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A B S T R A C T   

Ride-hailing services, in particular Demand Responsive Transit (DRT) systems, have emerged in many cities 
worldwide as a potential solution to bridge the public transport supply gap. In such services, passengers whose 
itineraries and times are coincident to a certain degree can share vehicles that follow flexible routes to 
accommodate distinct boarding and alighting locations with minor disturbances to their convenience. In this 
context, this paper aims to evaluate the potential of a DRT as an alternative for a feeder to a trunk transport 
system, such as BRT (Bus Rapid Transit), or a metro or rail system as well. This is accomplished by a simu-
lation–optimization model that allows determining, in very short time, the optimized way to serve each new 
transport request that arises dynamically over time. The model was applied to a first/last mile transportation 
system in an area adjacent to a subway station in the city of São Paulo, Brazil. We analyze and measure the 
impacts of different operational characteristics of supply and demand, measured in terms of service level to 
riders, number of vehicles, average occupation and total kilometer traveled per vehicle. The results evidence the 
potential of these DRT services as an alternative to complement the existing bus lines, as well as to attract users of 
individual transport, as they can offer adequate service level at a competitive cost.   

1. Introduction 

Demand Responsive Transit (DRT) systems, often seen as a combi-
nation of regular public transit services and privately organized taxi 
services, have emerged in many cities worldwide as new mobility so-
lutions. In such ridesharing systems, flexible routes and schedules allow 
multiple travelers to share the seats inside a vehicle if their itineraries 
are somewhat ‘adjacent’ in a spatiotemporal sense (Daganzo and 
Ouyang, 2019). Initially, DRT services were conceived to provide 
transport for people with limited mobility (e.g., elderly and handi-
capped persons) and residents of rural areas (Rimmer, 1984). Nowa-
days, they have become a potential solution to reduce traffic congestion 
and to mitigate pollution in urban settings by attracting to shared-ride 
services those driving their cars to commute, as the flexibility pro-
vided by them allows different features to meet the demand and better 
suit local needs. Developments in vehicle automation and shared 
economy also contribute to a growing interest in flexible transportation 
services such as DRT, as it could potentially be used to provide efficient 
and effective public transportation in the future (Van Engelen et al., 

2018). 
One of the main deterrents to the use of public transportation is the 

lack of alternatives for last-mile transportation (Wang, 2017), connect-
ing residential areas to major fixed-route transit networks. In this 
context, a DRT last-mile service, also referred to as DRT feeder services 
(Chandra and Quadrifoglio, 2013), in which passengers are transported 
to/from transit centers from/to their desired location within a pre-
determined service area may be a more efficient alternative. Therefore, 
this paper aims to evaluate the potential of a DRT as an alternative for 
the so-called ‘last-mile transportation problem’, which concerns the 
provision of travel services from the nearest public transportation node 
to a passenger’s home or other destination (Wang, 2017); in other 
words, DRT working as a feeder system for a first and last mile solution, 
complementing trunk transport systems, such as rail-based services and 
Bus Rapid Transit (BRT) systems. 

To accomplish this, we have developed a simulation-based vehicle 
dispatching tool that allows simulating new requests that dynamically 
arise over time. We treat each of them individually, in a very short time, 
to determine the best vehicle assignment such that the time impact 
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(delay) to both the new rider requesting service and other users previ-
ously scheduled is minimized. The proposed approach has been applied 
to a case study in an area adjacent to a subway station in São Paulo, 
Brazil, which lacks alternatives to first/last mile public transport. Some 
different demand and operational conditions have been simulated to 
determine detailed results in terms of vehicle occupation, distance 
traveled, idle periods, etc., helping to analyze the feasibility of such a 
DRT system. 

The DRT simulation model that we have developed receives trip 
demands as input and keeps track of all vehicle locations at every instant 
during the entire simulation. As a new request arrives, it searches for the 
optimum vehicle assignment considering the lowest total increment in 
travel time considering all active requests (i.e., for each candidate 
vehicle, the passengers on board as well those already scheduled to be 
picked up). The simulation model has allowed evaluating multiple sce-
narios of a DRT operation, including variation in demand and supply 
side, such as request rate and vehicle capacity. The simulation results 
provide data to analyze the DRT system feasibility, both from operators’ 
and users’ point-of-view. Our goal is to seek answers to some chal-
lenging questions, such as (i) which solution would yield to higher 
average vehicle occupancies and a minimum increment in average 
travel times; and (ii) what conditions would provide shared rides with 
competitive cost per passenger and service level when compared with 
other transportation alternatives. 

The remainder of this paper is organized as follows. Section 2 pro-
vides a literature review. Section 3 presents the problem definition 
addressed in this paper. Section 4 details the modeling approach, while 
Section 5 outlines the case study, defining experimental inputs and 
scenario variations. Then, we present the results and analysis of an 
operational scenario in Section 6. Lastly, in Section 7, we summarize key 
findings and suggest directions for future research. 

2. Literature review 

The daily dispatching operation of a DRT service consists of 
designing vehicle routes and schedules for trips requested by individual 
users who specify their respective origin and destination locations. Thus, 
from an optimization point-of-view, it is closely related to the Vehicle 
Routing Problem (VRP) (Dantzig and Ramser, 1959), and particularly to 
the Dial-a-Ride Problem (DARP) (Cordeau and Laporte, 2007). In the 
static DARP version, all transportation requests are known beforehand, 
prior to the departure of the vehicles, while in the dynamic version re-
quests are gradually revealed across the time, modifying vehicle 
schedules as a new request is accepted (Psaraftis, 1995). 

Static models that have appeared in the literature typically deal with 
a small number of requests, as they can become computationally pro-
hibitive to determine feasible solutions with large datasets, particularly 
in the general case of multiple origins and destinations DARPs. For 
instance, Li et al. (2018) described a mathematical model to design an 
enhanced ridesharing system with meet points and users’ preferable 
time windows that was tested with 10 ride requests. Sun et al. (2018) 
presented a mixed-integer linear programming model for demand- 
responsive feeder transit services to assign vehicles located at different 
depots to pick up 42 passengers distributed at 15 demand points and 
transport them to a rail station. Pei et al. (2019) proposed a new 
structured transit system with a flexible bus line length based on the 
real-time requests of a maximum of 120 passengers/hour. 

On the other hand, works related to simulation in a dynamic envi-
ronment are usually more flexible about operational designs and the 
number of requests. However, when requests are received, they should 
be treated instantly and not booked in advance. Literature covers from 
strategic planning to replace conventional transportation to DRT sys-
tems (Pastor, 2014) to the search for feasible operational settings for a 
given service area and demand (Jung and Chow, 2019). Häll et al. 
(2012) presented a modeling system for simulation of dial-a-ride ser-
vices, which can be used to investigate how the setting of service and 

cost parameters and service design affect the total operator cost and 
users’ level of service. Ronald et al. (2013) explored four spatially- 
varying demand patterns (random, a many-to-one scenario, all short- 
distance trips, and all long-distance trips) using a simulation of an ad- 
hoc demand-responsive bus system. Van Engelen et al. (2018) pro-
posed an online dynamic insertion algorithm with demand forecasts, 
which is tested in a simulation model for a case study network in the 
Netherlands. 

Some papers have already addressed the problem of last-mile 
transportation. For example, Lee et al. (2005) proposed a dispatching 
algorithm to use the taxi fleet as a feeder service to a mass transit station 
to increase ridership of public transportation in Taiwan. Wang (2017) 
developed routing and scheduling approaches for a last-mile trans-
portation system and provided a general performance evaluation. Sun 
et al. (2018) developed an optimization model for DRT feeder services to 
assign vehicles located at different depots to pick up passengers at the 
demand points and transport them to a rail station in Nanjing City, 
China. 

However, few studies consider existing transportation alternatives in 
a DRT design. Enoch et al. (2006) identified many failed DRT systems 
and highlighted the importance of the local market for its imple-
mentation. Kilby and Robards (2013) proposed a demand-responsive 
system to replace the weekend service of the public transport system 
in Canberra, Australia. Pastor (2014) evaluated the feasibility of a 
citywide DRT system in Tacoma, Washington, whether serving the same 
volume of demand as the local fixed-route system at a comparable cost. 
Martinez et al. (2015) proposed a shared-taxi system that could provide 
9% of fare reduction for taxi service users in Lisbon, Portugal. Alonso- 
Mora et al. (2017) demonstrated that 25% of the active taxi fleet in New 
York City can satisfy 99% of the requests through high-capacity ride-
sharing, causing an increment of about 2.5 min in mean waiting time 
and delay. Finally, Gilibert et al. (2019) investigated user requirements 
and market opportunities, from a case study conducted in Hanover, to 
contribute to a DRT design. 

Thus, as can be observed from the above, a research opportunity 
arises, which is related to the investigation of what intrinsic character-
istics of demand and services to be provided that would yield to a 
feasible and effective dynamic DRT system working as a feeder service 
for a trunk urban public passenger transport system. Such first/last mile 
public transportation systems are usually related to a single origin or 
destination (i.e., a terminal, denoting a one-to-many, or alternatively 
many-to-one, routing problem). While being less complex than typical 
many-to-many DARP problems, the dynamic nature of such feeder sys-
tems requires an efficient dispatching algorithm to determine the best 
vehicle assignment for each new request in a very short time, as the user 
is waiting, ready and willing to board as soon as possible. In such 
context, we employ a simulation–optimization based dispatching tool 
that is used to evaluate a DRT system as an alternative solution to feed a 
subway terminal station in São Paulo. 

3. Problem definition 

The DRT feeder system that we address combines the origins or 
destinations of multiple users on dynamic routes, serving as a first/last- 
mile connection to a single important public transportation node. The 
problem of dynamically designing and adjusting vehicle routes and 
schedules to meet a set of travel requests that arise in real-time is known 
as a dynamic Dial-A-Ride Problem – DARP (Cordeau and Laporte, 2007). 
An effective algorithm to address such a problem must ensure that the 
largest number of requests is combined in fewer vehicles and that all 
users have a positive experience, expecting that not only do they 
continue to use the DRT service but also promote it to others. 

In this paper we focus on simulation analyses of different scenarios 
for an urban DRT feeder system. The demand is defined by a set of re-
quests that are randomly generated within a specific area where the 
service is expected to be provided. Each travel request corresponds to a 
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specific time, origin and destination locations within the study area, 
given by their respective geographic coordinates. Requests are imme-
diate, in the sense that they should be serviced as soon as possible, with 
no anticipated notice; in addition, it is not possible to schedule a trip for 
a later time in the future. This aims to mimic users requesting rides 
through a mobile application for immediate travel; thus, they must be 
processed as they appear. The demand patterns that can be handled by 
the simulator may consist of any type of geographic distribution of or-
igins and destinations; however, as we address DRT as a last-mile 
transportation alternative, our focus is on many-to-one or one-to-many 
patterns (i.e., users heading to or departing from a single public trans-
port station or terminal). 

To determine the available vehicle that can best serve each new 
request, it is necessary to ensure that passenger constraints related to 
travel inconvenience, such as maximal waiting and travel times 
thresholds users are willing to accept for their rides, are respected. Since 
the aim is to combine as many requests as feasibly possible into fewer 
vehicles, deviations from the direct routes between each passenger’s 
origin and destination may occur. To avoid excessive in-vehicle travel 
times that users may experience, we limit the increase of such in-vehicle 
travel time (caused by vehicle deviations from the shortest path) by a 
given maximum deviation factor, a constant that is applied to each 
request. In other words, the maximum deviation factor expresses the 
maximum in-vehicle travel time a passenger’s trip could take when 
compared to the travel time that corresponds to the shortest path be-
tween his origin and destination by individual car, disregarding any 
deviations for other passengers’ pick up and drop off. This maximum 
deviation factor refers strictly to in-vehicle travel time and does not 
consider the waiting time. 

Each vehicle has an associated schedule, which consists of a sequence 
of events (or actions) to accomplish, such as picking up and dropping off 
riders and returning to the initial point of departure as it becomes idle. 
Whenever a new request arises, vehicles already carrying passengers are 
immediately evaluated as the first candidates to be assigned, which 
should lead to occupancy increase and system costs reductions, while 
ensuring that vehicle capacity constraints are respected. However, this 
assignment rule may eventually yield undesirable greater deviations and 
waiting times for users already assigned to vehicles. Thus, among those 
vehicles with available seats, we select the one whose schedule sequence 
provides the lowest increment to the sum of the deviations factors of all 
passengers already scheduled; in addition, none of the requests already 
assigned to the vehicle can exceed a maximum increment in travel time. 
It should be noted that this procedure requires an evaluation of all 
feasible pickup and drop-off insertions into the vehicles’ schedules (i.e., 
all feasible ways how they can be inserted among the already scheduled 
stops). 

The fleet is assumed to be homogeneous in terms of their capacities 
and costs, and the vehicles are initially spread within the area where the 
service is provided as to enable all requests to be met within the 
maximum allowed waiting time. Thus, if no occupied vehicle can 
feasibly serve the new request, a new idle (empty) one will be assigned. 
As a result, the model attempts to reach an equilibrium between supply 
and demand, by ensuring that all passengers will be served, and no extra 
or unnecessary vehicle will be assigned. 

The simulation tool does not consider requests that are eventually 
canceled by the users, nor that users will not show up when the vehicle 
arrives. Therefore, if the request can be met in terms of vehicle avail-
ability and waiting time feasibility, the trip is served. Once a new request 
is assigned to a vehicle, passenger reallocations for other vehicles are not 
allowed, even if the passenger has not yet boarded. It is also not allowed 
to change the schedule sequence of the already scheduled requests when 
a new one is analyzed. The routes are defined by the scheduled events (i. 
e., pick-up and drop-off stops and their times), without fixed or pre-
determined segments. 

4. Simulation model 

The simulation model was built based upon Häll et al. (2012) and has 
four main components (Fig. 1): i) Input Manager; ii) Simulation Control; 
iii) Request Manager; and iv) Output Manager. 

The Input Manager handles all information required as input for the 
simulation, such as demand (origin, destination, and time of each 
request), number of available vehicles and their capacity (i.e., number of 
passengers), the underlying street network in the study area, and 
thresholds for user service level (maximum waiting time and maximum 
travel deviation). Demand, expressed by the rate of service requests per 
hour (each characterized by an origin, a destination, and request time) 
can be either kept static (i.e., unchanged across different scenarios) or 
may vary. In addition, a time horizon for which the simulation should 
run is defined. 

The Simulation Control receives input data and starts the simulation 
process. Its main purpose is to keep track of all events and time, as well 
as monitor vehicle positioning, vehicle scheduled events, and new re-
quests that arise. All demand, in the form of requests, are handled 
individually as they arise, triggering the Request Manager. 

As mentioned before, the routing and scheduling of vehicles in dial- 
a-ride systems is referred to as a dial-a-ride problem – DARP (Cordeau 
and Laporte, 2007). Although this is a combinatorial, NP-hard optimi-
zation problem, whose difficulty increases exponentially as the instance 
size becomes larger, thus requiring complex and efficient algorithms and 
heuristics to solve static versions, as all requests, made in advance, are 
handled together before the departure of the vehicles (Cordeau and 
Laporte, 2007). On the other hand, its dynamic version, in which each 
new request must be dealt immediately as it is received, can be properly 
handled using fast VRP insertion heuristics, as the user must receive the 
confirmation, which includes all the details of the scheduled trip 
(vehicle, estimated departure and arrival times), in a very short time. 

To accurately represent this, in our proposed simulation–optimiza-
tion model, travel requests are known as they appear, dynamically, as 
the simulation clock advances. To simulate a real DRT feeder system 
dispatch situation, each request must be quickly assigned to a vehicle 
and a specific departure time is informed to the user. So, we used a 
classic insertion heuristic, which determines the best vehicle and a new 
optimized vehicle schedule for each request individually, in only a few 
seconds. 

Therefore, when the Request Manager receives a new request, an 
insertion and an optimization heuristic are executed to designate a 
vehicle and to establish its new schedule. First, the insertion heuristic 
searches and selects all vehicles with an available seat that can arrive at 
the pickup point (origin of the new request) within the maximum 
waiting time threshold. Then, it examines all feasible pickup and drop- 
off insertion slots in the vehicles’ schedules (the pickup and drop-off 
positions with respect to the already scheduled sequence), considering 
the maximum waiting time for the user who requested the trip and the 
maximum in-vehicle deviation for the already scheduled users. After all 
feasible vehicles and insertion options have been outlined, the optimi-
zation heuristic chooses the combination that yields the best service 
level for the affected users (i.e., those already traveling or scheduled), 
measured by the lowest total increment of the individual deviation 
factors. Then, the paths between all scheduled events are updated, 
defining new routes. If there is no feasible insertion in any of the already 
occupied vehicles, and if there are idle vehicles available, the new 
request is assigned to the one that yields the lowest waiting time. The 
request is only deemed rejected when there is no available vehicle that 
matches either condition. The above simulation process is summarized 
in the flowchart depicted in Fig. 2. 

The simulation ends when all requests have been addressed; then, 
the Output Manager exports all results to output files. Due to the large 
amount of data generated, we performed a cluster analysis of vehicles 
and trips with the aim to extract detailed information about the opera-
tional efficiency and the service level provided to the users (de Oña 

P.C. Costa et al.                                                                                                                                                                                                                                 



Case Studies on Transport Policy 9 (2021) 1707–1714

1710

et al., 2016). This cluster analysis approach is important to allow better 
detecting differences between the results that arise from distinct supply 
and operational alternatives (including service parameters such as ve-
hicles seating capacity), as well as distinct assumptions and demand 

scenarios. Our focus is on obtaining groups of trips that share similar 
service levels to allow a fair and accurate comparison between bus and 
DRT rides; in particular, the analysis of groups of trips with similar 
average total travel times, but different disaggregated travel results, 

Fig. 1. Schematic description of the simulation model. Adapted from Hall (2012).  

Fig. 2. Flowchart of the simulation process.  

Fig. 3. Service area selected based on bus travel routes and ride-hailing travel sample.  
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helps transportation planners to evaluate different scenarios and to 
design solutions that would wield a higher adoption of a DRT service. 

5. Case study 

The case study comprises a selected area in São Paulo, the most 
populous city in Brazil and the heart of the largest megacity in South 
America, with a population of nearly 21 million (or 10% of the popu-
lation of the entire country), which concentrates about 19% of the 
Brazilian GDP. The city public transport network comprises 5 subway 
lines, one monorail, and about 1,300 bus lines, while 8 railway system 
lines connect surrounding municipalities. The first and last mile service 
evaluated in this DRT simulation feasibility experiment connects a 
subway terminal station to an area of about 10 km2 (Fig. 3). This area 
was selected to cover the majority of the bus routes that provide access 
to this station as well as a representative sample of trips made by an 
individual ride-hailing service that we had access to. This subway sta-
tion is, as the as the term ‘terminal’ itself implies, the last one of subway 
line 2 (green) and receives about 30,000 riders on a weekday (Metrô, 
2019). It also connects to a bus terminal, served by 11 feeder bus routes. 

We also observed that the number of ride-hailing trips is limited in 
the non-selected area surrounding the station, as riders prefer to travel 
forward, towards the following station of the subway line. In addition, 
no bus lines were found that connect solely to the subsequent subway 
station that follows the terminal station we are analyzing. In other 
words, the significant portion of the demand is radial, originating in the 
selected area towards the selected terminal station. Nevertheless, our 
experiments also comprise other demand distributions around the sta-
tion, as described below in this section. 

Fictitious requests were generated, each with one stop (either to pick 
up or drop off) located at the subway station and the other uniformly 
and independently distributed within the service area. The request rate 
adopted ranges from 360 to 2,500 requests per hour, split equally by first 
or last mile (that is, origin or destination at the subway station). Request 
times were distributed over six hours, following a uniform and random 
distribution. In this context, a large number of trips could be performed 
and analyzed. 

We assume that all potential users whose requests are being gener-
ated have similar socioeconomic conditions, that is, there is no 
distinction in terms of income, gender, the purpose of travel, or age 
group. All users have identical waiting time and in-vehicle travel time 
delay thresholds. As mentioned before, no user will cancel the trip or not 
show up at the departure point when the vehicle arrives. Thus, based on 
an analysis of current level-of-service parameters of different on- 
demand ride-hailing services, we established 10 min as the maximum 
waiting time for picking up passengers, measured from the moment the 
request is received; in other words, if no available vehicle can service a 
request by arriving at its boarding location within this time, it is deemed 
as rejected. Regarding the maximum in-vehicle travel time, we have 
defined that, for each request, it cannot exceed a maximum duration, 
given by the travel time of the shortest direct path linking the origin and 
the destination of the corresponding trip multiplied by a factor equal to 
2.5. This assumption, though compatible with the reality of travel times, 
particularly for door-to-door services using shared vehicles and for the 
existent public transportation alternatives in São Paulo, does not mean 
that all trips would take such longer; in fact, our aim by establishing such 
multiplier value is to avoid rejecting requests in order to evaluate how 
different ‘intensities’ of requests (i.e., rates) impact the results, partic-
ularly the service level indicators. 

An unlimited number of vehicles are distributed within the pre-
determined service area at specifics spots, such that all requests can be 
served within the maximum waiting time. Thus, at the end of the 
simulation, it is possible to measure the fleet size needed to meet a 
specific demand rate for that scenario. The fleet is assumed as homo-
geneous for each experiment; however, the experiments comprise 
varying vehicle capacity: 3, 6, or 9 passengers. When a vehicle becomes 

idle (i.e., after all passengers assigned to it have been transported), it 
returns to its initial location and waits for new requests. To compute 
travel times, we assume a driving speed of 15 km/h, as it is deemed 
realistic given the travel speeds at peak hours in São Paulo (Reed and 
Kidd, 2019), as well as taking into account the characteristics of the 
street network in the selected area: partially hilly and curvy streets, 
especially where the network does not resemble the Manhattan’s grid- 
like structure (Jiang, 2007), as can be observed in Fig. 3. In addition, 
most streets are either local or collectors, whose speed limit does not 
exceed 40 km/h, thus preventing vehicles to achieve a higher average 
travel speed due to frequent stops signs and some traffic lights. It should 
also be noted that this driving speed of 15 km/h considers only traffic 
conditions, as stops have pre-defined boarding and alighting times that 
are added to the travel times. As in Jung et al. (2013), we adopted a fixed 
one-minute interval for boarding and alighting times; however, such 
time is deemed fixed as it better represents the local constraints related 
to finding a spot for parking the vehicle to allow boarding of a passenger 
as well as remove the influence of a variable time when evaluating the 
results. 

Operational costs were estimated considering fixed and variable 
costs. The first include vehicle acquisition, vehicle depreciation, in-
vestment capital compensation, driver’s salary and labor charges, 
licensing and insurances, while the latter comprises fuel, tire wear, oil, 
maintenance, and washings. These costs differ depending on the vehicle 
size, except for driver salary and labor charges, and the estimates were 
based on market prices. 

Finally, we analyzed the impacts of the demand distribution around 
the transportation node, always maintaining 10 km2 as the service area, 
but varying the combination pairs of service area’s opening angle and 
radius as follows (Fig. 4): i) 127 degrees, 3 km; ii) 150 degrees, 2.76 km; 
iii) 160 degrees, 2.68 km; iv) 180 degrees, 2.52 km; v) 286 degrees, 2 
km; and vi) 360 degrees, 1.78 km. 

6. Experimental results and discussion 

In this section, the main results are presented, together with a 
comparison between the fixed-route bus lines that operate in the same 
area and a ride-hailing service that is not shareable (i.e., a vehicle ser-
vices only one request at a time; two or more passengers cannot be 
transported together). For this comparison, we consider that demand is 
unchanged (request rate of 2,500 requests/ hour, with the same origins, 
destinations, and request times) for the three alternatives. 

In the case of the fixed-route bus lines, results were mostly obtained 
from Google Maps API, except the waiting time which we assumed an 
average of 5 min as their headways are about 10 min during weekdays. 
For the ride-hailing services, results were acquired using the simulation 
model we propose, considering vehicles with the capacity of one pas-
senger. In addition to this, a sensitivity analysis was performed with 6 
and 9-passenger vehicles. Table 1 presents the average of key service 
level indicators: walking time, waiting times, in-vehicle travel times, 
total travel times, and cost per passenger expressed in Brazilian Reais 
(BRL). 

While the fixed-route bus line system results in an average total 
travel time of 26.03 min at the cost (transit fare) of BRL 4.40 per pas-
senger, the individual ride-hailing system obtained an average of 13.82 
min at the cost of BRL 21.66 per passenger. Concerning the DRT systems, 
the average in-vehicle travel times only increased in about 4–5 min 
when compared to the single rider ride-hailing option, and walking 
distances are reduced in comparison with the bus option. Increasing the 
vehicle capacity from 3 to 6 passengers, a 2-minute increment in total 
travel time yield a reduction of 20% on the cost per passenger. However, 
with 9-passenger vehicles, no improvement in service level or cost per 
passenger has been observed, since the request rate was not high enough 
to allow increasing vehicle occupancy. In any of the DRT alternatives, 
this system could attract individual transport users, since it offers lower 
costs and better service level than buses. 
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A cluster analysis was performed to group trips with similar service 
level results, considering waiting time, deviation, and total travel time. 
Fig. 5 illustrates the results for the 3-passengers DRT system, while the 
outcomes for bus trips are shown in Fig. 6. 

About 8% of the bus trips (cluster #A) had their best routes resulting 
as path entirely on foot due to the absence of bus services connecting to 
the metro station. In this case, the DRT system could be a feasible 
transportation alternative, especially to that may be using their cars to 
commute due to the difficulty to reach the subway station. Cluster #D, 
which represents 25% of the bus trips, yielded the second highest 
average walking time, resulting in an average total travel time of 33.69 
min, despite the lowest average deviation observed. Only 31% of bus 
trips (cluster #C) would have compatible service level results with a 
DRT system, especially if the high frequency (that yield a headway of 

only 10 min) can in fact be offered, which is not oftentimes the case for 
last-mile transportation routes, as pointed out by Wang (2017). More-
over, cluster #B, which represents 35% of the bus trips, had higher 
deviations than 76% of the DRT results (cluster #1 and #2). In sum-
mary, despite the lower in-vehicle travel time by bus when compared to 
the DRT system, the greater reliability of the waiting time and the 
reduction of walking distances are important elements to increase user 
convenience. 

In respect to the individual ride-hailing users, Table 2 presents a 
comparison with the results obtained with a maximum of 3, 6, and 9 
passengers riding together in a vehicle. 

While the fleet size required to the ride-hailing service is of 728 
vehicles, the DRT system reduced it by 42% with 3-passenger vehicles, 
and by 52% with 6-passenger vehicles to meet the same demand. As a 

Fig. 4. Demand distribution around the transportation node by varying the angle and radius of the service area.  

Table 1 
Summary of average key service level indicators.  

Mode Walking time (min) Waiting time (min) In-vehicle travel time (min) Total travel time (min) Cost/ passenger (BRL) 

Bus  7.24  5.00  13.79  26.03  4.40 
DRT system: 3 passengers  –  7.68  15.23  22.91  9.65 
DRT system: 6 passengers  –  8.26  16.58  24.84  7.78 
DRT system: 9 passengers  –  8.28  16.68  24.96  9.15 
Ride-hailing  –  2.70  11.12  13.82  21.66  

Fig. 5. Cluster analysis of DRT system’s service level.  
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result, an increment of only 5 min in waiting times and of 4 min in in- 
vehicle travel times due to deviations can lead to a 66% reduction in 
cost per passenger and 80% in operational idleness. Also, the results 
present a relevant environmental benefit with up to a 56% reduction in 
total distance traveled and, consequently, emissions. The reduction of 
the fleet size needed to satisfy the mobility needs of the users can also 
help to lessen congestion and other externalities related to heavy traffic. 

Finally, Table 2 also presents irrelevant gains when increasing 
vehicle capacity from 6 to 9 passengers. On the other hand, the change 
from 3 to 6-passenger vehicles yielded important reductions in total 
traveled distance and fleet size. Despite the consequent increment of 
average occupancy, the average in-vehicle travel time increased in only 
1.35 min. 

We also analyzed different demand scenarios by changing: i) request 
rates; and ii) the service area. Regardless of the request rate, when the 
service conditions (vehicle capacity, door-to-door service, and prioriti-
zation of occupied vehicles) are maintained, the effective service level 
does not present a significant difference. One of the main impacts by 
varying the request rate is its impact on unity cost per passenger, as 
shown in Fig. 7. The request rate reduction to 1,500 requests/hour, 
generates a cost increment of less than 5%. This suggests that it is 
already enough to make this service feasible if the costs per passenger 
and the level of services considered in our analyses are attractive to 
users, something that is beyond the scope of the present study. 

On its turn, Table 3 presents the average key indicators resulted from 

the service area variation according to its angle and radius measures, 
maintaining the same request rate. They indicate a direct influence in i) 
direct travel distances and times; ii) average deviations; and iii) fleet 
size. Therefore, despite that many authors compares demand rates 
associated with a specific area measure (i.e., km2), in a first/ last mile 
context, it may lead to different results depending on how the demand is 
spatially distributed next to the transportation node. 

In conclusion, a DRT system has potential as a last-mile transport 
alternative to users once it allows picking-up and dropping-off passen-
gers from their respective origins to their common destination (the 
subway station) and the opposite way as well. Such door-to-door service 
provides reasonable waiting times, which are compatible with the other 
available alternatives analyzed, a competitive cost per passenger, as well 
as not leading to excessive detours that impact travel times. 

Fig. 6. Cluster analysis of bus trips’ service level.  

Table 2 
Summary of average key operational indicators.  

Mode Fleet size Total distance (km) Initial idleness average 
(min) 

Operational idleness average 
(min) 

Average 
occupancy 

Maximum 
occupancy 

Ride-hailing 728 56,176  25.38  111.92 <1 1 
DRT system: 3 passengers 425 30,970  24.80  46.71 1.77 3 
DRT system: 6 passengers 352 24,987  30.22  22.77 2.17 6 
DRT system: 9 passengers 346 24,741  28.41  22.12 2.20 8  

Fig. 7. Cost per passenger with respect to the request rate.  

Table 3 
Summary of average key indicators for demand variation.  

Angle (degree) 127 150 160 180 286 360 

Radius (km) 3.00 2.76 2.68 2.52 2.00 1.78 
Direct ride (min) 10.73 10.06 9.98 9.59 9.03 8.13 
Waiting time (min) 6.9 7.1 7.3 7.4 7.5 7.7 
Average deviation 1.60 1.61 1.57 1.55 1.52 1.44 
Fleet size 109 106 99 97 99 94 
Cost per passenger (BRL) 10.86 10.49 9.84 9.61 9.70 9.22  
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Furthermore, it can be an alternative to complement existing bus lines 
since they do not fully serve the region near the station to perform first/ 
last mile service. 

7. Concluding remarks 

This paper aims to evaluate the potential of DRT systems for urban 
public passenger transport, as an addition to trunk urban public trans-
port systems, such as a subway system. For that, a simulation model was 
applied to replicate different operational service strategies. The simu-
lation made it possible to analyze the impacts of different operational 
characteristics of supply and demand, both in terms of effective service 
level, as well as in the number of vehicles, average occupation and total 
kilometer traveled per vehicle. 

A feeder DRT service was analyzed to evaluate the best possible 
demand conditions to make feasible to combine requests in the same 
vehicles. The results highlight the potential of these services in com-
parison with transportation alternatives (fixed-route buses and ride- 
hailing), so the proposed DRT system may be an opportunity to attract 
users of individual transport, as it offers a better level of service than 
buses, at a competitive cost. Moreover, as public transportation is scarce 
in some areas, this service can provide a substantial improvement in the 
urban transportation system. That is, the DRT services can be an alter-
native to complement the existing bus lines since they do not fully serve 
the region near the subway station. 

For future studies, the demand for these services should be further 
investigated to define more accurate related costs and to guarantee user 
satisfaction and use continuity. Finally, it is also important to explore 
alternatives for better use of the fleet, reducing its idle period. 
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