Introduction to Organic Electronics

Organic Thin-film Transistors

Fang-Chung Chen Department of Photonics and Display Institute NCTU

History of organic thin-film transistors (OTFTs)

1970's --- the first world energy crisis launched interests in organic semiconductor (for solar cells)

1983 --- the first OTFT based on polyacetylene Air-sensitive, low mobility (10⁻⁵ cm²V⁻¹s⁻¹)

1990 ---- the OTFT based on sixithiophehe mobility ~ 0.1 cm²V⁻¹s⁻¹ (comparable with a-Si:H)

1997 --- the OTFT based on pentacene

mobility ~ 1 cm²V⁻¹s⁻¹

The First OTFTs

polyacetylene/polysiloxane

Very low mobility (10⁻⁵) Nonexistence of pinch-off

Evolution of OTFT hole mobility

Organic thin-film transistors (OTFTs)

T. N. Jackson, 2004 SID seminar lecture notes.

Metal-Insulator-Semiconductor (MIS)

Metal-Insulator-Semiconductor Junction

G. Horowitz, Adv. Mater., 10, 365 (1998)

OTFT device configurations

TC OTFT Rc < BC TFT Rc

Typical OTFT I-V characteristics

When the drain voltage is compared to gate voltage, the voltage drop at drain Contact falls to zero and the conducting channel is pinched off

3M's high mobility OTFTs

High Mobility Pentacene Devices

Surface treatments

3M:

- Controlled deposition conditions
- Top contact construction

Average μ - pentacene on Al₂O₃

Without surface treatment $\sim 1 \text{ cm}^2/\text{Vs}$

With (AMS) surface treatment $\sim 5 \text{ cm}^2/\text{Vs}$

3M Corporate Research Materials Lab

Poly-α-methylstyrene

Charge Transport

For conventional semiconductor,

Delocalized states, and is limited by the scattering of carriers, Mainly phonons

 $\mu = a T^{-n}$ (n ~ 1)

For Organic semiconductor,

Hopping between localized states, phonon assisted (the mean free path of carriers < atomic distance)

$$\mathsf{T} \stackrel{\uparrow}{\longrightarrow} \mu \stackrel{\uparrow}{\longrightarrow}$$

 $\mu = \mu_0 \exp -(E_a/kT)$

G. Horowitz, Adv. Mater., 10, 365 (1998)

11

Electronic Polarons vs Molecular Polarons

 $E_{p}^{-} \& E_{p}^{+}$: **non-relaxed electronic polaron** states $P_{eff}^{-} \& P_{eff}^{+}$: effective electronic polarization energies $M_{p}^{-} \& M_{p}^{+}$: **molecular polaron** conductivity levels $(E^{-})_{eff} \& (E^{+})_{eff}$: effective formation energies of a molecular polaron (due to vibronic polarization)

R. Farchioni & G. Grosso, Organic Electronic Materials (Wiley, New York, 1981)

Degenerate PA and non-degenerate PPP

Soltion defect and energy level

Soliton defect in PA

Soliton: structure defect, a stable free radical can propagate along the chain, may not carry any charge itself

The small polaron

A polaron results from the deformation of the conjugated chain under the action of the charge.

The charge is "self-trapped" by the deformation it induced in the chain.

A polaron in polythiophene

G. Horowitz, Adv. Mater., **10, 365 (1998)** 15

Charge storage in conjugated polymers

The small polaron model : Holstein's model

The total energy : (three terms)

The lattice energy E_L ,

$$E_{\rm L} = \sum_{n=1}^{N} \frac{1}{2M} \left(\frac{\hbar}{i} \frac{\partial}{\partial u_n} \right)^2 + \frac{1}{2} M \omega_0^2 u_n^2$$

N harmonic oscillators vibrates at frequency, ω_0

The energy dispersion of the electron,

$$E_k = E_0 - 2J \mathrm{cos}(ka)$$

(J: the electron transfer energy)

The electron-lattice coupling

$$\varepsilon_n = -Au_n$$

Important parameter : polaron binding energy $E_b := A^2/(2M\omega_0^2)$ "Small" polaron : electronic bandwidth 2J < E_b , (perturbation) High temperature limit :

$$\mu = \sqrt{\frac{\pi}{2}} \frac{ea^2}{\hbar} \frac{J^2}{\sqrt{E_{\rm b}}} (kT)^{-3/2} \exp\left(-\frac{E_b}{2kT}\right)$$

~ 1 cm²V⁻¹s⁻¹ (ea²/ħ)

G. Horowitz, Adv. Mater., 10, 365 (1998)

17

Field-Dependent Mobility

The mobility of organic materials become field-dependent at high field (~ 10⁵ V/cm) (a general feature of organic devices)

Poole-Frenkel mechanism,

the coulombic potential near the localized levels is modified by the applied filed in such a way as to increase the tunnel transfer rate between sites.

$$\mu(F) = \mu(0) \exp\left(\frac{q}{kT}\beta\sqrt{F}\right)$$

G. Horowitz, Adv. Mater., 10, 365 (1998)

Multiple Trapping and Release (MTR)

A narrow delocalized band with a high concentration of localized traps (widely used in a-Si)

Assumptions:

- 1. Trap probability ~ 1
- 2. The release of trapped carriers is controlled by a thermal activated process.

$$\mu_{\rm D} = \mu_0 \, \alpha \mathrm{exp}\left(-\frac{E_{\rm t}}{kT}\right)$$

single trap

a single trapping level E,

 α is the ratio of effective density of states between the trap level

and the delocalized band edge

Multiple Trapping and Release (MTR)

Gate-bias-dependent mobility

At low gate bias, field-induced charges go to localized levels

At high gate bias, more localized levels are filled, and Fermi level approach the delocalized band, increasing mobility

However, at high field region, the mobility is still too low to correspond to transport in delocalized states

Two general types of organic materials

Two general cases "Low" mobility materials transport via hopping typical mobility 10⁻⁶ ~ 10⁻¹ cm²V⁻¹sec⁻¹ common for polymeric or disorder organic semiconductors

"high" mobility materials

transport via narrow band transport typical mobility $10^{-1} \sim 10 \text{ cm}^2 \text{V}^{-1} \text{sec}^{-1}$ $\mu(T)$ depends on details (traps, doping, bandwidth, etc.) common for small molecular crystal organic semiconductors

Crystal Structure - Anisotropy

Tetracene

Herringbone-Structure

van-der-Waals (attraction) Pauli-Principle (repulsion)

Layered Semiconductor

Critical Issues of OTFTs

Conductivity vs Mobility in doped amorphous organic semiconductor

 $μ ~ σ^{\delta}$ (δ = 0.76)

 $\begin{array}{ccc} 11 & C_{60} & \text{vacuum-deposited} & [19] \\ 12 & (N\text{-octa'})\text{-Ni(dmit)}_2 & \text{Langmuir-Blodgett} & [20] \end{array}$

A. R. Brown et al., Synth. Met., 68, 65 (1994)

Conductivity vs Mobility in doped amorphous organic semiconductor

 $\mu \sim \sigma^{\delta}$ ($\delta < 1$)

More rapid increase in conductivity with dopant concentration results in decrease of on/off ratio

High performance OTFT array

Top contact / Au electrodes New S4 insulator (polysilicon-acrylate with titanium complex)

Bottom contact / Au electrodes

M. P. Hong *et al*, SID 05' 26

High performance OTFT array

Bottom contact / ITO electrodes

15.0" OTFT array (Al/Mo gate)

Prototype of 15" XGA OTFT-LCD

All-organic active matrix flexible display

Pixel pitch 500 μ m; Aperture ratio:52% Drive Transistor: W/L = 200 μ m/20 μ m Select Transistor: W/L = 20 μ m/20 μ m

SiN/SiO₂ bi-layer gate (PECVD) Nickel gate electrode Pt source and drain electrodes

Substrate: Flexible polyethylene terephthalate (PET)

L. Zhou *et al*, **APL**, 88, 083502, (2006) ²⁸

All-organic active matrix flexible display

L. Zhou et al, APL, 88, 083502 (2006)

Fabrication of OTFTs

For most OTFTs,

"Inverted" architecture, in which gate electrode is laid down first

- **1. Electropolymerization**
- 2. Solution-processed deposition
 - Spin-coating
 - Ink-jet printing
- 3. Vacuum evaporation

Electropolymerization of polythiophene

Starting material, 2,2'-bithiophene

For as-grown polythiophehe, no field-effect was observed Should be undoped electrochemically firstly

Drawbacks:

Low mobility, 10⁻⁵ cm²/V.sec (high density of structural and conjugation defects)

Low on-off ratio 10²-10³

A. Tsumura, and H. Koezuka, and T. Ando, Appl. Phys. Letts., 49, 1210 (1986)

Contact resistance in OTFTs

P. V. Necliudov et al. Solid-State Electronics, 47, 259 (2003)

32

Transfer line method

$$R_{on} = \frac{\partial V_{DS}}{\partial I_{DS}} |_{V_{DS \to 0}}^{V_G} = R_{ch} + R_p = \frac{L}{W \mu_i C_i (V_G - V_{T,i})} + R_p$$

 μ_i , the intrinsic mobility $V_{T,i}$, threshold voltage R_p , parasitic resistance R_{on} , device resistance R_{ch} , channel resistance

The contact resistance is extracted by plotting the width-normalized resistance (RW) as a function of L

The extrapolation to zero channel length gives the total (S&D) contact resistance

Contact resistance in OTFTs

Shottky-Mott model is not followed

Adsorbed molecules tend to push back the tailing e⁻ density at the metal surface, thus reducing the surface dipole and decreasing the work function of the metal

34

Channel resistance becomes comparable with the contact resistance at $V_{GS} > 40V$

Performance of TFT with L < 10 mm can be limited by contacts

Metal oxide/metal bilayer electrodes for OTFTs

C. -W. Chu et al. Appl. Phys. Lett, 87, 193508 (2005)

Metal oxide/metal bilayer electrodes for OTFTs

Drain-source electrodes	Mobility (cm²/V s)	Threshold voltage (V)	On-off ratio
Al	2.8×10-3	-16.2	2.3×10^{2}
Au	0.182	-8.75	2.8×10^{4}
MoO3/Al	0.4	-12.1	3.8×10^{4}
WO ₃ /Al	0.253	-12.88	4.1×10^{4}
V2O5/Al	0.226	-10.43	$1.8\!\times\!10^4$

TABLE I. Electrical parameters of the OTFTs in this study.

C. -W. Chu et al. Appl. Phys. Lett, 87, 193508 (2005)

MoO₃ yeilds a thin film containing MoO to MoO₃ as well as Mo, resulting in highly doped semiconductor

Materials for OTFTs

Oligothiophenes

Mobility is "independent" of the present or absent of alkyl end substitution

The first OTFT made with a small conjugated molecule

Compound	Unsubstituted	Dihexyl-substituted	Reference
4T	$10^{-4} - 6 \times 10^{-3}$		[35,36]
5T	1.5×10^{-3}		[36]
6T	0.01 - 0.03	0.04 - 0.06	[30-32]
		0.09 - 0.13	[34]
8T	0.01 - 0.03	0.01	[35,37]

Table 1. Typical mobility $[cm^2 V^{-1} s^{-1}]$ of recent oligothiophene-based OFETs.

G. Horowitz, Adv. Mater., 10, 365 (1998)

 $(\mathsf{R} = \mathsf{C}_{\mathsf{n}}\mathsf{H}_{\mathsf{2n+1}})$

37

Phthalocyanines (PCs)

The first reported organic semiconductors (1948) Thermally stable up to 400°C and easy to evaporate under vacuum

Mobility : $0.0001 \sim 0.01 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$

Very sensitive to oxygen

Pentacene

Belong to the family to polyacenes

Deposition mode	Substrate temperature [°C]	Mobility	Reference
Vacuum evaporation	RT	0.002	[48]
Spin-coated precursor		0.001	[51]
Pulsed-laser	RT	0.03	[52]
Vacuum evaporation	RT	0.038	[49]
Vacuum evaporation	85	0.4	[53]
Vacuum evaporation	120	0.62	[50]

Table 2. Field-effect mobility $[cm^2 V^{-1} s^{-1}]$ of pentacene with various modes of deposition and substrate temperature (RT: room temperature).

On-off ratio : up to 10⁸

properties:

*sublime at 290 °C-300 °C *decompose > 300 °C in air *do not dissolve in water *slightly dissolved in organic solvents *optical band gap : 2.8 eV

G. Horowitz, Adv. Mater., 10, 365 (1998)

Pentacene

the electronic properties

Pentacene

X-ray differactograms, and schematic representations of structural order of pentacene at different substrate temperature

Solution Processed Pentacene

A. R. Brown et al. J. Appl. Phys. 79, 2136 (1996) 42

Solution Processed Pentacene

Single step synthesis

Mobility : 0.29 cm²/Vs (linear region) 0.42 cm²/Vs (saturation region) On-off ratio : 2x10⁷

A. Afzali et al. J. Am. Chem. Soc., 124, 8812 (2002)

43

Photopatternable Pentacene

Pentacene patterned by UV exposure through a mask and heating in the presence of PAG

K. P. Weidkamp et al. J. Am. Chem. Soc., 126, 12740 (2004)

⁴⁴

N-type semiconductors

OLED research area introduce the concept of electron and hole transporting materials.

n- and p- type materials are usually characterized by their high electron affinity and low ionization potential, respectively.

In OTFT, the *accumulation* region is set up for **positive** gate biases for n- type materials, and for **negative** gate biases for p-type materials

Problem : strong instability with respective to oxygen and water (act as electron traps)

G. Horowitz, Adv. Mater., 10, 365 (1998)

N-type semiconductors

C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater., 14, 99 (2002) 46

High mobility n-type OTFTs

PTCDI-C8H Smectic liquid crystalline phases

Mobility : 0.6 cm²/Vs V_t = 75V On-off ratio > 10⁵

Mobility : 0.3 cm²/Vs in the linear region

P. R. L. Malenfant *et al.* APL., 80, 2517 (2002) 47

Solution-processed n-type OTFTs

C. Waldauf et al. Adv. Mater., 15, 2084 (2003)

Solution-processed n-type OTFTs

Threshold voltage seems unaffected Fermi-level pinning (due to traps)

A higher work function of the contact materials leads decreased injection

General observation of n-type behavior of organic semiconductors

Interfacial electron trapping on standard Si/SiO₂ backgate device

F8BT n-channel FETs – further evidence

With SAM passivation, n-channel activity can be observed

In the past, SiO₂ or hydroxy-containing polymers, such as poly(vinyl phenol) and polyimides (-COOH), were used as the gate dielectrics, the severe e- trapping supress n-channel conduction

Summary

Gate : BCB; electrodes: Ca (n-channel)

F8 Poly(9,9-dioctyfluorene)

F8T2 Poly(9,9-dioctylfluorene-alt-bithiophene)

 $\mu_{\rm h} = 2 \times 10^{-4} (200^{\circ} \text{C})$

(BCB, Ca)

PPV Poly(p-phenylenevinylene)

OC1C10-PPV Poly(2-methoxy-5-(3,7-dimethyloctoxy)-p-phenylene vinylene)

MEH-PPV Poly(2-methoxy-5-(2-ethylhexoxy)-1,4-phenylene vinylene)

CN-PPV Poly(2,5-dihexoxy-a,a'-dicyano-p-xylylidene-alt-2,5-dihexoxy-p-xylylidene)

ეკ

μ_e = 4x10⁻⁵ (130°C)

PF-system has higher mobility than PPV-system

L. L. Chua et al., Nature, 434, 194 (2005)

Polymers

The performance is usually one-order lower than small molecules.

The mobility can be increased by doping, however, at the expense of the on-off ratio

Mobility-conductivity relationship, $\mu \propto \sigma^{\delta}$ ($\delta \sim 0.7$)

Two major materials polyfluorene and poly(alkyl-thiophene)

Poly(fluorene)

0

-50

-40

-20

-10

0

-30

 $V_{g}[V]$

 $\mu_{II} > \mu_x > m_{\perp}$ On-off ratio : > 10⁵

H. Sirringhaus *et al.*, APL, 77, 406 (2000) 55

Poly(alkyl-thiophene)

Z. Bao et al., APL, 69, 4108 (1996)

Poly(alkyl-thiophene)

TABLE I. Field-effect mobilities and on/off ratios of samples prepared from different conditions. Condition 1, cast, vacuum pumped for 24 h; condition 2, spin-coated; condition 3, treated with NH_3 for 10 h; condition 4, heated to 100 °C under N₂ for 5 min; condition 5, heated to 150 °C under N₂ for 35 min.

Entry	Solvent	Condition	Mobility (cm²/V s) ^a	On/off ratio ^b
1	THF	1	6.2×10^{-4}	10
2	<i>p</i> -xylene	1	1.9×10^{-3}	40
3		2	1.9×10^{-5}	2
4	Toluene	1	3.6×10^{-3}	10
5		2	3.2×10^{-3}	25
6	Chlorobenzene	1	4.7×10^{-3}	10
7		entry 6 condition 3	4.7×10^{-3}	80
8		2	6.9×10^{-4}	72
9	1,1,2,2-tetrachloroethylene	1	6.8×10^{-3}	35
10	1,1,2,2-tetrachloroethane	1	2.4×10^{-2}	6
11		entry 10 condition 4	1.4×10^{-2}	35
12		entry 11 condition 5	3.3×10^{-3}	15
13	Chloroform	2	9.2×10^{-3}	80
14		1	4.5×10^{-2}	340
15		entry 14 condition 3	2.1×10^{-2}	9000

^aField-effect mobility for the accumulation-mode operation.

^bOn/off ratio is calculated for enhancement-mode operation only, and it is ten times higher for enhancementdepletion operation.

μ_{cast} > $\mu_{spin-coating}$, probably due to slower evaporation rate

Effect of side chains

 (a) P3HT has the highest mobility (~0.1 cm²/Vs) For P3OT (m = 10), mobility (~1x10⁻⁶ cm²/Vs) From diffraction pattern, the degree of π-overlap does not seems to affected by longer side chain.
probably due to higher volume fraction of insulating side chains

(b) π - π overlap distance increase (4.3Å vs 3.9Å for P3HT) ($\mu \sim 1x10^{-3}$ cm²/Vs)

(c) and (d)

 $(\mu \sim 1 \times 10^{-5} \text{ cm}^2/\text{Vs})$

Polymers with bulky side chains are difficult to form highly crystalline films

Self-organized polymer TFTs

5

Intensity (a.u.) 7.5 7 4 (a.u.) 7.5 7 4 (a.u.)

3

2.5

2

1.5

1

0.5

Orientation is also important High mobility (~0.1 cm²/Vs) was obtained while the chain edge on

H. Sirringhaus et al., Nature, 401, 685 (1999)

Purification of organic compounds

Methods:

1. Sublimation, applying a temperature-step program or

a temperature gradient

- 2. Recrystallization, from a suitable solvent under slow evaporation or temperature lowering
- 3. Chromatographic methods, a sequence of phase equilibrium between a solution and an adsorptive surface or thin film.

Sublimation

61

Chromatography

GPC (Gel Permeation Chromatography)

- Separation by size, not by affinity to stationary material
- Results strongly depend on shape of polymer (rod-like polymers are usually overestimated)

H. Becker, SID 04" seminar lecture notes 62

Growth of single crystals

Plate Sublimation Method

Pyrex glass or fused silica ampoule

Vertical temperature gradient ($T_2 < T_1$)