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Preface

In recent years, the availability of powerful low-cost microprocessors has spurred
great advances in the theory and applications of nonlinear control. In terms of theory,
major strides have been made in the areas of feedback linearization, sliding control,
and nonlinear adaptation techniques. In terms of applications, many practical
nonlinear control systems have been developed, ranging from digital "fly-by-wire"
flight control systems for aircraft, to "drive-by-wire" automobiles, to advanced robotic
and space systems. As a result, the subject of nonlinear control is occupying an
increasingly important place in automatic control engineering, and has become a
necessary part of the fundamental background of control engineers.

This book, based on a course developed at MIT, is intended as a textbook for
senior and graduate students, and as a self-study book for practicing engineers. Its
objective is to present the fundamental results of modern nonlinear control while
keeping the mathematical complexity to a minimum, and to demonstrate their use and
implications in the design of practical nonlinear control systems. Although a major
motivation of this book is to detail the many recent developments in nonlinear control,
classical techniques such as phase plane analysis and the describing function method
are also treated, because of their continued practical importance.

In order to achieve our fundamental objective, we have tried to bring the
following features to this book:

* Readability: Particular attention is paid to the readability of the book by
carefully organizing the concepts, intuitively interpreting the major results, and
selectively using the mathematical tools. The readers are only assumed to have had
one introductory control course. No mathematical background beyond ordinary
differential equations and elementary matrix algebra is required. For each new
result, interpretation is emphasized rather than mathematics. For each major result,
we try to ask and answer the following key questions: What does the result
intuitively and physically mean? How can it be applied to practical problems?
What is its relationship to other theorems? All major concepts and results are
demonstrated by examples. We believe that learning and generalization from
examples are crucial for proficiency in applying any theoretical result.

» Practicality: The choice and emphasis of materials is guided by the basic
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objective of making an engineer or student capable of dealing with practical control
problems in industry. Some results of mostly theoretical interest are not included.
The selected materials, in one way or another, are intended to allow rzaders to gain
insights into the solution of real problems.

e Comprehensiveness: The book contains both classical mate -ials, such as
Lyapunov analysis and describing function techniques, and more :1odem topics
such as feedback linearization, adaptive control, and sliding control. To facilitate
digestion, asterisks are used to indicate sections which, given thzir relative
complexity, can be safely skipped in a first reading.

o Currentness: In the past few years, a number of major results have been
obtained in nonlinear control, particularly in nonlinear control system design and in
robotics. It is one of the objectives of this book to present these new and important
developments, and their implications, in a clear, easily understan..able fashion.
The book can thus be used as a reference and a guide to the activz literature in
these fields.

The book is divided into two major parts. Chapters 2-5 present the major
analytical tools that can be used to study a nonlinear system, while chaoters 6-9 treat
the major nonlinear controller design techniques. Each chapter i1s supplied with
exercises, allowing the reader to further explore specific aspects o: the material
discussed. A detailed index and a bibliography are provided at the end ot the book.

The material included exceeds what can be taught in one semester or self-
learned in a short period. The book can be studied in many ways, ac.ording to the
particular interests of the reader or the instructor. We recommend that a first reading
include a detailed study of chapter 3 (basic Lyapunov theory), se:tions 4.5-4.7
(Barbalat’s lemma and passivity tools), section 6.1 and parts of sections 6.2-6.4
(feedback linearization), chapter 7 (sliding control), sections 8.1-8.3 and 8.5 (adaptive
control of linear and nonlinear systems), and chapter 9 (control of multi-input physical
systems). Conversely, sections denoted with an asterisk can be skipped in a first
reading.

Many colleagues, students, and friends greatly contributed to this bcok through
stimulating discussions and judicious suggestions. Karl Hedrick providzd us with
continued enthusiasm and encouragement, and with many valuable comments and
suggestions. Discussions with Karl Astrom and Semyon Meerkov helped us better
define the tone of the book and its mathematical level. Harry Asada, Jo Bentsman,
Marika DiBenedetto, Olav Egeland, Neville Hogan, Marija Ilic, Lars Nielsen, Ken
Salisbury, Sajhendra Singh, Mark Spong, David Wormley, and I'ara Yoerger
provided many useful suggestions and much moral support. Barbara Hove created




XV

most of the nicer drawings in the book; Glinter Niemeyer’s expertise and energy was
invaluable in setting up the computing and word processing environments; Hyun Yang
greatly helped with the computer simulations; all three provided us with extensive
technical and editorial comments. The book also greatly benefited from the interest
and enthusiasm of many students who took the course at MIT.

Partial summer support for the first author towards the development of the book
was provided by Gordon Funds. Finally, the energy and professionalism of Tim Bozik
and Jennifer Wenzel at Prentice-Hall were very effective and highly appreciated.

Jean-Jacques E. Slotine
Weiping Li
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1.1

Chapter 1
Introduction

The subject of nonlinear control deals with the analysis and the design of nonlinear
control systems, i.e., of control systems containing at least one nonlinear component.
In the analysis, a nonlinear closed-loop system is assumed to have been designed, and
we wish to determine the characteristics of the system’s behavior. In the design, we
are given a nonlinear plant to be controlled and some specifications of closed-loop
system behavior, and our task 1s to construct a controller so that the closed loop
system meets the desired characteristics. In practice, of course, the issues of design
and analysis are intertwined, because the design of a nonlinear control system usually
involves an iterative process of analysis and design.

This introductory chapter provides the background for the specific analysis and
design methods to be discussed in the later chapters. Section 1.1 explains the
motivations for embarking on a study of nonlinear control. The unique and rich
behaviors exhibited by nonlinear systems are discussed in section 1.2. Finally, section
1.3 gives an overview of the organization of the book.

Why Nonlinear Control ?

Linear control is a mature subject with a variety of powerful methods and a long
history of successful industrial applications. Thus, 1t 1s natural for one to wonder why
so many researchers and designers, from such broad areas as aircraft and spacecraft
control, robotics, process control, and biomedical engineering, have recently showed

1




2 Introduction Chap. 1

an active interest in the development and applications of nonlinear control
methodologies. Many reasons can be cited for this interest:

e Improvement of existing control systems: Linear control methods rely on
the key assumption of small range operation for the linear model to be valid. When
the required operation range is large, a linear controller is likely to pertorm very
poorly or to be unstable, because the nonlinearities in the system cannot de properly
compensated for. Nonlinear controllers, on the other hand, mav handle the
nonlinearities in large range operation directly. This point is easily demonstrated in
robot motion control problems. When a linear controller is used to ccntrol robot
motion, it neglects the nonlinear forces associated with the motion of the robot links.
The controller’s accuracy thus quickly degrades as the speed of motion increases,
because many of the dynamic forces involved, such as Coriolis and centripetal forces,
vary as the square of the speed. Therefore, in order to achieve a pre-specified
accuracy in robot tasks such as pick-and-place, arc welding and laser cutting, the
speed of robot motion, and thus productivity, has to be kept low. On the other hand, a
conceptually simple nonlinear controller, commonly called computed torque
controller, can fully compensate the nonlinear forces in the robot motion and lead to
high accuracy control for a very large range of robot speeds and a large workspace.

o Analysis of hard nonlinearities: Another assumption of linear coatrol is that
the system model is indeed linearizable. However, in control systems there are many
nonlinearities whose discontinuous nature does not allow linear approximation. These
so-called "hard nonlinearities” include Coulomb friction, saturation. dead-zones,
backlash, and hysteresis, and are often found in control engineering. Their effects
cannot be derived from linear methods, and nonlinear analysis techniquzs must be
developed to predict a system’s performance in the presence of these inherent
nonlinearities. Because such nonlinearities frequently cause undesirablz behavior of
the control systems, such as instabilities or spurious limit cycles, their effects must be
predicted and properly compensated for.

e Dealing with model uncertainties: In designing linear controllers, it is
usually necessary to assume that the parameters of the system model are reasonably
well known. However, many control problems involve uncertainties in the model
parameters. This may be due to a slow time variation of the paramcters (e.g., of
ambient air pressure during an aircraft flight), or to an abrupt change in parameters
(e.g,, in the inertial parameters of a robot when a new object is grasped). A linear
controller based on inaccurate or obsolete values of the model parameters may exhibit
significant performance degradation or even instability. Nonlinearities can be
intentionally introduced into the controller part of a control system so that model
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uncertainties can be tolerated. Two classes of nonlinear controllers for this purpose
are robust controllers and adaptive controllers.

¢ Design Simplicity: Good nonlinear control designs may be simpler and more
intuitive than their linear counterparts. This a priori paradoxical result comes from the
fact that nonlinear controller designs are often deeply rooted in the physics of the
plants. To take a very simple example, consider a swinging pendulum attached to a
hinge, in the vertical plane. Starting from some arbitrary initial angle, the pendulum
will oscillate and progressively stop along the vertical. Although the pendulum’s
behavior could be analyzed close to equilibrium by linearizing the system, physically
its stability has very little to do with the eigenvalues of some linearized system matrix:
it comes from the fact that the total mechanical energy of the system is progressively
dissipated by various friction forces (e.g., at the hinge), so that the pendulum comes to
rest at a position of minimal energy.

There may be other related or unrelated reasons to use nonlinear control
techniques, such as cost and performance optimality. In industrial settings, ad-hoc
extensions of linear techniques to control advanced machines with significant
nonlinearities may result in unduly costly and lengthy development periods, where the
control code comes with little stability or performance guarantees and is extremely
hard to transport to similar but different applications. Linear control may require high
quality actuators and sensors to produce linear behavior in the specified operation
range, while nonlinear control may permit the use of less expensive components with
nonlinear characteristics. As for performance optimality, we can cite bang-bang type
controllers, which can produce fast response, but are inherently nonlinear.

Thus, the subject of nonlinear control is an important area of automatic control.
Learning basic techniques of nonlinear control analysis and design can significantly
enhance the ability of a control engineer to deal with practical control problems
effectively. It also provides a sharper understanding of the real world, which is
inherently nonlinear. In the past, the application of nonlinear control methods had
been limited by the computational difficulty associated with nonlinear control design
and analysis. In recent years, however, advances in computer technology have greatly
relieved this problem. Therefore, there is currently considerable enthusiasm for the
research and application of nonlinear control methods. The topic of nonlinear control
design for large range operation has attracted particular attention because, on the one
hand, the advent of powerful microprocessors has made the implementation of
nonlinear controllers a relatively simple matter, and, on the other hand, modern
technology, such as high-speed high-accuracy robots or high-performance aircrafts, is
demanding control systems with much more stringent design specifications.
Nonlinear control occupies an increasingly conspicuous position in control
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engineering, as reflected by the ever-increasing number of papers :nd reports on
nonlinear control research and applications.

1.2 Nonlinear System Behavior

Physical systems are inherently nonlinear. Thus, all control systems ar: nonlinear to a
certain extent. Nonlinear control systems can be described by nonlin:ar differential
equations. However, if the operating range of a control system is small, and if the
involved nonlinearities are smooth, then the control system may be reasonably
approximated by a linearized system, whose dynamics is described by a set of linear
differential equations.

NONLINEARITIES

Nonlinearities can be classified as inherent (natural) and intentioral (artificial).
Inherent nonlinearities are those which naturally come with the system - hardware and
motion. Examples of inherent nonlinearities include centripetal forces in rotational
motion, and Coulomb friction between contacting surfaces.  Usually, such
nonlinearities have undesirable effects, and control systems hav: to properly
compensate for them. Intentional nonlinearities, on the other hand, are artificially
introduced by the designer. Nonlinear control laws, such as adaptive control laws and
bang-bang optimal control laws, are typical examples of intentional non inzarities.

Nonlinearities can also be classified in terms of their mathematical properties,
as continuous and discontinuous. Because discontinuous nonlineari:ies cannot be
locally approximated by linear functions, they are also called "hard" nonlinearities.
Hard nonlinearities (such as, e.g., backlash, hysteresis, or stiction) ar¢ commonly
found in control systems, both in small range operation and large range operation.
Whether a system in small range operation should be regarded as nonlinear or linear
depends on the magnitude of the hard nonlinearities and on the extent of their effects
on the system performance. A detailed discussion of hard nonlinearities is provided in
section 5.2.

LINEAR SYSTEMS

Linear control theory has been predominantly concerned with the study of linear time-
invariant (LTI) control systems, of the form

X =Ax | (1.1)

with x being a vector of states and A being the system matrix. LTI systoms have quite
simple properties, such as
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e a linear system has a unique equilibrium point if A is nonsingular;

e the equilibrium point is stable if all eigenvalues of A have negative real
parts, regardless of initial conditions;

e the transient response of a linear system is composed of the natural modes
of the system, and the general solution can be solved analytically;

e in the presence of an external input u(z), i.e., with
x=Ax+Bu (1.2)

the system response has a number of interesting properties. First, it satisfies
the principle of superposition. Second, the asymptotic stability of the system
(1.1) implies bounded-input bounded-output stability in the presence of u.
Third, a sinusoidal input leads to a sinusoidal output of the same frequency.

AN EXAMPLE OF NONLINEAR SYSTEM BEHAVIOR

The behavior of nonlinear systems, however, is much more complex. Due to the lack
of linearity and of the associated superposition property, nonlinear systems respond to
external inputs quite differently from linear systems, as the following example
illustrates.

Example 1.1: A simplified model of the motion of an underwater vehicle can be written
V4 vlv=u (1.3)

where v is the vehicle velocity and u is the control input (the thrust provided by a propeller). The

nonlinearity |v|v corresponds to a typical "square-law” drag.

Assume that we apply a unit step input in thrust u, followed 5 seconds later by a negative unit
step input. The system response is plotied in Figure 1.1. We see that the system settles much
faster in response to the positive unit step than it does in response to the subsequent negative unit
step. Intuitively, this can be interpreted as reflecting the fact that the “apparent damping”
coefficient |v| is larger at high speeds than at low speeds.

Assume now that we repeat the same experiment but with larger steps, of amplitude 10.
Predictably, the difference between the settling times in response to the positive and negative
steps is even more marked (Figure 1.2). Furthermore, the settling speed v in response to the first
step is not 10 times that obtained in response to the first unit step in the first experiment, as it

would be in a linear system. This can again be understood intuitively, by writing that
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Figure 1.1 : Response of system (1.3) to unit steps
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Figure 1.2 : Response of system (1.3) to steps of amplitude 10

u=1 = 0+|vv,=1 = vy =1
u=10 => O0+|vjv,=10 => vs='\110=3.2
Carefully understanding and effectively controlling this nonlinear behavior is particularly

important if the vehicle is to move in a large dynamic range and change speeds coatinually, as is
typical of industrial remotely-operated underwater vehicles (R.0O.V.’s). O

SOME COMMON NONLINEAR SYSTEM BEHAVIORS

Let us now discuss some common nonlinear system properties, so as to familiarize
ourselves with the complex behavior of nonlinear systems and provide a useful
background for our study in the rest of the book.
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Mutltiple Equilibrium Points

Nonlinear systems frequently have more than one equilibrium point (an equilibrium
point is a point where the system can stay forever without moving, as we shall
formalize later). This can be seen by the following simple example.

Example 1.2: A first-order system
Consider the first order system

f=-x+a ‘ (1.4)
with initial condition x(0) = x,,. Its linearization is

X=—x (1.5)

The solution of this linear equation is x(1) = x, e/, It is plotted in Figure 1.3(a) for various initial

conditions. The linearized system clearly has a unique equilibrium point at x = 0.

By contrast, integrating equation dx/(—x +x?) =dr, the actual response of the nonlinear

dynamics (1.4) can be found to be

" —1
X
0
x(t) =
oy . —-1
1 X, +x,€

This response is plotted in Figure 1.3(b) for various initial conditions. The system has two
equilibrium points, x=0 and x =1, and its qualitative behavior strongly depends on its initial
condition. O

Figure 1.3 : Responses of the linearized system (a) and the nonlinear system (b)
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The issue of motion stability can also be discussed with the aid of the above
example. For the linearized system, stability is seen by noting that for any initial
condition, the motion always converges to the equilibrium point x = 0. However,
consider now the actual nonlinear system. While motions starting with ¢, < 1 will
indeed converge to the equilibrium point x = 0, those starting with x, > 1 will go to
infinity (actually in finite time, a phenomenon known as finite escap: time). This
means that the stability of nonlinear systems may depend on initial condiiions.

In the presence of a bounded external input, stability may also be lependent on
the input value. This input dependence is highlighted by the so-called bilinear system

X=xu

If the input u is chosen to be — 1, then the state x converges to 0. If u = |, then | x|
tends to infinity.

Limit Cycles

Nonlinear systems can display oscillations of fixed amplitude and fixed period without
external excitation. These oscillations are called limit cycles, or self-excited
oscillations. This important phenomenon can be simply illustrated ny a famous
oscillator dynamics, first studied in the 1920’s by the Dutch electrical engineer
Balthasar Van der Pol.

Example 1.3: Van der Pol Equation
The second-order nonlinear differential equation
mi+2c(x?=1)x+kx=0 (1.6)

where m, ¢ and & are positive constants, is the famous Van der Pol equation. It cai be regarded as
describing a mass-spring-damper system with a position-dependent damping coefficient
2¢(x? - 1) (or, equivalently, an RLC electrical circuit with a nonlinear resistor). For large values
of x, the damping coefficient is positive and the damper removes energy from the system. This
implies that the system motion has a convergent tendency. However, for small values of x, the
damping coefficient is negative and the damper adds energy into the system. Tthis suggests that
the system motion has a divergent tendency. Therefore, because the nonlinear damping varies
with v, the system motion can neither grow unboundedly nor decay to zero. Inste.d. it displays a
sustained oscillation independent of initial conditions, as illustrated in Figure 1.4 This so-called
limit cycle is sustained by periodically releasing energy into and absorbing energy from the
environment, through the damping term. This is in contrast with the case of a cor servative mass-
spring system, which does not exchange energy with its environment during its vit-ration. O
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A

Figure 1.4 : Responses of the Van der Pol oscillator

) Of course, sustained oscillations can also be found in linear systems, in the case
of marginally stable linear systems (such as a mass-spring system without damping) or
in the response to sinusoidal inputs. However., limit cycles in nonlinear systems are
different from linear oscillations in a number of fundamental aspects. First. the
amplitude of the self-sustained excitation is independent of the initial condition, as
seen in Figure 1.2, while the oscillation of a marginally stable linear system has its
amplitude determined by its initial conditions. Second, marginally stable linear
systems are very sensitive to changes in system parameters (with a slight change
capable of leading either to stable convergence or to instability), while limit cycles are
not easily affected by parameter changes.

Limit cycles represent an important phenomenon in nonlinear systems. They
can be found in many areas of enginering and nature. Aircraft wing fluttering, a limit
cycle caused by the interaction of aerodynamic forces and structural vibrations. is
frequently encountered and is sometimes dangerous. The hopping motion of a legged
robot is another instance of a limit cycle. Limit cycles also occur in electrical circuits,
e.g., in laboratory electronic oscillators. As one can see from these examples, limit
cycles can be undesirable in some cases, but desirable in other cases. An engineer has
to know how to eliminate them when they are undesirable, and conversely how to
generate or amplify them when they are desirable. To do this, however, requires an
understanding of the properties of limit cycles and a familiarity with the tools for

manipulating them.
Bifurcations

As the parameters of nonlinear dynamic systems are changed, the stability of the
equilibrium point can change (as it does in linear systems) and so can the number of
equilibrium points. Values of these parameters at which the qualitative nature of the
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system’s motion changes are known as critical or bifurcation vilues.  The
phenomenon of bifurcation, i.e., quantitative change of parameters leading to
7 qualitative change of system properties, is the topic of bifurcation theory.

For instance, the smoke rising from an incense stick (smokestacks and
cigarettes are old-fashioned) first accelerates upwards (because it is lighter than the
ambient air), but beyond some critical velocity breaks into swirls. More prosaically,
let us consider the system described by the so-called undamped Duffing ecuation

T+ox+x3=0

(the damped Duffing equation is ¥+ ¢k + ox+ Bx3 =0, which may represent a
mass-damper-spring system with a hardening spring). We can plot the equilibrium
points as a function of the parameter o. As o varies from positive to negative, one
equilibrium point splits into three points (x, =0, Vo, -Va ), as shown in Figure
1.5(a). This represents a qualitative change in the dynamics and thus ¢ = ) 15 a critical
bifurcation value. This kind for bifurcation is known as a pitchfork, due to the shape
of the equilibrium point plot in Figure 1.5(a). -

Another kind of bifurcation involves the emergence of limt cycles as
parameters are changed. In this case, a pair of complex conjugate eigenvalues
pPI=Y+]®, pp=Y—jo cross from the left-half plane into the right-half plane, and
the response of the unstable system diverges to a limit cycle. Figure 1.5(t:) clepicts the
change of typical system state trajectories (states are x and x) as the pararneter o is
varied. This type of bifurcation is called a Hopf bifurcation.

Ax bx

stable bifurcationy

value
stable unstable \
o
& stable

stable equilibrium

=Y |
o

limit
cycle

(a) (b)

Figure 1.5 : (a) a pitchfork bifurcation; (b) a Hopf bifurcation
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Chaos

For stable linear systems, small differences in initial conditions can only cause small
differences in output. Nonlinear systems, however. can display a phenomenon called
chaos, by which we mean that the system output is extremely sensitive to initial
conditions. The essential feature of chaos is the unpredictability of the system output.
Even if we have an exact model of a nonlinear system and an extremely accurate
computer, the system’s response in the long-run still cannot be well predicted.

Chaos must be distinguished from random motion. In random motion, the
system model or input contain uncertainty and, as a result, the time variation of the
output cannot be predicted exactly (only statistical measures are available). In chaotic
motion, on the other hand, the involved problem is deterministic, and there is little
uncertainty in system model, input, or initial conditions.

As an example of chaotic behavior. let us consider the simple nonlinear system

¥+0.1%+x2=6sint

which may represent a lightly-damped, sinusoidally forced mechanical structure
undergoing large elastic deflections. Figure 1.6 shows the responses of the system
corresponding to two almost identical initial conditions, namely x(0)=2,x(0)=3
(thick line) and x(0) = 2.01, x(0) = 3.01 (thin line). Due to the presence of the strong
nonlinearity in x°, the two responses are radically different after some time.
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Figure 1.6 : Chaotic behavior of a nonlinear system

Chaotic phenomena can be observed in many physical systems. The most
commonly seen physical problem is turbulence in fluid mechanics (such as the swirls
of our incense stick). Atmospheric dynamics also display clear chaotic behavior, thus
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making long-term weather prediction impossible. Some mechanical .nd electrical
systems known to exhibit chaotic vibrations include buckled elastic structures,
mechanical systems with play or backlash, systems with aeroelastic dyn..mics, wheel-
rail dynamics in railway systems, and, of course, feedback control device .

Chaos occurs mostly in strongly nonlinear systems. This implics that, for a
given system, if the initial condition or the external input cause the syst:m to operate
in a highly nonlinear region, it increases the possibility of generating chaos. Chaos
cannot occur in linear systems. Corresponding to a sinusoidal inpur cf arbitrary
magnitude, the linear system response is always a sinusoid of the same frequency. By
contrast, the output of a given nonlinear system may display sinusoida:, periodic, or
chaotic behaviors, depending on the initial condition and the input magnituce.

In the context of feedback control, it is of course of interest to -now when a
nonlinear system will get into a chaotic mode (so as to avoid it) and, ir case it does,
how to recover from it. Such problems are the object of active research.

Other behaviors

Other interesting types of behavior, such as jump resonance, subharmon:c zeneration,
asynchronous quenching, and frequency-amplitude dependence of free vibrations, can
also occur and become important in some system studies. However, the above
description should provide ample evidence that nonlinear systems can have
considerably richer and more complex behavior than linear systems.

1.3 An Overview of the Book

Because nonlinear systems can have much richer and more complex b:haviors than
linear systems, their analysis is much more difficult. Mathematically, this s reflected
in two aspects. First, nonlinear equations, unlike linear ones, cannot in general be
solved analytically, and therefore a complete understanding of the bzhavior of a
nonlinear system is very difficult. Second, powerful mathematical tools lixe Laplace
and Fourier transforms do not apply to nonlinear systems.

As a result, there are no systematic tools for predicting the bechavior of
nonlinear systems, nor are there systematic procedures for designing norlinear control
systems. Instead, there is a rich inventory of powerful analysis and desiun tools, each
best applicable to particular classes of nonlinear control problems. It is the objective of
this book to present these various tools, with particular emphasis on their powers and
limitations, and on how they can be effectively combined.

This book is divided into two major parts. Part I (chapters 2-5) presents the
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major analytical tools that can be used to study a nonlinear system. Part II (chapters
6-9) discusses the major nonlinear controller design techniques. Each part starts with a
short introduction providing the background for the main issues and techniques to be
discussed.

In chapter 2, we further familiarize ourselves with some basic nonlinear system
behaviors, by studying second-order systems using the simple graphical tools provided
by so-called phase plane analysis. Chapter 3 introduces the most fundamental analysis
tool to be used in this book, namely the concept of a Lyapunov function and its use in
nonlinear stability analysis. Chapter 4 studies selected advanced topics in stability
analysis. Chapter 5 discusses an approximate nonlinear system analysis method, the
describing function method, which aims at extending to nonlinear systems some of the
desirable and intuitive properties of linear frequency response analysis.

The basic idea of chapter 6 is to study under what conditions the dynamics of a
nonlinear system can be algebraically transformed in that of a linear system, on which
linear control design techniques can in turn be applied. Chapters 7 and 8 then study
how to reduce or practically eliminate the effects of model uncertainties on the
stability and performance of feedback controllers for linear or nonlinear systems,
using so-called robust and adaptive approaches. Finally, chapter 9 extensively
discusses the use of known physical properties to simplify and enhance the design of
controllers for complex multi-input nonlinear systems.

The book concentrates on nonlinear systems represented in continuous-time
form. Even though most control systems are implemented digitally, nonlinear
physical systems are continuous in nature and are hard to meaningfully discretize,
while digital control systems may be treated as continuous-time systems in analysis
and design if high sampling rates are used. Given the availability of cheap
computation, the most common practical case when it may be advantageous to
consider sampling explicitly is when measurements are sparse, as e.g., in the case of
underwater vehicles using acoustic navigation. Some practical issues involved in the
digital implementation of controllers designed from continuous-time formulations are
discussed in the introduction to Part II.

1.4 Notes and References

Detailed discussions of bifurcations and chaos can be found, e.g., in {Guckenheimer and Holmes,
1983] and in {Thompson and Stewart, 1986}, from which the example of Figure 1.6 is adapted.
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Part I
Nonlinear Systems Analysis

The objective of this part is to present various tools available for analyz ng nonlinear
control systems. The study of these nonlinear analysis techniques is irrportant for a
number of reasons. First, theoretical analysis is usually the least expensive way of
exploring a system’s characteristics. Second, simulation, though very important in
nonlinear control, has to be guided by theory. Blind simulation of nonlincar systems is
likely to produce few results or misleading results. This is especially true given the
great richness of behavior that nonlinear systems can exhibit, depending on initial
conditions and inputs. Third, the design of nonlinear controllers is always based on
analysis techniques. Since design methods are usually based on analysis methods, it is
almost impossible to master the design methods without first studying the analysis
tools. Furthermore, analysis tools also allow us to assess control desizns after they
have been made, and, in case of inadequate performance, they may also suggest
directions of modifying the control designs.

It should not come as a surprise that no universal technique has becn Jevised for
the analysis of all nonlinear control systems. In linear control, one can analyze a
system in the time domain or in the frequency domain. However, for nonlinear
control systems, none of these standard approaches can be used, since direct solution
of nonlinear differential equations is generally impossible, and frequency domain
transformations do not apply.

14
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While the analysis of nonlinear control systems is difficult, serious efforts have
been made to develop appropriate theoretical tools for it. Many methods of nonlinear
control system analysis have been proposed. Let us briefly describe some of these
methods before discussing their details in the following chapters.

Phase plane analysis

Phase plane analysis, discussed in chapter 2, is a graphical method of studying
second-order nonlinear systems. Its basic idea is to solve a second order differential
equation graphically, instead of seeking an analytical solution. The result is a family
of system motion trajectories on a two-dimensional plane, called the phase plane,
which allow us to visually observe the motion patterns of the system. While phase
plane analysis has a number of important advantages, it has the fundamental
disadvantage of being applicable only to systems which can be well approximated by
a second-order dynamics. Because of its graphical nature, it is frequently used to
provide intuitive insights about nonlinear effects.

Lyapunov theory

Basic Lyapunov theory comprises two methods introduced by Lyapunov, the
indirect method and the direct method. The indirect method, or linearization method,
states that the stability properties of a nonlinear system in the close vicinity of an
equilibrium point are essentially the same as those of its linearized approximation. The
method serves as the theoretical justification for using linear control for physical
systems, which are always inherently nonlinear. The direct method 1s a powerful tool
for nonlinear system analysis, and therefore the so-called Lyapunov analysis often
actually refers to the direct method. The direct method 1s a generalization of the
energy concepts associated with a mechanical system: the motion of a mechanical
system is stable if its total mechanical energy decreases all the time. In using the
direct method to analyze the stability of a nonlinear system, the idea is to construct a
scalar energy-like function (a Lyapunov function) for the system, and to see whether it
decreases. The power of this method comes from its generality: it is applicable to all
kinds of control systems, be they time-varying or time-invariant, finite dimensional or
infinite dimensional. Conversely, the limitation of the method lies in the fact that it is
often difficult to find a Lyapunov function for a given system.

Although Lyapunov’s direct method is originally a method of stability analysis,
it can be used for other problems in nonlinear control. One important application is the
design of nonlinear controllers. The idea is to somehow formulate a scalar positive
function of the system states, and then choose a control law to make this function
decrease. A nonlinear control system thus designed will be guaranteed to be stable.
Such a design approach has been used to solve many complex design problems, e.g.,
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in robotics and adaptive control. The direct method can also be used tc estimate the
performance of a control system and study its robustness. The important subject of
Lyapunov analysis 1s studied in chapters 3 and 4, with chapter 3 presenting the main
concepts and results in Lyapunov theory, and chapter 4 discussing some advanced
topics.

Describing functions

The describing function method is an approximate technique for studying
nonlinear systems. The basic idea of the method is to approximate tie nonlinear
components in nonlinear control systems by linear "equivalents”, and then use
frequency domain techniques to analyze the resulting systems. Unlike the paase plane
method, it is not restricted to second-order systems. Unlike Lyapurov methods,
whose applicability to a specific system hinges on the success of a trial-and-error
search for a Lyapunov function, its application is straightforward for nonlinear
systems satisfying some easy-to-check conditions.

The method is mainly used to predict limit cycles in nonlinear sy stems. Other
applications include the prediction of subharmonic generation and the c:termination
of system response to sinusoidal excitation. The method has a number o advantages.
First, it can deal with low order and high order systems with the same straightforward
procedure. Second, because of its similarity to frequency-domain analssis of linear
systems, it is conceptually simple and physically appealing, allowing use's to exercise
their physical and engineering insights about the control system. Third, it can deal
with the "hard nonlinearities" frequently found in control systems without any
difficulty. As a result, it is an important tool for practical problems of nonlinear
control analysis and design. The disadvantages of the method are linked to its
approximate nature, and include the possibility of inaccurate predictions (false
predictions may be made if certain conditions are not satisfied) and restrictions on the
systems to which it applies (for example, it has difficulties in dealing with systems
with multiple nonlinearities).




Chapter 2
Phase Plane Analysis

Phase plane analysis is a graphical method for studying second-order systems. which
was introduced well before the turn of the century by mathematicians such as Henri
Poincare. The basic idea of the method is to generate. in the state space of a second-
order dynamic system (a two-dimensional plane called the phase plane), motion
trajectories corresponding to various initial conditions, and then to examine the
qualitative features of the trajectories. In such a way, information concerning stability
and other motion patterns of the system can be obtained. In this chapter. our objective
is to gain familiarity with nonlinear systems through this simple graphical method.

Phase plane analysis has a number of useful properties. First, as a graphical
method. it allows us to visualize what goes on in a nonlinear system starting from
various initial conditions. without having to solve the nonlinear equations analytically.
Second, it is not restricted to small or smooth nonlinearities, but applies equally well
to strong nonlinearities and to "hard” nonlinearities. Finally, some practical control
systems can indeed be adequately approximated as second-order systems, and the
phase plane method can be used easily for their analysis. Conversely. of course, the
fundamental disadvantage of the method is that it is restricted to second-order (or first-
order) systems, because the graphical study of higher-order systems is
computationally and geometrically complex.

17
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2.1 Concepts of Phase Plane Analysis

2.1.1 Phase Portraits

The phase plane method is concemed with the graphical study of -econd-order
autonomous systems described by

Yy =f1(xp, x) (2.1a)
,‘Yz =f2(x1 ’ X2) (2 lb)

where x| and v, are the states of the system, and f| and f, are nonlinear functions of
the states. Geometrically, the state space of this system is a plane having x, and x, as
coordinates. We will call this plane the phase plane.

Given a set of initial conditions x(0) =X, , Equation (2.1) defincs a solution
x(7). With time ¢ varied from zero to infinity, the solution x(f) can be represented
geometrically as a curve in the phase plane. Such a curve is called a phase plane
trajectory. A family of phase plane trajectories corresponding to vurious initial
conditions is called a phase portrait of a system.

To illustrate the concept of phase portrait, let us consider the following simple
system.

Example 2.1: Phase portrait of a mass-spring system

The governing equation of the mass-spring system in Figure 2.1(a) is the familiar lirear second-
order differential equation

X+x=0 (2.2)
Assume that the mass is initially at rest, at length x, . Then the solution of the equation is

x(t) = x,cost

X(1) =~ x,sint

Eliminating time ¢ from the above equations, we obtain the equation of the trajectories

This represents a circle in the phase plane. Corresponding to different initial condirions, circles of
different radii can be obtained. Plotting these circles on the phase plane, we »btain a phase
portrait for the mass-spring system (Figure 2.1.b). O
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Figure 2.1 : A mass-spring system and its phase portrait

The power of the phase portrait lies in the fact that once the phase portrait of a
system is obtained, the nature of the system response corresponding to various initial
conditions 1s directly displayed on the phase plane. In the above example, we easily
see that the system trajectories neither converge to the origin nor diverge to infinity.
They simply circle around the origin, indicating the marginal nature of the system’s
stability.

A major class of second-order systems can be described by differential
equations of the form

X+f(x,1)=0 (2.3)

In state space form, this dynamics can be represented as

f =

i?_ = —f(/\l s ,\'2)

with x = x and x, = x. Most second-order systems in practice, such as mass-damper-
spring systems in mechanics, or resistor-coil-capacitor systems in electrical
engineering, can be represented in or transformed into this form. For these systems,
the states are x and its derivative x. Traditionally, the phase plane method is
developed for the dynamics (2.3), and the phase plane is defined as the plane having x
and x as coordinates. But it causes no difficulty to extend the method to more general
dynamics of the form (2.1), with the (x| , x,) plane as the phase plane, as we do in this
chapter.
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2.1.2 Singular Points

An important concept in phase plane analysis is that of a singular poini. A singular
point is an equilibrium point in the phase plane. Since an equilibrium point is defined
as a point where the system states can stay forever, this implies that x = 0. and using
(2.1),

fl(xl.‘fz) =0 fz(.\'l,.fz) =0 (24)
The values of the equilibrium states can be solved from (2.4).

For a linear system, there is usually only one singular point (although in some
cases there can be a continuous set of singular points, as in the system Y -+ v =0, for
which all points on the real axis are singular points). However, a non.inzar system
often has more than one isolated singular point. as the following example shows.

Example 2.2: A nonlinear second-order system
Consider the system
¥+06%+3x+x°=0

whose phase portrait is plotted in Figure 2.2. The system has two singular poinis. one at (0, 0)
and the other at (=3, 0). The motion patterns of the system trajectories in the vicinuy of the two
singular points have different natures. The trajectories move towards the pcint x =0 while

moving away from the point .x = — 3. O

One may wonder why an equilibrium point of a second-order syst:m is called a
singular point. To answer this, let us examine the slope of the phas. trajectories.
From (2.1), the slope of the phase trajectory passing through a poimt (x|, xy) is
determined by

dxy _ folry49)
dyp filxg, )

With the functions f; and f, assumed to be single valued, there is usuzlly a definite
value for this slope at any given point in phase plane. This implies that the phase
trajectories will not intersect. At singular points, however, the value ¢7 the slope is
0/0, i.e., the slope is indeterminate. Many trajectories may intersect at s.ch points, as
seen from Figure 2.2. This indeterminacy of the slope accounts for the adjective
"singular”.

(2.5)

Singular points are very important features in the phase plane. E-ammation of
the singular points can reveal a great deal of information about the properties of a
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Figure 2.2 : The phase portrait of a nonlinear system

system. In fact, the stability of linear systems is uniquely characterized by the nature
of their singular points. For nonlinear systems, besides singular points. there may be
more complex features, such as limit cycles. These 1ssues will be discussed 1n detail
In sections 2.3 and 2.4.

Note that, although the phase plane method is developed primarily for second-
order systems, it can also be applied to the analysis of first-order systems of the form

X+fx)=0

The idea is still to plot x with respect to x in the phase plane. The difference now is
that the phase portrait is composed of a single trajectory.
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Example 2.3: A first-order system

Consider the system

x=—4x+x3

There are three singular points, defined by — 4.x + v+ = 0. namely, x=0, -2, and 2. The phase-
portrait of the system consists of a single trajectory. and is shown in Figure 2.3. The arrows in
the figure denote the direction of motion, and whether they point toward the left :r the right at a
particular point is determined by the sign of 1 at that point. It is seen from the phase portrait of

this system that the equilibrium point x =0 is stable. while the other two are unstable. O

I

stable

unfstable unstable
: : Figure 2.3 : Phase trajectory »f a first-

order system

2.1.3 Symmetry in Phase Plane Portraits

A phase portrait may have a priori known symmetry properties, which can simplify its
generation and study. If a phase portrait is symmetric with respect to the x| or the x,
axis, one only needs in practice to study half of it. If a phase portrait s symmetric
with respect to both the x| and x, axes, only one quarter of it has to Je explicitly
considered.

Before generating a phase portrait itself, we can determine its symmetry
properties by examining the system equations. Let us consider the second-order
dynamics (2.3). The slope of trajectories in the phase plane is of the form

dXZ _ f(xl s xz)
d}CI -

X

Since symmetry of the phase portraits also implies symmetry of the sloves (equal in
absolute value but opposite in sign), we can identify the following situaticns

Symmetry about the x; axis: The condition is
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Sy xp) = fxp,—xp)

This implies that the function f should be even in x,. The mass-spring system in
Example 2.1 satisfies this condition. Its phase portrait is seen to be symmetric about
the x axis.

Symmetry about the x, axis: Similarly,

[ xg) = = fl=xy, xp)

implies symmetry with respect to the x, axis. The mass-spring system also satisfies
this condition.

Symmetry about the origin: When
f(l’pxz) = —f(‘i\'l» ‘1'2)

the phase portrait of the system is symmetric about the origin.

Constructing Phase Portraits

Today, phase portraits are routinely computer-generated. In fact, it 1s largely the
advent of the computer in the early 1960’s, and the associated ease of quickly
generating phase portraits, which spurred many advances in the study of complex
nonlinear dynamic behaviors such as chaos. However. of course (as e.¢.. in the case of
root locus for linear systems), it is still practically useful to learn how to roughly
sketch phase portraits or quickly verify the plausibility of computer outputs.

There are a number of methods for constructing phase plane trajectories for
linear or nonlinear systems, such as the so-called analytical method. the method of
isoclines, the delta method, Lienard’s method, and Pell’s method. We shall discuss
two of them in this section, namely, the analytical method and the method of isoclines.
These methods are chosen primarily because of their relative simplicity. The
analytical method involves the analytical solution of the differental equations
describing the systems. It is useful for some special nonlinear systems, particularly
piece-wise linear systems, whose phase portraits can be constructed by piecing
together the phase portraits of the related linear systems. The method of isoclines is a
graphical method which can conveniently be applied to construct phase portraits for
systems which cannot be solved analytically, which represent by far the most common
case.
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ANALYTICAL METHOD

There are two techniques for generating phase plane portraits analytically. Both
techniques lead to a functional relation between the two phase variables x and x; in
the form

gxy,x9,¢)=0 (2.6)

where the constant ¢ represents the etfects of initial conditions (and. possibly, of
external input signals). Plotting this relation in the phase plane for different initial
conditions yields a phase portrait.

The first technique involves solving equations (2.1) for x; and x; a- functions of
time ¢, i.e.,

qO=g() X0 = g0

and then eliminating time ¢ from these equations, leading to a functional -zlation in the
form of (2.6). This technique was already illustrated in Example 2.1.

The second technique, on the other hand, involves directly elimin::ting the time
variable, by noting that
dxy _foley, )
dxp filep, xp)

and then solving this equation for a functional relation between x| and .x,. Let us use
this technique to solve the mass-spring equation again.

Example 2.4: Mass-spring system

By noting that X = (dx/d x)(d.x/dt), we can rewrite (2.2) as

\E +x=0
dx

Integration of this equation yields
¥24+x2 = x02 O

One sees that the second technique is more straightforward in generating the equations
for the phase plane trajectories.

Most nonlinear systems cannot be easily solved by either of the above two
techniques. However, for piece-wise linear systems, an important class of nonlinear
systems, this method can be conveniently used, as the following example shows.
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Example 2.5: A satellite control system

Figure 2.4 shows the control system for a simple satellite model. The satellite, depicted in Figure
2.5(a), is simply a rotational unit inertia controlled by a pair of thrusters, which can provide either
a positive constant torque U (positive firing) or a negative torque ~ U (negative firing). The
purpose of the control system is to maintain the satellite antenna at a zero angle by appropriately

firing the thrusters. The mathematical model of the satellite is
B=u

where u is the torque provided by the thrusters and 0 is the satellite angle.

Satellite

l

..................................

Figure 2.4 : Satellite control system

Let us examine on the phase plane the behavior of the control system when the thrusters are

fired according to the control law
n=J4-U if6>0 2.7
w={"7 1629 (=D
which means that the thrusters push in the counterclockwise direction if 0 is positive, and vice
versa.

As the first step of the phase portrait generation, let us consider the phase portrait when the

thrusters provide a positive torque U. The dynamics of the system is
6=U

which 1mplies that 6 d6=Ud0. Therefore, the phase trajectories are a family of parabolas
defined by

62=20U86+c,
where ¢, is a constant. The corresponding phase portrait of the system is shown in Figure 2.5(b).

When the thrusters provide a negative torque — U, the phase trajectories are similarly found
to be
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Figure 2.5 : Satellite control using on-off thrusters

é2=—2U,\‘+('l

with the corresponding phase portrait shown in Figure 2.5(c).

parabolic
trajectories

— switching line

Figure 2.6 : Complete phase portrait of the control system

The complete phase portrait of the closed-loop control system can be obt.ined simply by
connecting the trajectories on the left half of the phase plane in 2.5(b) with those n the right half
of the phase plane in 2.5(c), as shown in Figure 2.6. The vertical axis represents . switching line,
because the control input and thus the phase trajectories are switched on that line. It is interesting
to see that, starting from a nonzero initial angle, the satellite will oscillate in pzriodic motions
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under the action of the jets. One concludes from this phase portrait that the system is marginally
stable, similarly to the mass-spring system in Example 2.1. Convergence of the sysiem to the

zero angle can be obtained by adding rate feedback (Exercise 2.4). O
THE METHOD OF ISOCLINES

The basic idea in this method is that of isoclines. Consider the dynamics in (2.1). At a
point (xy,x,) in the phase plane, the slope of the tangent to the trajectory can be
determined by (2.5). An isocline is defined to be the locus of the points with a given
tangent slope. An isocline with slope o is thus defined to be

o

dxy _fg(/\'p X9) o
d'\.l ](,\'1, _\'2)

This 1s to say that points on the curve
]{Z(X] s -xz) = af] ('X] 5 AQ)
all have the same tangent slope o.

In the method of isoclines, the phase portrait of a system is generated in two
steps. In the first step. a field of directions of tangents to the trajectories is obtained. In
the second step, phase plane trajectories are formed from the field of directions .

Let us explain the isocline method on the mass-spring system in (2.2). The
slope of the trajectories is easily seen to be

dx, X

d,\'] .l—_?

Therefore, the isocline equation for a slope ¢ 1s
Xp+0xy =0

i.e.. a straight line. Along the line, we can draw a lot of short line segments with slope
«. By taking o to be different values, a set of isoclines can be drawn, and a field of
directions of tangents to trajectories are generated, as shown in Figure 2.7. To obtain
trajectories from the field of directions, we assume that the the tangent slopes are
Jlocally constant. Therefore, a trajectory starting from any point in the plane can be
found by connecting a sequence of line segments.

Let us use the method of isoclines to study the Van der Pol equation, a
nonlinear equation.
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Figure 2.7 : Isoclines for the mass-spring

system
Example 2.6: The Van der Pol equation
For the Van der Pol equation
X+02(x2-Di+x=0
an isocline of slope « is defined by

- 2— .
dx __0.2(,\7 1)x+x=a

QU
—

x
Therefore, the points on the curve
02(x2-x+x+0x=0
all have the same slope .

By taking a of different values, different isoclines can be obtained, as plotte.. in Figure 2.8.
Short line segments are drawn on the isoclines to generate a field of tangent directions. The phase
portraits can then be obtained, as shown in the plot. It is interesting to note thi: there exists a
closed curve in the portrait, and the trajectories starting from both outside and ins de converge to
this curve. This closed curve corresponds to a limit cycle, as will be discussed furthzr in section

25. O

Note that the same scales should be used for the x| axis and x, axi- of the phase
plane, so that the derivative dx,/dx; equals the geometric slope of the trajectories.
Also note that, since in the second step of phase portrait construction we essentially
assume that the slope of the phase plane trajectories is locally constant, rore isoclines
should be plotted in regions where the slope varies quickly, to improve accuracy.
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Figure 2.8 : Phase portrait of the Van der Pol equation

2.3 Determining Time from Phase Portraits

Note that time ¢ does not explicitly appear in the phase plane having x; and x, as
coordinates. However, in some cases, we might be interested in the time information.
For example, one might want to know the time history of the system states starting
from a specific initial point. Another relevant situation 1S when one wants to know
how long it takes for the system to move from a point to another point in a phase plane
trajectory. We now describe two techniques for computing time history from phase
portraits. Both technigues involve a step-by step procedure for recovering time.

Obtaining time from Ar=Ax/x
In a short time A1, the change of x 1s approximately
Ax = XxAt (2.8)

where x is the velocity corresponding to the increment Ax. Note that for a Ax of finite
magnitude, the average value of velocity during a time increment should be used to
improve accuracy. From (2.8), the length of time corresponding to the increment Ax
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is
At = M
X

The above reasoning implies that, in order to obtain the time corresponding to the
motion from one point to another point along a trajectory, one shou d divide the
corresponding part of the trajectory into a number of small segments (not necessarily
equally spaced), find the time associated with each segment, and then add up the
results. To obtain the time history of states corresponding to a .ertain initial
condition, one simply computes the time ¢ for each point on the phase trajectory, and
then plots x with respect to ¢ and x with respect to ¢.

Obtaining time from = [ (1/x) dx

Since x = dx/dt, we can write dt = dx/x. Therefore,
t=t,=]" (1/%) dx
X

where x corresponds to time ¢ and x, corresponds to time ¢, . This equaton implies
that, if we plot a phase plane portrait with new coordinates x and (1/x). then the area
under the resulting curve is the corresponding time interval.

2.4 Phase Plane Analysis of Linear Systems

In this section, we describe the phase plane analysis of linear systems. Besides
allowing us to visually observe the motion patterns of linear systems, :his will also
help the development of nonlinear system analysis in the next secticn. because a
nonlinear systems behaves similarly to a linear system around each equiliorium point.

The general form of a linear second-order system is
Xy =ax;+bux (2.9a)
Xy=cxy+dx, (2.9b)

To facilitate later discussions, let us transform this equation into a scalar second-order
differential equation. Note from (2.9a) and (2.9b) that

bj.'z =b cXy + d(kl —axl)

Consequently, differentiation of (2.9a) and then substitution of (2.9b) lea.ls to
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X;=(a+d)x; +(cb—ad)x

Therefore, we will simply consider the second-order linear system described by
X+ax+bx=0 (2.10)

To obtain the phase portrait of this linear system, we first solve for the time
history

x(t) =ky M+ kyeta!  for Ay =N, (2.11a)
x(1) = kyeM T+ kyrehi! for &y =2, (2.11b)

where the constants A; and A, are the solutions of the characteristic equation
s2+as+b=(s—7\.1)(s——7»2)=0

The roots A, and A, can be explicitly represented as
A =(—a+-a?-4b)2 Ay = (~a—~a?—4b)/2

For linear systems described by (2.10), there is only one singular point (assuming
b # 0), namely the origin. However, the trajectories in the vicinity of this singularity
point can display quite different characteristics, depending on the values of a and b.
The following cases can occur

1. A; and A, are both real and have the same sign (positive or negative)
2. Ay and A, are both real and have opposite signs
3. A; and A, are complex conjugate with non-zero real parts

4. )y and A, are complex conjugates with real parts equal to zero
We now briefly discuss each of the above four cases.
STABLE OR UNSTABLE NODE

The first case corresponds to a node. A node can be stable or unstable. If the
eigenvalues are negative, the singularity point is called a stable node because both x(r)
and x(r) converge to zero exponentially, as shown in Figure 2.9(a). If both
eigenvalues are positive, the point is called an unstable node, because both x(f) and
x(r) diverge from zero exponentially, as shown in Figure 2.9(b). Since the eigenvalues
are real, there is no oscillation in the trajectories.
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SADDLE POINT

The second case (say A; <0 and A, > 0) corresponds to a saddle point (F gure 2.9(c)).
The phase portrait of the system has the interesting "saddle" shape si:own in Figure
2.9(c). Because of the unstable pole A, , almost all of the system trajcctories diverge
to infinity. In this figure, one also observes two straight lines passiig through the
origin. The diverging line (with arrows pointing to infinity) correspords to initial
conditions which make &, (i.e., the unstable component) equal zero. he converging
straight line corresponds to initial conditions which make &, equal zero

STABLE OR UNSTABLE FOCUS

The third case corresponds to a focus. A stable focus occurs when the real part of the
eigenvalues is negative, which implies that x(¢) and x(¢) both converg: to zero. The
system trajectories in the vicinity of a stable focus are depicted in Figure 2.9(d). Note
that the trajectories encircle the origin one or more times before ccnverging to it,
unlike the situation for a stable node. If the real part of the eigenvalues is positive,
then x(¢#) and x(¢) both diverge to infinity, and the singularity point is called an
unstable focus. The trajectories corresponding to an unstable focus are sketched in
Figure 2.9(e).

CENTER POINT

The last case corresponds to a center point, as shown in Figure 2.9(f). The name
comes from the fact that all trajectories are ellipses and the singulari:y point is the
center of these ellipses. The phase portrait of the undamped mass-spring system
belongs to this category.

Note that the stability characteristics of linear systems are uniqu:ly determined
by the nature of their singularity points. This, however, is not true for nonlinear
systems.

2.5 Phase Plane Analysis of Nonlinear Systems

In discussing the phase plane analysis of nonlinear systems, two points should be kept
in mind. Phase plane analysis of nonlinear systems 1s related to that of linear systems,
because the local behavior of a nonlinear system can be approximated ty the behavior
of a linear system. Yet, nonlinear systems can display much more complicated
patterns in the phase plane, such as multiple equilibrium points and lirit cycles. We
now discuss these points in more detail.
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LOCAL BEHAVIOR OF NONLINEAR SYSTEMS

In the phase portrait of Figure 2.2, one notes that, in contrast to linear systems, there
are two singular points, (0, 0) and (-3, 0). However, we also note that -he features of
the phase trajectories in the neighborhood of the two singular points lcok very much
like those of linear systems, with the first point corresponding to a stable focus and the
second to a saddle point. This similarity to a linear system in the local region of each
singular point can be formalized by linearizing the nonlinear syster, as we now
discuss.

[f the singular point of interest is not at the origin, by defining the difference
between the original state and the singular point as a new set of state variables, one
can always shift the singular point to the origin. Therefore, without los. o~ generality,
we may simply consider Equation (2.1) with a singular point at 0. Using Taylor
expansion, Equations (2.1a) and (2.1b) can be rewritten as

'%1 = axl + b.fz + gl(xl, Xz)
/%2 = C)Cl + d,Yz + g2(,(l, Xz)
where g and g, contain higher order terms.

In the vicinity of the origin, the higher order terms can be reglected, and
therefore, the nonlinear system trajectories essentially satisfy the lineariz2d equation

.'fl :axl +bX2
H=cx;+dx,

As a result, the local behavior of the nonlinear system can be approximated by the
patterns shown in Figure 2.9.

LIMIT CYCLES

In the phase portrait of the nonlinear Van der Pol equation, shown in F gure 2.8, one
observes that the system has an unstable node at the origin. Furthermore. there is a
closed curve in the phase portrait. Trajectories inside the curve and those outside the
curve all tend to this curve, while a motion started on this curve will stav o1 it forever,
circling periodically around the origin. This curve is an instance of the so-called
"limit cycle” phenomenon. Limit cycles are unique features of nonlinear systems.

In the phase plane, a limit cycle is defined as an isolated clos:d curve. The
trajectory has to be both closed, indicating the periodic nature of thc rotion, and
isolated, indicating the limiting nature of the cycle (with neartv trajectories
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converging or diverging from it). Thus, while there are many closed curves in the
phase portraits of the mass-spring-damper system in Example 2.1 or the satellite
system in Example 2.5, these are not considered limit cycles in this definition, because
they are not isolated.

Depending on the motion patterns of the trajectories in the vicinity of the limit
cycle. one can distinguish three kinds of limit cycles

1. Stable Limit Cycles: all trajectories in the vicinity of the limit cycle
converge to it as 1 — ©° (Figure 2.10(a));

9

. Unstable Limit Cycles: all trajectories in the vicinity of the limit cycle
diverge from it as t — oo (Figure 2.10(b));

3. Semi-Stable Limit Cycles: some of the trajectories in the vicinity

converge to it, while the others diverge from it as ¢— o° (Figure
2.10(c));

X5 converging e
trajectories

N

A diverging L X2
converging diverging

(a)

limit
cycle

(b)

limit
cycle

limit
cycle

(c)

Figure 2.10 : Stable, unstable. and semi-stable limit cycles

As seen from the phase portrait of Figure 2.8, the limit cycle of the Van der Pol
equation is clearly stable. Let us consider some additional examples of stable,
unstable, and semi-stable limit cycles.

Example 2.7: stable, unstable, and semi-stable limit cycles

Consider the following nonlinear systems

(a) X :,\'2—}'](,\‘124-.\'22— 1) Xy ==X —,\'2()‘124-)‘22— 1) (2.12)
(b) .i] =_Xz +)l(\]2+\22— 1) i'l:_/\] +.X2(.X12+X22- l) (213)
©  xExy—a (a7t - 1)2 Bn=—xp—x(x 2+ x2 - D2 (2.14)
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Let us study system (a) first. By introducing polar coordinates
r=(x2+x,H)? 8 = tan~!(x,/x,)

the dynamic equations (2.12) are transformed as

dr
E=—r(r2—l) E=—1

When the state starts on the unit circle, the above equation shows that 7(¢) = 0. Therefore, the state
will circle around the origin with a period 1/2n. When r < 1, then 7 > 0. This implies that the state
tends to the circle from inside. When r > 1, then < 0. This implies that the sta-e tends toward
the unit circle from outside. Therefore, the unit circle is a stable limit cycle. Tais can also be
concluded by examining the analytical solution of (2.12)

r() = b 8(N=8,-1t

(1+ coe“z’)l/2

where

1
c,=——1
o r2

o

Similarly, one can find that the system (b) has an unstable limit cycle and system (c) has a semi-
stable limit cycle. O

2.6 Existence of Limit Cycles

As mentioned in chapter 1, it is of great importance for control engineers (o predict the
existence of limit cycles in control systems. In this section, we state three simple
classical theorems to that effect. These theorems are easy to understand and apply.

The first theorem to be presented reveals a simple relationship between the
existence of a limit cycle and the number of singular points it encloses. In the
statement of the theorem, we use N to represent the number of nodes, centers, and foci
enclosed by a limit cycle, and S to represent the number of enclosed saddi: points.

Theorem 2.1 (Poincare) If a limit cycle exists in the second-order autonomous
system (2.1),then N=S+1.

This theorem 1s sometimes called the index theorem. Its proof is mathematically
involved (actually, a family of such proofs led to the development of algebraic
topology) and shall be omitted here. One simple inference from this thecren is that a
limit cycle must enclose at least one equilibrium point. The theorem’s result can be
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verified easily on Figures 2.8 and 2.10.

The second theorem is concerned with the asymptotic properties of the
trajectories of second-order systems.

Theorem 2.2 (Poincare-Bendixson) If a trajectory of the second-order
autonomous system remains in a finite region Q, then one of the following is true:

(a) the trajectory goes to an equilibrium point
(b) the trajectory tends to an asymptotically stable limit cycle
(c) the trajectory is itself a limit cycle

While the proof of this theorem is also omitted here, its intuitive basis is easy to see,
and can be verified on the previous phase portraits.

The third theorem provides a sufficient condition for the non-existence of limit
cycles.

Theorem 2.3 (Béndixson) For the nonlinear system (2.1), no limit cycle can exist
in a region Q of the phase plane in which df;/0x| + df,/dx, does not vanish and
does not change sign.

Proof: Let us prove this theorem by contradiction. First note that, from (2.5), the equation

is satisfied for any system trajectories, including a limit cycle. Thus, along the closed curve L of

a limit cycle, we have

_( (fydxy = frdx)) =0 (2.16)
L

Using Stokes’ Theorem in calculus, we have

1 2

where the integration on the right-hand side is carried out on the area enclosed by the limit cycle.

By Equation (2.16), the left-hand side must equal zero. This, however, contradicts the fact
that the right-hand side cannot equal zero because by hypothesis df,/dx; + df,/dx, does not
vanish and does not change sign. O

Let us illustrate the result on an example.
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Example 2.8: Consider the nonlinear system
5(1 = g(xz) +4x, x22
Xy = h(x)) + 4x|2x2
Since

af1+%

—_ :4(x2+x 2)
axl aXz : 2

which is always strictly positive (except at the origin), the system does not have .ny limit cycles
anywhere in the phase plane. D

The above three theorems represent very powerful results. It is important to
notice, however, that they have no equivalent in higher-order systems. where exotic
asymptotic behaviors other than equilibrium points and limit cycles can cccur.

2.7 Summary

Phase plane analysis is a graphical method used to study second-order dynamic
systems. The major advantage of the method is that it allows visual exam nation of the
global behavior of systems. The major disadvantage is that it is mairly limited to
second-order systems (although extensions to third-order systems are o'ten achieved
with the aid of computer graphics). The phenomena of multiple equilibrium points and
of limit cycles are clearly seen in phase plane analysis. A number of us2tul classical
theorems for the prediction of limit cycles in second-order systems are al-o nresented.

2.8 Notes and References

Phase plane analysis is a very classical topic which has been addressed by numerous control texts.
An extensive treatment can be found in [Graham and McRuer, 1961]. Examples .2 and 2.3 are
adapted from [Ogata, 1970]. Examples 2.5 and 2.6 and section 2.6 are based on [Hsu and Meyer,
1968].

2.9 Exercises

2.1 Draw the phase portrait and discuss the properties of the linear, unity feedback control system

of open-loop transfer function

_ 10
0= Ty
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2.2 Draw the phase portraits of the following systems, using isoclines

(@ 6+6+056=0

(b) 6+6+0506=1

(¢) 6+62+050=0

2.3 Consider the nonlinear system

.i':_y~|-x(x2+y2—l)sin—2T1
x%+yi-

y=—x+yxZ+yi-1)sin =
X<+ yc—1

Without solving the above equations explicitly, show that the system has infinite number of limit

cycles. Determine the stability of these limit cycles. (Hinr: Use polar coordinates.)

2.4 The system shown in Figure 2.10 represents a satellite control system with rate feedback
provided by a gyroscope. Draw the phase portrait of the system, and determine the system’s

0 u | 0
+a — >
p PE

stability.

Figure 2.10 : Satellite control system with rate feedback




