Organic light emitting diodes and rare-earth complexes

Herbert Boerner SSL PFLA

The magic of light

OLEDs is all about electro-excitation of organic molecules- what we are trying to achieve?

Outline of tutorial

OLED fundamentals

- charge injection
- charge transport
- recombination
- light emission

• Organic emitters in OLEDS

- fluorescent emitters
- phosphorescent emitters

• (Artificial) lighting fundamentals

- Relevant quantities and units
- Conventional light sources
- Color mixing and color quality
- OLED design options

• Rare-earth emitters for OLEDs

- function of ligands
- matrix requirements
- saturation problems
- limitations

• OLEDs for lighting

• application areas and requirements

PHILIPS A bit of organic electroluminescence history...

- 1965: Helfrich and Schneider : First EL experiments with anthracene single crystals
- Around 1973: PVK as hole conductor
- 1980-85: introduction of organic charge conductors in copying machines and laser printers
- 1987: Tang, van Slyke at Kodak: first "modern" two-layer OLED with green emitter ALQ3
- 1990: first Polymer LED: Burroughs, Friend
- 1991: First proposal to use RE-emitters: Kido
- 1994/95: first own tests on Eu-complexes
- 1999: M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest: first OLED with Iridium complex as triplet emitter

Typical OLED design

OLED fundamentals

Representation of the electronic structure in an organic solid

Amorphous solid versus crystalline solid Two different models:

Semiconductor band model,

- crystal,
- regular lattice,
- delocalized states (over many molecules),
- strong interaction between molecules,

Organic glass:

- frozen liquid,
- irregular packing,
- localised states (on one molecule),
- weak interaction between molecules

Organic glass needed for electrical isolation: no breakdown at h electric fields

PHILIPS OLED fundamentals: charge injection

PFLA SSL Herbert Boerner Sep-05

PHILIPSOLED fundamentals: band model

Injection of Charge Carriers from the Electrodes

HOMO-LUMO levels: relation to redox potentials => Fc+/Fc: -4.8 eV

PHILIPS OLED fundamentals: energy barriers

PHILIPS , OLED fundamentals: charge transport .

- Organic materials are basically high-bandgap isolators when undoped
- High electric fields required to transport charge:
 10V / 100 nm => 100 kV/mm !!!!
- Drift velocity v: $v = \mu E$ where μ mobility
- Drift is thermally activated
- Mobility in glassy organics: $10^{-3} 10^{-7}$ cm²/Vsec
- Mobility in organic crystals: $10^{-2} 10^{1}$ cm²/Vsec

PHILIPS OLED fundamentals: charge transport

Transport of Charge Carriers in Organic Solids

Bässler: thermally activated hopping process on Gaussian distributed energy niveaus

$$\mu = \mu_0 \exp\left[-\left(\frac{2\sigma}{3kT}\right)^2\right] \exp\left[C\left(\frac{\sigma^2}{\left(kT\right)^2} - \Sigma^2\right)E^{1/2}\right] \quad \begin{array}{c} \text{temperature and} \\ \text{field dependend} \\ \text{carrier mobility} \end{array}\right]$$

(C = empirical konstant 2,9-10-4 cm1/2 V-1/2)

 σ = energetic (diagonal) variation, Σ = positional (off-diagonal) variation of the hopping sites

PHILIPS OLED fundamentals: charge transport (holes)

Hole transport = oxidation of the molecules overlap of molecular orbitals required!

PHILIPS OLED principles: charge transport (electrons)

electron transport = reduction of the molecules

PHILIPS OLED principles: charge recombination

Electroexcitation

Electroexcitation populates directly and preferably the Triplet state

Non-radiative transition

OLED principles: losses

PFLA SSL Herbert Boerner Sep-05

PHILIPS OLED fundamentals: light outcoupling

Light outcoupling

Light outcoupling structures

FIG. 3. SEM of a PDMS microlens array fabricated from the mold shown in Fig. 2. The detailed side view of the lenses (inset) shows that the PDMS accurately images the mold shape.

Light outcoupling

- The outcoupling structures randomize the light ray directions
- Normally, less than 50% of the light entering the glass can escape
- Optimised systems can increase this figure to about 80%

PHILIPS

Light outcoupling

Light outcoupling structures: pyramids and lenses

PHILIPS OLED fundamentals: summary

- Semiconductor band model
- Charge injection from metallic contacts into organic glass
- Charge transport due to hopping
- E-field driven chain reaction: oxidation or reduction
- High electric fields required
- Recombination pumps individual molecule
- Electroexcitation pumps 75% triplet, 25% singlet
- Photoexcitation pumps 100% singlet, triplet only via intersystem crossing
- Triplet emitter needed for high efficiency
- a lot of light is lost in the device and not coupled out (up to 80%)

Mainstream

- Fluorescent emitters (R,G,B)
- Ir-complexes (R,G,B) (lifetime issues with blue)

Special cases

- Eu³⁺, Tb³⁺ complexes
- Gd³⁺ complexes

Focus on small molecules exclusively!! Interaction between photons and molecules requires easily moveable electrons: i.e. the π electrons of double bonds

Conjugated double bonds are needed for larger π -electron systems

Aromatic systems

High energy limit: hv > bond energy Low energy limit: thermal stability Luminescence between 300 and 900 nm

PHILIPS Organic dye molecules: the states

Fig. 1.14. Eigenstates of a typical dye molecule with radiative (solid lines) and non-radiative (broken lines) transitions

F. P. Schäfer, Dye Lasers, Springer 1973

Organic dye molecules

Fig. 1.7. Absorption spectrum, $\varepsilon(\lambda)/\varepsilon_{max}$, and fluorescence spectrum, $Q(\lambda)/Q_{max}$, of a typical dye molecule (fluorescein-Na in water)

F. P. Schäfer, Dye Lasers, Springer 1973

Fluorescent emitters: examples

DPVBi

Rubrene

BCzVBi

PHILIPS

PHILIPSPhosphorescence at 77K: TPD

Hole conductor

PHILIPS Phosphorescence at 77K: BCP (Bathocuproine)

Electron conductor

PFLA SSL Herbert Boerner Sep-05

Complexes or metalorganic compounds with heavy metal atoms PHILIPS

Enhances the S-T transitions:

- Intersystem crossing
- phosphorescence

 \propto atomic number Z⁴

Spin-orbit coupling

N. J. Turro, Modern Molecular Photochemistry, University Science Book, CA, 1991

PHILIPSSpin-orbit coupling: a simple model

N. J. Turro, Modern Molecular Photochemistry, University Science Book, CA, 1991
PHILIPS First efficient phosphorescent OLED: Pt complex

M. A. Baldo *et al.* Nature, **395**, 151 (1998)

PHILIPS Iridium based triplet emitters

Source: BASF

PHILIPS Iridium based triplet emitters

Radiative lifetimes: ~ 1 μ sec

- Förster energy transfer: A Coulombic interaction between the host exciton(donor) and the dopant:
- dipole-dipole coupling
- fast process
- long distant process (up to 10 nm)
- Singlet energy transfer

- Dexter transfer: An electron-exchange interaction between the host exciton and the dopant
- requires electron exchange
- short distant process (1.5-2.0 nm)
- Triplet energy transfer

PHILIPS Iridium complexes in OLEDs: matrix requirements I

Iridium complex

Firpic in CBP matrix

C. Adachi *et al*. APL, 79, 2082 (2001)

ITO/ CuPC/ α-NPD/ CBP:6% FIrpic/ BAlq3 /LiF/Al

η ext: (5.7±0.3)% Power efficiency : (6.3±0.3) Im/W

Matrix material (hole conductor)

Firpic in CDBP matrix

S. Tokito et al. APL, 83, 569 (2003)

ITO/ PEDOT/ α-NPD/ CDBP:3% FIrpic/ BAlq3/ LiF/ Al

η_{ext}:10.4% Current efficiency : 20.5 cd/A Power efficiency : 10.5 lm/W

Firpic in new matrix

ITO/ MTDATA:F4-TCNQ/ MTDATA/ NTMM:9% Flrpic/ ST2352/ LiF/ Al η_{ext} :14.5% max Current efficiency : **31.5 cd/A** Power efficiency : **23 lm/W** NTMM: $T_1 = 2.9 \text{ eV},$ HOMO = -5.35 eV ST2352: $T_1 = 2.81-2.85 \text{ eV},$ HOMO = -6.62 eV

- Summary
- Fluorescent emitters are well researched, but limited because of their internal QE of 25%
- Ir-complexes are by far the best studied and most efficient phosphorescent emitter systems known with IQE up to 100%
- Efficiency will deteriorate dramatically if Dexter (triplet) energy transfer to matrix molecules is possible
- For blue triplet emitters, new matrix molecules with a high T₁ level are required

(Artificial) lighting fundamentals

- Radiometric and photometric units
- Color and color rendering
- Conventional light sources:
 - incandescent
 - fluorescent

Spezifications of lightsources

Quantity	description	unit
Energy efficiency	Visible radiation flux per electrical power	%
Efficacy	Radiation power per electrical power	lm/W
Color point	Coordinates in the CIE diagram	x,y
Color temperature	CIE coordinates on black body line	K
Color rendering	Comparison of color impression from test charts	N.A.

Eye color response

PFLA SSL Herbert Boerner Sep-05

Radiation

measurement

- Units for power (proportional to number of photons per time unit):
- Flux $\Phi_e = dW/dt$ [J/s = W]
- Radiation density
- Spectral density

 $\Phi_e = d\Psi_e/dA \qquad [W]$ $D_e = d\Phi_e/dA \qquad [W]$ $L_e = dD_e/d\lambda \qquad [W]$

[J/S = VV] [W/m²] [W/m²nm]

• Example: Sun-Earth: $E_{es} = 1.35 \text{ kW/m}^2$ (solar constant)

Calculating # of photons: $E = hv = hc/\lambda$ und $hv_{550} = 4*10^{-19} \text{ J}$ $\Rightarrow 1 \text{ W} = 2.5*10^{18} \text{ Photons/sec}$

Photometric units

Units related to eyesensitivity of humans

- Lightflux $\Phi = \Phi e/M_0$ [lm]
- (M₀ = energetic light equivalent
- = 0.00146 W/lm)
- K_{max} = 683 lm/W (bei 555 nm)

$$\mathsf{K}(\lambda) = \mathsf{K}_{\max} \mathsf{V}(\lambda)$$

- Light power I = $d\Phi/d\Omega$ [cd]
- (Ω = solid angle [sr])

Photometric units

Integral units	Angular units
Light power $\Phi = \Phi_e / M_0$ [Im]	Light flux I = $d\Phi/d\Omega$ [cd]
Illumination E =d Φ /dA [lux = lm/m ²]	Brightness L = dI/dA $\cos\gamma$ [cd/m ²]

Examples	Light source	Brightness [cd/m ²]
	Sun	$1.5 \ge 10^9$
	Discharge arc	$2.0 \ge 10^8 - 1.0 \ge 10^9$
	Light bulb (clear)	$2.0 \times 10^6 - 2.0 \times 10^7$
	Light bulb (matte)	$5.0 \ge 10^4 - 5.0 \ge 10^5$
	Fluorescent tube	$4 \times 10^3 - 1.4 \times 10^4$
	Candle	7.5×10^3
	Blue sky	$3 \times 10^3 - 5 \times 10^3$
	Moon	2.5×10^3
	TV	5×10^2

Energy efficiency

• Definition W_{hv(visible)}/W_{electrical} [%]

• Measurement in integrating sphere

•	Lamp type	Efficiency [%]	
•	Incandescent		5
•	Halogen	8 - 10	
•	Energy saving (CF	L)	16
•	Hg-High pressure	17	
•	Fluorescent tube	29	
•	Na-high pressure	31	
•	Na-low pressure	40	

Light efficacy

- Light efficacy =
- Efficiency* LE (luminous equivalent)

$$LE = \int_{380}^{780} y(\lambda) E(\lambda) d\lambda$$

efficiency LE Light efficacy 40 % 500 lm/W_h 200 lm/W_{el}

Color point and color temperature

- Color point
- x,y-Coordinates in the
- CIE-color triangle
- Color temperature
- Correlated to the color point of a black body radiator
- Incandescent bulb 2700 K
- Fluorescent tube 4000 K
- Daylight 6500 K

C.I.E. System (Commission Internationale de l'eclairage)

Colour Rendering Index (CRI)

- Measures color reproduction of light sources with respect to test colors
- Measurement:
- Reflection of 8 or 14 test panels are compared under light source versus incandescent illumination
- Scale $0 \leq CRI \leq 100$
- CRI = 0 monochromatic source
- CRI = 100 broadband source

Incandescent light

- Principle
- Ohmic heating of filament by electric current. Power consumption: P = U²/R
- Light-emission in thermial equilibrium. Planck's law: $L_e = (c_1/\lambda^5)*1/(exp(c_2/\lambda T)-1)*10^{-9} [W/m^2nm]$

Light bulbs (conventional)

- Visible light fraction increases 3x10³ with increasing filament temperature
- Problem
- Tungsten evaporates from filament
- Resistivity R increases
- Filament temperature keeps increasing until it burns
- Gas filling
- Argon, Krypton or Nitrogen reduce Tungsten-evaporation and increase lifetime

Lifetime strongly depends on temperature

2800 K	1000 h
3200 K	100 h
3400 K	5 h

Halogen

- Filling: I₂, CH₃Br or Amps
- Higher energy efficiency through higher burning temperature
- Shift of emission spectrum increases UV fraction

Emission spectrum

Typical spectra of fluorescent tubes

Two converter and three converter mixture.

Efficiency of fluorescent tubes $\epsilon = \epsilon_{dis} * QD*QA$

- ϵ_{dis} = Plasma efficiency
- Quantum-deficit = $[\lambda_{Plasma}/\lambda_{converter}] = 0.46$
- Quantum-efficiency = N_{emit. photons}/N_{abs. photons} ~ 0.9

Fluorescent tubes $\epsilon_{dis} = 70 \% \implies \epsilon = 29 \% (100 \text{ lm/W})$

Energy saving lamps $\epsilon_{dis} = 40 \% \implies \epsilon = 16 \% (55 \text{ lm/W})$

Comparison of light sources

- a Na-low pressure
- b Na-high pressure
- c fluorescent tube
- d energy saving bulb
- e Hg-high pressure
- f Halogen
- g Light bulb

White light generation I

White combination
s

- Warm white
- Cold white

White light generation II

White light generation III

In principal, of course: Intrinsic white

PHILIPS

PHILIPS How to make OLEDs I

- Vacuum evaporation
- Organic vapour phase deposition (OVPD)

Evaporable small molecules:

- Molecular weight < 1000
- No linear repetition of simple building block

How to make OLEDs II

PHILIPS Octopus: vacuum evaporation

OVPD

organic vapour phase deposition, AIXTRON

OVPD

organic vapour phase deposition, AIXTRON

PHILIPS Linear sources for evaporation or OCVD

- higher throughput
- Larger substrate size
- Better substrate coverage
- requires sophisticated thickness control
- large amount of material needed
- Under test and construction at several places (e.g. Applied Films)

Linear sources for evaporation

Applied Films

Technical Data

Maximum coating window	up to 400 x 500 mm
Vertical coating length	up to 500 mm
Ultimate pressure	≤ 5 x 10°° hPa

PHILIPS Luminescence of RE-complexes

- Eu³⁺: red emission (612 nm); very interesting
- Tb³⁺: green emission; nice, but many other choices in terms of Ir-complexes
- Sm³⁺, Dy³⁺,Ho³⁺,Nd³⁺... not really efficient enough for us
- Gd³⁺: is a special case

Eu³⁺ emission

- Intra-atomic transitions in the 4f-shell
- Shielded by 5*s*5*p* electrons

Exciton quenching in highly efficient europium-complex based OLEDs T.W. Canzler and J. Kido

Problems with red emitters

Efficiencies of Eu-complexes in EL

Warning: "old" data, new experiments may show different results!

Typical OLED with Eu-complex

Eu³⁺ emitters

- 5 loosely coupled entities:
- Three charged ligands
- The uncharged ligand
- The rare-earth ion
- Offers possibility to tune the properties of the complex: charge transport or exciton transport
- Example: only bphen participates in charge transport

PHILIPS Eu³⁺ emitters: photoexcitation

PHILIPS Eu³⁺ emitters: electroexcitation

Spectator molecules

RE³⁺ energy levels

- Two resonance levels for Eu³⁺
- One for Tb³⁺
- None for Gd³⁺

Gd³⁺ emitter: a special case

- Gd3+ has high-lying state, normally no energy transfer from ligand to ion
- Redox-inert
- Paramagnetic
- Induces S-T mixing: radiation due to ligand phosphorescence
- Radiative lifetime of GdCp₃: 2.3 μsec
- Unfortunately air sensitive
- Gd is much cheaper than Ir
- less problems with patents
- Greater risks: need stable complexes with high QE, short radiative lifetime and good emission spectrum

Fig. 1. Electronic emission (a) and excitation (b) spectrum of GdCp₃ in dry diethylether at 298 K, $\lambda_{exc} = 250$ nm, $\lambda_{em} = 500$ nm.

A. Strasser, A. Vogler / Chemical Physics Letters 379 (2003) 287–290

PHILIPS Eu³⁺ complexes: requirements

- Evaporability
 - Need uncharged complexes for evaporability: 3 charged ligands
 - Coordinative saturation needed for evaporability:1 uncharged ligand
 - Thermal stability (co-ligand!!)
- Charge transport capabilities of ligands
 - For holes: triarylamines, carbazoles
 - For electrons: phenathrolines
 - Ambipolar: aromatic molecules, fluorene, napthalene, …
- Energy transfer from ligand to Eu-ion
 - T_1 of ligand larger than resonance level: Eu³⁺ with ${}^{5}D_0$ at 17270 cm⁻¹ and ${}^{5}D_1$ at 19030 cm⁻¹

PHILIPS Eu³⁺ complexes: requirements

MgAg

Fig. 2 The luminance-voltage and current-voltage characteristics of device 6. Inset: The EL efficiency-voltage characteristic of device 5.

Pure red electroluminescence based on a functionalized EuIII complex**

ZuQiang Bian, Min Guan, YanYi Huang, FuYou Li, Hao Xin, ChunHui Huang* (Advanced Materials??)

PFLA SSL Herbert Boerner Sep-05

PHILIPS Radiative lifetime of molecules

- Fluorescent states: 10⁻¹⁰ to 10⁻⁷ sec
- Phosphorescent states: 10⁻⁶ to 10⁻⁴ for transition metal complexes
- Phosphorescent states in general: up to several sec. at 77K
- Eu³⁺, Tb³⁺ complexes: 10⁻⁴ to 10⁻³ sec
- Gd³⁺ complexes: 10⁻⁶ to 10⁻¹ sec
- The longer the lifetime, the more quenching!

PHILIPS Phosphorescent emitters in OLED

Problems of electroexcitation

- Long radiative lifetime of excited state compared to fluorescent emitters
- Quenching by charge carriers
- Energy transfer to matrix: mobile triplets
- Triplet-triplet annilihation

PHILIPS OLED structure optimisation : quenching I

PHILIPSOLED structure optimisation : quenching II

PHILIPS OLED structure optimisation : quenching III

Quenching by charge carriers

$$M^+ + {}^3M^* -> M^+ + M$$

 $M^{-} + {}^{3}M^{*} -> M^{-} + M$

PHILIPS Simulation of charge densities

Martin Pfeiffer, IAPP Dresden, Feb. 2005

Simulation of charge densities

- surplus of holes in EML, especially at interface to HBL
- charge accumulation at interfaces of doped layers

Martin Pfeiffer, IAPP Dresden, Feb. 2005

PHILIPS

Simulation of triplet exciton distribution

- good confinement to EML
- main generation close to EML-HBL interface

Martin Pfeiffer, IAPP Dresden, Feb. 2005

PHILIPS

PHILIPS Simulation of bimolecular quenching processes

- some triplet-polaron quenching already at low brightness
- triplet-triplet-annihilation becomes more pronounced at high brightness

Martin Pfeiffer, IAPP Dresden, Feb. 2005

- We are observing a quenching effect of the efficiency which is due to saturation of the excitation
- A simple model shows that only a fraction of the molecules in the emissive layer is excited
- most of the molecules do not participate in the excitation-emission process
- model:
 - already excited molecules cannot be excited again
 - The excitation rate is equal to the current density
- where are the excited molecules? At the interface of the emissive layer?
- why is there no excitation of the bulk emissive layer?

Device (I): [+] **TPD** (40 nm) Ext. Quantum Efficiency [%] Eu(DBM)₃BPhen (60 nm) **TAZ** (10 nm) device (I) [-]. device (II) \Box fit T-T model Device (II): T-T model: [+] device (I) : $\eta_{c} = 7.9\%$ J_c = 0.6 mA/cm² device (II): $\eta_c = 7.9\%$ $J_c = 2.4 \text{ mA/cm}^2$ **TPD** (40 nm) 0.1 0.01 Eu(DBM)3BPhen:TPD(1:2, 20 0.1 10 Current Density [mA/cm²] nm) Eu(DBM)3BPhen (40 nm) TAZ (10 nm)

[-].

Exciton quenching in highly efficient europium-complex based OLEDs

T.W. Canzler and J. Kido, submitted for publication

100

Device structure:

[+] TPD (40 nm)/ Eu(DBM)₃BPhen (60 nm)/ TAZ (10 nm)

[-].

Possible improvements:

- TPD T₁: 19200 cm⁻¹
- DBM T₁ : 20300 cm⁻¹
- BPHEN T₁ : 21000 cm⁻¹
- TAZ T₁ : 22800 cm⁻¹

Use hole conductor with a $T_1 > 21000$ cm cm⁻¹ to avoid loss of triplet excitons

Use appropriate matrix materials to improve charge transport in the emissive layer

Exciton quenching in highly efficient europium-complex based OLEDs

T.W. Canzler and J. Kido, submitted for publication

The roll-off of efficiency at high current densities

Dopant site saturation???

 $\eta_{ext} = c^* 1/J (J : current density)$

T-T annihilation : $T_1 + T_1 \rightarrow S_0 + S_1$

$$\frac{\eta}{\eta_0} = \frac{J_0}{4J} \left(\sqrt{1 + 8\frac{J}{J_0}} - 1 \right)$$

 η_0 : quantum efficiency in the absence

of TT annihilation

 J_0 : onset current density at $\eta=\eta_0/2$

$$J_0 = \frac{4qd}{k_{TT}\tau^2}$$

M. A. Baldo et al. Phys. Rev. B, 62, 10967 (2000)

PHILIPS Transport pathways in OLED I

PHILIPS Transport pathways in OLED II

- Due to disorder, charge transport along certain paths is more likely than for other paths
- The probability for molecules to receive charge is not equal
- The probabilities for excitation are different

Hopping transport along pathways

- Certain pathways favoured by energetics (disorder, DOS)
- Better recombination along these pathways, therefore higher probability to find a charge carrier on the molecules along this pathway
- Quenching due to charge-exciton interaction is stronger
- Prediction: matrix materials with high mobility are less affected because charge transport is better distributed (less disorder)

PHILIPS Lists of challenges

- New classes of efficient Eu³⁺ complexes wanted !
- High PL quantum efficiency
- All ligands should participate in the charge transport:
 - Appropriate HOMO and LUMO levels
 - Stable redox properties
 - Triplet level high enough

- Eu³⁺ are an interesting choice for highly efficient red emitters in OLEDS
- The long radiative lifetime enhances problems with T-T and charge-T annihilation considerably
- Not so many ligands have been tried yet
- No concentrated effort for better complexes so far
- Many opportunities if knowledge from OLED theory is incorporated into design
- Quenching problems have to be solved for other triplet emitters as well (but on a lower level)
- Good test environment for well-distributed excitation

 PFLA SSL Herbert Boerner Sep-05

Prime importance of efficiency

- Efficiency of prime importance, especially for general lighting applications
- Saves electrical power for lighting
- Improves COO balance for OLEDs (Im/€)
- Minimizes secondary problems (e.g. lifetime problems through selfenergy saving bulb heating)
 efficiency in 2-4

New efficiency record in ca. 3-8 years

2010

2015

Efficiency Prognosis White OLEDs

OIDA

– USDC

Fluorescent tube

Incandescent

Compact fluorescent

2000

2002

Year

2005

200

150

100

50

Efficacy (Im/W)

The lighting challenge

Differences Displays-Lighting

- Displays
 - Pure colors (RGB)
 - Pixelated (<200µm)
 - typical 100cd/m²
 - Lifetime 5000h
 - High importance of peripheral components (driver IC, connections.

- Lighting applications
 - $1000 cd/m^2$
 - Lifetime >10000h
 - White light (high CRI)
 - "Large" area homogeneous
 - High efficiency

OLEDS for lighting

High efficiency blue-green

High efficiency white

High efficiency orange

OLEDS for lighting

Potential starting markets

- Automotive
 - decoration
 - interior
- Signaling
 - Advertising
 - Emergency exits
- Luminance applications
 - Decoration
 - Accent lighting

The ultimate lightfoil

- bright
- flexible
- efficient
- tunable
- long lived

... for any lighting application

OLED Application advantages for Lighting

- Transparent, mirrorlike or white appearance
- Thin, flat, lightwheight
- "Green" product (energy efficient, recylable)
- Low voltage technology
- Potentially cheap
 fabrication

- (Potentially) High efficiency
- Large area diffuse light source
- Fast switch-on
- Fully dimmable
- Many colors, incl. different white's
- Form freedom in design

Energy efficiency will matter a lot in the future.

