event 
when a driver accepts responsibility for the vehicle. A handover is 
described as an event when a driver is relieved of his/her re-
sponsibility for the vehicle.  

5. Continuous attendance of vehicles 
An idle time is defined as the time a vehicle is idle at a bus stop 

other than the depot. In most cases, a vehicle is idle for a brief period 
between the end and start of two consecutive trips. The continuous 
attendance of vehicles rule ensures that a driver is always present 
when a vehicle is outside the depot. In this study, it is assumed that 
drivers are allowed to have a break while attending to a vehicle when 
it is idle and the minimum break duration rule is satisfied. Further-
more, since only depot charging is considered, a driver need not 
attend to the vehicle when it is being recharged. 

The aim of the E-VCSP is to minimize the total cost of E-vehicle and 
crew schedules that cover the set of timetabled trips T and satisfy all of 
the operational rules. 

4. Mathematical Formulation 

Two network models are created for the E-VCSP; one for the E-ve-
hicles and one for the crew. The underlying network of the E-vehicles is a 
directed acyclic network GEVSP = (VEVSP,AEVSP), where each vertex v ∈

VEVSP represents a trip and an arc (i, j) ∈ AEVSP indicates that trip j can 
immediately be covered by a vehicle after performing trip i. Addition-
ally, artificial source oEVSP ∈ VEVSP and sink sEVSP ∈ VEVSP vertices are 
created. An arc from oEVSP denotes the first pull-out deadhead from the 
depot and an arc to sEVSP denotes the last pull-in deadhead to the depot of 
a vehicle. All deadheads, idle times and recharging activities are placed 
on the arcs of the network. Fig. 1 illustrates an example of the E-vehicle 
scheduling network. The figure primarily illustrates the different kinds 
of arcs in the network and does not represent the complete network. As 
shown in the figure, all the activities are created a priori under certain 
assumptions. We allow for pull out/in deadheads to/from all trips. In 
order to avoid long waiting times for the drivers that are attending to a 
vehicle when it is idle, we consider to only include an idle time if the 
duration is less than or equal to a certain threshold, i.e. an hour. Addi-
tionally, it is assumed that if the idle time lasts longer than an hour and 
there is enough time for the vehicle to be fully recharged, then the 
corresponding deadheads to and from the depot and recharging activ-
ities are performed between two trips. If the activities between two trips 
include a deadhead and an idle time, we consider to place the deadhead 
before the idle time. The different lines, given by L, service different 
areas in the city and the bus stops of different lines may be far apart. In 
this study, we only include a deadhead between the trips if the distance 
is less than or equal to a certain limit, i.e. 10 km. However, trips that are 
distant from each other are connected by an arc that represents dead-
heads to and from the depot and a recharging activity. F denotes the set 
of all deadheads and I denotes the set of all idle times in the E-vehicle 
network. Each deadhead f ∈ F has a departure bus stop/depot, arrival 
bus stop/depot, departure time and arrival time. Similarly, each idle 
time i ∈ I is characterized by a start and end time at a bus stop. 

Let c1
ij be the cost associated with arc (i, j) ∈ AEVSP and c1

v be the cost 
associated with vertex v ∈ VEVSP. Furthermore, eij and ev denote the 
distance covered by a vehicle in (i, j) ∈ AEVSP and v ∈ VEVSP, respectively. 
A binary parameter kij is used to indicate if arc (i, j) ∈ AEVSP includes a 
recharging activity or not. If kij is equal to 1, then the total distance of the 
arc eij is calculated as the sum of the distance covered before recharging, 
uij, and the distance covered after recharging, rij. A path that respects the 
recharging requirements from oEVSP to sEVSP represents a block and its 
cost is considered to be the sum of the costs of all vertices and arcs in the 
path. 

All the deadheads, idle times and recharging activities from the E- 
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vehicle scheduling network are used in creating the crew scheduling 
network, which is also a directed acyclic network GCSP = (VCSP,ACSP). 
Each vertex v ∈ VCSP refers to a pair of a location and a time, i.e. v = (vl,

vt) where vl denotes the location and vt denotes the time associated with 
the vertex. In this case, vl of vertex v ∈ VCSP corresponds to the depar-
ture/arrival bus stop/depot of a trip or deadhead and vt of vertex v ∈

VCSP corresponds to the departure/arrival time of a trip or deadhead. 
Additionally, artificial source oCSP ∈ VCSP and sink sCSP ∈ VCSP vertices 
are created. Each arc (i, j) ∈ ACSP represents a movement of the driver in 
time or in space and time dimensions. There are four types of arcs in the 
network namely, duty sign on/off, driving/attending to a vehicle, 
vehicle change and recharging arcs. The driving/attending to vehicle 
and recharging arcs are related to the activities in the E-vehicle sched-
uling network. The duty sign on/off and the vehicle change arcs are 
additionally built in the crew scheduling network. The descriptions of 
the four types of arcs are as follows:  

1. Duty sign on/off arcs 
Duty sign on/off arcs correspond to the arcs from oCSP and to sCSP 

that indicate the duty sign-on and sign-off activities of a driver at the 
depot. Furthermore, these arcs may also include travel activities for 
the drivers that allow them to travel between bus stops and the 
depot. The travel activity can be carried out by foot or by car. Duty 
sign-on arcs are created from oCSP to all vertices that represent the 
departure/arrival time and bus stop of a trip or deadhead. Duty sign- 
off arcs are created from all vertices that represent the arrival time 
and bus stop of a trip or deadhead to sCSP.  

2. Driving/attending to vehicle arcs 
The driving arcs represent the trips and the deadheads. In a trip arc 

(i,j) ∈ ACSP, i denotes the departure time and bus stop of the trip and j 
denotes the arrival time and bus stop of the trip. Similarly, in a 
deadhead arc (i,j) ∈ ACSP, i denotes the departure time and bus stop/ 
depot of the deadhead and j denotes the arrival time and bus stop/ 
depot of the deadhead. Similar arcs are used to represent a driver 
attending to a vehicle and correspond to the idle times, where (i, j) ∈
ACSP represents the start and end of an idle time at a bus stop. If there 
is enough idle time, then the driver is allowed to have a break at the 
bus stop and the break activity is placed on the arc.  

3. Vehicle change arcs 
These arcs represent a driver making a vehicle change. In this 

study, we assume that a driver can be relieved of responsibility for a 
vehicle at the end of a trip or a deadhead; this is known as a handover 
event. Similarly, a driver can accept responsibility for a vehicle at the 
end of a trip or a deadhead and this is known as a takeover event. We 
construct arcs that connect the handover and the takeover events in 
the network. Therefore, in a vehicle change arc (i,j) ∈ ACSP, i denotes 

the arrival time and bus stop/depot of a trip or deadhead and j de-
notes the arrival time and bus stop/depot of another trip or dead-
head. Travel activities are placed on the arcs to allow the driver to 
travel between bus stops during a vehicle change. Additionally, 
break activities are also placed on the arcs if there is enough time for 
the driver to have a break at the bus stop before the takeover event.  

4. Recharging arcs 
A recharging arc represents a recharging activity for the vehicle. 

As mentioned earlier, a driver need not attend to a vehicle while it is 
being recharged. Hence, a driver can be relieved of his/her duty, take 
a break, or change vehicle during a recharging activity. 

Figure 2 illustrates an example of the crew scheduling network that is 
created using the activities from the E-vehicle scheduling network in 
Fig. 1. Similar to Fig. 1, Figure 2 also primarily illustrates the different 
kinds of arcs in the network and does not represent the complete 
network. 

In the crew scheduling network, all the resources such as the cost and 
time are consumed on the arcs. Let c2

ij be the cost associated with arc (i,
j) ∈ ACSP. The total duration of the activities on arc (i, j) ∈ ACSP is 
denoted as mij. A binary parameter qij is used to indicate if the arc (i, j) ∈
ACSP includes a break activity or not. If qij is equal to 1, then gij represents 
the time spent on activities before the break on arc (i, j) ∈ ACSP and hij 

represents the time spent on activities after the break. Similarly, wij is a 
binary parameter that indicates if arc (i, j) ∈ ACSP includes a vehicle 
change or not. A path that satisfies the duty requirements from oCSP to 
sCSP represents a duty and its cost is the sum of cost of all arcs in the path. 

In this paper, we adapt the mathematical model presented by Friberg 
and Haase (1999) for the VCSP. The authors formulate the VCSP as a set 
partitioning problem with additional constraints that link the vehicle 
and crew schedules. Table 1 describes the notation used in the mathe-
matical model for the E-VCSP. A block b ∈ B indicates a feasible path in 
the E-vehicle scheduling network as shown in Fig. 1. Similarly, a duty 
d ∈ D indicates a feasible path in the crew scheduling network as shown 
in Fig. 2. 

The mathematical formulation of the E-VCSP is as follows: 

Minimize
∑

b∈B
c1

b⋅yb +
∑

d∈D
c2

d⋅xd (1) 

subject to, 
∑

b∈B
a1

tb⋅yb = 1 ∀t ∈ T (2)  

∑

d∈D
a2

td⋅xd = 1 ∀t ∈ T (3)  

Fig. 1. An example of the E-vehicle scheduling network. A block is a feasible path from the source to the sink vertex. The figure primarily illustrates the different 
kinds of arcs in the network and does not represent the complete network. 

S.S.G. Perumal et al.                                                                                                                                                                                                                           



Computers and Operations Research 132 (2021) 105268

6

∑

d∈D
a4

fd⋅xd −
∑

b∈B
a3

fb⋅yb = 0 ∀f ∈ F (4)  

∑

d∈D
a6

id⋅xd −
∑

b∈B
a5

ib⋅yb = 0 ∀i ∈ I (5)  

yb ∈ {0, 1} ∀b ∈ B (6)  

xd ∈ {0, 1} ∀d ∈ D (7) 

The objective of the E-VCSP, given by (1), is to minimize the total 
operational cost. Constraints (2) and (3) ensure that every trip is covered 
by exactly one block and one duty respectively. Constraints (4) ensure 
that duties are selected to cover deadheads that are utilized by blocks in 
the solution. Constraints (5) satisfy the continuous attendance of vehicle 
rule, where a duty is selected to cover an idle time corresponding to a 
block in the solution. The model contains |B| +|D| variables and 
2|T| +|F| +|I| constraints. In practice, often additional side constraints 
such as a maximum number of allowed blocks and duties are present. 

5. Lower Bounds and Fast Upper Bounds 

In this section, we discuss methods for computing lower bounds and 
fast upper bounds for the E-VCSP. An integrated approach that solves the 
LP relaxation of the integrated mathematical model, given by Equations 
(1)-(7), to optimality is described in Section 5.1. The optimal LP 
objective value given by the integrated approach is denoted as ZIntegrated. 
Another method of computing a lower bound is an independent 
approach, where the linking constraints (4) and (5) are relaxed and the 
optimal LP solutions of the E-VSP and the CSP are found independently. 
Their respective optimal LP objective values are added afterwards to 
give an overall lower bound for the E-VCSP. The independent approach 
is described in Section 5.2 and the resulting lower bound is denoted as 
ZIndependent . However, the integrated approach is considered to provide 
stronger or improved lower bounds when compared to that of the in-
dependent approach. In this paper, we denote ZLB as the best known 
lower bound for a given instance of E-VCSP. 

A method to compute an upper bound for the E-VCSP in short 
computation time is the traditional sequential approach that solves the 
E-VSP first and then the CSP. Section 5.3 describes the sequential 
approach and the objective value provided by the sequential approach is 
denoted as ZSequential. The potential benefit of integration is measured by 
comparing the solution of the traditional sequential approach (ZSequential) 
to the best known lower bound (ZLB). The optimal objective value of the 
E-VCSP is denoted as Z∗. Fig. 3 gives an overview of the lower and upper 
bounds provided by the different methods, and 
ZIndependent⩽ZIntegrated⩽Z∗⩽ZSequential. 

5.1. Integrated approach 

The formulation (1)-(7) cannot be handled explicitly with all feasible 
blocks and duties. Column generation is commonly used to tackle 
problems with a large number of variables. The integrality constraints 
(6) and (7) are relaxed and the problem decomposes into a master 
problem and one or more subproblems. The master problem is initialized 
with a subset of variables (or columns) and is referred to as restricted 
master problem (RMP). On solving the RMP, the dual information is 
obtained: πt ,αt , σf andγi denote the duals of constraints (2)–(5), respec-
tively. The subproblems are responsible for generating columns that are 
not included in the RMP, but have the potential of decreasing the RMP’s 
objective value. The subproblems utilize the dual information from the 
RMP to identify negative reduced cost columns. Column generation is an 
iterative framework between the master and subproblem, which ter-
minates when there are no more negative reduced cost columns. The set 
of block and duty variables in the RMP are denoted as B′andD′ , 

Table 1 
Description of the notation used in the mathematical model for the E-VCSP.  

Notation Description 

T  Set of timetabled trips. 
F  Set of deadheads. 
I  Set of idle times. 
B  Set of all blocks. 
D  Set of all duties. 

c1
b  Cost of block b ∈ B.  

c2
d  Cost of duty d ∈ D.  

A1  Binary matrix, where a1
tb is 1 if block b ∈ B covers trip t ∈ T and is 

0 otherwise.  

A2  Binary matrix, where a2
td is 1 if duty d ∈ D covers trip t ∈ T and is 

0 otherwise.  

A3  Binary matrix, where a3
fb is 1 if block b ∈ B contains deadhead f ∈ F and is 

0 otherwise.  

A4  Binary matrix, where a4
fd is 1 if duty d ∈ D contains deadhead f ∈ F and is 

0 otherwise.  

A5  Binary matrix, where a5
ib is 1 if block b ∈ B contains idle time i ∈ I and is 

0 otherwise.  

A6  Binary matrix, where a6
id is 1 if duty d ∈ D contains idle time i ∈ I and is 

0 otherwise.  
yb  Binary variable that indicates if block b ∈ B is selected as part of the 

schedule or not.  
xd  Binary variable that indicates if duty d ∈ D is selected as part of the 

schedule or not.   

Fig. 2. An example of the crew scheduling network that is created using the activities from the E-vehicle scheduling network in Fig. 1. A duty is a feasible path 
from the source to the sink vertex. 
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respectively. The reduced cost of a block b ∈ B is calculated as follows: 

c1
b = c1

b −
∑

t∈T
a1

tb⋅πt +
∑

f∈F
a3

fb⋅σf +
∑

i∈I
a5

ib⋅γi (8) 

Similarly, the reduced cost of a duty d ∈ D is calculated as follows: 

c2
d = c2

d −
∑

t∈T
a2

td⋅αt −
∑

f∈F
a4

fd⋅σf −
∑

i∈I
a6

id⋅γi (9) 

For the E-VCSP, there are two subproblems; one that generates block 
variables and another that generates duty variables. The reduced costs can be 
distributed over the arcs and vertices in the graph, which is used for gener-
ating the variables. Let BP be the set of new blocks generated by the sub-
problem at each iteration of the column generation method that have 
negative reduced cost, i.e. c1

b < 0∀b ∈ BP. Similarly, let DP be the set of new 
duties generated by the subproblem that have negative reduced cost, i.e. 
c2

d < 0∀d ∈ DP. At each iteration, BP and DP are added to B′ and D′ , respec-
tively. As mentioned in Section 4, the set of deadheads F and the set of idle 
times I are created a priori. However, in our column generation method, we 
do not include all the deadheads and idle times in the RMP. The deadheads 
and idle times are added to the RMP when they are part of any columns in BP 

and DP at each iteration. Let F′ and I′ be the set of deadheads and idle times in 
the RMP. FP denotes the set of deadheads to be added to F′ at each iteration, 
which is determined as FP = {f ∈ F⧹F’ ∣ there exists b ∈ BP ∨ d ∈

DP such that (a3
fb = 1 ∨ a4

fd = 1)}. Similarly, the set of idle times to be 
added to I′ is determined as IP = {i ∈ I⧹I’

⃒
⃒ there exists b ∈ BP ∨ d ∈

DP such that (a5
ib = 1 ∨ a6

id = 1)}. For a given instance, the sizes of F and I 
are expected to be large. For the largest instance considered in this study, the 
number of deadheads and idle times is estimated to be over 17,000 each, and 
this corresponds to the number of linking constraints in the mathematical 
model. However, in the final schedule, it is reasonable to expect that only a 
small percentage of the deadheads and idle times will be utilized. Therefore, 
adding all the deadheads and idle times to the RMP may not be necessary. 
More importantly, the column generation method does not necessarily 
consider all the linking constraints when the deadheads and the idle times are 
dynamically added to the RMP. The number of constraints in the RMP is 
2|T| +|F′

| +|I′ | and the number of variables in the RMP is |B′

| + |D′

|. Hence, 
the computational time of the RMP is expected to increase during the 
progress of the algorithm due to the increasing number of variables and 
constraints. 

Each subproblem is formulated as a shortest path problem with 
resource constraints (SPPRC) that is solved using a label-setting algo-
rithm. The underlying networks of the SPPRC for the E-vehicle and crew 
subproblems are given by GEVSP and GCSP, respectively. The label-setting 
algorithm constructs partial paths from the source vertex of a network in 
the form of labels that hold information regarding the consumption of 
resources along the path. The algorithm mainly consists of three com-
ponents namely, resource extension functions (REFs), resource windows 
and dominance rules. The accumulation of all resources along a path is 
handled by the REFs. Resource windows are responsible for ensuring the 
feasibility of the generated path. The dominance rules discard un-
promising labels and this is done in order to avoid enumerating all 
feasible paths. For more information on the SPPRC and the label-setting 
algorithm, see Irnich and Desaulniers (2005). The label-setting algo-
rithm components for the E-vehicle subproblem are as follows:  

1. Resource extension functions (REFs) 
A label of path p at vertex i ∈ VEVSP is denoted as lpi = (Cp

i , Ep
i ), 

where Cp
i is the accumulated reduced cost of path p at vertex i and Ep

i 
is the accumulated distance covered since last recharge. The re-
sources are initialized to zero at the source vertex oEVSP, i.e. loEVSP =

(0,0). For a given arc (i,j) ∈ AEVSP, the resources of path p are updated 
as follows:  
• Reduced cost: Cp

j = Cp
i + c1

ij + c1
j , where c1

ij is the reduced cost of 
arc (i, j) and c1

j is the reduced cost of vertex j. The reduced cost of 
arc (i, j) is calculated as: 

c1
ij = c1

ij +
∑

f∈F
a3

fij⋅σf +
∑

g∈I
a5

gij⋅γg,

where c1
ij is the cost of arc (i,j), a3

fij is a binary parameter that indicates 
if arc (i, j) contains deadhead f ∈ F and a5

gij is a binary parameter that 
indicates if arc (i, j) contains idle time g ∈ I. σf and γg denote the dual 
variables of constraints (4) and (5), respectively. The reduced cost of 
vertex j is calculated as: 

c1
j = c1

j −
∑

t∈T
a1

tj⋅πt,

where c1
j is the cost of vertex j, a1

tj is a binary parameter that indicates 
if vertex j represents trip t ∈ T and πt denotes the duals of constraints 
(2). 

The reduced cost of the arcs and vertices are updated at each 
iteration of the column generation algorithm.  
• Distance covered since last recharge: 

Ep
j =

rij + ej, if kij = 1
Ep

i + eij + ej, otherwise
,

where kij is a binary parameter that indicates if the arc includes a 
recharging activity or not, rij is the distance covered after recharging 
on arc (i, j), eij is the distance covered on the arc (i, j) and ej is the 
distance covered on vertex j.  
2. Resource windows 

A resource window describes the minimum and maximum resource 
consumption allowed in a path. To generate a feasible path that respects 
the charging requirements, the following resource window is imple-
mented:  

• Distance covered since last recharge: Ep
i ∈ [0,maxDrivingRange] ∀

i ∈ VEVSP so that Ep
i of path p at vertex i will never exceed 

maxDrivingRange. Additionally, a feasibility check is placed on arc 
(i, j) ∈ AEVSP if kij = 1, i.e. Ep

i + uij⩽maxDrivingRange, where uij is 
the distance covered before recharging on the arc.  

3. Dominance rules 
Multiple labels can be stored at vertex i ∈ VEVSP. Given two such 

labels l1i and l2i , we say that l1i dominates l2i if: 

C1
i ⩽C2

i (10)  

E1
i ⩽E2

i (11) 

Fig. 3. Lower and upper bounds for the E-VCSP. ZIndependent and ZIntegrated denote the lower bounds provided by the independent and the integrated approaches, 
respectively. ZSequential represents the objective value of the sequential approach. Z∗ denotes the optimal objective value, and ZIndependent⩽ZIntegrated⩽Z∗⩽ZSequential. 
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and at least one of the equations is a strict inequality. In this case, 
label l

2
i can be discarded: Every feasible extension of the path rep-

resented by l
2
i is also a feasible extension of the path represented by 

l
1
i , due to (11), and the reduced costs of the extension from l

1
i are not 

higher than those of the extension from l
2
i by (10). If both equations 

(10) and (11) are satisfied with equality for two labels, we only keep 
the one that was created first. 

The label-setting algorithm returns a set of labels at sEVSP ∈ GEVSP that 
represent feasible blocks. However, we consider a maximum of 500 
blocks to be added to B′ and the selection criterion is based on the 
reduced cost of the generated blocks. 

The label-setting algorithm components for the crew subproblem are 
as follows:  

1. Resource extension functions (REFs) 
A label of path p at vertex i ∈ VCSP is denoted as lpi = (Zp

i ,M
p
i ,H

p
i ,

Wp
i ), where Zp

i is the accumulated reduced cost, Mp
i is the accumu-

lated duration, Hp
i is the accumulated time since last break and Wp

i is 
the accumulated number of vehicle changes. The resources are 
initialized similar to the algorithm for the E-vehicles and the re-
sources of path p along arc (i, j) ∈ ACSP are updated as follows:  
• Reduced cost: Zp

j = Zp
i + c2

ij, where c2
ij is the reduced cost of arc (i,j). 

c2
ij = c2

ij −
∑

t∈T
a2

tij⋅αt −
∑

f∈F
a4

fij⋅σf −
∑

g∈I
a6

gij⋅γg,

where c2
ij is the cost of arc (i,j), a2

tij is a binary parameter that indicates 
if arc (i, j) contains trip t ∈ T, a4

fij is a binary parameter that indicates 
if arc (i, j) contains deadhead f ∈ F, a6

gij is a binary parameter that 
indicates if the arc (i, j) contains idle time g ∈ I and αt denotes the 
duals of constrains (3). 
• Duration: Mp

j = Mp
i + mij, where mij is the total duration of ac-

tivities on arc (i, j).  
• Time since last break: 

Hp
j =

hij, if qij = 1
Hp

i + mij, otherwise
,

where qij is the binary parameter that indicates if the arc includes a 
break or not and hij is the total time spent on activities after a break 
on arc (i, j).  
• Number of vehicle changes: Wp

j = Wp
i + wij, where wij is the binary 

parameter that indicates if the arc includes a vehicle change or not.  
2. Resource windows 

The following resource windows are implemented to generate 
feasible paths that satisfy all duty requirements:  
• Duration: Mp

i ∈ [0,maxDuration] ∀i ∈ VCSP.  
• Time since last break: Hp

i ∈ [0,maxTimeWithoutBreak] ∀i ∈ VCSP. 
Additionally, a feasibility check is placed on arc (i, j) ∈ ACSP if qij =

1, i.e. Hp
i + gij⩽maxTimeWithoutBreak, where gij is the time spent 

on activities before break on the arc.  
• Number of vehicle changes: Wp

i ∈ [0,maxVehicleChanges] ∀i ∈ VCSP.  
3. Dominance rules 

Label l1i dominates l2i if: 

Z1
i ⩽Z2

i (12)  

M1
i ⩽M2

i (13)  

H1
i ⩽H2

i (14)  

W1
i ⩽W2

i (15)  

and at least one of the equations is a strict inequality. In this case, 
for similar reasons as for the E-vehicle subproblem, label l

2
i can be 

discarded. Again, if all equations are satisfied with equality for two 
labels, we only keep the one that was created first. 

Similar to the label-setting algorithm for the E-vehicle subproblem, a 
set of labels at sCSP ∈ GCSP is returned that represent feasible duties. 
Similarly, a maximum of 500 duties with negative reduced cost is added 
to D′ at each iteration of the column generation algorithm. 

Since the RMP is an LP model, the block and duty variables can be 
assigned fractional values. Hence, in most cases, column generation 
terminates with a fractional solution. However, the LP objective value 
(ZIntegrated) is determined to be a lower bound to the E-VCSP. 

5.2. Independent approach 

The independent approach is a lower bound technique that was 
proposed by Freling et al. (2003) to evaluate the solution of the 
sequential approach. In the independent approach, an independent CSP 
(ICSP) is formulated that completely ignores the vehicle considerations 
in the problem. The linking constraints, given by Equations (4) and (5), 
in the model are relaxed to decouple the E-VSP and ICSP. Since the 
vehicle schedule is not given, the possible set of duties is much larger in 
the ICSP formulation than in the CSP. A lower bound to the E-VCSP can 
be computed by independently solving the E-VSP and ICSP by column 
generation and adding their respective optimal LP objective values. We 
use the label-setting algorithms described in Section 5.1 for solving the 
subproblems of the column generation method. The independent 
approach would provide lower bounds (ZIndependent) in short computation 
time. However, the bounds are not only believed to be weaker but are 
provably non-stronger than the lower bounds provided by the integrated 
approach described in Section 5.1. Since the integrated approach deals 
with a large number of constraints, it might be intractable for solving 
large instances. In that case, optimal LP solutions cannot be found in 
reasonable computation time. On such cases, the independent approach 
could be used to obtain the best lower bound (ZLB). 

5.3. Sequential approach 

The sequential approach is commonly used in practice to compute a 
feasible solution (ZSequential). However, one should note that the 
sequential approach does not always guarantee feasibility; i.e. a feasible 
crew schedule that satisfies all the labor regulations may not exist with 
respect to the vehicle schedule constructed in the first phase. To find 
feasible solutions for the E-VSP and the CSP, we utilize the B&P heuristic 
applied by Desaulniers et al. (1998),Pepin et al. (2009) and Li (2013) for 
solving large scheduling problems. In the B&P heuristic, the column 
generation method is embedded in a B&B framework and the B&B 
search tree is explored in a depth-first manner without backtracking. 

The E-VSP model only includes the constraints (2) and the objective 
is to minimize the operational cost of vehicles, i.e. 

∑
b∈Bc1

b ⋅yb. In the B&P 
heuristic version, variables (yb) that have values above a certain 
threshold are fixed to 1 at each node of the B&B tree. In this paper, all 
variables that have values greater than or equal to 0.8, i.e. yb⩾0.8, are 
fixed to 1. If there are no such variables, then the variable with the 
fractional value closest to 1 is selected and fixed to 1. Furthermore, at 
each node of the B&B tree, we utilize the label-setting algorithm 
described in Section 5.1 to generate block variables. When a variable yb 
is fixed to 1, all the trips that the variable covers are removed from the E- 
vehicle subproblem. This only reduces the size of the graph and the 
label-setting algorithm can be applied directly without any adjustments. 
Therefore, the branching constraints will not have any impact on the 
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label-setting algorithm. 
All deadheads and idle times that are in the final solution of the E- 

VSP are passed to the CSP, where the objective is to minimize 
∑

d∈Dc2
d ⋅xd. 

Hence, the CSP includes constraints (3), an adapted subset of constraints 
(4) to ensure that each deadhead in the E-VSP solution is covered by a 
duty and an adapted subset of constraints (5) to ensure that each idle 
time in the solution is covered by a duty. Moreover, GCSP is adapted to 
contain only the deadheads and idle times in the final solution of the E- 
VSP so that it could be used for the column generation method. The CSP 
has also been commonly solved by column generation approaches (see e. 
g. Desrochers and Soumis, 1989). Similar to the E-VSP, a heuristic B&P 
version for solving the CSP is implemented to attain integer solutions. 
Duty variables (xd) that have fractional values greater than or equal to 
0.8 are fixed to 1. If there are no such variables, then the variable with 
the fractional value closest to 1 is selected and fixed to 1. When a var-
iable xd is fixed to 1, all trips, deadheads and idle times that the variable 
covers are removed from the crew subproblem. The label-setting algo-
rithm described in Section 5.1 is utilized to generate duty variables at 
each node of the B&B tree. 

Since the E-VSP and the CSP are computationally hard problems to 
solve, the sequential approach of solving the E-VCSP could still be very 
time consuming. The input for the E-VCSP is the set of trips T, which is 
partitioned into different lines that are given by L. Hence, a sequential 
approach could be applied for each individual line l ∈ L that contains 
only a subset of trips Tl. Such an approach is seen as a construction 
heuristic that generates initial solutions in very short computation times. 

6. Adaptive Large Neighborhood Search 

In this section, we give a detailed description of our adaptive large 
neighborhood search (ALNS) heuristic for the E-VCSP. The solution 
obtained from the ALNS heuristic is denoted as ZALNS. In this study, the 
sequential solution (ZSequential) is used as a benchmark to evaluate the 
performance of the ALNS heuristic. 

ALNS is a based on a local search framework, such as simulated 
annealing (SA) or a hill climber (HC), that was proposed by Ropke and 
Pisinger (2006). The main idea of the ALNS heuristic is to move from one 
solution to a neighboring solution by repeatedly selecting and applying a 
destroy and a repair method from a set of destroy and repair methods. 
The set of neighboring solutions of a current solution is referred to as a 
neighborhood. In ALNS, a neighborhood is implicitly defined by a 
destroy and a repair method. For more information on ALNS, see 
Pisinger and Ropke (2019). In this paper, we adapt the ALNS method 
utilized by Pepin et al. (2009) for solving the MDVSP. At each iteration 
of the ALNS heuristic, the authors remove some blocks from the current 
solution and repair the destroyed solution using a B&P heuristic. Addi-
tionally, the authors use a HC framework that only accepts improving 
solutions, and the authors report that the ALNS heuristic provides high- 
quality solutions. 

In this paper, we propose a solution approach for the E-VCSP that has 
multiple neighborhoods utilizing B&P heuristics to repair the solution. 
The first neighborhood focuses only on destroying and repairing the 
crew schedule. The B&P heuristic for solving the CSP, which is described 
in Section 5.3, is used in this neighborhood. We denote this neighbor-
hood as n-CSP. The second neighborhood involves a sequential 
approach that initially repairs the destroyed vehicle schedule using the 
B&P heuristic for the E-VSP and then repairs the CSP. We denote the 
second neighborhood as n-Sequential. The third neighborhood utilizes 
the integrated column generation approach described in Section 5.1, 
and a B&P heuristic is implemented to find feasible solutions. One of the 
main advantages of the ALNS heuristic is that it makes the integrated 
approach tractable by using it to repair only a smaller problem of the E- 
VCSP at each iteration. The third neighborhood is denoted as n-Inte-
grated. All the three neighborhoods use the label-setting algorithms, 
described in Section 5.1, for generating variables in the B&P repair 

heuristics. Most commonly, in an ALNS heuristic, multiple destroy and 
repair methods are defined in such a way that a destroy method can be 
combined with any repair method, and vice versa (see e.g. Pisinger and 
Ropke, 2007). However, in this paper, n-CSP involves a different destroy 
method that is not applicable for the other neighborhoods, and vice 
versa. Therefore, to simplify our solution approach, we propose to define 
a unique combination of a destroy and a repair method for each 
neighborhood. Furthermore, similar to Pepin et al. (2009), our ALNS 
heuristic is based on a HC framework. One of the advantages of such a 
framework is that it has fewer parameters to calibrate when compared to 
a SA framework.  

Algorithm 1: Adaptive Large Neighborhood search 
1 Initialization: 
2 s← InitialSolution (), s*←s;  
3 ρ← InitialWeights();  
4 Ω← InitialScores();  
5 ν← InitialAttempts();  
6 While stop criteria not met do 
7 Select neighborhood n ∈ N using ρ;  
8 s′← Repair(Destroy(s,n));  
9 if Accept (s, s′ ) then  
10 s←s′;  
11 end 
12 if f(s′) < f(s*) then  
13 s*←s′;  
14 end 
15 Ω← UpdateScores (ψ,n);  
16 ν← UpdateAttempts (n);  
17 if update criteria met then 
18 ρ← UpdateWeights (Ω, ν, λ);  
19 Ω ← ResetScores(); 
20 ν ← ResetAttempts(); 
21 end 
22 end 
23 return s*   

Algorithm 1 gives an overview of the ALNS procedure. The current 
solution is denoted as s, the neighboring solution is denoted as s′ and the 
best solution is denoted as s*. An initial solution is computed, which 
serves as input to the heuristic. The sequential approach for each indi-
vidual line l ∈ L that is described in Section 5.3 can be used to obtain an 
initial solution quickly. Alternatively, the sequential approach can be 
applied to the entire problem with all trips T to obtain an initial solution, 
which is known to take more time. A set of neighborhoods N is defined 
and each n ∈ N is assigned a modifiable weight ρn. A neighborhood n ∈

N is selected to perform a destroy and repair operation on the current 
solution at each iteration of the ALNS heuristic. The probability of a 
neighborhood being selected is determined as shown in Equation (16). A 
roulette wheel principle is used to select a neighborhood at each iteration. 

ζn =
ρn

∑

q∈N
ρq ∀n ∈ N (16) 

At the start of the heuristic, the weights of the neighborhoods are 
initialized to 1. For each n ∈ N, Ωn denotes the accumulated score and νn 

denotes the number of times it has been selected. At each iteration, the 
chosen neighborhood n is awarded a score of ψ , which is added to Ωn. 
The quality of the neighboring solution s′ obtained is used to evaluate 
the chosen neighborhood. The HC acceptance criterion is used that only 
accepts improving solutions. A score of ψ1 is rewarded to the selected 
neighborhood if it finds a new best solution, else a score of ψ2 is given 
(ψ1 > ψ2⩾0). Every time the heuristic performs a certain number of it-
erations (μ), the weights of the neighborhoods are updated as follows: 

ρn =

(

1 − λ
)

⋅ρn + λ⋅
Ωn

νn ∀n ∈ N (17) 

The degree of change in weights is controlled by the reaction factor 
λ ∈ [0, 1]. After performing μ iterations, νn and Ωn are reset to 0. 
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Typically, a maximum number of iterations is used as the stopping cri-
terion of the heuristic. In this paper, the heuristic is terminated when the 
weights converge below a certain tolerance level, i.e. ρn < ∊ ∀n ∈ N. If 
all the weights, calculated by Equations (17), converge below a very low 
tolerance level, such as 0.01, then it indicates that an improvement has 
not been registered for several iterations and the heuristic, most likely, 
has reached a locally optimal solution. Additionally, the heuristic is 
terminated if it reaches a maximum computation time of maxtime. 

6.1. Neighborhoods 

Given a solution, let B and D be the set of blocks and duties in the 
solution. Three neighborhoods are defined for the E-VCSP and are as 
follows:  

1. n-CSP: Random removal of duties and repair CSP 
The neighborhood is defined by randomly removing a set of duties 

from the current solution and repairing it using the heuristic B&P 
method for the CSP that is described in Section 5.3. Let DR denote the 

set of removed duties and 
⃒
⃒
⃒DR

⃒
⃒
⃒ = ξ1⋅

⃒
⃒
⃒D

⃒
⃒
⃒, where ξ1 is the degree of 

destruction parameter. After the removal of duties, D is updated as 
D = D⧹DR. The duties in the destroyed solution remain fixed in the 
B&P setting, i.e. xd = 1 ∀d ∈ D. Additionally, to speed up the solu-
tion process, we use an early termination criterion in the B&P heu-
ristic. The column generation algorithm at each node of the B&B tree 
is terminated if the LP objective has not improved by 0.001% in the 
last 10 iterations. Therefore, the nodes are not solved to optimality.  

2. n-Sequential: Random removal and repair by sequential 
approach 

The current solution is destroyed by randomly removing blocks 
and their corresponding duties. The destroyed solution is repaired by 
a sequential approach, where the E-VSP is repaired first and then the 
CSP. BR denotes the set of removed blocks. The number of blocks to 
be removed, 

⃒
⃒BR

⃒
⃒, is controlled by the parameter ξ2 and is determined 

as 
⃒
⃒
⃒BR

⃒
⃒
⃒ = ξ2⋅

⃒
⃒
⃒B
⃒
⃒
⃒. Trips, deadheads and idle times associated with the 

removed blocks need to be determined in order to remove the duties. 
The set of trips to be removed from the solution is represented as 
TR = {t

⃒
⃒ a1

tb = 1, t ∈ T, b ∈ BR}. The set of deadheads to be 

removed from the solution is represented as FR = {f
⃒
⃒
⃒ a3

fb = 1, f ∈ F,

b ∈ BR}. Similarly, the set of idle times to be removed is represented 
as IR = {i

⃒
⃒ a5

ib = 1, i ∈ I, b ∈ BR}. The set of duties to be removed is 

determined as DR = {d
⃒
⃒
⃒ a2

td = 1, t ∈ TR, d ∈ D} ∪ {d
⃒
⃒
⃒ a4

fd = 1,

f ∈ FR, d ∈ D} ∪ {d
⃒
⃒
⃒ a6

id = 1, i ∈ IR, d ∈ D}. Sets B and D are 

updated as B = B⧹BR and D = D⧹DR. Both the E-VSP and the CSP are 
repaired using the heuristic B&P method described in Section 5.3 and 
the variables in the solution remain fixed in their respective prob-
lems, i.e. yb = 1 ∀b ∈ B and xd = 1 ∀d ∈ D. Similar to n-CSP, an early 
termination criterion is used in the B&P setting for both the E-VSP 
and the CSP. 

3. n-Integrated: Worst (and random) removal and repair by inte-
grated approach 

Let Durt denote the duration of trip t ∈ T in minutes, which is 
calculated from the departure and arrival time of t. A function δ is 
used to evaluate the duties in the solution and δd is determined as 

c2
d∑

t∈T
a2

td ⋅Durt
∀d ∈ D. Similarly, function Δ is used to evaluate blocks in 

the solution and Δb is determined as c1
b∑

t∈T
a1

tb⋅Distt
∀b ∈ B, where Distt is 

the distance of trip t ∈ T in km. Since a fixed and variable cost is 
associated with blocks and duties, it is preferable that the blocks and 
duties in the solution are efficient. A high value of Δ and δ indicates 
the inefficiencies of blocks and duties with respect to the amount of 

distance and time spent in covering the timetabled trips. As part of 
the intensification strategy, some of the inefficient blocks and duties 
are considered to be removed from the solution. The parameter ξ3 
controls the degree of worst removal and the removal operation is 
carried out in the following three steps,  

• Initially, a duty candidate list of size ξ3⋅
⃒
⃒
⃒D

⃒
⃒
⃒ is created by selecting 

duties in the descending order of δd ∀d ∈ D. A random duty dc is 
selected from the candidate list and added to the set of duties to be 
removed, DR. Blocks that are associated with duty dc with respect 
to trips, deadheads and idle time are determined and added to the 
set of blocks to be removed, BR. The blocks in the solution are 
updated as B = B⧹BR.  

• Secondly, a block candidate list of size ξ3⋅
⃒
⃒
⃒B
⃒
⃒
⃒ is created by selecting 

blocks in the descending order of Δb ∀b ∈ B. A random block bc is 
selected from the candidate list and added to BR.  

• If 
⃒
⃒
⃒BR

⃒
⃒
⃒ < ξ3⋅

⃒
⃒
⃒B
⃒
⃒
⃒, then random blocks are selected from B and added 

to BR until 
⃒
⃒
⃒BR

⃒
⃒
⃒ = ξ3⋅

⃒
⃒
⃒B
⃒
⃒
⃒. The set of duties to be removed DR is 

updated based on BR as described in n-Sequential. Finally, B and 
D are updated as B = B⧹BR and D = D⧹DR. 

At the start of the heuristic, one may find many inefficient blocks 
and duties in the solution. The worst removal operation attempts 
to tackle such inefficiencies. However, during the course of the 
heuristic, further diversification strategies may be needed to reach 
unexplored parts of the solution space of the E-VCSP. Therefore, a 
pure random removal operation is proposed after the heuristic 
performs η iterations. The removal operation is similar to that of n- 
Sequential and is controlled by parameter ξ3. In both cases, the 
solution is repaired by the integrated approach described in Sec-
tion 5.1. A heuristic B&P method is devised to find integer solu-
tions. A mixed branching rule that initially fixes block variables 
and then the duty variables is implemented. Similar to the other 
neighborhoods, the variables in the destroyed solution remain 
fixed, i.e. yb = 1 ∀b ∈ B and xd = 1 ∀d ∈ D. One of the drawbacks 
of the integrated approach is that it is very time consuming. Hence, 
a time limit (ntime) is kept at every node of the B&B tree, which 
means that the nodes might not be solved to optimality. 

Fig. 4 shows the flowchart of the ALNS heuristic for solving the E- 
VCSP. 

Similar to n-Integrated, the worst (and random) destroy operator 
has been tested as part of n-CSP and n-Sequential. The destroy opera-
tors are evaluated in Section 7.4. One of the main drawbacks of our 
solution approach, is the computation time required to repair a solution. 
The repair methods of the ALNS heuristic are typically fast construction 
heuristics such as basic greedy and regret heuristics that have been 
widely applied to the vehicle routing problem and its extensions (see e.g. 
Pisinger and Ropke, 2007). However, more complex repair methods 
such as ones that use MIP solvers have been integrated into the ALNS 
heuristic to provide high-quality solutions for tightly constrained 
problems (see e.g. Muller et al., 2012; Perumal et al., 2019). Similarly, 
we believe that the B&P repair heuristics can provide high-quality so-
lutions for the E-VCSP. In this study, we also experimented with a basic 
greedy construction heuristic that is used in n-CSP and n-Sequential. 
The greedy heuristic is related to the concurrent scheduler algorithm 
that was originally developed by Bodin et al. (1978) and adapted by 
Adler and Mirchandani (2017) for solving the E-VSP. In the concurrent 
scheduler algorithm, the uncovered timetabled trips are initially sorted 
in increasing order of their departure times. The algorithm then iterates 
through the trips, starting with the one that departs earliest, and adds 
the trips one by one to the end of a partial block schedule that leads to 
the minimum increase in the objective value. If it is not feasible to add 
the selected trip to any partial block schedule, then it is assigned to a 
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new block schedule. The procedure terminates when all trips are 
covered. The algorithm is also adapted for repairing the CSP for covering 
trips, deadheads and idle times in the final crew solution. In our solution 
approach with the B&P heuristics, we do not reuse the columns gener-
ated from previous iterations when repairing the solution. 

7. Computational Study 

7.1. Instances 

Three real-life instances are obtained from transport companies in 
Denmark and Sweden to test our algorithms. Table 2 shows the three 
instances. DK1 and DK2 instances are from a transport company that 
operates in one of the largest cities in Denmark. SE1 instance is from a 
transport company in Sweden that operates in both urban and extra- 
urban regions. Table 2 also shows the E-vehicle and crew operational 
rules of the test instances. The crew operational rules for the DK1 and 
DK2 instances do not differ much. During operation in an extra-urban 
region, the vehicles are driven for an extended period. Therefore, the 
drivers are given longer breaks as indicated by the minimum break 
duration (i.e. 45 min) for the SE1 instance. Table 3 shows the test in-
stances that are categorized into sets of small, medium and large sized 
instances. The small and medium sized instances are extracted from the 

large instances DK1_ 3, DK2_ 5 and SE1_ 5. The table also gives an 
overview of the instances based on characteristics of trips, deadheads 
and idle times. As described in Section 4, the deadheads and the idle 
times are created a priori under certain assumptions that are concerned 
with the order of placement of a deadhead and an idle time, maximum 
duration of idle times, maximum distance of deadheads and placement 
of recharging activities. For the SE1_ 5 instance, 48 timetabled trips are 
estimated to cover over 50 km each, which indicates operation of ve-
hicles in an extra-urban region. The number of deadheads associated 
with a timetabled trip is seen to be highest for the SE1_ 5 instance, where 
the ratio of |F| to |T| is found to be 18 to one. 

The following subsections detail the results of the independent, in-
tegrated, sequential approaches and ALNS heuristics. The solution 
methods use IBM ILOG CPLEX version 12.9.0 as the LP solver. All ex-
periments are carried out on an Intel Xeon Processor E5-2680v2 @ 2.80 
GHz with four cores and 64 GB memory. 

7.2. Results of independent and integrated approaches 

We first present the results of the independent approach as the 
method guarantees to find optimal LP solutions of the E-VSP and ICSP in 
a reasonable computation time. Table 4 shows the results of the inde-
pendent approach. The total computation time spent on solving the 
master problem and subproblems are also reported in Table 4. For the 
largest instances, the lower bound can be computed in less than 18 h. On 
average, 56.03% of the total computation time of the independent 
approach is spent on solving the subproblem of the ICSP. As mentioned 
earlier in Section 5.2, the ICSP formulation involves a much larger set of 
duties when the vehicle schedule is not given. Furthermore, the domi-
nance rule of the label-setting algorithm for the crew subproblem, given 
by Equations (12)-(15), is weaker than the dominance rule for the E- 
vehicle subproblem. Therefore, the computational complexity of solving 
the subproblem of the ICSP is much higher than the subproblem of the E- 
VSP. For the SE1_ 5 instance, Table 4 shows that the total computation 
time spent on solving the crew subproblem is approximately 14 times 
higher than the total time spent on solving the E-vehicle subproblem. 

Table 5 shows the lower bounds found by the integrated approach 
described in Section 5.1. A maximum computation time of 172,800 s 
(48 h) was set for the integrated approach. Preliminary experiments 
showed that the method was faster when the equality signs in Equations 
(2)–(5) were replaced by ”⩾” signs. One should note that these changes 
are made only for the integrated approach and the equality signs are 
retained in the mathematical model for the repair method of n-Inte-
grated. In this paper, we use the barrier method in CPLEX to solve LP 
problems. Preliminary experiment showed that this was the best method 
for solving the LP problems. However, solving the E-VCSP by the inte-
grated approach is found to be computationally difficult and optimal LP 
solutions could not be found within the time limit for instances DK1_ 2, 
DK1_ 3, DK2_ 5 and SE1_ 5. Table 5 reports only the results of the in-
stances for which optimal LP solutions could be found within the time 
limit. The integrated approach provides improved lower bounds when 
compared to that of the independent approach. The improvement in 
lower bound is calculated as ZIntegrated − ZIndependent

ZIndependent
∗ 100%. The average 

improvement is reported only including the instances that were solved 

Fig. 4. Flowchart of the ALNS heuristic for solving the E-VCSP. The initial 
solution is denoted as s*. At each iteration, a neighborhood is selected that 
destroys s* and repairs it by a heuristic B&P method. If the resulting solution is 
better, then it is saved as s* and the heuristic continues until the stopping cri-
terion is met. The heuristic returns solution s* upon termination. 

Table 2 
E-vehicle and crew operational rules of test instances. DK1 and DK2 instances are from a transport company in Denmark, and SE1 instance is from a transport company 
in Sweden.  

Instance E-vehicle operational rules  Crew operational rules 

Max. distance without 
recharging (km) 

Min. recharging 
duration (minutes)  

Max. duration of 
duty (minutes) 

Min. break 
duration (minutes) 

Max. duration without 
break (minutes) 

Max. number of 
vehicle changes 

DK1 120 120  555 18 240 1 
DK2 120 120  555 20 240 1 
SE1 120 120  600 45 270 1  
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to optimality and is found to be 4.28%. The best known lower bound 
(ZLB) for each instance is determined from Tables 4 and 5. Table 5 also 
reports the total computation time spent on solving the master problem, 
E-vehicle and crew subproblems. It is found that, on average, 66.75% of 
the total computation time is spent on solving the master problem. 

7.3. Results of sequential approach 

Table 6 shows the results of the sequential approach. The heuristic 
B&P method for solving the E-VSP provides solutions with an average 
optimality gap of 1.98%. Similarly, for the CSP, the average optimality 
gap of solutions is found to be 0.17%. The table reports the overall so-
lution value as the sum of feasible objective values of the E-VSP and CSP. 

Table 3 
Overview of test instances. |L|, |T|, |F| and |I| represent the number of lines, trips, deadheads and idle times, respectively.  

Category Instance |L| Trips  Deadheads  Idle times  

|T| Avg. distance 
(km) 

Avg. duration 
(minutes)  

|F| Avg. distance 
(km) 

Avg. duration 
(minutes)  

|I| Avg. duration 
(minutes) 

Small DK1_ 1 2  124 21.33 55.68  351 7.78 9.98  308 30.01 
DK2_ 1 2  103 18.82 48.63  425 6.57 12.16  454 30.80 
DK2_ 2 3  115 30.66 76.60  230 19.35 26.62  195 27.85 
SE1_ 1 2  118 22.62 40.48  1,287 4.57 5.76  1210 30.74 
SE1_ 2 2  110 25.50 38.22  485 7.85 9.69  389 27.01 

Medium DK1_ 2 2  280 15.17 42.41  2,623 6.79 8.02  2,940 29.52 
DK2_ 3 3  274 23.31 55.22  786 10.41 17.14  699 29.45 
DK2_ 4 5  258 20.69 52.07  859 10.19 16.46  1,023 29.30 
SE1_ 3 3  284 11.98 32.87  2,092 4.41 7.43  2,039 30.31 
SE1_ 4 7  264 21.55 33.06  1,564 5.38 7.06  1,257 28.68 

Large DK1_ 3 4  424 16.83 45.66  5,618 6.73 7.83  5,932 30.07 
DK2_ 5 13  1,109 19.54 49.34  9,418 5.45 10.26  10,066 31.07 
SE1_ 5 16  980 18.69 34.34  17,794 4.74 7.18  17,244 30.33  

Table 4 
Lower bounds (ZIndependent) found by the independent approach. Iter represents the number of iterations performed by the column generation method, |B′

| represents the 
number of block variables generated, |D′

| represents the number of duty variables generated, RMP represents the total computation time spent on solving the master 
problem, and SubP represents the total computation time spent on solving the subproblem.  

Category Instance LP 
Objective 

E-vehicle  Crew Total time 
(seconds)    

Iter |B′

| RMP time 
(seconds) 

SubP time 
(seconds)  

Iter |D′

| RMP time 
(seconds) 

SubP time 
(seconds)  

Small DK1_ 1 88,649.77 30 8,792 0.83 0.56  45 3,224 0.17 1.27 3.40 
DK2_ 1 81,743.29 18 2,115 0.04 0.15  35 5,956 0.31 0.90 1.68 
DK2_ 2 133,526.06 20 2,032 0.05 0.12  25 1,697 0.05 0.50 0.96 
SE1_ 1 104,081.49 56 6,501 0.60 0.44  33 10,824 0.33 4.13 5.86 
SE1_ 2 77,905.37 28 8,680 0.52 0.28  50 7,997 0.41 3.74 5.37 

Medium DK1_ 2 141,131.57 148 67,165 55.07 81.12  174 19,905 7.41 595.50 740.60 
DK2_ 3 212,374.47 115 46,761 22.88 6.83  85 12,882 1.45 8.60 40.69 
DK2_ 4 184,956.04 143 69,147 41.25 32.27  159 14,986 2.93 54.49 132.59 
SE1_ 3 134,675.02 200 84,687 76.76 107.10  158 22,443 6.00 217.72 409.42 
SE1_ 4 154,372.86 136 62,874 26.60 14.59  125 22,029 3.39 55.60 101.47 

Large DK1_ 3 232,736.26 364 176,191 381.15 395.23  190 31,850 12.99 1,241.12 2,034 
DK2_ 5 720,104.64 975 487,129 5,199.32 5,610.27  288 71,639 86.49 9,386.87 20,292 
SE1_ 5 568,925.90 995 497,500 3,804.90 3,973.74  408 118,662 122.82 55,323.73 63,235  

Table 5 
Lower bounds (ZIntegrated) found by the integrated approach. Improvement in lower bound is calculated based on the lower bound provided by the independent 
approach (ZIndependent). Iter represents the number of iterations performed by the column generation method. |B′

| and |D′

| represent the number of block and duty 
variables generated, respectively. |F′

| and |I′ | represent the number of deadheads and idle times added to the master problem, respectively. RMP and SubP represent 
the total computation time spent on solving the master problem and the subproblem, respectively.  

Category Instance LP 
Objective 

Iter |B′

| |D′

| |F′

| |I′ | RMP time 
(seconds) 

SubP time (seconds) Improvement 
(%) 

Total time 
(seconds)          

E- 
vehicle 

Crew   

Small DK1_ 1 90,131.67 87 20,286 20,894 351 3,018 46.48 1.20 15.54 1.67 65.96 
DK2_ 1 84,560.04 94 6,166 30,245 424 453 30.51 0.34 9.51 3.45 42.41 
DK2_ 2 138,872.32 42 2,329 7,470 230 187 6.56 0.14 1.46 4.00 8.79 
SE1_ 1 113,533.45 202 44,246 88,991 1,187 1,094 351.78 3.03 146.17 9.08 514.60 
SE1_ 2 83,171.45 87 19,992 23,197 475 379 74.96 0.99 15.30 6.76 94.86 

Medium DK2_ 3 219,721.81 192 64,578 57,791 786 676 505.84 9.80 143.58 3.46 672.46 
DK2_ 4 190,930.11 405 118,159 83,996 859 1,021 3,076.02 109.51 2,745.40 3.23 5,984 
SE1_ 3 136,852.74 1,003 278,305 168,359 2,092 2,039 45,849.58 785.35 38,686.86 1.62 85,724 
SE1_ 4 162,530.66 342 101,570 76,987 1,530 1,226 2,955.49 73.18 2,210.62 5.28 5,284           

4.28   
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The percentage gap of the sequential solution from the best known lower 
bound is calculated as ZSequential − ZLB

ZLB
∗ 100%, and the average gap is found 

to be 9.33%. For the large instances, the average gap is found to be 
15.83% and this shows that there is potential for improvement by 
integration. The computation times are in the range of 48 min-7 h for the 
large instances. Additionally, the feasible solutions indicate that, on 
average, the crew cost is 73.71% of the total operational cost. 

As mentioned earlier in Section 5.3, the sequential approach could be 
applied to each individual line l ∈ L and Table 7 reports the results of 
such an approach. Feasible solutions are found in short computation 
times; for the large instances, the computation times are found to be in 
the range of 8–28 min. However, the quality of the solutions is found to 
be low with an average gap of 18.51% from the best known lower 
bounds. For the large instances, the average gap is found to be around 
30%. Since each line l ∈ L only has a subset of the trips Tl⊂T, it was much 
faster to obtain a solution by applying the sequential approach for each 
line. However, in most cases, the workloads of the lines are not 
balanced, where the number of trips, the total distance and duration of 
trips and deadheads from the depot for each line differ. Line changes are 
often necessary to efficiently schedule the vehicles and the crew. For this 
particular reason, the quality of the solutions from the sequential 
approach on the individual lines is low when compared to that of the 
sequential approach. 

7.4. Experimental setup of ALNS 

This section describes the experimental and parameter setup of the 
ALNS heuristic. Table 8 shows the degree of destruction parameter 
values of the different neighborhoods that are set for each category. The 
time limit ntime for the repair method in n-Integrated is set to 60 s. The 

destroy method in n-Integrated is changed to random removal from 
worst removal after the heuristic performs 1000 iterations, i.e η = 1000. 
Parameter μ is set to 25 iterations that describes the criterion for 
updating weights of the neighborhoods. The score parameters ψ1 and ψ2 
are set to 25 and 0, respectively and λ is set to 0.1. Tolerance level ∊ is set 
to 0.01 that is used as a termination criterion of the ALNS heuristic. 

In this paper, we perform two sets of experiments that are based on 
different initial solutions and they are as follows:  

1. Line solution 
The line solutions shown in Table 7 serve as an input to the ALNS 

heuristic. However, the initial solutions have large gaps from the best 
known lower bounds. For these experiments, the maximum compu-
tation time (maxtime) of the ALNS heuristic is set to 86,400 s (24 h).  

2. Sequential solution 
Alternatively, the ALNS heuristic could be initialized with the 

solution provided by the sequential approach, which is known to be 
more time consuming. However, the ALNS heuristic starts with a 
relatively good solution. In this case, the maximum total computa-
tion time of the sequential approach and the ALNS heuristic together 
is set to 86,400 s (24 h). 

Table 6 
Results of the sequential approach. The overall objective value (ZSequential) is the sum of feasible objective values of the E-VSP and CSP. Gap represents the quality of 
the overall solution when compared to the best known lower bound (ZLB).  

Category Instance Objective value Number of E-vehicles Number of drivers Gap (%) Total time (seconds) 

Small DK1_ 1 96,224.65 14 25 6.76 5.29 
DK2_ 1 87,027.46 21 20 2.92 1.08 
DK2_ 2 144,883.17 26 37 4.33 1.05 
SE1_ 1 118,902.39 32 31 4.73 2.32 
SE1_ 2 86,507.16 17 26 4.01 2.11 

Medium DK1_ 2 165,414.72 20 47 17.21 467.10 
DK2_ 3 231,912.99 33 55 5.55 88.07 
DK2_ 4 202,697.14 29 49 6.16 223.57 
SE1_ 3 153,238.66 20 43 11.97 385.62 
SE1_ 4 179,130.01 27 52 10.21 92.54 

Large DK1_ 3 264,817.38 34 67 13.78 2,891 
DK2_ 5 786,360.15 103 187 9.20 24,115 
SE1_ 5 708,414.64 98 178 24.52 15,339 

Average     9.33   

Table 7 
Solutions obtained by applying a sequential approach for each individual line l ∈ L. Gap represents the quality of the solution when compared to the best known lower 
bound (ZLB).  

Category Instance Objective value Number of E-vehicles Number of drivers Gap (%) Total time (seconds) 

Small DK1_ 1 101,603.65 14 31 12.73 1.64 
DK2_ 1 91,746.68 22 22 8.50 0.78 
DK2_ 2 148,567.88 27 41 6.98 0.67 
SE1_ 1 131,767.82 40 36 16.06 3.22 
SE1_ 2 94,625.96 18 33 13.77 1.45 

Medium DK1_ 2 170,124.54 20 50 20.54 74.34 
DK2_ 3 241,709.36 36 63 10.00 32.42 
DK2_ 4 219,297.97 31 60 14.86 40.85 
SE1_ 3 161,351.47 22 50 17.90 38.60 
SE1_ 4 212,224.86 40 77 30.58 11.88 

Large DK1_ 3 281,005.78 34 86 20.74 483.91 
DK2_ 5 856,513.45 118 231 18.94 1,640 
SE1_ 5 847,747.29 162 262 49.01 677.23 

Average     18.51   

Table 8 
Degree of destruction parameter values. ξ1, ξ2 and ξ3 correspond to neighbor-
hoods n-CSP, n-Sequential and n-Integrated, respectively.  

Category ξ1  ξ2  ξ3  

Small 0.3 0.3 0.3 
Medium 0.3 0.3 0.25 
Large 0.3 0.2 0.1  
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The aforementioned sets of experiments are performed in order to 
evaluate the behaviour of the ALNS heuristic when it is initialized with 
high and low quality solutions. On both experimental setups, the ALNS 
heuristic is run five times for each instance. The best and average results 
are reported from the five runs. 

7.4.1. Performance of destroy and repair operators 
This section also provides preliminary computational results to 

decide on the precise configuration of the destroy and repair methods. 
As described in Section 6, n-Integrated uses a worst (and random) 
destroy operator that is a combination of a worst and a random operator. 
We experimented with this destroy operator as part of n-CSP and n- 
Sequential. Table 9 shows the performance of the pure random and 
worst (and random) operators for the large instances DK1_ 3, DK2_ 5 and 
SE1_ 5. The ALNS heuristic is initialized with the sequential solution and 
the neighborhoods utilize the B&P heuristics to repair the solutions. The 
best known lower bound (ZLB) is used to calculate the optimality gap. 
The results are based on an average of five runs and each run uses a time 
limit of 86,400 s. From the table, it can be seen that the difference in the 
results for the different settings are rather small. This may be because 
the worst (and random) destroy operator is similar to the pure random 
destroy operator, where the worst removal is replaced by random 
removal after the heuristic performs η iterations. This is done as part of 
the diversification strategy. Therefore, we use our initial configuration 
which has the combination of random destroy operators for n-CSP and 
n-Sequential and the worst (and random) destroy operator for n- 
Integrated. 

As briefly discussed in Section 6, we also experimented with a basic 
greedy heuristic as the repair operator. We performed experiments with 
five repair operators in the ALNS; the two greedy heuristics in n-CSP and 
n-Sequential and the three B&P heuristics. However, these experiments 
showed that the ALNS with all the five repair operators did not perform 
better than using only the three B&P heuristics. In our case, the greedy 
heuristics in n-CSP and n-Sequential do not provide any advantage to 
the ALNS and are not well-suited for solving the E-VCSP. Therefore, in 
our solution approach, all the neighborhoods use B&P heuristics. The n- 
Integrated provides the biggest improvements and this is further dis-
cussed in Section 7.6. 

7.5. Results of ALNS 

Table 10 shows the best and average results of the ALNS heuristic 
when it is initialized with the line solution. As mentioned earlier in 
Section 6, the solution obtained from the ALNS heuristic is denoted as 
ZALNS. The percentage gap of the solution from the best known lower 

bound is calculated as ZALNS − ZLB
ZLB

∗ 100%, and the average gap is found to 
be 5.77%. The improvement provided by the heuristic when compared 
to the sequential approach is calculated as ZSequential − ZALNS

ZSequential
∗ 100%, and the 

average improvement is found to be 3.22%. For the large instances, the 
improvements are in the range of 0.06–4.37% on average. All the large 
instances and two of the medium instances (DK1_ 2 and SE1_ 3) are 
terminated before all the weights of the neighborhoods could converge 
below the set tolerance level. 

Table 11 shows the best and average results of the ALNS heuristic 
when it is initialized with the sequential solution. The average gap is 
found to be 5.38% and the average improvement is found to be 3.58%. 
For the large instances, the improvements are in the range of 
1.17–3.97% on average. When compared to the results in Table 10, the 
largest improvements are found for DK2 and SE1 instances. 

Fig. 5 illustrates the progress of the ALNS heuristic when it is 
initialized with line and sequential solutions for the large instances 
(DK1_ 3, DK2_ 5 and SE1_ 5). The best solutions of the aforementioned 
instances from Tables 10 and 11 are used as examples for representation 
of the ALNS heuristic in Fig. 5. 

Fig. 6 compares the quality of the solutions provided by the 
sequential approach and the ALNS heuristic for all instances. Table 12 
summarizes the results of the ALNS heuristic based on the instances DK1, 
DK2 and SE1. For DK2 instances, the average improvements made by the 
ALNS heuristic are relatively small and the average gap (less than 3%) 
indicates that the potential for improving further is limited. It is believed 
that the benefits of using an integrated approach in an extra-urban 
transport system are much more significant than in an urban transport 
system. In an extra-urban region, drivers have less opportunity to be 
relieved from attending to a vehicle and may have to travel further 
between bus stops and depot for taking breaks or ending their respective 
duties. Gaffi and Nonato (1999) and Huisman et al. (2005) have pri-
marily focused on applying an integrated approach for extra-urban 
transport systems due to their highly constrained nature with respect 
to crew scheduling. Another specialized study of the VCSP is the appli-
cation of time windows for the timetabled trips that was briefly dis-
cussed in Section 2. Kliewer et al. (2012) show that such an approach 
enables break possibilities between trips and provides further im-
provements. Therefore, the current structure of the timetabled trips may 
inherently have break opportunities for the drivers to some extent and 
hence, could have influenced the relatively small impact of the inte-
grated approach on DK2 instances. However, significant improvements 
are realized for DK1 and SE1 instances. The average gaps of the afore-
mentioned instances suggest that there is room for further improvement. 
Since the independent approach is used to evaluate the solutions for 
some of the instances, there is also an increasing need to develop 
alternate methods that provide stronger lower bounds in reasonable 
computation time. 

7.6. Analysis of neighborhoods 

Table 13 summarizes the average performance of the neighborhoods 
for each category. It reports information such as the average number of 
times each neighborhood was selected, the average number of im-
provements provided and their average computation times. On average, 
neighborhood n-Integrated is selected most often, but it is also known 
to be the most time consuming part of the heuristic. The performance of 
the neighborhoods during the course of the heuristic, on average, vary 
marginally for the different experimental setups. When the line solution 
is used for initialization, n-CSP and n-Sequential perform equally well 
as n-Integrated at the initial stages of the heuristic. This behaviour is 
not observable when the heuristic is initialized with the sequential so-
lution. Figs. 7 and 8 illustrate examples of the performance of the 
different neighborhoods for instance SE1_ 5 when the ALNS heuristic is 
initialized with the line and sequential solutions, respectively. The 
relative difference in the weights indicate that n-Integrated is the best 

Table 9 
Performance of destroy operators. ALNS is initialized with the sequential solu-
tion from Table 6 and the maximum computation time is 86,400 s (24 h). Gap 
represents the quality of the solution when compared to the best known lower 
bound (ZLB). A ‘†’ symbol indicates that the time limit is reached.  

Instance n-CSP: Random, 
n-Sequential: 
Random, n- 
Integrated: 

Random  

n-CSP: Random, 
n-Sequential: 
Random, n- 
Integrated: 
Worst (and 

random)  

n-CSP: Worst 
(and random), 
n-Sequential: 
Worst (and 
random), n- 
Integrated: 
Worst (and 

random) 
Best 
gap 
(%) 

Avg. 
gap 
(%)  

Best 
gap 
(%) 

Avg. 
gap 
(%)  

Best 
gap 
(%) 

Avg. 
gap 
(%) 

DK1_ 3 8.48 9.35  8.61 9.27† 8.72 9.54†
DK2_ 5 8.00 8.11† 7.76 7.92† 7.79 8.04†
SE1_ 5 19.99 20.16† 19.05 19.75† 20.06 20.35†

Average 12.16 12.54  11.81 12.31  12.19 12.64  
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performing neighborhood. The figures also show the benefits of using n- 
CSP and n-Sequential as their performances do not deteriorate 
completely and improvements are provided during the late stages of the 
algorithm. For large instances, n-CSP and n-Sequential perform equally 
well and the average number of improvements provided by the neigh-
borhoods are found to be 65.50 and 65.63, respectively. The average 
number of improvements provided by n-Integrated is found to be 
127.27. 

7.7. Sensitivity analysis of electric bus technology 

A sensitivity analysis is carried out to study the impact of the driving 
range of E-vehicles on the total operational cost. Therefore, the ALNS 
heuristic is tested with different values of the maximum distance 
without recharging parameter and the values range from 120 to 250 km. 
One of the issues that transport companies have to consider during the 
process of electrification is the selection of the type of electric buses to 
purchase. E-vehicles with larger batteries have a longer driving range 
but have a high purchasing cost. Pelletier et al. (2019) study the electric 
bus fleet transition problem that aims to offer a strategic guidance to 
transport companies in determining the most cost-effective investment 

plan during the years 2020–2050 by analyzing various types of electric 
vehicles and charging technologies. As mentioned in Section 3, the 
operational cost of an E-vehicle includes a fixed cost and a variable cost. 
In our study, we assume that the fixed cost of the E-vehicles remains the 
same for the different driving ranges. The primary focus of this study is 
to present managerial insights into the operational cost based only on 
the driving range of E-vehicles. We aim to analyze a set of urban region 
instances (DK1) and a set of extra-urban region instance (SE1) to clearly 
indicate the impact of the driving range of E-vehicles on different 
problem characteristics. Therefore, it is not critical to include DK2 in-
stances in this analysis. Table 14 shows the results for DK1 and SE1 
instances. The maximum distance without recharging of 120 km is set as 
the base scenario and is used to calculate the improvements in total 
operational cost for each instance. Table 14 reports the average number 
of times E-vehicles are recharged during operations. The sequential 
approach is performed first to initiate the ALNS heuristic, and the 
maximum total computation time is set to 86,400 s (24 h). For each 
value of the maximum distance without recharging, the ALNS heuristic 
is run five times and the average results are reported. 

The results from Table 14 clearly indicate that the total operational 
cost tends to decrease as the driving range of E-vehicles is increased. On 

Table 10 
Results of ALNS heuristic when it is initialized with the line solution. The best and average objective values (ZALNS) are reported based on five runs of the ALNS 
heuristic. Improvement indicates the benefit of the ALNS heuristic when compared to the sequential approach (ZSequential). Gap represents the quality of the solution 
when compared to the best known lower bound (ZLB). A maximum computation time of 86,400 s (24 h) is set for the ALNS heuristic. A ‘†’ symbol indicates that the time 
limit is reached.  

Category Instance Best  Average 
Objective 

value 
Improvement 

(%) 
Gap 
(%)  

Objective 
value 

Number of E- 
vehicles 

Number of 
drivers 

Improvement 
(%) 

Gap 
(%) 

Total time 
(seconds) 

Small DK1_ 1 92,827.11 3.53 2.99  92,847.53 14.00 22.00 3.51 3.01 1,690 
DK2_ 1 85,796.23 1.41 1.46  86,341.49 22.00 19.40 0.79 2.11 2,984 
DK2_ 2 140,700.72 2.89 1.32  141,471.21 27.20 34.40 2.35 1.87 819.19 
SE1_ 1 114,784.70 3.46 1.10  115,060.80 33.00 29.40 3.23 1.35 12,793 
SE1_ 2 85,436.81 1.24 2.72  85,493.81 17.00 27.00 1.17 2.79 1,371 

Medium DK1_ 2 153,770.30 7.04 8.96  154,681.37 21.20 36.00 6.49 9.60 86,400†
DK2_ 3 223,445.19 3.65 1.65  224,386.79 34.60 51.20 3.25 2.12 40,229 
DK2_ 4 197,134.05 2.74 3.25  198,350.73 30.80 44.20 2.14 3.89 79,854 
SE1_ 3 144,237.48 5.87 5.40  144,808.29 23.00 36.00 5.50 5.81 86,400†
SE1_ 4 166,301.34 7.16 2.32  167,640.77 27.60 46.20 6.41 3.14 81,556 

Large DK1_ 3 251,048.58 5.20 7.87  253,243.70 34.80 60.80 4.37 8.81 86,400†
DK2_ 5 783,040.35 0.42 8.74  785,869.47 116.20 177.80 0.06 9.13 86,400†
SE1_ 5 689,162.17 2.72 21.13  690,500.33 106.40 175.20 2.53 21.37 86,400†

Average   3.64 5.30     3.22 5.77   

Table 11 
Results of ALNS heuristic when it is initialized with the sequential solution. The best and average objective values (ZALNS) are reported based on five runs of the ALNS 
heuristic. Improvement indicates the benefit of the ALNS heuristic when compared to the sequential approach (ZSequential). Gap represents the quality of the solution 
when compared to the best known lower bound (ZLB). A maximum total computation time of the sequential approach and the ALNS heuristic together is set to 86,400 s 
(24 h). A ‘†’ symbol indicates that the time limit is reached.  

Category Instance Best  Average 
Objective 

value 
Improvement 

(%) 
Gap 
(%)  

Objective 
value 

Number of E- 
vehicles 

Number of 
drivers 

Improvement 
(%) 

Gap 
(%) 

Total time 
(seconds) 

Small DK1_ 1 93,668.10 2.66 3.92  94,346.73 14.20 22.80 1.95 4.68 3,993 
DK2_ 1 84,888.99 2.46 0.39  85,072.67 21.20 19.00 2.25 0.61 2,953 
DK2_ 2 140,835.72 2.79 1.41  141,099.02 26.80 34.40 2.61 1.60 1,304 
SE1_ 1 113,651.18 4.42 0.10  113,693.56 32.20 29.00 4.38 0.14 13,478 
SE1_ 2 84,813.52 1.96 1.97  84,932.58 17.00 26.00 1.82 2.12 1,427 

Medium DK1_ 2 155,212.10 6.17 9.98  155,689.94 20.80 37.80 5.88 10.32 86,400†
DK2_ 3 222,806.35 3.93 1.40  223,785.79 32.40 52.00 3.50 1.85 31,889 
DK2_ 4 195,571.05 3.52 2.43  196,088.04 29.20 44.00 3.26 2.70 78,552 
SE1_ 3 143,068.31 6.64 4.54  144,562.29 21.20 36.60 5.66 5.63 86,400†
SE1_ 4 167,468.24 6.51 3.04  168,035.85 27.00 46.60 6.19 3.39 80,680 

Large DK1_ 3 252,772.73 4.55 8.61  254,307.97 32.80 63.00 3.97 9.27 86,400†
DK2_ 5 775,980.68 1.32 7.76  777,152.05 103.00 182.00 1.17 7.92 86,400†
SE1_ 5 677,292.53 4.39 19.05  681,305.82 98.00 171.80 3.83 19.75 86,400†

Average   3.95 4.97     3.58 5.38   

S.S.G. Perumal et al.                                                                                                                                                                                                                           



Computers and Operations Research 132 (2021) 105268

16

average, the total operational cost decreases by 8.21% when the driving 
range is increased to 250 from 120 km. The largest improvements are 
realized when the driving range is increased to 150 from 120 km. The 
average cost reduction is found to be minimal (less than 1%) when the 
driving range of E-vehicles is changed from 200 to 250 km. With longer 
driving ranges, E-vehicles can cover more timetabled trips with fewer 
deadheads to the depot for recharging. As a consequence, the number of 
recharges per E-vehicle and the total distance covered by the E-vehicles 
are reduced. In all cases, we also see that the number of E-vehicles 

required is less than the requirements of the base scenario. Reduction in 
the frequencies of recharging and deadheading activities of E-vehicles 
have a direct impact on the crew schedule and the operational cost. For 
the extra-urban region instances (SE1_ 1, SE1_ 2, SE1_ 4 and SE1_ 5), we 
also see that the average number of drivers needed is significantly less 
than the base scenario. This development of decrease in number of 
drivers could be due to the decrease in the number of deadheads be-
tween depots and bus stops in the extra-urban region, which are far- 
away from the depot. Therefore, the improvements gained by 

Fig. 5. Progress of the ALNS heuristic when initialized with line solution and sequential solution for instances a) DK1_ 3, b) DK2_ 5 and c) SE1_ 5. The y-axis shows 
the objective value and the x-axis shows the computation time in hours. The best solutions from Tables 10 and 11 are used as examples for representation of the 
ALNS heuristic. 

Fig. 6. Comparison of results of the sequential approach and the ALNS heuristic when it is initialized with line and sequential solutions for a) small, b) medium and 
c) large instances. Gap represents the quality of the solution when compared to the best known lower bound (ZLB), and the average gap is reported for the 
ALNS heuristic. 
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increasing the driving range of E-vehicles for extra-urban region in-
stances are substantial. For the SE1_ 5 instance, the total operational cost 
is decreased by 16% on average when the driving range of E-vehicles is 
increased from 120 to 250 km. Such a result suggests that E-vehicles 
with longer driving range may be more beneficial for carrying out op-
erations in extra-urban regions. In general, this study signifies the 
practical importance of electric bus technology and its impact on the 
operational efficiency of transport systems. Furthermore, this study 
shows that the number of drivers can be reduced with better batteries as 
it holds particularly for SE1 instances. 

A study with different recharging times of E-vehicles could be seen as 
an extension of the sensitivity analysis. van Kooten Niekerk, et al. (2017) 
state that E-vehicles are recharged faster if the charging facilitates have 
larger energy capacities, which are known to be more expensive. 
However, such a study could give insight into the impact of fast charging 
technologies on the total operational cost. The proposed heuristic could 
also be seen as strategic tool to analyze various scenarios with different 

types of E-vehicles and charging technologies, which could potentially 
aid transport companies in making crucial investment decisions based 
on the operational requirements. 

8. Conclusion 

In this paper, we have introduced the E-VCSP that studies the impact 
of integrating vehicle and crew scheduling problems while considering 
the limited driving range of electric vehicles. An ALNS heuristic that 
utilizes B&P heuristic methods is proposed to solve the E-VCSP. The 
proposed methodology was tested on real-life instances from public 
transport companies in Denmark and Sweden. The sizes of the large 
instances varied from 424 to 1,109 timetabled trips. The heuristic 
approach provided evidence of improved efficiency of transport systems 
when the electric vehicle and crew scheduling aspects are considered 
simultaneously. By comparing to the traditional sequential approach, 
the heuristic found improvements in the range of 1.17–4.37% on 
average for the large instances. Additionally, a sensitivity analysis of the 
electric bus technology was carried out to indicate its implications for 
the crew schedule and the total operational cost. The analysis showed 
that the operational cost decreases by 8.21% on average when the 
driving range of electric vehicles is increased to 250 from 120 km. The 
proposed heuristic can be used in an operational setting to find cost- 
efficient electric vehicle and crew schedules for a given charging infra-
structure and type of electric vehicles. Furthermore, the heuristic could 
also be seen as a strategic tool for transport companies that supports 
them in making decisions such as investment in battery capacities of 
electric vehicles and charging infrastructure based on the operational 
requirements. 

Table 12 
Summary of the results of ALNS heuristic based on the instances DK1, DK2 and 
SE1.  

Instance ALNS initialized with line 
solution  

ALNS initialized with 
sequential solution 

Avg. 
improvement 

(%) 

Avg. 
gap (%)  

Avg. 
improvement 

(%) 

Avg. 
gap (%) 

DK1 4.79 7.14  3.93 8.09 
DK2 1.72 3.82  2.56 2.94 
SE1 3.77 6.89  4.38 6.21  

Table 13 
Summary statistics of the neighborhoods in the ALNS heuristic.  

Category Avg. number of iterations performed Neighborhood Avg. number of times selected Avg. number of improvements provided Avg. time (seconds) 

Small 1,990.50 n-CSP 273.06 1.74 0.04 
n-Sequential 370.20 3.76 0.08 
n-Integrated 1,347.24 22.70 2.82 

Medium 2,556.66 n-CSP 215.16 4.58 0.24 
n-Sequential 487.08 11.40 0.95 
n-Integrated 1,854.42 67.76 47.45 

Large 2,394.87 n-CSP 627.93 65.50 10.96 
n-Sequential 684.97 65.63 16.66 
n-Integrated 1,081.97 127.27 60.05  

Fig. 7. Performance of neighborhoods for instance SE1_ 5 when the ALNS heuristic is initialized with the line solution. The iteration number is shown on the x-axis 
and the weight of the neighborhoods is shown on the y-axis. The weight is calculated based on Equation (17). The score parameters ψ1 and ψ2 are 25 and 0, 
respectively. 
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This paper also illustrated the computational difficulty of solving the 
E-VCSP by column generation, where optimal LP solutions could not be 
found for some instances within a time limit of 48 h. Exploring exact 
methods to find lower bounds in reasonable computation times is seen as 
future area of research. Consequently, the advanced methods can be 
used in improving the computation times of the computationally 

expensive repair method in our ALNS heuristic. Another possible 
research direction is to incorporate more features of the electric vehicle 
batteries such as the energy consumption, non-linear charging behav-
iour and partial recharges. For some charging systems, drivers may be 
required to attend to the vehicle when it is being recharged. Therefore, 
the E-VCSP can be extended to handle and study such scenarios. 

Fig. 8. Performance of neighborhoods for instance SE1_ 5 when the ALNS heuristic is initialized with the sequential solution. The iteration number is shown on the 
x-axis and the weight of the neighborhoods is shown on the y-axis. The weight is calculated based on Equation (17). The score parameters ψ1 and ψ2 are 25 and 0, 
respectively. 

Table 14 
Results of different driving ranges (120, 150, 200 and 250 km) of E-vehicle for DK1 and SE1 instances. The average results are based on five runs and the ALNS heuristic 
is initialized with the sequential solution. The maximum distance without recharging of 120 km is set as the base scenario and is used to calculate the improvements in 
total operational cost for each instance.  

Category Instances Max. distance without 
recharging (km) 

Average 
Objective 

value 
Number of E- 

vehicles 
Number of 

drivers 
Number of recharges per E- 

vehicle 
Improvement 

(%) 

Small DK1_ 1 120 94,346.73 14.20 22.80 1.49  
150 91,740.57 13.40 22.80 1.19 2.76 
200 89,807.94 12.40 21.80 0.87 4.81 
250 88,841.65 11.00 22.80 0.56 5.83 

SE1_ 1 120 113,693.56 32.00 29.00 0.23  
150 95,879.99 25.00 24.00 0.09 15.67 
200 94,306.18 24.00 24.00 0.00 17.05 
250 94,213.20 24.00 24.00 0.00 17.13 

SE1_ 2 120 84,932.58 17.00 26.00 1.00  
150 79,468.81 16.00 22.20 0.81 6.43 
200 78,827.67 16.00 21.20 0.54 7.19 
250 78,238.83 16.00 20.06 0.35 7.88 

Medium DK1_ 2 120 155,689.94 20.80 37.80 1.54  
150 152,620.25 19.60 36.20 1.11 1.97 
200 150,913.64 18.40 35.80 0.90 3.07 
250 148,985.93 17.20 36.00 0.57 4.31 

SE1_ 3 120 144,562.29 21.20 36.60 1.16  
150 141,144.37 21.00 35.60 0.77 2.36 
200 139,911.01 19.20 35.60 0.45 3.22 
250 139,554.81 19.60 35.20 0.16 3.46 

SE1_ 4 120 168,035.85 27.00 46.60 1.66  
150 158,294.41 25.00 42.60 1.36 5.80 
200 156,947.29 25.00 41.80 1.06 6.60 
250 155,866.89 25.00 42.20 0.81 7.24 

Large DK1_ 3 120 254,307.97 32.80 63.00 1.60  
150 249,490.61 30.80 62.20 1.29 1.89 
200 246,872.71 28.40 62.00 0.95 2.92 
250 245,504.20 26.80 63.40 0.75 3.46 

SE1_ 5 120 681,305.82 98.00 171.80 1.82  
150 597,045.40 83.60 150.00 1.37 12.37 
200 574,548.49 79.40 146.20 1.06 15.67 
250 569,607.30 77.40 145.00 0.82 16.39  
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Schöbel, A. 2012 Line planning in public transportation: Models and methods. OR Spect., 
34(3):491–510. 
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