

SAGe

Agilis

Agência

Revista

Biblioteca Virtual

Indicadores

Oportunidades

Pesquisa

English Español

Home

Multimídia

Revista

Buscar

AGRONOMIA AGROPECUÁRIA AMBIENTE

ANATOMIA ANTROPOLOGIA ARQUEOLOGIA ARQUITETURA ARTES VISUAIS ASTRONOMIA BIODIVERSIDADE

BIOENERGIA BIOINFORMÁTICA BIOL. CELULAR BIOLOGIA BIOQUÍMICA BIOTECNOLOGIA BOTÂNICA CIÊNC ATMOSFÉRICAS CIÊNC POLÍTICA CIENCIOMETRIA

CINEMA COMPORTAMENTO COMPUTAÇÃO COMUNICAÇÃO DANCA DEMOGRAFIA DIPLOMACIA DIREITO **ECOLOGIA ECONOMIA** EDUCAÇÃO ENERGIA ENGENHARIA

EPIDEMIOLOGIA ÉTICA EVOLUÇÃO FARMACOLOGIA FILOSOFIA FINANCIAMENTO

> FISIOLOGIA GENÉTICA GENTE **GEOCIÊNCIAS**

FÍSICA

GEOGRAFIA GEOLOGIA HISTÓRIA

IMUNOLOGIA INOVAÇÃO LINGUÍSTICA LITERATURA

MATEMÁTICA MEDICINA MUSEOLOGIA MÚSICA

NANOTECNOLOGIA NEUROCIÊNCIA NUTRIÇÃO

OCEANOGRAFIA ODONTOLOGIA ÓPTICA TECNOLOGIA

Iluminação flexível

Novos tipos de lâmpadas e células fotovoltaicas orgânicas são desenvolvidos por centro de pesquisa

SERGIO KALILI | Edição 199 - Setembro de 2012

Lâmpadas flexíveis no formato de fitas capazes de serem coladas nas paredes, no teto e até em rodapés. A tecnologia e a arquitetura de iluminação caminham nesse sentido e novas formas de utilização dessas fitas flexíveis compostas principalmente de polímeros encontram utilidades inusitadas antes mesmo de se tornarem comerciais. Foi o caso do desfile do estilista Ronaldo Fraga, no São Paulo Fashion Week, que aconteceu em junho deste ano na capital paulista. As modelos estavam ornadas com fitas eletroluminescentes chamadas de Lume e produzidas pelo Csem Brasil, instalado em Minas Gerais, um centro privado de pesquisa aplicada, especializado no desenvolvimento e transferência de tecnologia, principalmente em eletrônica orgânica e microssistemas. Conectadas a pequenas baterias presas aos corpos das modelos, as fitas foram pela primeira vez apresentadas em público.

Desfile do estilista Ronaldo Fraga no São Paulo Fashion Week deste ano: modelos com fitas iluminadas

O desenvolvimento e a fabricação da Lume no Brasil deixam o país no mesmo nível, nessa área, da Europa, dos Estados Unidos e da China, num mercado global ainda muito pouco explorado. As fitas Lume geram luz em toda a superfície e são destinadas principalmente à produção de telas de produtos eletrônicos como relógios, interiores de aviões e automóveis, placas de publicidade e como peça decorativa. Elas possuem uma vida útil de 10 mil horas e apresentam baixo consumo de energia.

Para a confecção da Lume, o Csem usou a tecnologia de eletrônica impressa em rolos utilizada na fabricação de semicondutores orgânicos, embora essas fitas iluminadas não usem especificamente polímeros orgânicos. As Lumes são fabricadas em uma máquina de impressão chamada Roll to Roll, a primeira da América do Sul, e que funciona de maneira similar à rotativa de um jornal. Basicamente a Lume é formada por uma camada de um material à base de fósforo entre dois eletrodos, sendo um transparente chamado de ITO, de indium tin oxide, ou óxido de índio dopado, com estanho e o outro de tinta de prata. O campo elétrico formado pelos eletrodos excita os elétrons do fósforo e, quando eles voltam ao estado original, emitem luz vermelha, branca, azul ou verde, dependendo do tipo de cor da tinta utilizada. Como substrato, a lâmpada flexível utiliza o polímero PET, o mesmo das garrafas de refrigerante e água mineral. A formação da fita acontece por meio da passagem pelos rolos da máquina e o recebimento de diferentes camadas.

Os polímeros orgânicos são os elementos principais na fabricação dos organic lightemitting diodes (Oleds), que usam principalmente carbono na sua composição e são a próxima promessa no campo da iluminação e de telas depois do LED, hoje já presente

ed.199 | Setembro 2012

Pergunte aos pesquisadores

Folheie a edição 199

Tradição de reunir

Folheie a revista Sumário da edição

Anuncie Assine Pesquisa Edicões Anteriores Edições Especiais

प्री Brasileiras encontram pó alquímico na Royal

NVI€ seu projeto de

Small Business Advantage

Solução de segurança é Intel® SBA

Salas Reunião/Treinameno

Alugamos por Hora, Dia ou Mês, Nós Estamos na Av. Paulista. Consulte! www.saladereunioes.com.br/

Fitas Personalizadas

Impressa ou lisa, etiqueta, laco cordão, chaveiro do desejo, muito + www.skillfitas.com.br

<u>Graduação - Pedagogia</u>

Conheça o curso de ensino superior oferecido pela São Judas. www.vestibularsaojudas.com Anúncios Google PALEONTOLOGIA
POL. PÚBLICAS
PSICOLOGIA
PSIQUIATRIA
QUÍMICA
SAÚDE PÚBLICA
SOCIOLOGIA
SUSTENTABILIDADE
T. INFORMAÇÃO
TEATRO
URBANISMO
ZOOLOGIA

em lâmpadas especiais e nas telas de televisão. A rota tecnológica da produção da Lume é a mesma da produção dos Oleds e abre caminho também para o desenvolvimento de dispositivos com polímeros orgânicos como, por exemplo, células fotovoltaicas, que podem ser impressas e flexíveis, utilizadas em sistemas de geração de energia solar. O objetivo do Csem não é, nesse primeiro momento, investir na produção em escala de Oleds nem de *displays*. Outros países estão bastante próximos de dominar a confecção desses dispositivos. Por isso, o engenheiro Tiago Maranhão Alves, diretor-executivo do centro, afirma que o primeiro produto orgânico produzido para consumo geral será a célula fotovoltaica feita de semicondutores orgânicos.

© FERNANDO LUTTERBACH / CSEM

A máquina de impressão e produção das fitas em rolo

Reciclador de energia

"Além de termos condições de conquistar espaços significativos, nós temos os recursos naturais para entrar, competir e ganhar esse jogo", diz. Pelo planejamento, as primeiras células fotovoltaicas comerciais devem chegar às ruas em um ano. Com elas será possível fazer painéis solares leves e flexíveis a custos menores, alimentadores de teclados de computador, celulares e controles remotos. Essas células também serão capazes de captar a

luz de casa, assim como a luz solar, e produzir corrente elétrica, exercendo a função de "um reciclador de energia". Outro mercado será o de geração elétrica em localizações remotas ainda não servidas pela rede de distribuição elétrica.

Para Maranhão, ninguém faz uma nova cadeia de valor sozinho. "Isso só é possível com muita pesquisa e parcerias." O Csem já recebeu para o desenvolvimento de seus projetos o apoio financeiro da Fundação de Amparo à Pesquisa do Estado de Minas Gerais (Fapemig) e do Banco Nacional de Desenvolvimento Econômico e Social (BNDES). Em Minas Gerais, um acordo entre a Secretaria de Estado de Ciência e Tecnologia, a Fapemig e a iniciativa privada está estimulando o desenvolvimento dessa tecnologia. "O importante nesse projeto é que estamos usando o governo como indutor de uma parceria entre universidade e empresa para o desenvolvimento de tecnologia de ponta, que pode gerar riqueza, empregos e desenvolvimento para o país", explica Mario Neto Borges, presidente da Fapemig. A fundação já investiu R\$ 7 milhões no instituto. O BNDES adicionou mais R\$ 15 milhões ao investimento.

Intercâmbio conjugado

O Memorando de Entendimento em Cooperação Acadêmica, Pesquisa e Desenvolvimento firmado entre as instituições permite o intercâmbio de pesquisadores, mestres, doutores e pós-doutores das universidades e empresas mineiras com o Centro de Eletrônica Plástica do Imperial College, um dos mais importantes centros de eletrônica orgânica do mundo. O diretor do centro inglês, o físico Donal Bradley, é um dos inventores da eletroluminescência de polímeros conjugados. Dez pesquisadores brasileiros já trabalharam com ele, por meio do convênio. Na volta, alguns foram recrutados para trabalhar no Csem. Pelo acordo, as patentes registradas pelo convênio pertencerão aos parceiros envolvidos, inclusive a Fapemig.

Os primeiros passos para o surgimento e desenvolvimento da eletrônica orgânica e impressa foram dados por acaso, em 1976. Nesse ano, Hideki Shirakawa, um pesquisador japonês do Instituto de Tecnologia de Tóquio, tentava sintetizar um tipo de plástico, o poliacetileno, um polímero simples formado apenas de átomos de carbono e hidrogênio. Ao errar a mão, adicionando uma quantidade maior de um catalisador ao composto, Hideki produziu um filme brilhante como uma folha de alumínio. Pouco depois, uniu-se a dois cientistas norte-americanos, o químico Alan MacDiarmid e o físico Alan Heeger, na Universidade da Pensilvânia. Trabalhando sobre o filme brilhante do pesquisador

© FERNANDO LUTTERBACH / CSEM

japonês, eles perceberam que, ao dopar o carbono com iodo, ele se tornava uma folha metálica dourada, com condutividade elétrica. Estava descoberto então o primeiro semicondutor orgânico, formado de polímero. A descoberta rendeu o Nobel de Química para os três em 2000. Quase 40 anos depois, muitas aplicações práticas para esses semicondutores foram estudadas. A corrida agora entre cientistas, instituições privadas e governamentais é de como fabricar esses produtos à base da eletrônica orgânica e impressa com eficiência, custos reduzidos e em larga escala.

A corrida para colocar o Oled no mercado movimenta os grandes fabricantes de material de iluminação como a alemã Osram, que está investindo nos Oleds, feitos de semicondutores orgânicos. A principal vantagem desse material é que ele não é formado por uma junção de pontos emissores individuais, mas sim por uma superfície flexível que gera iluminação de maneira uniforme, podendo se moldar mais facilmente a diferentes formas e ambientes. A empresa já tem uma instalação na cidade de Regensburg, na Alemanha, preparada para ser a primeira linha-piloto de produção em grande escala de Oleds do mundo. Os primeiros produtos de uso comercial, para iluminação de escritórios e para o varejo, já foram testados nas cidades alemãs de Munique e Berlim e devem chegar em breve ao Brasil. Segundo Joyce Calil, gerente de vendas da Osram no país, a expectativa é de que "as primeiras aplicações no mercado sejam para luz funcional a partir de 2015".

HOME | EDIÇÃO IMPRESSA | QUEM SOMOS | ASSINE | BOLETIM | ANUNCIE | FALE CONOSCO

© Revista Pesquisa FAPESP - Todos os direitos reservados. É proibida a reprodução total ou parcial de textos e imagens sem prévia autorização.