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Preface

This book is a result of nearly 40 years of collaboration, sometimes at a distance and sometimes working
together in Britain and in Chile. Throughout these years we discussed many times what we thought were
the strong and weak aspects of transport modelling and planning. We speculated, researched and tested
in practice some new and some not so new ideas. We have agreed and disagreed on topics like the level
of detail required for modelling or the value of disaggregate or activity based models in forecasting; we
took advantage of a period when our views converged to put them in writing; here they are.

We wish to present the most important (in our view) transport modelling techniques in a form
accessible to students and practitioners alike. We attempt this giving particular emphasis to key topics in
contemporary modelling and planning:

� the practical importance of theoretical consistency in transport modelling;
� the issues of data and specification errors in modelling, their relative importance and methods to handle

them;
� the key role played by the decision-making context in the choice of the most appropriate modelling

tool;
� how uncertainty and risk influence the choice of the most appropriate modelling tool;
� the advantages of variable resolution modelling; a simplified background model coupled with a much

more detailed one addressing the decision questions in hand;
� the need for a monitoring function relying on regular data collection and updating of forecasts and

models so that courses of action can be adapted to a changing environment.

We have approached the subject from the point of view of a modelling exercise, discussing the role
of theory, data, model specification in its widest sense, model estimation, validation and forecasting.
Our aim in writing this book was to create both a text for a diploma or Master’s course in transport and
a reference volume for practitioners; however, the material is presented in such a way as to be useful
for undergraduate courses in civil engineering, geography and town planning. The book is based on our
lecture notes prepared and improved over several years of teaching at undergraduate and graduate levels;
we have also used them to teach practitioners both through in-house training programmes and short
skills-updating courses. We have extended and enhanced our lecture notes to cover additional material
and to help the reader tackling the book without the support of a supervisor.

Chapters 3 to 9, 12 and 15 provide all the elements necessary to run a good 30 sessions course
on transport demand modelling; in fact, such a course – with different emphasis on certain subjects –
has been taught by us at undergraduate level in Chile, and at postgraduate level in Australia, Britain,
Colombia, Italy, Mexico, Portugal and Spain; the addition of material from Chapters 10 and 11 would
make it a transport modelling course. Chapters 4 to 6 and 10 to 12 provide the basic core for a course on
network modelling and equilibrium in transport; a course on transport supply modelling would require
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xviii Preface

more material, particularly relating to important aspects of public transport supply which we do not
discuss in enough detail. Chapters 13, 14 and 16 cover material which is getting more important as time
goes by, in particular as the shift in interest in the profession is moving from passenger issues to freight
and logistics, and to the role models play not only in social evaluation but also in the analysis of private
projects. Chapter 1 provides an introduction to transport planning issues and outlines our view on the
relationship between planning and modelling. Chapter 2 is there mainly for the benefit of those wishing
to brush up their analytical and statistical skills and to make the volume sufficiently self-contained.

During our professional life we have been fortunate to be able to combine teaching with research
and consultancy practice. We have learnt from papers, research, experimentation and mistakes. We are
happy to say the latter have not been too expensive in terms of inaccurate advice. This is not just luck;
a conscientious analyst pays for mistakes by having to work harder and longer to sort out alternative
ways of dealing with a difficult modelling task. We have learnt the importance of choosing appropriate
techniques and technologies for each task in hand; the ability to tailor modelling approaches to decision
problems is a key skill in our profession. Throughout the book we examine the practical constraints to
transport modelling for planning and policy making in general, particularly in view of the limitations of
current formal analytical techniques, and the nature and quality of the data likely to be available.

We have avoided the intricate mathematical detail of every model to concentrate instead on their basic
principles, the identification of their strengths and limitations, and a discussion of their use. The level of
theory supplied by this book is, we believe, sufficient to select and use the models in practice. We have
tried to bridge the gap between the more theoretical publications and the too pragmatic ‘recipe’ books;
we do not believe the profession would have been served well by a simplistic ‘how to’ book offering
a blueprint to each modelling problem. In this latest edition we have also marked, with a shaded box,
material which is more advanced and/or still under development but important enough to be mentioned.
There are no single solutions to transport modelling and planning. A recurring theme in the book is the
dependence of modelling on context and theory. Our aim is to provide enough information and guidance
so that readers can actually go and use each technique in the field; to this end we have striven to look into
practical questions about the application of each methodology. Wherever the subject area is still under
development we have striven to make extensive references to more theoretical papers and books which
the interested reader can consult as necessary. In respect of other, more settled modelling approaches,
we have kept the references to those essential for understanding the evolution of the topic or serving as
entry points to further research.

We believe that nobody can aspire to become a qualified practitioner in any area without doing real
work in a laboratory or in the field. Therefore, we have gone beyond the sole description of the techniques
and have accompanied them with various application examples. These are there to illustrate some of the
theoretical or practical issues related to particular models. We provide a few exercises at the end of key
chapters; these can be solved with the help of a scientific pocket (or better still, a spreadsheet) calculator
and should assist the understanding of the models discussed.

Although the book is ambitious, in the sense that it covers quite a number of themes, it must be made
clear from the outset that we do not intend (nor believe it possible) to be up-to-the-minute in every topic.
The book is a good reflection of the state of the art but for leading-edge research the reader should use
the references provided as signposts for further investigation.

We wrote most of the first edition during a sabbatical visit by the first of us to University College
London in 1988–89. This was possible thanks to support provided by the UK Science and Engineering
Research Council, The Royal Society, Fundación Andes (Chile), The British Council and The Chartered
Institute of Transport. We thank them for their support as we acknowledge the funding provided for
our research by many institutions and agencies over the past 30 years. The third and this fourth edition
benefited greatly from further sabbatical stays at University College London in 1998–99 and 2009; these
were possible thanks to the support provided by the UK Engineering and Physical Sciences Research
Council. We also wish to acknowledge the support to our research provided by the Chilean Fund for
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Developing Scientific and Technical Research (FONDECYT) and the Millennium Institute on Complex
Engineering Systems (ICM: P05-004F; FONDECYT: FBO16). Steer Davies Gleave also allowed the
second author to spend time updating the second and third editions.

We have managed to maintain an equal intellectual contribution to the contents of this book but in
writing and researching material for it we have benefited from numerous discussions with friends and
colleagues. Richard Allsop taught us a good deal about methodology and rigour. Huw Williams’s ideas
are behind many of the theoretical contributions in Chapter 7; Andrew Daly and Hugh Gunn have helped
to clarify many issues in Chapters 3, 7–9 and 15. Dirck Van Vliet’s emphasis in explaining assignment
and equilibrium in simple but rigorous terms inspired Chapters 10 and 11. Tony Fowkes made valuable
comments on car ownership forecasting and stated-preference methods. Jim Steer provided a constant
reference to practical issues and the need to develop improved approaches to address them.

Many parts of the first edition of the book also benefited from a free, and sometimes very enthusiastic,
exchange of ideas with our colleagues J. Enrique Fernández and Joaquin de Cea at the Pontificia
Universidad Católica de Chile, Sergio Jara-Dı́az and Jaime Gibson at the Universidad de Chile, Marc
Gaudry at the Université de Montréal, Roger Mackett at University College London, Dennis Gilbert and
Mike Bell at Imperial College. Many others also contributed, without knowing, to our thoughts.

Subsequent editions of the book have benefited from comments from a number of friends and readers,
apart from those above, who have helped to identify errors and areas for improvement. Among them we
should mention Michel Bierlaire from the Ecole Polytechnique Fédérale de Lausanne, Patrick Bonnel
from the French Laboratoire d’Economie des Transports, David Boyce at the University of Illinois,
Victor Cantillo from Universidad del Norte, Barranquilla, Elisabetta Cherchi from University of Cagliari,
Michael Florian from Université de Montréal, Rodrigo Garrido, Luis I. Rizzi and Francisca Yañez from
Pontificia Universidad Católica de Chile, Cristián Guevara now at Universidad de Los Andes in Chile,
Stephane Hess at Leeds University, Ben Heydecker from University College London, Frank Koppelman
from Northwestern University, Mariëtte Kraan at the University of Twente, Francisco J. Martı́nez and
Marcela Munizaga at the Universidad de Chile, Piotr Olszewski from Warsaw University of Technology,
Joan L. Walker from University of California at Berkeley, and Sofia Athanassiou, Gloria Hutt, Neil
Chadwick, John Swanson, Yaron Hollander and Serbjeet Kohli at Steer Davies Gleave. Special thanks
are due to John M. Rose at ITLS, University of Sydney, for his contributions to Chapter 3.

Our final thanks go to our graduate and undergraduate students in Australia, Britain, Chile, Colombia,
México, Italy, Portugal and Spain; they are always sharp critics and provided the challenge to put our
money (time) where our mouth was.

We have not taken on board all suggestions as we felt some required changing the approach and style
of the text; we are satisfied future books will continue to clarify issues and provide greater rigour to many
of the topics discussed here; transport is indeed a very dynamic subject. Despite this generous assistance,
we are, as before, solely responsible for the errors remaining in this latest edition. We genuinely value
the opportunity to learn from our mistakes.

Juan de Dios Ortúzar and Luis G. Willumsen
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1
Introduction

1.1 Transport Planning and Modelling
1.1.1 Background

The world, including transport, is changing fast. We still encounter many of the same transport problems
of the past: congestion, pollution, accidents, financial deficits and pockets of poor access. We are
increasingly becoming money rich and time poor. However, we have learnt a good deal from long
periods of weak transport planning, limited investment, emphasis on the short term and mistrust in
strategic transport modelling and decision making. We have learnt, for example, that old problems do
not fade away under the pressure of attempts to reduce them through better traffic management; old
problems reappear in new guises with even greater vigour, pervading wider areas, and in their new forms
they seem more complex and difficult to handle.

We now have greater confidence in technical solutions than in the previous century. This is not the
earlier confidence in technology as the magic solution to economic and social problems; we have also
learnt that this is a mirage. However, Information Technology has advanced enough to make possible
new conceptions of transport infrastructure (e.g. road transport informatics), movement systems (e.g.
automated driverless trains) and electronic payment (e.g. smartcards, video tolling). Mobile phones and
GPS services are changing the way to deliver useful traveller information, facilitating payment and
charging for the use of transport facilities. Of particular interest to the subject of this book is the advent
of low-cost and high-speed computing; this has practically eliminated computing power as a bottleneck
in transport modelling. The main limitations are now human and technical: contemporary transport
planning requires skilled and experienced professionals plus, as we will argue below, theoretically sound
modelling techniques with competent implementations in software.

Emerging countries are becoming more significant in the world stage but they suffer serious transport
problems as well. These are no longer just the lack of roads to connect distant rural areas with markets.
Indeed, the new transport problems bear some similarities with those prevalent in the post-industrialised
world: congestion, pollution, and so on. However, they have a number of very distinctive features
deserving a specific treatment: relatively low incomes, fast urbanisation and change, high demand for
public transport, scarcity of resources including capital, sound data and skilled personnel.

The birth of the twenty-first century was dominated by two powerful trends affecting most aspects
of life and economic progress. The stronger trend is globalisation, supported and encouraged by the
other trend, cheap and high-capacity telecommunications. The combination of the two is changing the
way we perceive and tackle many modern issues; their influence in transport planning is starting to be
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felt. Some of these influences are the role of good transport infrastructure in enhancing the economic
competitiveness of modern economies; a wider acceptance of the advantages of involving the private
sector more closely in transport supply and operations; the possible role of telecommunications in
reducing the need to travel.

Important technical developments in transport modelling have taken place since the mid-1970s, in
particular at major research centres; these developments have been improved and implemented by a small
group of resourceful consultants. However, many of these innovations and applications have received
limited attention outside the more academic journals. After these years of experimentation there is now
a better recognition of the role of modelling in supporting transport planning. This book attempts a
review of the best of current practice in transport modelling; in most areas it covers the ‘state of the
art’ but we have selected those aspects which have already been implemented successfully in practice.
The book does not represent the leading edge of research into modelling. It tries, rather, to provide a
survival tool-kit for those interested in improving transport modelling and planning, a kind of bridge or
entry-point to the more theoretical papers that will form the basis of transport modelling in the future.

Transport modelling is not transport planning; it can only support planning, and in a few cases it
may have the most important role in the process. We have known many good professionals who have
developed sophisticated transport models but are frustrated because their work has apparently been
ignored in many key planning decisions. In truth, planning and implementation have the power to change
the world and transport modelling can only assist in this if adopted as an effective aid to decision making.
This requires wise planners and, above all, better modellers.

1.1.2 Models and their Role

A model is a simplified representation of a part of the real world–the system of interest–which focuses on
certain elements considered important from a particular point of view. Models are, therefore, problem and
viewpoint specific. Such a broad definition allows us to incorporate both physical and abstract models.
In the first category we find, for example, those used in architecture or in fluid mechanics which are
basically aimed at design. In the latter, the range spans from the mental models all of us use in our daily
interactions with the world, to formal and abstract (typically analytical) representations of some theory
about the system of interest and how it works. Mental models play an important role in understanding and
interpreting the real world and our analytical models. They are enhanced through discussions, training
and, above all, experience. Mental models are, however, difficult to communicate and to discuss.

In this book we are concerned mainly with an important class of abstract models: mathematical
models. These models attempt to replicate the system of interest and its behaviour by means of math-
ematical equations based on certain theoretical statements about it. Although they are still simplified
representations, these models may be very complex and often require large amounts of data to be used.
However, they are invaluable in offering a ‘common ground’ for discussing policy and examining the
inevitable compromises required in practice with a level of objectivity. Another important advantage
of mathematical models is that during their formulation, calibration and use the planner can learn
much, through experimentation, about the behaviour and internal workings of the system under scrutiny.
In this way, we also enrich our mental models thus permitting more intelligent management of the
transport system.

A model is only realistic from a particular perspective or point of view. It may be reasonable to use
a knife and fork on a table to model the position of cars before a collision but not to represent their
mechanical features, or their route choice patterns. The same is true of analytical models: their value is
limited to a range of problems under specific conditions. The appropriateness of a model is, as discussed
in the rest of this chapter, dependent on the context where it will be used. The ability to choose and adapt
models for particular contexts is one of the most important elements in the complete planner’s tool-kit.
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This book is concerned with the contribution transport modelling can make to improved decision
making and planning in the transport field. It is argued that the use of models is inevitable and that
of formal models highly desirable. However, transport modelling is only one element in transport
planning: administrative practices, an institutional framework, skilled professionals and good levels of
communication with decision makers, the media and the public are some of the other requisites for
an effective planning system. Moreover, transport modelling and decision making can be combined in
different ways depending on local experience, traditions and expertise. However, before we discuss how
to choose a modelling and planning approach it is worth outlining some of the main characteristics of
transport systems and their associated problems. We will also discuss some very important modelling
issues which will find application in other chapters of this book.

1.2 Characteristics of Transport Problems
Transport problems have become more widespread and severe than ever in both industrialised and
developing countries alike. Fuel shortages are (temporarily) not a problem but the general increase
in road traffic and transport demand has resulted in congestion, delays, accidents and environmental
problems well beyond what has been considered acceptable so far. These problems have not been
restricted to roads and car traffic alone. Economic growth seems to have generated levels of demand
exceeding the capacity of most transport facilities. Long periods of under-investment in some modes and
regions have resulted in fragile supply systems which seem to break down whenever something differs
slightly from average conditions.

These problems are not likely to disappear in the near future. Sufficient time has passed with poor or
no transportation planning to ensure that a major effort in improving most forms of transport, in urban
and inter-urban contexts, is necessary. Given that resources are not unlimited, this effort will benefit from
careful and considered decisions oriented towards maximising the advantages of new transport provision
while minimising their money costs and undesirable side-effects.

1.2.1 Characteristics of Transport Demand

The demand for transport is derived, it is not an end in itself. With the possible exception of sight-
seeing, people travel in order to satisfy a need (work, leisure, health) undertaking an activity at particular
locations. This is equally significant for goods movements. In order to understand the demand for
transport, we must understand the way in which these activities are distributed over space, in both urban
and regional contexts. A good transport system widens the opportunities to satisfy these needs; a heavily
congested or poorly connected system restricts options and limits economic and social development.

The demand for transport services is highly qualitative and differentiated. There is a whole range of
specific demands for transport which are differentiated by time of day, day of week, journey purpose,
type of cargo, importance of speed and frequency, and so on. A transport service without the attributes
matching this differentiated demand may well be useless. This characteristic makes it more difficult to
analyse and forecast the demand for transport services: tonne and passenger kilometres are extremely
coarse units of performance hiding an immense range of requirements and services.

Transport demand takes place over space. This seems a trivial statement but it is the distribution of
activities over space which makes for transport demand. There are a few transport problems that may
be treated, albeit at a very aggregate level, without explicitly considering space. However, in the vast
majority of cases, the explicit treatment of space is unavoidable and highly desirable. The most common
approach to treat space is to divide study areas into zones and to code them, together with transport
networks, in a form suitable for processing with the aid of computer programs. In some cases, study
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areas can be simplified assuming that the zones of interest form a corridor which can be collapsed into a
linear form. However, different methods for treating distance and for allocating origins and destinations
(and their attributes) over space are an essential element in transport analysis.

The spatiality of demand often leads to problems of lack of coordination which may strongly affect
the equilibrium between transport supply and demand. For example, a taxi service may be demanded
unsuccessfully in a part of a city while in other areas various taxis may be plying for passengers. On
the other hand, the concentration of population and economic activity on well-defined corridors may
lead to the economic justification of a high-quality mass transit system which would not be viable in a
sparser area.

Finally, transport demand and supply have very strong dynamic elements. A good deal of the de-
mand for transport is concentrated on a few hours of a day, in particular in urban areas where most
of the congestion takes place during specific peak periods. This time-variable character of transport
demand makes it more difficult–and interesting–to analyse and forecast. It may well be that a transport
system could cope well with the average demand for travel in an area but that it breaks down during
peak periods. A number of techniques exist to try to spread the peak and average the load on the sys-
tem: flexible working hours, staggering working times, premium pricing, and so on. However, peak
and off-peak variations in demand remain a central, and fascinating, problem in transport modelling
and planning.

1.2.2 Characteristics of Transport Supply

The first distinctive characteristic of transport supply is that it is a service and not a good. Therefore, it
is not possible to stock it, for example, to use it in times of higher demand. A transport service must be
consumed when and where it is produced, otherwise its benefit is lost. For this reason it is very important
to estimate demand with as much accuracy as possible in order to save resources by tailoring the supply
of transport services to it.

Many of the characteristics of transport systems derive from their nature as a service. In very broad
terms a transport system requires a number of fixed assets, the infrastructure, and a number of mobile
units, the vehicles. It is the combination of these, together with a set of rules for their operation, that
makes possible the movement of people and goods.

It is often the case that infrastructure and vehicles are not owned nor operated by the same group
or company. This is certainly the case of most transport modes, with the notable exception of many
rail systems. This separation between supplier of infrastructure and provider of the final transport
service generates a rather complex set of interactions between government authorities (central or local),
construction companies, developers, transport operators, travellers and shippers, and the general public.
The latter plays several roles in the supply of transport services: it represents the residents affected by a
new scheme, or the unemployed in an area seeking improved accessibility to foster economic growth; it
may even be car owners wishing to travel unhindered through somebody else’s residential area.

The provision of transport infrastructure is particularly important from a supply point of view. Transport
infrastructure is ‘lumpy’, one cannot provide half a runway or one-third of a railway station. In certain
cases, there may be scope for providing a gradual build-up of infrastructure to match growing demand.
For example, one can start providing an unpaved road, upgrade it later to one or two lanes with surface
treatment; at a later stage a well-constructed single and dual carriageway road can be built, to culminate
perhaps with motorway standards. In this way, the provision of infrastructure can be adjusted to demand
and avoid unnecessary early investment in expensive facilities. This is more difficult in other areas such
as airports, metro lines, and so on.

Investments in transport infrastructure are not only lumpy but also take a long time to be carried out.
These are usually large projects. The construction of a major facility may take from 5 to 15 years from



P1: TIX/XYZ P2: ABC

JWST054-01 JWST054-Ortuzar February 24, 2011 8:23 Printer Name: Yet to Come

Introduction 5

planning to full implementation. This is even more critical in urban areas where a good deal of disruption
is also required to build them. This disruption involves additional costs to users and non-users alike.

Moreover, transport investment has an important political role. For example, politicians in developing
countries often consider a road project a safe bet: it shows they care and is difficult to prove wrong or
uneconomic by the popular press. In industrialised nations, transport projects usually carry the risk of
alienating large numbers of residents affected by them or travellers suffering from congestion and delay
in overcrowded facilities. Political judgement is essential in choices of this kind but when not supported
by planning, analysis and research, these decisions result in responses to major problems and crises only;
in the case of transport this is, inevitably, too late. Forethought and planning are essential.

The separation of providers of infrastructure and suppliers of services introduces economic complex-
ities too. For a start, it is not always clear that all travellers and shippers actually perceive the total
costs incurred in providing the services they use. The charging for road space, for example, is seldom
carried out directly and when it happens the price does not include congestion costs or other external
effects, perhaps the nearest approximation to this being toll roads and modern road-pricing schemes.
The use of taxes on vehicles and fuels is only a rough approximation to charging for the provision
of infrastructure.

But, why should this matter? Is it not the case that other goods and services like public parks, libraries
and the police are often provided without a direct charge for them? What is wrong with providing
free road space? According to elementary economic theory it does matter. In a perfect market a good
allocation of resources to satisfy human needs is only achieved when the marginal costs of the goods
equal their marginal utility. This is why it is often advocated that the price of goods and services, i.e. their
perceived cost, should be set at their marginal cost. Of course real markets are not perfect and ability to
pay is not a good indication of need; however, this general framework provides the basis for contrasting
other ways of arranging pricing systems and their impact on resource allocation.

Transport is a very important element in the welfare of nations and the well-being of urban and rural
dwellers. If those who make use of transport facilities do not perceive the resource implications of their
choices, they are likely to generate a balance between supply and demand that is inherently inefficient.
Underpriced scarce resources will be squandered whilst other abundant but priced resources may not be
used. The fact that overall some sectors of the economy (typically car owners) more than pay for the
cost of the road space provided, is not a guarantee of more rational allocation of resources. Car owners
probably see these annual taxes as fixed, sunk, costs which at most affect the decision of buying a car
but not that of using it.

An additional element of distortion is provided by the number of concomitant- or side-effects associated
with the production of transport services: accidents, pollution and environmental degradation in general.
These effects are seldom internalised; the user of the transport service rarely perceives nor pays for the
costs of cleaning the environment or looking after the injured in transport related accidents. Internalising
these costs could also help to make better decisions and to improve the allocation of demand to alterna-
tive modes.

One of the most important features of transport supply is congestion. This is a term which is difficult
to define as we all believe we know exactly what it means. However, most practitioners do know that
what is considered congestion in Leeds or Lampang is often accepted as normal in London or Lagos.
Congestion arises when demand levels approach the capacity of a facility and the time required to use it
(travel through it) increases well above the average under low demand conditions. In the case of transport
infrastructure the inclusion of an additional vehicle generates supplementary delay to all other users as
well, see for example Figure 1.1. Note that the contribution an additional car makes to the delay of all
users is greater at high flows than at low flow levels.

This is the external effect of congestion, perceived by others but not by the driver originating it. This
is a cost which schemes such as electronic road pricing attempt to internalise to help more reasoned
decision making by the individual.
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Figure 1.1 Congestion and its external effects

1.2.3 Equilibration of Supply and Demand

In general terms the role of transport planning is to ensure the satisfaction of a certain demand D for
person and goods movements with different trip purposes, at different times of the day and the year,
using various modes, given a transport system with a certain operating capacity. The transport system
itself can be seen as made up of:

� an infrastructure (e.g. a road network);
� a management system (i.e. a set of rules, for example driving on the right, and control strategies, for

example at traffic signals);
� a set of transport modes and their operators.

Consider a set of volumes on a network V, a corresponding set of speeds S, and an operating capacity
Q, under a management system M. In very general terms the speed on the network can be represented by:

S = f {Q, V, M} (1.1)

The speed can be taken as an initial proxy for a more general indicator of the level of service (LOS)
provided by the transport system. In more general terms a LOS would be specified by a combination
of speeds or travel times, waiting and walking times and price effects; we shall expand on these in
subsequent chapters. The management system M may include traffic management schemes, area traffic
control and regulations applying to each mode. The capacity Q would depend on the management system
M and on the levels of investment I over the years, thus:

Q = f {I, M} (1.2)

The management system may also be used to redistribute capacity giving priority to certain types of
users over others, either on efficiency (public-transport users, cyclists), environmental (electric vehicles)
or equity grounds (pedestrians).
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As in the case of most goods and services, one would expect the level of demand D to be dependent
on the level of service provided by the transport system and also on the allocation of activities A
over space:

D = f {S, A} (1.3)

Combining equations (1.1) and (1.3) for a fixed activity system one would find the set of equilibrium
points between supply and demand for transport. But then again, the activity system itself would probably
change as levels of service change over space and time. Therefore one would have two different sets
of equilibrium points: short-term and long-term ones. The task of transport planning is to forecast and
manage the evolution of these equilibrium points over time so that social welfare is maximised. This is,
of course, not a simple task: modelling these equilibrium points should help to understand this evolution
better and assist in the development and implementation of management strategies M and investment
programmes I.

Sometimes very simple cause-effect relationships can be depicted graphically to help understand the
nature of some transport problems. A typical example is the car/public-transport vicious circle depicted
in Figure 1.2.
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Figure 1.2 Car and public-transport vicious circle

Economic growth provides the first impetus to increase car ownership. More car owners means
more people wanting to transfer from public transport to car; this in turn means fewer public-transport
passengers, to which operators may respond by increasing the fares, reducing the frequency (level of
service) or both. These measures make the use of the car even more attractive than before and induce
more people to buy cars, thus accelerating the vicious circle. After a few cycles (years) car drivers are
facing increased levels of congestion; buses are delayed, are becoming increasingly more expensive and
running less frequently; the accumulation of sensible individual decisions results in a final state in which
almost everybody is worse off than originally.

Moreover, there is a more insidious effect in the long term, not depicted in Figure 1.2, as car owners
choose their place of work and residence without considering the availability (or otherwise) of public
transport. This generates urban sprawl, low density developments that are more difficult and expensive
to serve by more efficient public transport modes. This is the ‘development trap’ that leads to further
congestion and a higher proportion of our time spent in slow moving cars.
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This simple representation can also help to identify what can be done to slow down or reverse this
vicious circle. These ideas are summarised in Figure 1.3. Physical measures like bus lanes or other
bus-priority schemes are particularly attractive as they also result in a more efficient allocation of road
space. Public transport subsidies have strong advocates and detractors; they may reduce the need for fare
increases, at least in the short term, but tend to generate large deficits and to protect poor management
from the consequences of their own inefficiency. Car restraint, and in particular congestion charging,
can help to internalise externalities and generate a revenue stream that can be distributed to other areas
of need in transportation.
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Figure 1.3 Breaking the car/public-transport vicious circle

The type of model behind Figures 1.2 and 1.3 is sometimes called a structural model, as discussed in
Chapter 12; these are simple but powerful constructs, in particular because they permit the discussion of
key issues in a fairly parsimonious form. However, they are not exempt from dangers when applied to
different contexts. Think, for example, of the vicious circle model in the context of developing countries.
Population growth will maintain demand for public transport much longer than in industrialised countries.
Indeed, some of the bus flows currently experienced in emerging countries are extremely high, reaching
400 to 600 buses per hour one-way along some corridors. The context is also relevant when looking
for solutions; it has been argued that one of the main objectives of introducing bus-priority schemes in
emerging countries is not to protect buses from car-generated congestion but to organise bus movements
(Gibson et al. 1989). High bus volumes often implement a de facto priority, and interference between
buses may become a greater source of delay than car-generated congestion. To be of value, the vicious
circle model must be revised in this new context.

It should be clear that it is not possible to characterise all transport problems in a unique, universal
form. Transport problems are context dependent and so should be the ways of tackling them. Models can
offer a contribution in terms of making the identification of problems and selection of ways of addressing
them more solidly based.

1.3 Modelling and Decision Making
1.3.1 Decision-making Styles

Before choosing a modelling framework one needs to identify the general decision-making approach
adopted in the country, government or decision unit. It must be recognised that there are several
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decision-making styles in practice and that not all of them use modelling as a basic building block.
Previous editions of this text have characterised decision-making styles following the ideas of Nutt
(1981); in practice, no decision-making style fits any of these categories exactly. This time, we would
just like to distinguish two different paradigms: ‘substantive rationality’ and ‘muddling through’, fol-
lowing the lines of the very important book by Kay (2010).

The substantive rationality view of the world assumes that we know what our objectives are and we
can envisage all alternative ways of achieving them and, with some luck, quantify the costs and benefits
associated to each approach. This would apply to important decisions like choosing a place to live and less
important ones like choosing a place to eat. This is the rational or normative decision-making approach
implicit in most textbooks about transport planning. It is sometimes referred to as the ‘systems approach’
to planning. Here, quantification is essential. The decision problem is seen as one of choosing options
from a complete set of alternatives and scenarios, with estimates on their probability of occurrence; the
utility of each alternative is quantified in terms of benefits and costs and other criteria like environmental
protection, safety, and so on.

In some cases it may even be possible to cast a decision problem into a mathematical programming
framework. This means that the objective function is well understood and specified, and that the same
applies to the constraints defining a solution space. However, for most real problems some elements of
the objective function or constraints may be difficult to quantify or to convert into common units of
measurement, say money or time. It may also be difficult to include some of the probabilistic elements
in each case, but a good deal about the problem is learnt in the process. Modelling is at the core of this
approach. The evaluation of plans or projects using Cost Benefit Analysis or a Multi-Criteria Framework
is also based on this view of reality.

Some of the problems of applying normative decision theory are:

� Difficulties in actually specifying what the objectives are beyond generalities like reducing congestion
or improving accessibility; as soon as we develop a measure or indicator for that objective, we find
that it is actually misleading in respect of the things we want to achieve.

� The accusation of insensitivity to the aspirations of the public; people do not actually care about
‘optimised’ systems, they just want to see progress that is sustained along lines that are difficult to
identify: they ask for speed but when it is delivered they are dissatisfied with the associated noise
and emissions.

� Its high costs; substantive rationality is expensive to implement, requires advanced models and many
runs for alternative arrangements and sensitivity analyses; efforts to apply this approach often overrun
in time and budget; and

� The alienation of decision makers who may not understand, nor accept, the analytical treatment of
the problem. This is a common complaint in our profession; the recurrent requisite to demonstrate the
usefulness of our simulations may be irritating but reflects a real need to make our models and results
relevant and communicable.

Moreover, there is very limited evidence that countries or organisations that do not follow this approach
fare worse that those who do. Kay (2010) argues that many of the companies that were once hailed as
paragons of good rational decision making failed spectacularly a few years later; there seem to be plenty
of examples of this.

The main alternative approach to substantive rationality is what Lindblom (1959) called muddling
through. The name, misleadingly self-deprecating, is not meant to imply that intuitive and unstructured
decision making is desirable. On the contrary, in Lindblom’s eyes, muddling through is a disciplined
process but not one based on the substantive rational handling of defined objectives. The approach uses
a combination of high-level (often unquantifiable) objectives, intermediate goals and immediate actions
or experiments. Muddling through, or what Kay calls ‘oblique or indirect approach’, is characterised by:
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� The use of high level objectives that are only loosely defined with no attempt to quantify them.
� Abandoning any clear distinction between objective, goals and actions; we learn about high-level

objectives by adopting goals and implementing actions.
� Recognising that the environment is uncertain and that we cannot even know the range of events that

might take place in the future, and
� Accepting that we can never identify, nor describe, all the range of options available; we can only deal

with a limited set without aspiring to exhaust the search.

The following table, adapted from Kay’s ideas, identifies additional contrasts between the two basic
approaches:

Substantive rationality Issue Indirect approach

Interactions with others are limited and their
response depend on our actions alone

Interactions The outcome of interactions with others depend
on context and their interpretation of our
intentions

The relationships between objectives, states,
goals and actions are understandable

Complexity Our understanding of the relationships between
objectives, states, goals and actions is imperfect
but can be improved by experience

The problem and context can be described by a
well specified and estimated analytical model

Abstraction Appropriate simplification of complex problems
must rely on judgement and understanding
of context

What happens is what we intended to happen Intentionality What happens is the result of complex processes
whose totality nobody fully understands

Decisions are made on the basis of the fullest
possible information

Information Decisions are recommended and made
acknowledging that only limited knowledge is or
can be available

The best outcome is achieved through a
conscious process of maximisation

Adaptation Good results are obtained through continual
adaptation to constantly changing conditions

Rules and guidelines can be defined that allow
people to find the correct solutions

Expertise Experts can do things that others cannot – and
can only learn with difficulty

In practice, no organisation relies on (attempts to) substantive rationality alone. Most apply an eclectic
mixture of approaches using models, narratives, political context and sources of evidence. Modelling
plays an important role in each of these approaches and the professional modeller should be ready to
offer flexibility and capacity for adaptation, including new variables as required and responding quickly
in the analysis of innovative policies and designs.

1.3.2 Choosing Modelling Approaches

This book assumes that the decision style adopted involves the use of models but it does not advocate
a single (i.e. a normative) decision-making approach. The acceptability of modelling, or a particular
modelling approach, within a decision style is very important. Models which end up being ignored by
decision makers not only represent wasted resources and effort, but result in frustrated analysts and
planners. It is further proposed that there are several features of transport problems and models which
must be taken into account when specifying an analytical approach:

1. Precision and accuracy required. These concepts are sometimes confused. Accuracy is the degree to
which a measurement or model result matches true or accepted values. Accuracy is an issue pertaining
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to the quality of data and model. The level of accuracy required for particular applications varies
greatly. It is often the case that the accuracy required is just that necessary to discriminate between a
good scheme and a less good one. In some cases the best scheme may be quite obvious, thus requiring
less accurate modelling. Remember, however, that common sense has been blamed for some very
poor transport decisions in the past.

Precision refers to the level or units of measurement used to collect data and deliver model outputs.
One may measure travel times between two points in fractions of a second, but individuals may
estimate and state the same much less precisely in five minute intervals. Precision is not accuracy and
it is often misleading. Reporting estimates with high precision is often interpreted as confidence in
their accuracy, whereas transport modellers often use precise numbers to report uncertain estimates.
There is a difference between stating that ‘traffic on link X was measured as 2347 vehicles between
8:00 and 9:00 AM yesterday’ and saying that ‘traffic on link X between 8:00 and 9:00 AM in five
years time will be 3148 vehicles’: the first statement may be both precise and accurate where the
second is equally precise but certainly inaccurate. It is less misleading to report the second figure as
3150. As in the quote attributed to John Maynard Keynes ‘it is much better to be roughly right than
precisely wrong’.

2. The decision-making context. This involves the adoption of a particular perspective and a choice of
a scope or coverage of the system of interest. The choice of perspective defines the type of decisions
that will be considered: strategic issues or schemes, tactical (transport management) schemes, or even
specific operational problems. The choice of scope involves specifying the level of analysis: is it just
transport or does it involve activity location too? In terms of the transport system, are we interested
in just demand or also on the supply side at different levels: system or suppliers’ performance, cost
minimisation issues within suppliers, and so on? The question of how many options need to be
considered to satisfy different interest groups or to develop a single best scheme is also crucial. The
decision-making context, therefore, will also help define requirements on the models to be used, the
variables to be included in the model, or considered given or exogenous.

3. Level of detail required. The level of resolution of a model system can be described along four main
dimensions: geography, unit of analysis, behavioural responses and the handling of time.

Space is very important and it can be handled in an aggregate way, as a few zones with area-wide
speed flow curves, or at the detailed level of the individual addresses for trips with links described in
detail. There is a wide range of options in this field and the choice will depend on the application in
hand: if the issue is a detailed design for traffic in a small area, highly disaggregated zones with an
accurate account of the physical characteristics of links would be appropriate in a microsimulation
model. Strategic planning may call for a more aggregate zoning system with links described in terms
of their speed-flow relationships alone.

The unit of interest for modelling may be the same zone with trips emanating and ending there or,
at the other end of the spectrum, sampled or synthesised individuals; somewhere in between there
will be different household or person strata as representative of the travelling population.

The behavioural responses included may vary from fairly simple route choice actions in a traffic
model to changes in time of travel, mode, destination, tour frequency and even land use and economic
activity impacts.

Time, in turn, can be treated either as a discrete or a continuous variable. In the first case the
model may cover a full day (as in many national models), a peak period or a smaller time interval:
all relevant responses will take place in that period although there may be interactions with other
periods. Alternatively, time may be considered as a continuous variable which allows for more dynamic
handling of traffic and behavioural responses like the choice of time of travel. Considering discrete
time slices is a common option as treating time as a continuous variable is much more demanding.

4. The availability of suitable data, their stability and the difficulties involved in forecasting their
future values. In some cases very little data may be available; in others, there may be reasons to
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suspect the information, or to have less confidence in future forecasts for key planning variables as
the system is not sufficiently stable. In many cases the data available will be the key factor in deciding
the modelling approach.

5. The state of the art in modelling for a particular type of intervention in the transport system. This
in turn can be subdivided into:
� behavioural richness;
� mathematical and computer tractability;
� availability of good solution algorithms.

It has to be borne in mind that in practice all models assume that some variables are exogenous
to it. Moreover, many other variables are omitted from the modelling framework on the grounds of
not being relevant to the task in hand, too difficult to forecast or expected to change little and not
influence the system of interest. An explicit consideration of what has been left out of the model may
help to decide on its appropriateness for a given problem.

6. Resources available for the study. These include money, data, computer hardware and software,
technical skills, and so on. Two types of resource are, however, worth highlighting here: time and level
of communication with decision makers and the public. Time is probably the most crucial one: if little
time is available to make a choice between schemes, shortcuts will be needed to provide timely advice.
Decision makers are prone to setting up absurdly short timescales for the assessment of projects which
will take years to process through multiple decision instances, years to implement and many more
years to be confirmed as right or wrong. On the other hand, a good level of communication with
decision makers and the public will alleviate this problem: fewer unrealistic expectations about our
ability to accurately model transport schemes will arise, and a better understanding of the advantages
and limitations of modelling will moderate the extremes of blind acceptance or total rejection of
study recommendations.

7. Data processing requirements. This aspect used to be interpreted as something like ‘how big a
computer do you need?’ The answer to that question today is ‘not very big’, as a good microcomputer
will do the trick in most cases. The real bottleneck in data processing is the human ability to collect,
code, input the data, run the programs and interpret the output. The greater the level of detail, the more
difficult all these human tasks will be. The use of computer-assisted data collection and graphics for
input–output of programs reduces the burden somewhat.

8. Levels of training and skills of the analysts. Training costs are usually quite high; so much so
that it is sometimes better to use an existing model or software that is well understood, than to
embark on acquiring and learning to use a slightly more advanced one. This looks, of course, like
a recipe for stifling innovation and progress; however, it should always be possible to spend some
time building up strengths in new advanced techniques without rejecting the experience gained with
earlier models.

9. Modelling perspective and scope. Florian et al. (1988) formalise decision-making contexts using
a two-dimensional framework: the level of analysis and the perspective. The levels of analysis may
include six different groups of procedures, where a procedure centres on one or more models and
their specific solution algorithms. These are:
� activity location procedures L;
� demand procedures D;
� transport system performance procedures P, which produce as output levels of service, expenditure

and practical capacities, and depend on demand levels and on transport supply conditions;
� supply actions procedures S, which determine the actions taken by suppliers of transport services and

infrastructure; these depend on their objectives (profit maximisation, social welfare), institutional
environment, their costs and estimates of future states of the system;

� cost minimisation procedures CM;
� production procedures PR.
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The last two have more to do with the microeconomic issues affecting the suppliers in their choice
of input combinations to minimise costs.

The perspectives dimension considers the six level procedures L, D, P, S, CM, PR and three
perspectives: a strategic perspective STR, a tactical perspective TAC and an operational perspective
OPE. These are, of course, related to the planning horizons and the levels of investment; however, in
this context they must be seen as generic concepts dealing with the capacity:
� to visualise the levels L, D, P, S, CM, PR in their true and relative importance;
� to choose, at any level, what is to be regarded as fixed and what as variable.

Figure 1.4 summarises the way in which different perspectives and levels usually interact. The largest
and most aggregate is, of course, the strategic level; analysis and choice at this level have major system-
wide and long-term impacts, and usually involve resource acquisition and network design. Tactical
issues have a narrower perspective and concern questions like making the best use of existing facilities
and infrastructure. The narrowest perspective, the operational one, is concerned with the short-term
problems of suppliers of transport services which fall outside the scope of this book; nevertheless, the
actual decisions on, for example, levels of service or vehicle size, are important exogenous input to some
of the models discussed in this book, and this is depicted in Figure 1.4.
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Figure 1.4 The two-dimensional conceptual framework

This is, of course, a rather abstract and idealised way of visualising planning problems. However,
it helps to clarify the choices the analyst must face in developing a transport modelling approach. In
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this book we are mainly concerned with strategic and tactical issues at the demand and performance
procedure levels. Nevertheless, some of the models discussed here sometimes find application outside
these levels and perspectives.

1.4 Issues in Transport Modelling
We have already identified the interactions between transport problems, decision-making styles and
modelling approaches. We need to discuss now some of the critical modelling issues which are relevant
to the choice of model. These issues cover some general points like the roles of theory and data,
model specification and calibration. But perhaps the most critical choices are those between the uses
of aggregate or disaggregate approaches, cross-section or time-series models, and revealed or stated
preference techniques.

1.4.1 General Modelling Issues

Wilson (1974) provides an interesting list of questions to be answered by any would-be modeller; they
range from broad issues such as the purpose behind the model-building exercise, to detailed aspects such
as what techniques are available for building the model. We will discuss some of these below, together
with other modelling issues which are particularly relevant to the development of this book.

1.4.1.1 The Roles of Theory and Data

Many people tend to associate the word ‘theory’ with endless series of formulae and algebraic manipu-
lations. In the urban transport modelling field this association has been largely correct: it is difficult to
understand and replicate the complex interactions between human beings which are an inevitable feature
of transport systems.

Some theoretical developments attempting to overcome these difficulties have resulted in models
lacking adequate data and/or computational software for their practical implementation. This has led to
the view, held strongly by some practitioners, that the gap between theory and practice is continually
widening; this is something we have tried to redress in this book.

An important consideration on judging the contribution of a new theory is whether it places any
meaningful restrictions on, for example, the form of a demand function. There is at least one documented
case of a ‘practical’ transport planning study, lasting several years and costing several million dollars,
which relied on ‘pragmatic’ demand models with a faulty structure (i.e. some of its elasticities had a
wrong sign; see Williams and Senior 1977). Although this could have been diagnosed ex ante by the
pragmatic practitioners, had they not despised theory, it was only discovered post hoc by theoreticians.

Unfortunately (or perhaps fortunately, a pragmatist would say), it is sometimes possible to derive
similar functional forms from different theoretical perspectives (this, the equifinality issue, is considered
in more detail in Chapter 8). The interpretation of the model output, however, is heavily dependent on
the theoretical framework adopted. For example, the same functional form of the gravity model can be
derived from analogy with physics, from entropy maximisation and from maximum utility formalisms.
The interpretation of the output, however, may depend on the theory adopted. If one is just interested in
flows on links it may not matter which theoretical framework underpins the analytical model function.
However, if an evaluation measure is required, the situation changes, as only an economically based
theory of human behaviour will be helpful in this task. In other cases, phrases like: ‘the gravitational pull
of this destination will increase’, or ‘this is the most probable arrangement of trips’ or ‘the most likely trip
matrix consistent with our information about the system’ will be used; these provide no help in devising
evaluation measures but assist in the interpretation of the nature of the solution found. The theoretical
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framework will also lend some credence to the ability of the model to forecast future behaviour. In this
sense it is interesting to reflect on the influence practice and theory may have on each other. For example,
it has been noted that models or analytical forms used in practice have had traditionally a guiding
influence on the assumptions employed in the development of subsequent theoretical frameworks. It is
also well known that widely implemented forms, like the gravity-logit model we will discuss in Chapters
6 and 7, have been the subject of strong post hoc rationalisation:

theoretical advances are especially welcome when they fortify existing practice which might be
deemed to lack a particularly convincing rationale (Williams and Ortúzar, 1982b).

The two classical approaches to the development of theory are known as deductive (building a model
and testing its predictions against observations) and inductive (starting with data and attempting to infer
general laws). The deductive approach has been found more productive in the pure sciences and the
inductive approach has been preferred in the analytical social sciences. It is interesting to note that data
are central to both; in fact, it is well known that data availability usually leaves little room for negotiation
and compromise in the trade-off between modelling relevance and modelling complexity. Indeed, in very
many cases the nature of the data restricts the choice of model to a single option.

The question of data is closely connected with issues such as the type of variables to be represented in
the model and this is, of course, closely linked again to questions about theory. Models predict a number
of dependent (or endogenous) variables given other independent (or explanatory) variables. To test a
model we would normally need data about each variable. Of particular interest are the policy variables,
which are those assumed to be under the control of the decision maker, e.g. those the analyst may vary
in order to test the value of alternative policies or schemes.

Another important issue in this context is that of aggregation:

� How many population strata or types of people do we need to achieve a good representation and
understanding of a problem?

� In how much detail do we need to measure certain variables to replicate a given phenomenon?
� Space is crucial in transport; at what level of detail do we need to code the origin and destination of

travellers to model their trip making behaviour?

1.4.1.2 Model Specification

In its widest and more interesting sense this issue considers the following themes.

Model Structure Is it possible to replicate the system to be modelled with a simple structure which
assumes, for example, that all alternatives are independent? Or is it necessary to build more complex
models which proceed, for example, to calculate probabilities of choice conditional on previous selec-
tions? Disaggregate models, such as those discussed in Chapters 7 to 9, usually have parameters which
represent aspects of model structure and the extensions to methodology achieved by the mid-1980s have
allowed the estimation of more and more general model forms. However, as Daly (1982b) has remarked,
although it might be supposed that ultimately all issues concerned with model form could be resolved
by empirical testing, such resolution is neither possible nor appropriate.

Functional Form Is it possible to use linear forms or does the problem require postulating more
complex non-linear functions? The latter may represent the system of interest more accurately, but
certainly will be more demanding in terms of resources and techniques for model calibration and use.
Although theoretical considerations may play a big role in settling this question, it is also possible
to examine it in an inductive fashion by means of ‘laboratory simulations’, for example in stated
intentions/preferences experiments.
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Variable Specification This is the more usual meaning attached to the specification issue; which
variables to use and how (which form) they should enter a given model. For example, if income is
assumed to influence individual choice, should the variable enter the model as such or deflating a cost
variable? Methods to advance on this question range from the deductive (‘constructive’) use of theory,
to the inductive statistical analysis of the data using transformations.

1.4.1.3 Model Calibration, Validation and Use

A model can be simply represented as a mathematical function of variables X and parameters θ , such as:

Y = f (X, θ ) (1.4)

It is interesting to mention that the twin concepts of model calibration and model estimation have
taken traditionally a different meaning in the transport field. Calibrating a model requires choosing its
parameters, assumed to have a non-null value, in order to optimise one or more goodness-of-fit measures
which are a function of the observed data. This procedure has been associated with the physicists and
engineers responsible for early aggregate transport models who did not worry unduly about the statistical
properties of these indices, e.g. how large any calibration errors could be.

Estimation involves finding the values of the parameters which make the observed data more likely
under the model specification; in this case one or more parameters can be judged non-significant and left
out of the model. Estimation also considers the possibility of examining empirically certain specification
issues; for example, structural and/or functional form parameters may be estimated. This procedure has
tended to be associated with the engineers and econometricians responsible for disaggregate models,
who placed much importance on the statistical testing possibilities offered by their methods. However,
in essence both procedures are the same because the way to decide which parameter values are better is
by examining certain previously defined goodness-of-fit measures. The difference is that these measures
generally have well-known statistical properties which in turn allow confidence limits to be built around
the estimated values and model predictions.

Because the large majority of transport models have been built on the basis of cross-sectional data,
there has been a tendency to interpret model validation exclusively in terms of the goodness-of-fit
achieved between observed behaviour and base-year predictions. Although this is a necessary, it is by no
means a sufficient condition for model validation; this has been demonstrated by a number of cases which
have been able to compare model predictions with observed results in before-and-after studies (see the
discussion in Williams and Ortúzar, 1982a). Validation requires comparing the model predictions with
information not used during the process of model estimation. This obviously puts a more stringent test
on the model and requires further information or more resources.

One of the first tasks a modeller faces is to decide which variables are going to be predicted by
the model and which are possibly required as inputs to it. Some will not be included at all, either
because the modeller lacks control over them or simply because the theory behind the model ignores
them (see Figure 1.5). This implies immediately a certain degree of error and uncertainty (we will come
back to this problem in Chapter 3) which of course gets compounded by other errors which are also
inherent to modelling; for example, sampling errors and, more important, errors due to the unavoidable
simplifications of reality the model demands in order to be practical (see Figure 1.5).

Thus, the main use of models in practice is for conditional forecasting: the model will produce
estimates of the dependent variables given a set of independent variables. In fact, typical forecasts are
conditional in two ways (Wilson 1974):

� in relation to the values assigned to the policy variables in the plan, the impact of which is being tested
with the model;

� in relation to the assumed values of other variables.
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Figure 1.5 Modelling and sampling

A model is normally used to test a range of alternative plans for a range of possible assumptions about
the future value of the other variables (e.g. low- and high-income scenarios). This means that it might be
‘run’ many times in the context of examining a particular problem. For this reason it may be of crucial
importance that its specification allows for quick turn-around time in a computer; this is not an easy
task in the case of a full-scale transportation model which involves complex processes of equilibration
between supply and demand, as we will discuss in Chapter 11.

1.4.1.4 Modelling, Forecasting and Judgement

There is a subtle difference between modelling and forecasting. Modelling focuses on building and
applying appropriate tools that are sensitive to the choices of interest and respond logically to changes in
key policy instruments. The successful modeller will provide useful and timely advice to the decision-
making process, even if the data and timescales are limited. In this case, it is important that the model
produces consistent results for all expected interventions, policies and projects, such that they can be
ranked fairly, even if the correspondence to reality is not perfect.

Forecasting is an attempt to envision and quantify future conditions. It normally involves estimating
future travel demand and the resulting multimodal flows and costs over time. In the case of private
sector projects, see Chapter 16, these projections are usually accompanied by revenue forecasts and
investors will take considered risks based on these forecasts. Forecasting is usually based on formal
models, but they alone cannot provide the full picture; it is necessary to incorporate other analyses and
assumptions. Given the uncertainty about the future, several complementary approaches might be used
in forecasting. For example a formal model may be supported by consideration about the main economic
drivers of future travel activity in a region; in that way it is made clear how forecasts are dependent on the
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future of these activities. The success of forecasts can only be objectively measured through before and
after studies.

The importance of formal models increases as the interventions under consideration diverge further
from what is on the ground and known today. For example, when introducing a mode not currently
available in a city, the model will often have to rely on stated preference data, information from other
regions, or rational decision making theory. The same is true when evaluating any sort of policy not
currently in existence (congestion charging) or when considering fuel prices or congestion conditions
radically different than at present. In general, good advice on these issues cannot be given only on the
basis of good modelling, however excellent. This requires intelligent consideration of other factors and
assumptions, in particular about the limitations of any modelling approach.

Given the nature of analytical models, interpretation of their output is essential. Interpretation requires
good judgement and this is only acquired with experience and a thorough understanding of the theories
underpinning models and their limitations. For instance, most of the models described in this text are
supported by random utility theory (see Chapter 7) that in turn assumes rational decision making on
the part of travellers. However, there is an increasingly solid body of evidence, provided mostly by
Behavioural Economics and Psychology, that humans are neither entirely rational nor consistent in their
choices. This evidence (see Ariely 2009) punctures the theory underpinning our models–even the most
advanced activity based approaches–and makes the application of judgement in the interpretation of
model outputs even more important.

1.4.2 Aggregate and Disaggregate Modelling

The level of aggregation selected for the measurement of data is an important issue in the general
design of a transportation planning study. Of central interest is the aggregation of exogenous data, that
is, information about items other than the behaviour of travellers which is assumed endogenous (i.e.
the model attempts to replicate it). For example, throughout the years it has been a cause for concern
whether a given data item represents an average over a group of travellers rather than being collected
specifically for a single individual. When the model at base aims at representing the behaviour of more
than one individual (e.g. a population segment like car owners living in a zone), such as in the case of the
aggregate models we will examine in Chapters 5 and 6, a certain degree of aggregation of the exogenous
data is inevitable. But when the model at base attempts to represent the behaviour of individuals, such as
in the case of the disaggregate models we will study in Chapters 7 to 9, it is conceivable that exogenous
information can be obtained and used separately for each traveller. An important issue is then whether,
as is often the case, it might be preferable on cost or other grounds to use less detailed data (see Daly and
Ortúzar 1990).

Forecasting future demand is a crucial element of the majority of transport planning studies. Being
able to predict the likely usage of new facilities is an essential precursor to rational decision making
about the advantages or otherwise of providing such facilities. It may also be important to have an
idea about the sensitivities of demand to important variables under the control of the analyst (e.g. the
price charged for its use). In most cases the forecasts and sensitivity estimates must be provided at the
aggregate level, that is, they must represent the behaviour of an entire population of interest. Therefore,
the analyst using disaggregate models must find a sound method for aggregating model results to provide
these indicators.

Aggregate models were used almost without exception in transportation studies up to the late 1970s;
they became familiar, demanded relatively few skills on the part of the analyst (but required arcane
computer knowledge) and had the property of offering a ‘recipe’ for the complete modelling process,
from data collection through the provision of forecasts at the level of links in a network. The output
of these models, perhaps because they were generated by obscure computer programs, were often
considered more accurate than intended, for example predicting turning movement flows 15 years in the
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future. Aggregate models have been severely (and sometimes justifiably) criticised for their inflexibility,
inaccuracy and cost. Unfortunately, many disaggregate approaches which have adopted sophisticated
treatments of the choices and constraints faced by individual travellers have failed to take the process
through to the production of forecasts, sometimes because they require data which cannot reasonably
be forecast.

Disaggregate models, which became increasingly popular during the 1980s, offer substantial advan-
tages over the traditional methods while remaining practical in many application studies. However, one
important problem in practice is that they demand from the analyst quite a high level of statistical and
econometric skills for their use (in particular for the interpretation of results), certainly much higher
than in the case of aggregate models. Moreover, the differences between aggregate and disaggregate
model systems have often been overstated. For example, the disaggregate models were first marketed
as a radical departure from classical methods, a ‘revolution’ in the field, while eventually it became
clear that an ‘evolutionary’ view was more adequate (see Williams and Ortúzar 1982b). In fact, in many
cases there is complete equivalence between the forms of the forecasting models (Daly 1982a). The
essential difference lies in the treatment of the description of behaviour, particularly during the model
development process; in many instances the disaggregate approach is clearly superior to the grouping of
behaviour by zones and by predefined segments.

Attempts to clarify the issue of whether disaggregate or aggregate approaches were to be preferred,
and in what circumstances, have basically concluded that there is no such thing as a definitive approach
appropriate to all situations (see Daly and Ortúzar 1990). These attempts have also established the need
for guidelines to help the despairing practitioner to choose the most appropriate model tools to apply in
a particular context. We have striven to answer that call in this book.

1.4.3 Cross-section and Time Series

The vast majority of transport planning studies up to the late 1980s relied on information about trip
patterns revealed by a cross-section of individuals at a single point in time. Indeed, the traditional use of
the cross-sectional approach transcended the differences between aggregate and disaggregate models.

A fundamental assumption of the cross-sectional approach is that a measure of the response to
incremental change may simply be found by computing the derivatives of a demand function with
respect to the policy variables in question. This makes explicit the assumption that a realistic stimulus-
response relation may be derived from model parameters estimated from observations at one point in
time. This would be reasonable if there were always enough people changing their choices, say of mode
or destination, in both directions and without habit or time-lag effects.

However, the cross-sectional assumption has two potentially serious drawbacks. First, a given cross-
sectional data set may correspond to a particular ‘history’ of changes in the values of certain key variables
influencing choice. For example, changes in mode or location in time may have been triggered by a series
of different stimuli (petrol prices, life-cycle effects, etc.) and the extent to which a system is considered
to be in disequilibrium (because of, say, inertia) will depend on these. The trouble is that it can be
shown (see Chapter 7) that the response of groups with exactly the same current characteristics, but
having undergone a different path of changes, may be very different indeed. Second, data collected at
only one point in time will usually fail to discriminate between alternative model formulations, even
between some arising from totally different theoretical postulates. It is always possible to find ‘best-fit’
parameters from base-year data even if the model suffers severe mis-specification problems; the trouble
is, of course, that these do not guarantee good response properties for a future situation. As we saw in
section 1.4.1, a good base-year fit is not a sufficient condition for model validation.

Thus, in general it is not possible to discriminate between the large variety of possible sources of
dispersion within a cross-sectional data set (i.e. preference dispersion, habit effects, constraints, and so
on). Real progress in understanding and assessing the effectiveness of forecasting models, however, can
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only be made if information is available on response over time. From a theoretical point of view, it is also
desirable that appropriate frameworks for analysis are designed which allow the eventual refutation of
hypotheses relating to response. Until this is achieved, a general problem of potential misrepresentation
will continue to cast doubts on the validity of cross-sectional studies.

The discussion above has led many people to believe that, where possible, longitudinal or time-series
data should be used to construct more dependable forecasting models. This type of data incorporates
information on response by design. Thus, in principle, it may offer the means to directly test and even
perhaps reject hypotheses relating to response.

Longitudinal data can take the form of panels or more simply before-and-after information. Unfortu-
nately, models built on this type of data have severe technical problems of their own; in fact, up to the
end of the 1990s progress in this area had been limited. We will discuss some of the issues involved in
the collection and use of this type of information in Chapters 3 and 7.

1.4.4 Revealed and Stated Preferences

The development of good and robust models is quite difficult if the analyst cannot set up experiments
to observe the behaviour of the system under a wide range of conditions. Experimentation of this kind
is neither practical nor viable in transport and the analyst is restricted, like an astronomer, to make
observations on events and choices they do not control. Up to the mid-1980s it was almost axiomatic that
modelling transport demand should be based on information about observed choices and decisions, i.e.
revealed-preference data. Within this approach, project evaluation requires expressing policies in terms
of changes in attributes which ‘map onto’ those considered to influence current behaviour. However,
this has practical limitations basically associated with survey costs and the difficulty of distinguishing
the effects of attributes which are not easy to observe, e.g. those related to notions such as quality or
convenience. Another practical embarrassment has been traditionally the ‘new option’ problem, whereby
it is required to forecast the likely usage of a facility not available at present and perhaps even radically
different to all existing ones.

Stated-preference/intentions techniques, borrowed from the field of market research, were put forward
by the end of the 1970s as offering a way of experimenting with transport-related choices, thus solving
some of the problems outlined above. Stated-preference techniques base demand estimates on an analysis
of the response to hypothetical choices; these, of course, can cover a wider range of attributes and
conditions than the real system. However, these techniques were severely discredited at the start because
it was not known how to discount for the over enthusiasm of certain respondents, e.g. not even half of
the individuals stating they would take a given course of action actually did so when the opportunity
eventually arose.

It took a whole decade for the situation to change, but by the end of the 1980s stated-preference methods
were perceived by many to offer a real chance to solve the above-mentioned difficulties. Moreover, it has
been found that, in appropriate cases, revealed-and stated-preference data and methods may be employed
in complementary senses with the strengths of both approaches recognised and combined. In particular,
they are considered to offer an invaluable tool for assisting the modelling of completely new alternatives.
We will examine data-collection aspects of stated-preference methods in Chapter 3 and modelling issues
in Chapter 8.

1.5 The Structure of the Classic Transport Model
Years of experimentation and development have resulted in a general structure which has been called the
classic transport model. This structure is, in effect, a result from practice in the 1960s but has remained
more or less unaltered despite major improvements in modelling techniques since then.
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The general form of the model is depicted in Figure 1.6. The approach starts by considering a zoning
and network system, and the collection and coding of planning, calibration and validation data. These
data would include base-year levels for population of different types in each zone of the study area as
well as levels of economic activity including employment, shopping space, educational and recreational
facilities. These data are then used to estimate a model of the total number of trips generated and attracted
by each zone of the study area (trip generation). The next step is the allocation of these trips to particular
destinations, in other words their distribution over space, thus producing a trip matrix. The following
stage normally involves modelling the choice of mode and this results in modal split, i.e. the allocation of
trips in the matrix to different modes. Finally, the last stage in the classic model requires the assignment
of the trips by each mode to their corresponding networks: typically private and public transport.

Figure 1.6 The classic four-stage transport model

The classic model is presented as a sequence of four sub-models: trip generation, distribution, modal
split and assignment. It is generally recognised that travel decisions are not actually taken in this type
of sequence; a contemporary view is that the ‘location’ of each sub-model depends on the form of the
utility function assumed to govern all these travel choices (see Williams 1977). Moreover, the four-stage
model is seen as concentrating attention on only a limited range of travellers’ responses. Current thinking
requires an analysis of a wider range of responses to transport problems and schemes. For example, when
faced with increased congestion a trip maker can respond with a range of simple changes to:

� the route followed to avoid congestion or take advantage of new links; this includes choice of parking
place or combination of services in the case of public transport;

� the mode used to get to the destination;
� the time of departure to avoid the most congested part of the peak;
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� the destination of the trip to a less congested area;
� the frequency of journeys by undertaking the trip at another day, perhaps combining it with

other activities.

Furthermore, other more complex responses take place in the longer term, for example changes in jobs,
residential location, choice of shopping areas and so on; all of these will respond, at least partially, to
changes in the accessibility provided by the transport system.

Despite these comments, the four-stage sequential model provides a point of reference to contrast
alternative methods. For example, some contemporary approaches attempt to treat simultaneously the
choices of trip frequency (trips per week), destination and mode of travel thus collapsing trip generation,
distribution and mode choice in one single model. Other approaches emphasise the role of household
activities and the travel choices they entail; concepts like sojourns, circuits, and time and money budgets
are used in this context to model travel decisions and constraints. These modelling strategies are more
difficult to cast in terms of the four main decisions or sub-models above. However, the improved under-
standing of travel behaviour these activity based models provide is likely to enhance more conventional
modelling approaches, see Chapter 14.

The trip generation–distribution–modal split and assignment sequence is the most common but not
the only possible one. Some past studies have put modal split before trip distribution and immediately
after (or with) trip generation. This permits a greater emphasis on decision variables depending on the
trip generation unit, the individual or the household. However, forcing modal split before the destination
is known requires “averaging” the attributes of the journey and modes in the model. This detracts
policy relevance from the modal-split model. Another approach is to perform distribution and mode
choice simultaneously, as discussed in Chapter 6. Note also that the classic model makes trip generation
inelastic, that is, independent of the level of service provided in the transport system. This is probably
unrealistic but only recently techniques have been developed which can take systematic account of
these effects.

Once the model has been calibrated and validated for base-year conditions it must be applied to one
or more planning horizons. In order to do this it is necessary to develop scenarios and plans describing
the relevant characteristics of the transport system and planning variables under alternative futures. The
preparation of realistic and consistent scenarios is not a simple task as it is very easy to fall into the
trap of constructing futures which are neither financially viable nor realistic in the context of the likely
evolution of land use and activities in the study area. Despite these difficulties, scenario writing is still
more of an art than a technique and requires a good deal of engineering expertise combined with sound
political judgement; unfortunately these are scarce resources seldom found together in planning teams.

Having prepared realistic scenarios and plans for testing, the same sequence of models is run again
to simulate their performance. A comparison is then made between the costs and benefits, however
measured, of different schemes under different scenarios; the idea is to choose the most attractive
programme of investment and transport policies which satisfies the demand for movement in the
study area.

An important issue in the classic four-stage model is the consistent use of variables affecting demand.
For example, at the end of the traffic assignment stage new flow levels, and therefore new travel times,
will be obtained. These are unlikely to be the same travel times assumed when the distribution and
mode choice models were run, at least when the models are used in the forecasting mode. This seems
to call for the re-run of the distribution and modal-split models based now on the new travel times. The
subsequent application of the assignment model may well result in a new set of travel times; it will be
seen that in general the naive feed-back of the model does not lead to a stable set of distribution, modal
split and assignment models with consistent travel times. This problem will be treated in some detail in
Chapter 11; its particular relevance is in the risk of choosing the wrong plan depending on how many
cycles one is prepared to undertake.
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1.6 Continuous Transport Planning
Transport planning models on their own do not solve transport problems. To be useful they must
be utilised within a decision process adapted to the chosen decision-making style. The classic transport
model was originally developed for an idealised normative decision-making approach. Its role in transport
planning can be presented as contributing to the key steps in a ‘rational’ decision-making framework as
in Figure 1.7:

Figure 1.7 A framework for rational decision making with models

1. Formulation of the problem. A problem can be defined as a mismatch between expectations and
perceived reality. The formal definition of a transport problem requires reference to objectives,
standards and constraints. The first reflect the values implicit in the decision-making process, a
definition of an ideal but achievable future state. Standards are provided in order to compare, at any
one time, whether minimum performance is being achieved at different levels of interest. For example,
the fact that many signalised junctions in a city operate at more than 90% degree of saturation can
be taken to indicate an overloaded network. Constraints can be of many types, financial, temporal,
geographical, technical or simply certain areas or types of building that should not be threatened by
new proposals.

2. Collection of data about the present state of the system of interest in order to support the development
of the analytical model. Of course, data collection is not independent from model development,
as the latter defines which types of data are needed: data collection and model development are
closely interrelated.

3. Construction of an analytical model of the system of interest. The tool-set provided in this book
can be used to build transport models including demand and system performance procedures from a
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tactical and strategic perspective. In general, one would select the simplest modelling approach which
makes possible a choice between schemes on a sound basis. The construction of an analytical model
involves specifying it, estimating or calibrating its parameters and validating its performance with
data not used during calibration.

4. Generation of solutions for testing. This can be achieved in a number of ways, from tapping the
experience and creativity of local transport planners and interested parties, to the construction of
a large-scale design model, perhaps using optimisation techniques. This involves supply- and cost-
minimisation procedures falling outside the scope of this book.

5. In order to test the solutions or schemes proposed in the previous step it is necessary to forecast the
future values of the planning variables which are used as inputs to the model. This requires the
preparation of consistent quantified descriptions, or scenarios, about the future of the area of interest,
normally using forecasts from other sectors and planning units. We will come back to this issue
in Chapter 15.

6. Testing the model and solution. The performance of the model is tested under different scenarios to
confirm its reasonableness; the model is also used to simulate different solutions and estimate their
performance in terms of a range of suitable indicators. These must be consistent with the identification
of objectives and problem definition above.

7. Evaluation of solutions and recommendation of a plan/strategy/policy. This involves operational,
economic, financial and social assessment of alternative courses of action on the basis of the indi-
cators produced by the models. A combination of skills is required here, from economic analysis to
political judgement.

8. Implementation of the solution and search for another problem to tackle; this requires recycling
through this framework starting again at point (1).

Although based on the idea of a normative decision theory approach, this framework could also be
used within behavioural decision-theory styles, to formulate master plans or to provide ammunition in
the bargaining involved in adaptive decision making. It implicitly assumes that the problem can be fully
specified, the constraints and decision space can be defined and the objective function identified, even if
not necessarily completely quantified.

However, one of the main arguments of this book is that real transport systems do not obey the
restrictions above: objective functions and constraints are often difficult to define. With hindsight these
definitions often turn out to be blinkered: by narrowing a transport problem we may gain the illusion
of being able to solve it; however, transport problems have the habit of ‘biting back’, of reappearing in
different places and under different guises; new features and perspectives are added as our understanding
of the transport system progresses; changes in the external factors and planning variables throw our
detailed transport plans off course. A strong but fixed normative decision-making framework may be
suitable for simpler, well-defined and constrained problems but it hardly helps to deal with richer, more
complex, many-featured and multi-dimensional transport issues.

How can we improve this general approach to cope with an ever-changing world? It seems essential
to recognise that the future is much more tenuous than our forecasting models would lead us to believe.
If this is the case, master plans need revising at regular intervals and other decision-making strategies
need supporting with the inclusion of fresh information regularly collected to check progress and
correct course where necessary. Adaptive or mixed-mode decision-making styles seem more flexible and
appropriate to the characteristics of transport problems. They recognise the need to continually redefine
problems, arenas and goals as we understand them better, identify new solution strategies, respond to
political and technological changes and enhance our modelling capabilities through training, research
and experience.

The introduction of a monitoring function is an important addition to the scheme in Figure 1.7. A
monitoring system is not restricted to regular data collection; it should also facilitate all other stages in
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the decision-making framework, as highlighted in Figure 1.8. There are two key roles for a monitoring
system. First, it should provide data to identify departures from the estimated behaviour of the transport
system and of exogenous key variables such as population and economic growth. Second, the data
collected should be valuable in further validating and enhancing the modelling approach followed in
preparing the plans.

Figure 1.8 Planning and monitoring with the help of models

A good monitoring system should also facilitate learning by the planning team and provide ideas
on how to improve and modify models. In this sense, major disruptions to the transport system, like
public-transport strikes, short-term fuel shortages or major roadworks which may temporarily change
the network structure and its characteristics, should provide a major source of information on transport
behaviour to contrast with model predictions. These unplanned experiments should enable analysts to
test and enhance their models. A monitoring system fits very well with the idea of a regular or continuous
planning approach in transport. If the monitoring system is not in place, it should be established as part
of any transportation study.

Monitoring the performance of a transport system and plans is such an important function that it
deserves to influence the choice of transport models used to support planning and policy making. The
use of models which can be re-run and updated using low-cost and easy-to-collect data, seems particularly
appropriate to this task. As we shall see in subsequent chapters, these simpler models cannot provide all
the behavioural richness of other more detailed approaches. However, there is scope for combining the
two techniques, applying the tool with the highest resolution to the critical parts of the problem and using
coarser tools that are easier to update to monitor progress and identify where and when a new detailed
modelling effort is needed. We have made an attempt to identify the scope for trade-offs of this kind in
the remainder of this book.
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The adoption of a monitoring function enables the implementation of a continuous planning process.
This is in contrast to the conventional approach of spending considerable resources over a period of
one or two years to undertake a large-scale transport study. This burst of activity may be followed by
a much longer period of limited effort in planning and updating of plans. Soon the reports and master
plans become obsolete or simply forgotten, and nobody capable of running the models again is left in
the planning unit. Some years later a new major planning and modelling effort is embarked upon and
the cycle is repeated. This style of planning with the help of models in fits and starts is wasteful of
resources, does not encourage learning and adaptation as a planning skill, and alienates analysts from
real problems. This approach is particularly painful in developing countries: they do not have resources
to waste and the rapid change experienced there speeds up plan and data obsolescence. The use of models
that are simpler and easier to update is advocated in Chapter 12 to help the implementation of a sound
but low-cost monitoring function.

1.7 Theoretical Basis Versus Expedience
One of the recurring themes of transport modelling practice is the distance, and some would say mistrust,
between theoreticians and practitioners. The practitioner would often refer to the need to choose between
a theoretically sound but difficult to implement set of models, and a more pragmatic modelling approach
reflecting the limitations of the data, time and resources available for a study. The implication is that the
‘pragmatic’ method can deliver the answers needed in the time period available for the study, even if
shortcuts must be taken.

The authors have nothing against pragmatic approaches provided they deliver the answers needed
to make sound decisions. There is no point in using sophisticated and expensive (but presumably
theoretically sound) models for the sake of winning some credit in the academic fraternity. However,
there are several reasons to prefer a model based on a sound theoretical background:

1. To guarantee stable results. The recommendations from a study should not depend on how many
iterations of a model were run. Prescriptions like ‘always start from free flow costs’ or ‘iterate twice
only’ are not good enough reasons to assume stable results: next time somebody will suggest running
a couple more iterations or a different, and quite justifiable, starting point; this should not be able to
change the recommendations for or against a particular scheme.

2. To guarantee consistency. One should be careful about using a particular model of travellers’ choice
in one part of a model system and a different one in another. Pragmatic models sometimes fail to pass
this test. Model consistency is necessary to pass the test of ‘reasonableness’ and public scrutiny.

3. To give confidence in forecasting. It is almost always possible to fit a model to an existing situation.
However, there are plenty of examples of well-fitting models that make no sense, perhaps because
they are based on correlated variables. Variables which are correlated today may not be so tomorrow;
for example, a strong correlation between banana production and car ownership in a particular country
may disappear once oil is discovered there. Therefore models should be backed by some theory of
travel behaviour so that one can interpret them consistently and have some confidence that they will
remain valid in the future.

4. To understand model properties and develop improved algorithms for their solution. When one is
able to cast a problem in mathematical programming or maximum likelihood terms, to mention
two popular approaches to model generation, one has a wealth of technical tools to assist in the
development of good solution algorithms. These have been developed over the years by researchers
working in many areas besides transport.

5. To understand better what can be assumed constant and what must be accepted as variable for a
particular decision context and level of analysis. The identification of exogenous and endogenous
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variables and those which may be assumed to remain constant is a key issue in modelling economics.
For example, for some short-term tactical studies the assumption of a fixed trip matrix may be
reasonable as in many traffic management schemes. However, even in the short term, if the policies
to be tested involve significant price changes or changes to accessibility, this assumption no longer
holds valid.

On the other hand practitioners have often abandoned the effort to use theoretically better models;
some of the reasons for this are as follows:

1. They are too complex. This implies that heuristic approaches, rules of thumb, and ad hoc procedures
are easier to understand and therefore preferable. This is a reasonable point; we do not advocate the
use of models as ‘black boxes’; quite the contrary. Model output needs interpretation and this is only
possible if a reasonable understanding of the basis for such a model is available. Without ignoring
the important role of academic literature in advancing the state of the art, there is a case for more
publications explaining the basis of models without recourse to difficult notation or obscure (to the
practitioner) concepts. Most models are not that complex, even if some of the statistics and computer
implementations needed may be quite sophisticated. Good publications bridging the gap between the
practitioner and the academic are an urgent need.

2. Theoretical models require data which are not available and are expensive to collect. This is often not
entirely correct; many advanced models make much better use of small-sample data than some of the
most pragmatic approaches. Improvements in data-collection methods have also reduced these costs
and improved the accuracy of the data.

3. It is better to work with ‘real’ matrices than with models of trip making behaviour. This is equivalent
to saying that it is better to work with fixed trip matrices, even if they have to be grossed up for
the planning horizon. We will see that sampling and other data-collection errors cast doubts on
the accuracy of such ‘real’ matrices; moreover, they cannot possibly respond to most policies (e.g.
improvements in accessibility, new services, and price changes) nor be reasonable for oversaturated
do-minimum future conditions. Use of observations alone may lead to ‘blinkered’ decision making,
to a false sense of accuracy and to underestimating the scope for change.

4. Theoretical models cannot be calibrated to the level of detail needed to analyse some schemes. There
may be some truth in this statement, at least in some cases where the limitations of the data and time
available make it necessary to compromise in detail if one wishes to use a better model. However, it
may be preferable to err in this way than to work with the illusion of sufficient detail but undermined
by potentially pathological (predictions of the wrong sign or direction) or insensitive results from
ad hoc procedures.

5. It is better to use the same model (or software) for most problems because this ensures consistency
in the evaluation methods. This is, in principle, correct provided the model remains appropriate to
these problems. It has the advantage of consistent approach, ease of use and interpretation, and
reduced training costs. However, this strategy breaks down when the problems are not of the same
nature. Assumptions of fixed trip matrices, or insensitivity to mode choice or pricing policies, may
be reasonable in some cases but fail to be acceptable in others. The use of the same model with the
same assumptions may be appropriate in one case and completely misleading in another.

The importance of these criteria depends, of course, on the decision context and the levels of analysis
involved in the study. What we argue in this book is for the use of the appropriate level of resolution to the
problem in hand. Our own preference is for striving to use good, sound models as far as possible even if
some level of detail has to be sacrificed. One has to find the best balance between theoretical consistency
and expedience in each particular case and decision-making context. We have striven to provide material
to assist in this choice.
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2
Mathematical Prerequisites

2.1 Introduction
This book is aimed at practitioners and students in transport modelling and planning. Some of these may
have a sound mathematical background; they may skip this chapter without loss of continuity. Other
readers may have a weaker mathematical background or may simply welcome the opportunity to refresh
ideas and notation. This chapter is addressed to these readers. It aims only to outline the most important
mathematical prerequisites needed to benefit from this book.

Most of the mathematical prerequisites, however, are not that demanding; the reader can get by with
little more than school algebra and some calculus. We introduce first the idea of functions and some
specialised notation together with the idea of plotting functions in Cartesian (orthogonal) coordinates.
After introducing the concept of series we treat the very important topic of matrix algebra; this is
particularly important in transport as we often deal with trip and other matrices. Elements of calculus
come next, including differentiation and integration. Logarithmic and exponential functions deserve
some special attention as we will find them often in transport models. Finding maxima and minima
of functions plays an important role in model development and the generation of solution algorithms.
Finally, a few statistical concepts are introduced in the last section of this chapter. Statistics play a key
part in contemporary transport modelling techniques and this section provides only an elementary entry
point to the subject. A few other statistical concepts and techniques will be introduced in subsequent
chapters as needed.

There are several books available as reference works for the more informed reader and as first textbooks
for readers needing to brush up their mathematical background. These include those by Morley (1972),
Stone (1966), Wilson and Kirby (1980) and Wonnacott and Wonnacott (1990) for the statistical elements
discussed. We have seen transport modelling practice moving steadily away from expedience through
shortcuts and ‘fudge factors’, and increasingly adopting models with sounder theoretical backing. This
trend results from the need to provide consistent advice to decision makers; this advice should not
depend on an arbitrarily chosen number of iterations or starting points, or on models likely to produce
pathological results when used to forecast completely new options. This increased rigour will rely on
better mathematical and statistical representations of problems and therefore requires further reading in
these areas.

Modelling Transport, Fourth Edition. Juan de Dios Ortúzar and Luis G. Willumsen.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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2.2 Algebra and Functions
2.2.1 Introduction

Elementary algebra consists of forming expressions using the four basic operations of ordinary math-
ematics on letters which stand for numbers. It is useful to distinguish between variables (generally
denoted by letters such as x, y and z), which represent measured quantities, and constants or parameters
(generally denoted by letters such as a, b, c, . . ., k, m, n, . . ., or by letters from the Greek alphabet). The
value of a constant is supposed to remain invariant for the particular situation examined.

Variables, and constants, are related through equations such as:

y = a + bx (2.1)

and if we were interested in x, we could ‘solve’ (2.1) for x, obtaining:

x = (y − a)/b (2.2)

The variables x and y in (2.1) and (2.2) are related by the ‘=’ sign. However, in algebra we may also
have inequalities of the following four types:

< which means less than

≤ which means less than or equal to

> which means greater than, and

≥ which means greater than or equal to

and which are used to constrain variables, for example:

x + 2y ≤ 5 (2.3)

This expression, unlike an equation, cannot be ‘solved’ for x or y, but note that both variables can take
only a restricted range of values. For example, if we restrict them further to be positive integers, it can
easily be seen that x cannot be greater than 3 and y cannot be greater than 2.

It is possible to manipulate inequalities in much the same way as equations, thus:

� we can add or subtract the same quantity to/from each side;
� we can also multiply or divide each side by the same quantity, but if the number which is being

multiplied or divided is negative, the inequality is reversed.

Example 2.1 If we subtract 5 on both sides of (2.3) we get

x + 2y − 5 ≤ 0

which is certainly the same constraint. However, if we multiply it by −2 we obtain:

−2x − 4y ≥ −10

which can be checked by the reader to provide the same constraint as (2.3).

The use of different letters to denote each variable is only convenient up to a certain point. Soon it
becomes necessary to use indices (e.g. subscripts or superscripts) to define additional variables, as in x1,
x2, x3, . . ., xn, which we can conveniently summarise as xi, i = 1, 2, . . ., n; it does not matter if we use
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another letter for the index if it has the same numerical range. For example, we could have defined also
xk, k = 1, 2, . . ., n.

The use of indices facilitates a very convenient notation for summations and products:

n∑

i=1

xi = x1 + x2 + x3 + . . . + xn (2.4)

or
m∏

j=1

y j = y1 y2 y3 . . . ym (2.5)

In certain cases a single index is not enough and two or more may be used. For example we could
define the following six variables, T11, T12, T21, T22, T31, T32 as Tij, i = 1, 2, 3, and j = 1, 2. With
two-subscript variables we can have double summations or double products, as in:

3∑

i=1

2∑

j=1

Ti j =
3∑

i=1

(Ti1 + Ti2) = T11 + T12 + T21 + T22 + T31 + T32 (2.6)

2.2.2 Functions and Graphs

We have already referred to variables as being related by equations and inequalities; in general these can
be called functional relations. A particular function is some specific kind of relationship between two or
more variables. For example, the power function:

y = φxn (2.7)

yields values of the dependent variable y, given values of the parameters φ and n, and of the independent
variable x; a function requires that for every value of x in some range, a corresponding value of y is
specified. Often we do not wish to refer to a particular function, but only to state that y is ‘some function
of x’ or vice versa; this can be written as:

y = f (x) (2.8)

A large range of functions exists and readers should familiarise themselves with these as they arise. It
is usually convenient to plot functions graphically on a Cartesian co-ordinate system (see Figure 2.1).

A dependent variable may be a function of several independent variables, for example:

y = f (x1, x2, . . . , xn) (2.9)

but this would require n + 1 dimensions to represent it (n for the independent variables and 1 for y).
Cartesian coordinates can be used in three or more dimensions, in the case of three dimensions the
orientation of the third axis is out of this side of the paper in Figure 2.1. More than three dimensions
cannot be easily visualised physically but are dealt with algebraically in just the same way as one, two
and three dimensions. For example, in the case of n = 2 the function can be represented by a surface
over the relevant part of the (x1, x2) plane.

Generally, any equation for an unknown quantity x can be put in the form f (x) = 0; for example, the
linear equation:

ax = b

is equivalent to

ax − b = 0
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Figure 2.1 Plot of various power functions

where f (x) = ax − b. Solving the equation is therefore equivalent to finding the points on the curve
y = f (x) which meet the x axis. These points are called real solutions or zeros of f (x); for example, x1

and x2 in Figure 2.2.
We are sometimes interested in what happens to the value of a function f (x), as x increases indefinitely

(x → ∞); it can easily be seen that the possibilities are only the following:

� tend to infinity (e.g. when f (x) = x2)
� tend to minus infinity (e.g. when f (x) = −x)

Figure 2.2 Real solutions of a general function
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� oscillate infinitely (e.g. when f (x) = (−1)x x2)
� tend to a finite limit (e.g. f (x) = 1 + 1/x).

For more complex functions some ingenuity may be required to find out if they tend to a finite limit
when x → ∞.

We may also be interested in finding the limit when x approaches a finite value. For example, if
f (x) = 1/(x + 3), it can easily be seen that the limit when x → 0 is 1/3. If for some value α we have that
f (x) → ∞ as x → α, the curve y = f (x) is said to have an asymptote x = α (see Figure 2.3).

Figure 2.3 General function with asymptote at α

One of the most important functions is the straight line, shown in Figure 2.4 and whose general
equation is (2.1). It can easily be seen that b is the value of y when x = 0; this is usually called the
intercept on the y axis. The constant a is called the gradient and it can be shown to be given by:

a = y2 − y1

x2 − x1
(2.10)

where (x1, y1) and (x2, y2) are any two points on the line (see Figure 2.4a). Although a straight line has
by definition a constant gradient, this can be either positive or negative as shown in the figure.

Unless two straight lines are parallel they will intersect at one point; this can be represented either
graphically (as in Figure 2.5) or algebraically as a system of equations as follows:

y = x + 2 (2.11a)

y = −x + 4 (2.11b)

Solving for x in (2.11b) and replacing this value (i.e. −y + 4) in (2.11a) we get that the solution is
point P with coordinates (x = 1, y = 3).
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Figure 2.4 Two straight lines y = ax + b: (a) positive gradient, (b) negative gradient

Figure 2.5 Intersection of two straight lines

2.2.3 Sums of Series

A series is simply defined as a sequence of numbers un, n = 1, 2, . . . , N. In many cases it may be
interesting to find its sum given by:

SN = u1 + u2 + . . . + uN =
∑

n

un (2.12)

In some cases, such as the arithmetic progression given by:

un = un−1 + d (2.13)

it can be shown that the series has a sum to N terms. For example, if the first term is b the sum can be
shown to be:

SN = Nb + N (N − 1)d/2 (2.14)
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The geometric progression (2.15), formed by multiplying successive terms by a constant factor r, also
has an expression for the sum of N terms. If b is again the first term, the sum can be shown to be given
by (2.16) if r is different from 1:

un = run−1 (2.15)

SN = b(1 − rn)

1 − r
(2.16)

In other cases the series may have a simple expression for its sum, such as in:

un = n, where the sum is given by SN = N (N + 1)/2,

or un = xn, where it is given by SN = x (1 − x N )/(1 − x) for x different from 1;

but still diverge (i.e. SN keeps increasing indefinitely when N tends to infinity). That happens to un = n;
it also happens to un = xn if x > 1 above; however, the latter converges to SN = x/(1 − x) for the range
0 < x < 1.

2.3 Matrix Algebra
2.3.1 Introduction

Any variable with two subscripts can be called a matrix. We will denote matrices by the notation
B = {Bij}, where the variables Bij, i = 1, 2, . . ., N; j = 1, 2, . . ., M are the elements of B. This can be
written as follows:

B =

⎛

⎜⎜⎜⎝

B11 B12 B13 . . . B1M

B21 B22 B23 . . . B2M

...
BN1 BN2 BN3 . . . BN M

⎞

⎟⎟⎟⎠ (2.17)

As can be seen, the matrix has N rows and M columns; for this reason it is known as a N × M matrix.
A vector is an important special case, being a one-dimensional array or a N × 1 matrix. In these cases
the second index is redundant, so we write:

V = {Vi } =

⎛

⎜⎜⎜⎜⎜⎝

V1

V2

V3

...
VN

⎞

⎟⎟⎟⎟⎟⎠
(2.18)

Formally, a non-indexed variable, or even a constant, can be thought of as a 1 × 1 matrix and it is
known as a scalar.

If we interchange rows and columns we obtain an M × N matrix known as the transpose BT of B,
which is given by:

BT =

⎛

⎜⎜⎜⎝

B11 B21 B31 . . . BN1

B12 B22 B32 . . . BN2

...
B1M B2M B3M . . . BN M

⎞

⎟⎟⎟⎠ (2.19)
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Similarly, the transpose of an N × 1 vector (also known as a column vector) is a row vector:

VT = [V1V2V3 . . . VN ] (2.20)

A square matrix S is one where N = M; a square matrix such that S = ST is called symmetric. A
diagonal matrix D = {Dij} is one where Dij = 0 unless i = j. The unit matrix is a square diagonal matrix
with each diagonal element equal to 1, that is:

I =

⎛

⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...
0 0 0 . . . 1

⎞

⎟⎟⎟⎟⎟⎠
(2.21)

2.3.2 Basic Operations of Matrix Algebra

We will define the operations between two matrices A and B by setting a new matrix C which will
represent the combination required. First matrix addition:

C = A + B = B + A (2.22)

is defined by Cij = Aij + Bij and requires that both matrices being combined are of the same size, say
both N × M matrices; then C is also an N × M matrix. This is also a requirement for matrix subtraction:

C = A − B (2.23)

similarly defined as Cij = Aij − Bij. An operation which is unique to matrix algebra is multiplication by
a scalar:

C = kA (2.24)

defined by Cij = k Aij, where obviously the new ‘grossed up’ matrix has the same size as the old one.
Matrix multiplication is more complex, as:

C = AB (2.25)

is defined by Cij = ∑
k Aik Bkj, where A is an N × M matrix and B is any M × L matrix (i.e. the number

of columns in A must equal the number of rows in B but there are no other restrictions). In this case C
is an N × L matrix.

It is easy to see that in general AB is not equal to BA, i.e. the operation is non-commutative, as
opposed to elementary algebra. However, this is not the case with the unit matrix I; in fact, it can easily
be checked that:

IA = AI = A (2.26)

Thus, although it is possible to define the product of any number of matrices, order must always
be preserved. In fact we refer to pre-multiplication of A by B to form the product BA, and to post-
multiplication to form AB.

To define division it is convenient to use the concept of inverse of a matrix. Unfortunately this only
exists for square matrices and then not always. If the inverse exists, it is denoted as B−1 and is the matrix
that satisfies:

B−1B = BB−1 = I (2.27)
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In this case B is said to be non-singular. Another related interesting concept is that of a positive
definite matrix. A real symmetric matrix M is positive definite if wT·M·w > 0 for all non-zero vectors w
with real entries. We will not give a procedure for the calculation of the elements of the inverse matrix
as it is fairly complicated. It is sufficient to know that under suitable conditions it exists. Division is then
just pre- or post-multiplication by B−1.

In this book matrices and vectors are mostly used to provide a shorthand notation for such things as
sets of simultaneous equations and for obtaining their solution in terms of the inverse matrix.

2.4 Elements of Calculus
The two main branches of calculus are differentiation and integration; their basic nature can be intuitively
identified by reference to the function y = f (x) depicted in Figure 2.6. Consider the points P and Q and the
straight line (chord) connecting them. Differentiation is concerned with the calculation of the gradient
of a curve at a point. To do this, it is useful to consider Q approaching P; in the limit the chord PQ
becomes the tangent to the curve at P = Q (i.e. when their horizontal ‘distance’ h is 0) and by definition
its gradient is equal to that of the curve.

Integration, on the other hand, is concerned with calculating the area under a curve, say the shaded
area in Figure 2.6; as we will see below these two operations are closely related.

Figure 2.6 Gradient at a point and area under a curve

2.4.1 Differentiation

Using (2.10) the gradient of the chord PQ in Figure 2.6 can be written as:

δ(x) = [ f (x0 + h) − f (x0)] /h

If the limit of δ (x) when h → 0 exists and is the same whether h tends to zero from above or below, it
is called the derivative of y, or of f (x), with respect to x at x0 and it is often written as f ′ (x0) or dy/dx|x0.
The process of finding the derivative is called differentiation.

If f (x) is given as an expression in x, it is usually not difficult to find f ′(x) as a function of x using the
results in Table 2.1, plus others we will give below.



P1: TIX/XYZ P2: ABC

JWST054-02 JWST054-Ortuzar February 24, 2011 8:26 Printer Name: Yet to Come

38 Modelling Transport

Table 2.1 Common derivatives

Function f (x) Derivative f ′(x)

k (k constant) 0
xb (b constant, x > 0) bxb−1

ku(x) (k constant) ku′(x)
u(x) + ν(x) u′(x) + ν′(x)
u(x)ν(x) u′(x)ν(x) + u(x)ν ′(x)
u[ν(x)] u′[ν(x)]ν′(x)

Since derivatives are themselves functions of x, we can also define second-and higher-order derivatives
(i.e. f ′′

0 (x) or d2 y/dx2 and so on). For example, if we differentiate the first derivative of y = xb in Table 2.1,
we get:

d2 y

dx2
= b(b − 1)xb−2 (2.28)

2.4.2 Integration

This is the reverse of differentiation; if we know the gradient of some curve at every point then the
equation of the curve itself is known as the integral. For example, if g = g(x) is the gradient, the equation
of the curve is written

y =
∫

x
g(x) dx

and this result is always arbitrary up to an additive constant; for example, if g = bxb−1 we know from
Table 2.1 that the indefinite integral of g(x) is given by:

y = G(x) =
∫

x
bxb−1dx = xb + C (2.29)

where C is an arbitrary constant of integration (i.e. the derivative of xb + C is bxb−1 no matter the value
of C). The most practical elementary use of integration is to obtain the area under a curve as the definite
integral, as shown in Figure 2.7a.

Area abcd = [F(x)]b
a = F(b) − F(a) =

∫ b

a
y dx =

∫ b

a
f (x) dx (2.30)

For example, if we take the simple case of a straight line parallel to the x axis at height h and want to
integrate between the values a and b (see Figure 2.7b), we get:

y = f (x) = h

and

F(x) = hx + C

then

Area = F(b) − F(a) = h(b − a)

which is indeed the area of the shaded rectangle in the figure.
Table 2.1 can be used in reverse to help to find indefinite integrals. In particular, if

∫
u(x)dx = U (x) + C1 and

∫
v(x)dx = V (x) + C2
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Figure 2.7 Areas under a curve: (a) general case, (b) line parallel to x axis

then
∫

u[v(x)]v′(x) dx = U [v(x)] + C3

and
∫

U (x)v(x) dx = U (x)V (x) −
∫

u(x)V (x) dx

Of course not all functions, even some that are deceptively simple in appearance, have indefinite
integrals which are similarly simple expressions. However, for those that do not it is still possible to
evaluate definite integrals numerically.

2.4.3 The Logarithmic and Exponential Functions

Among the functions we have considered so far, the simplest one with no indefinite integral is the inverse
function f (x) = 1/x, depicted in Figure 2.8.

Figure 2.8 Inverse function and Nepper’s constant



P1: TIX/XYZ P2: ABC

JWST054-02 JWST054-Ortuzar February 24, 2011 8:26 Printer Name: Yet to Come

40 Modelling Transport

The integral of this function has been defined as the natural logarithm of x, or loge (x), where e is
Nepper’s constant. Its value of approximately 2.7183 corresponds to the point on the x axis of Figure 2.8
such that the shaded area is 1, i.e. loge (e) = 1. As in this book we will only use natural logarithms, we
will drop the base e from our notation.

In common with any other logarithm, log (x) has the following properties:

log(1) = 0;
As t → ∞, log (t) → ∞;
As t → 0, log (t) → −∞;
log (uv) = log (u) + log (v).

Another useful related function is the exponential function exp (x) or ex for short, defined as the
number w such that log (w) = x. Then, as expected of a power function, we have:

e(x+y) = ex ey ;

moreover,

elog(x) = x

Both functions log (x) and exp (x) are easy to differentiate; by definition:

d

dx
log (x) = 1

x
(2.31)

and it is not difficult to show that:

d

dx
(ex ) = ex (2.32)

Thus the exponential is the function which remains unaltered under differentiation.

2.4.4 Finding Maximum and Minimum Values of Functions

This is one important use of differentiation. Consider Figure 2.9 for example; the function shown has a
maximum at x1 and a minimum at x2. Both are characterised by the gradient of the curve being zero at
those points, so the first step in finding them is to solve the equation f ′(x) = 0.

Figure 2.9 Maximum, minimum and point of inflexion
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It is important to note, however, that not all zeros are maxima or minima; an example of one that is
not (called a point of inflexion) is x3 in Figure 2.9. To find out more precisely what a zero gradient stands
for, it is necessary to evaluate f ′′(x) at each zero of f ′(x). Thus, for a maximum we require:

f ′′(x) < 0 (2.33)

For a minimum we need:

f ′′(x) > 0 (2.34)

and for a point of inflexion,

f ′′(x) = 0 (2.35)

These cases are illustrated in Figure 2.10, which suggests a good mnemonic. Consider the function as
a cup of water; if it is facing downwards as in the case of the maximum, the liquid will drop (i.e. a minus
sign). Conversely if it is facing upwards (e.g. a minimum) the liquid will stay (i.e. a plus sign).

Figure 2.10 Stationary points: (a) maximum, (b) minimum, (c) point of inflexion

In order to develop a theory directed toward characterising global, rather than local, minimum (or
maximum) points mathematicians have found it necessary to introduce the complementary notions of
convexity and concavity. These result not only in a more powerful (although more restrictive) theory, but
also provide an interesting geometric interpretation of the second-order conditions (2.33) to (2.35).

Figure 2.11 presents some examples of convex and non-convex functions. Geometrically, a func-
tion is convex if the line joining two points on its graph lies nowhere below the graph, as shown in
Figure 2.11a; in two dimensions, a convex function would have a bowl-shaped graph. Similarly and
simply, a function g is said to be concave if the function f = −g is convex. A nice property of convex
functions is that the sum of two such functions is also convex.

2.4.5 Functions of More Than One Variable

It is useful to consider the application of differential and integral calculus to this kind of function.
Suppose that we have:

y = f (x1, x2, . . . , xn) (2.36)

Then the derivative of y with respect to one of these variables may be calculated assuming the other
variables remain constant during the operation. This is known as a partial derivative and is written ∂y/∂xi.
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Figure 2.11 Convex and nonconvex functions: (a) convex, (b) convex, (c) nonconvex

Example 2.2 Consider the following function:

y = 2x1 + x3
2 x3

then the partial derivatives are given by:

∂y

∂x1
= 2

∂y

∂x2
= 3x2

2 x3

∂y

∂x3
= x3

2

It can be shown that maxima and minima of a function such as (2.36) can be found by setting all the
partial derivatives to zero:

∂y

∂xi
= 0, i = 1, 2, . . . , n (2.37)

which gives a set of simultaneous equations to solve. A particularly interesting case is that of the restricted
maximum or minimum. Assume we wish to maximise (2.36) subject to the following restrictions:

r1(x1, x2, . . . , xn) = b1

r2(x1, x2, . . . , xn) = b2

...
rK (x1, x2, . . . , xn) = bK

(2.38)

This can be done by defining Lagrangian multipliers λ1, λ2, . . ., λK for each of the equations (2.38)
in turn, and maximising

L = f (x1, x2, . . . , xn) +
∑

k

λk[rk(x1, . . . , xn) − bk] (2.39)

as a function of x1, x2, . . ., xn and λ1, λ2, . . ., λK. Thus, we solve:

∂L

∂xi
= 0, i = 1, 2, . . . , n (2.40)

and

∂L

∂λk
= 0, k = 1, 2, . . . , K (2.41)
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The equations (2.41) are simply the restrictions (2.38) in another form; the device of introducing the
multipliers as additional variables enables the restricted maximum to be found.

The Hessian Matrix This is the matrix of second-order partial derivates of a function. Given the real
value function: y = f (x1, x2, . . . , xn) if all second partial derivatives of f exist, then the ij element of its

Hessian matrix is hi j = ∂2 y
∂xi ∂x j

; thus, the matrix is given by:

H =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2 y

∂x1∂x1

∂2 y

∂x1∂x2
· · · ∂2 y

∂x1∂xn

∂2 y

∂x2∂x1

∂2 y

∂x2∂x2
· · · ∂2 y

∂x2∂xn· · · · · ·
· · · · · ·
· · · · · ·

∂2 y

∂xn∂x1

∂2 y

∂xn∂x2
· · · ∂2 y

∂xn∂xn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and it is often used in optimisation problems as we will see in Chapters 7 and 8.

2.4.6 Multiple Integration

In the case of integration, multiple integrals can be defined. For example, given (2.36) we might have:

V =
∫ ∫

. . .

∫
f (x1, x2, . . . , xn) dx1 dx2, . . . dxn (2.42)

with n integral signs. In order to get an intuitive feeling of its meaning it is useful to consider the
two-dimensional case. The function

S = f (x1, x2) (2.43)

may be considered as defining a surface in a three-dimensional Cartesian system. Therefore,

V =
∫ ∫

f (x1, x2) dx1 dx2 (2.44)

measures a volume under this surface, in a similar way to the single variable measuring an area under
a curve.

2.4.7 Elasticities

The elasticity of a dependent variable y with respect to another variable xi in a function such as (2.9) is
given by the expression:

E(y, xi ) = ∂y

∂xi

xi

y
(2.45)

and can be interpreted as the percentage change in the dependent variable with respect to a given
percentage change in the relevant independent variable.

In econometrics we will often be interested in the elasticities of a given demand function with respect to
changes in the values of some explanatory variables or attributes. We will generally distinguish between
direct- and cross-elasticities; the first relate to attributes of the service or good under consideration and
the second to attributes of competing options or goods. For example, it is often stated that the elasticity of
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public transport demand to fares is around −0.33; this means that if we increase fares by 1% we should
expect patronage to decrease by approximately 0.3%.

2.4.8 Series Expansions

It is sometimes necessary to estimate the values of a function f (x) in the neighbourhood of a particular
value x0 of x, in terms of the values of the function and its derivatives at this value. For suitable functions
this can be done by means of Taylor’s series expansion; first we require to define the concept of a factorial
number (n!) which applies to non-negative integers:

n! = n(n − 1)(n − 2) . . . 3 · 2 · 1
0! = 1

(2.46)

A Taylor’s series expansion is defined as:

f (x0 + h) = f (x0) + h f ′(x0) + (h2/2!) f ′′(x0) + (h3/3!) f ′′′(x0) + . . . (2.47)

and it is most useful when h is small enough for the higher-order terms to become rapidly smaller so
that a good approximation is obtained by stopping the summation after just a few terms – even just after
two terms.

The special case when x0 = 0 is known as Maclaurin’s series, which upon setting h to x in the left-hand
side of (2.47) yields:

f (x) = f (0) + h f ′(0) + (h2/2!) f ′′(0) + (h3/3!) f ′′′(0) + . . . (2.48)

This provides a method of expressing certain functions as power series, for example:

ex = 1 + x + x2/2! + x3/3! + . . .

which allows us very easily to see why expression (2.32) holds.

2.5 Elementary Mathematical Statistics
In this section we provide only a basic review of the more fundamental statistical concepts. In the rest of
the book we take for granted that the reader is not only aware of the most important distributions (e.g.
binomial, normal, Student, chi-squared and Fisher) but also has some knowledge about basic statistical
inference (e.g. estimators, confidence intervals and tests of hypotheses). As there are very good textbooks
about this subject, the reader is strongly advised to consult them for further reference. In particular we
recommend Wonnacott and Wonnacott (1990) and Chapter 7 of Wilson and Kirby (1980).

Certain specialised subjects, such as basic sampling theory and linear regression analysis are presented
at greater length in the relevant chapters (i.e. 3 and 4 respectively).

2.5.1 Probabilities

The most intuitive definition of the probability that a certain result will occur (e.g. obtaining a six by
rolling a dice) is given by the limit of its relative frequency, that is:

P(ei ) = pi = lim
n→∞

ni

n
(2.49)
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where ei is the desired result, n is the number of times the experiment is repeated and ni the number of
times ei occurs. Expression (2.49) allows deducing certain basic properties of probabilities:

0 ≤ pi ≤ 1 (2.50)

as ni can take both the values 0 and n, and
∑

i

pi = 1 (2.51)

as n1 + n2 + . . . = n. An alternative view of the expected probability of the result can be expressed in
terms of a fair bet. If a person regards as fair a bet in which they win $35 if ei happens and loses $x
if it does not, then their estimate of pi is x/(x + 35). This is so because they have solved the following
equation which makes their expected gains or losses equal to zero, i.e. a fair bet:

35pi − x(1 − pi ) = 0

On many occasions the probabilities of certain experiments are not simple to calculate. It is convenient
to define an event (E) as a subset of the set of possible results of an experiment, E = {e1, . . ., ei}. The
probability of an event is the sum of the probabilities of the results it is composed of,

P(E) =
∑

i

pi , ei ∈ E

Example 2.3 The event E: {to obtain at least two heads in three throws of a coin} includes (the first)
four results out of the eight possible ones: (H, H, H), (H, H, T), (H, T, H), (T, H, H), (T, T, H), (T, H, T),
(H, T, T) and (T, T, T). As each of these results has a probability of 1/8 (if the probabilities of getting
heads and tails are equal), the probability of the event is 1/2.

For combinations of events (i.e. two heads but such that not all throws give the same result) it becomes
necessary to work with the concepts of union (∪) and intersection (∩) of set theory as presented in
Figure 2.12. The rectangle in the figure represents the event space and A and B are events within it.

Figure 2.12 Venn diagram for events and probabilities

In general, it is true that

P(A ∪ B) = P(A) + P(B) − P(A ∩ B) (2.52)

and if A and B are mutually exclusive,

P(A ∪ B) = P(A) + P(B) (2.53)

The conditional probability P(A/B), of A happening given that B is true, is:

P(A/B) = P(A ∩ B)/P(B) (2.54)
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An event F is statistically independent of another event E, if and only if (iff) P(F|E) is equal to P(F).
Therefore, for independent events we have:

P(E ∩ F) = P(E)P(F) (2.55)

which we applied intuitively when estimating event probability in Example 2.1.

2.5.2 Random Variables

These can be defined as those which take values following a certain probability distribution
(see Figure 2.13).

Figure 2.13 Random variable mapping from sample space

Example 2.4 The experiment ‘spinning a coin twice’, can yield only the following results (sample
space): S = {HH, HT, TH, TT}. If we define the random variable X = number of heads, it is easy to
see that it can only take the following three values: X(HH) = 2, X(HT) = X(TH) = 1 and X(TT) = 0.
Therefore, an advantage of the random variable concept becomes immediately apparent: the set of results
(sample space) is reduced to a smaller, more convenient, numerical set (the range of the variable). The
probabilities of X are as follows:

P(X = 1) = P(HT ∪ TH) = P(HT) + P(TH) = 1/2

P(X = 2) = P(X = 0) = 1/4.

Random variables may be discrete or continuous. In the former case they can take values from a finite
set with probabilities belonging to a set P(X) which satisfy (2.51) and p(xi) ≥ 0. In the latter case it is
necessary to define a probability density function f (x), such that:

∫

x
f (x)dx = 1

f (x) ≥ 0, ∀x
(2.56)
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2.5.3 Moments around Zero

2.5.3.1 Expected Value

If X is a random variable, then its expected value E(X) is the function obtained by taking the weighted
average of the xi values times their probabilities, thus:

E(X ) =
∑

i

xi pi (xi ), discrete case

E(X ) =
∫ b

a
x f (x) dx, continuous case

(2.57)

where f (x) is defined for the range (a ≤ x ≤ b). The expected value corresponds to the concept of mean
(X̄ ) of a sample in descriptive statistics and is normally found by direct application of the expectation
operator to the random variable X. It can be applied also to functions of random variables; the operator
has the important property of linearity, whereby for any random variables X and Y , and constants a, b
and c we have:

E(a + bX + cY ) = a + bE(X ) + cE(Y ) (2.58)

When dealing with statistical data, summary information may be provided conveniently by specifying
certain key features rather than the whole of a distribution. For example, the distribution of a random
variable might be described with reference to its mean value and the dispersion around it. These
descriptive statistics can be used to make simple comparisons between distributions without going into
full details. More interestingly, certain standard distributions can be completely specified by just a few
descriptive statistics.

Another two usual descriptive statistics that attempt to indicate the ‘middle’ of a distribution (i.e.
measures of central tendency) are the mode X

∗
, which is the value of X which maximises pi(xi), and the

median X0.5 is the value of X below which lies half of the distribution, that is:

P(X0.5) =
X0.5∑

x=1

P(X ) = 0.5 discrete case

P(x < X0.5) =
∫ X0.5

a
f (x) dx = 0.5 continuous case

(2.59)

Neither the median nor the mode can be found by direct calculation, but need the solution of a problem.

2.5.3.2 Variance

The variance of a random variable X is defined as:

Var(X ) = E{[X − μ]2} = E(x2) − E2(x) (2.60)

where μ denotes the population mean. Unlike expectation, the variance is not a linear operator, so:

� Var (a + bX) = b2 Var (X), i.e. adding a constant does not affect the spread of the distribution.
� Var (aX + bY) = a2 Var (X) + b2 Var (Y) + 2ab Cov (X, Y), where the covariance of X and Y is

given by:

Cov (X, Y ) = E((X − μx ) · (Y − μy)) = E(XY ) − E(X )E(Y ) (2.61)
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Thus, the variance is a special case of covariance, for X = Y; it is also easy to see that the covariance
of two mutually independent random variables is 0. In the continuous case the variance is written as:

Var (X ) =
∫

(x − μ)2 f (x) dx

On the other hand, the population variance is usually denoted as σ 2 and is given by:

σ 2 =
∑

i

(xi − μ)2 · pi (xi ) =
∑

i

x2
i · pi (xi ) − μ2

An important concept for the rest of this text is the covariance matrix which has the general form:

	 =

⎛

⎜⎜⎜⎜⎝

σ 2
1 ρ1,2σ1σ2 ρ1,3σ1σ3 · · ·

ρ1,2σ1σ2 σ 2
2 ρ2,3σ2σ3 · · ·

...
...

. . . · · ·
...

...
... σ 2

n

⎞

⎟⎟⎟⎟⎠
(2.62)

where the variances are in the diagonal, ρ ij is the coefficient of correlation and ρ ijσ iσ j denotes the
covariance between variables i and j; the coefficient of correlation lies between −1 and 1 and when
it is zero indicates that the variables are independent. In descriptive statistics we compute the sample
dispersion s2 that is given by:

s2 =

∑

i

(
xi − X̄

)2

n − 1
(2.63)

and the reason for (n – 1) in the denominator is due to the fact that we lost one degree of freedom when
we calculated X̄ from the xi.

The standard deviation se (x) is the square root of the variance. This, in contrast with the variance,
has the same dimensions as the random variable X and the measures of central tendency. Finally, the
coefficient of variation CV, is the ratio of the standard deviation to the mean, and constitutes a useful
dimensionless measure of spread.

2.5.4 More Advanced Statistical Concepts

In this section we will present a few more advanced statistical concepts that will be heavily used
throughout the book. Most of them refer to the Normal distribution and extensions that can be made
using it as a starting point. For this reason, we will first present this important distribution (also called
Gauss distribution) in some detail.

2.5.4.1 The Normal or Gauss Distribution

This is undoubtedly the more useful function in statistics. Not only do many random processes have
a Normal distribution, but also many other useful probability distributions can be approximated (e.g.
the Binomial distribution) or are related to the Normal (i.e. the Student t distribution, the Fisher F
distribution). The probability density function of a standard Normal random variable Z is defined as:

f (Z ) = 1√
2π

exp

(
−1

2
Z2

)

where the constant 1√
2π

appears so that condition (2.56) is fulfilled in this case.
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It is easy to show that the mean μz of f (Z) is equal to zero and that its variance σ 2
z is equal to one; for

this reason the standard Normal is also known as N(0, 1). In general a variable X distributes N(μ, σ 2) if
its density function is given by:

f (Z ) = 1√
2πσ

exp

(
−1

2

(
x − μ

σ

)2
)

(2.64)

and from here it is easy to see that X can be ‘standardised’ by applying the transformation Z = X−μ

σ
. The

advantage of standardising is that one can use tabulated values of the function (see Figure 2.14). Note
that, conversely, if one wants to generate Normal values with mean b and variance s2 these are given as
X = b + s·Z; this will come in handy when we need to generate draws of Normal (and other) distributions
for various simulation procedures in Chapters 3, 8, 10 and 14.

–3 –2 –1 0 1 2 3
z

.4

.3

.2

.1

p(z)

Figure 2.14 Standard Normal curve

Some useful properties of this well-known bell-shaped function are that:

between

⎧
⎨

⎩

μ ± σ

μ ± 2σ

μ ± 3σ

we find

⎧
⎨

⎩

68.20% of the distribution
95.44% of the distribution
99.73% of the distribution.

and we will see later that precisely 95% of the distribution lies in the range μ ± 1.96 σ . Another
interesting property is that if we have n variables x that distribute with any distribution with finite
variance, according to the Central Limit Theorem (see Wonnacott and Wonnacott 1990) it can be
shown that:

x − μ

σ/
√

n
∼ N (0, 1) if n ≥ 30. (2.65)

Finally, it is important to mention that the Normal distribution is closed to algebraic summation, i.e.
the sum and the difference (and indeed any linear combination) of Normal variables is also Normal
distributed. This will come in very handy in several parts of the text.

Defining the Quadratic Form The portion
( x−μ

σ

)2
in (2.64) is known as quadratic form (QF) and

distributes Chi-squared with one degree of freedom (χ2
1 ).
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For the bivariate Normal distribution we have:

x = (x1, x2)T ∼ N
[
x̄ = (

x̄1 x̄2

)T
, �x

]

where �x is the covariance matrix. In this case, the quadratic form is given by:

QF2 = (x − x̄)T �−1
x (x − x̄)

and this distributes χ2
2 (i.e. with two degrees of freedom). In this case the density function is given by:

f (x1, x2) = |�x |1/2

2π2/2
exp

(
−1

2
QF2

)

where |�x | is the determinant of the covariance matrix (note that if it was a p-variate Normal the
denominator above would be 2πp/2). The covariance matrix in this case is:

�x =
(

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
1

)

and the quadratic form can for the last time be written in extended (rather than matrix) form:

QF2 = 1

1 − ρ2

[(
x1 − x̄1

σ1

)2

− 2ρ (x1 − x̄1) (x2 − x̄2)

σ1σ2
+

(
x2 − x̄2

σ2

)2
]

Finally note that the following theorem holds for quadratic forms in multivariate Normal distributions.
If X = (x1, . . ., xn) distributes multivariate Normal with mean x̄ and non-singular covariance matrix
� (i.e. |�| �= 0), then the random scalar variable QFn, defined by QFn = (x − x̄) �−1(x − x̄)T distributes
χ 2 with n degrees of freedom.

Choleski Decomposition for the Multivariate Normal As described above, a univariate Normal
variable with mean b and variance s2 is obtained as x = b + s·z where z is a standard Normal. An
analogous procedure can be used to take draws from a multivariate Normal distribution.

Let x be a vector with n elements distributed N(b, �). A Choleski transformation (or factorisation)
of the matrix � is defined as a lower triangular matrix L such that L·LT=� (see Daganzo 1979). It can
also be called generalised square root of � or generalised standard deviation of x; in fact, when n = 1
the Choleski factor is precisely s (see Train 2009). Nowadays, most statistical packages have routines to
calculate a Choleski factorisation for any positive definite symmetric matrix.

2.5.4.2 The Extreme Value Type I (Gumbel or Weibull) Distribution

This is another distribution that will feature heavily in this book, as it is the basis of the famous family
of Logit models (as the Normal distribution is the basis for the Probit model), which have found use in
all models associated with transport systems.

The cumulative distribution function of the EV1 distribution (as it is now more generally called) is
given by the following expression:

F (ε) = exp
[− exp (−λ (ε − η))

]

and deriving it we get the following density function:

f (ε) = λ exp [−λ (ε − η)] exp
[− exp (−λ (ε − η))

]
(2.66)

where η is the mode of the function and λ is a scale factor; these two parameters allow to represent the
EV1 function completely, so it is generally said that ε ∼ EV1(η, λ).
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The mean of the distribution is at η + γ /λ where γ is Euler’s constant (γ ≈ 0,577), and the variance
is given by π2/6λ2. The shape of the distribution is shown in Figure 2.15 for conditions that allow the
mean to be zero.

0

0.1

0.2

0.3

0.4

-3 -2 -1 0 1 2 3

f (ε)

Figure 2.15 EV1 density function for λ= 1 and η = −0,577.

An important characteristic of this distribution is that it is closed to maximisation; this will come in
very handy for deriving the most popular discrete choice models in Chapter 7. Also, the difference of two
variables independent and identically distributed (i.e. with the same variance) EV1 follows the logistic
distribution.

2.5.4.3 Some Notions about Statistical Inference

The goal of statistical inference is to deduce certain characteristics of a population from a sample taken
from it. The population parameters are usually indicated by Greek letters (i.e. μ and σ ) and are unknown;
the sample parameters are denoted by Latin letters (x̄ and s) and must estimated from the data. If we
denote by θ̂ an estimator of the population characteristic θ , it is easy to see that this must be a function
of the sampled data:

θ̂ = f (x1, x2, . . . ., xn)

For example, it is well-known that μ̂ = x̄ and σ̂ = s. There are several methods for estimating param-
eters, but probably the most popular is maximum likelihood (and we will use it extensively throughout
the text). The main hypotheses of this method are:

� The sample is random, all draws xi (i= 1, . . ., n) taken from the population are independent of each
other and the whole sample corresponds to the same population.

� The distribution function is known in the population, with the exception of the parameter θ .

If every value xi is assumed to have a density function f (xi, θ ), as they are independent the joint density
function for all x can be written as:

g (x1, x2, . . . , xn, θ ) =
∏

n

f (xi , θ )

Note that the usual interpretation of this density function is with x as unknown variables and θ fixed.
Inverting the process, the previous equation can be interpreted as a likelihood function L(θ ); if we
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maximise it with respect to θ , the result θ̂ is called maximum likelihood estimate, because it corresponds
to the parameter value which has the greatest probability of having generated the observed sample. Of
course the idea may be extended to several parameters; for example, in Linear Regression models (see
section 4.2.1) it can be shown that the least squares coefficients are in fact maximum likelihood estimates.
We will come back to these in section 8.4.1 and others.

In calculating the maximum, it is easier to work with the logarithm of L(θ ), which is called log-
likelihood function l(θ ); as the logarithm of a function increases with x the maximisation procedure
yields the same results. In this latter case then, we would maximise the function:

l (θ ) = ln g (x1, x2, . . . , xn, θ ) =
∑

n

ln f (xn, θ )

Example 2.5 We wish to estimate the mean μ of a N(μ, σ 2) distribution from a random sample of size
n. If each xi ∼ N(μ, σ 2), we have that:

f (xi , μ) = 1√
2πσ

e− 1
2

(
x−μ
σ

)2

then

l(μ) = g (x1, x2, . . . , xn, μ) =
(

1√
2πσ

)n

exp

(
−1

2

n∑

i=1

(
x − μ

σ

)2
)

Taking logarithm, we get:

l (μ) = ln

(
1√
2πσ

)n

− 1

2

n∑

i=1

(
xi − μ

σ

)2

deriving, and equalising to zero, we get:

∂l

∂μ
= 0 =

∑
xi − nμ̂

so finally: μ̂ =
∑

xi
n = x̄ as we had commented above.

Properties of a Good Estimator It is usually accepted that a good estimator should first be unbiased.
That means that E(θ̂ ) = θ . If this is not possible, at least it should be asymptotically unbiased; this
means: lim

n→∞
E

(
θ̂
) = θ , i.e. any possible bias should tend to zero as sample size increases. A second

useful property is that the estimator should be efficient, that is, it should have minimum variance. Finally,
a good estimator should be consistent. This happens when:

lim
n→∞

E
(
θ̂ − θ

)2 = 0

and this can be shown to mean that both any bias and the variance will tend to zero when the sample
tends to infinity.

A Note on Hypothesis Testing A test of hypothesis has the objective of verifying, using a sample, if a
certain property of a process is actually taking place. For this the analyst expresses a null hypothesis (H0)
and an alternative hypothesis (H1), where between them the universe of possible values of the parameter
θ has to be covered. The test is a rule that allows accepting or rejecting H0 on the basis of the sample
values and the confidence intervals that can be established for each parameter.

Table 2.2 shows the possible results of this test:
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Table 2.2 Type I and type II errors

Accept H0 Reject H0

H0 is true Desirable result
(P = 1−α, “confidence level”)

Type I error
(P = α, “significance level”)

H0 is false Type II error
(P = β)

Desirable result
(P = 1 − β, “power”)

It is ideal to have a low probability of incurring in both types of error. Unfortunately, looking at
Figure 2.16 it can be seen that if α decreases β increases and vice versa. The figure incorporates an
acceptance region C0 defined as the confidence interval θ inf ≤ θ0 ≤ θ sup, where θ 0 is the value of the
parameter consistent with the null hypothesis and θ1 an inconsistent value (which has also associated a
certain confidence interval) In fact it is only possible to diminish both types of errors by increasing the
sample size n (as σx̄ = σ/

√
n, see 2.65) but this has associated higher costs.

(1–α)

α /2α /2

C0

(1–β)

β

inf. sup.0 1 ∋

Figure 2.16 The relation between α and β
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3
Data and Space

This chapter is devoted to issues in data collection and their representation for use in transport modelling.
We present here a wide range of data collection methods but this is by no means complete. The nature
of the data to be collected depends, of course, on the models chosen for a particular study. Moreover,
advances in telecommunications are changing travel data collection with more general use of personal
GPS units that offer specific advantages in tracking movement over longer periods of time. The treatment
here is general. We will consider five subjects which are a prerequisite for other subjects treated in the
rest of the book. Firstly, we will provide a brief introduction to statistical sampling theory, which will
complement in part the elementary concepts discussed in section 2.5. Interested readers are advised that
there is a complete book on the subject (Stopher and Meyburg 1979) which may be consulted for more
details. In section 3.2 we will discuss the nature and importance of errors which can arise both during
model estimation and when forecasting with the aid of models; the interesting question of data accuracy
versus model complexity and cost is also addressed.

In section 3.3 we will consider various types of surveys used in applied transport planning; we will be
particularly interested in problems such as the correction, expansion and validation of survey data, and
we will also discuss issues involved in the collection of longitudinal (e.g. panel) data, and travel time data.
Section 3.4 gives a fairly complete treatment of the most important issues involved in the experimental
design and collection of stated preference data. Finally, section 3.5 considers the important practical
problems of network representation and zoning design; this is where the ‘spatial capabilities’ of the
model are actually decided. Poor network representations or too coarse zoning systems may invalidate
the results of even the most theoretically appealing model.

3.1 Basic Sampling Theory
3.1.1 Statistical Considerations

Statistics may be defined as the science concerned with gathering, analysing and interpreting data in
order to obtain the maximum quantity of useful information. It may also be described as one of the
disciplines concerned with decision making under uncertainty; its goal would be in this case to help
determine the level of uncertainty associated with measured data in order to support better decisions.

Data usually consist of a sample of observations taken from a certain population of interest which is
not economically (or perhaps even technically) feasible to observe in its entirety. These observations are
made about one or more attributes (say income) of each member of the population. Inferences can be

Modelling Transport, Fourth Edition. Juan de Dios Ortúzar and Luis G. Willumsen.
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made then about the mean value of these attributes, often called parameters of the population. Sample
design aims at ensuring that the data to be examined provide the greatest amount of useful information
about the population of interest at the lowest possible cost; the problem remains of how to use the data
(i.e. expand the values in the sample) in order to make correct inferences about this population. Thus
two difficulties exist:

� how to ensure a representative sample; and
� how to extract valid conclusions from a sample satisfying the above condition.

Neither of these would constitute a problem if there was no variability in the population. To solve the
second difficulty, a well-established procedure exists which does not present major problems if certain
conditions and assumptions hold. The identification of a representative sample, however, may be a more
delicate task in certain cases, as we shall see below.

3.1.1.1 Basic Definitions

Sample The sample is defined as a collection of units which has been especially selected to represent
a larger population with certain attributes of interest (i.e. height, age, income). Three aspects of this
definition have particular importance: first, which population the sample seeks to represent; second, how
large the sample should be; and third, what is meant by ‘especially selected’.

Population of Interest This is the complete group about which information is sought; in many cases its
definition stems directly from the study objectives. The population of interest is composed of individual
elements; however, the sample is usually selected on the basis of sampling units which may not be
equivalent to these individual elements as aggregation of the latter is often deemed necessary. For
example, a frequently used sampling unit is the household while the elements of interest are individuals
residing in it.

Sampling Method Most of the acceptable methods are based on a form of random sampling. The key
issue in these cases is that the selection of each unit is carried out independently, with each unit having
the same probability of being included in the sample. The more interesting methods are:

� Simple random sampling, which is not only the simplest method but constitutes the basis of all the
rest. It consists in first associating an identifier (number) to each unit in the population and then
selecting these numbers at random to obtain the sample; the problem is that far too large samples may
be required to ensure sufficient data about minority options of particular interest. For example, it may
well be that sampling households at random in a developing country would provide little information
on multiple car ownership.

� Stratified random sampling, where a priori information is first used to subdivide the population into
homogeneous strata (with respect to the stratifying variable) and then simple random sampling is
conducted inside each stratum using the same sampling rate. The method allows the correct propor-
tions of each stratum in the sample to be obtained; thus it may be important in those cases where
there are relatively small subgroups in the population as they could lack representation in a simple
random sample.

It is also possible to stratify with respect to more than one variable, thus creating an n-dimensional
matrix of group cells. However, care must be taken with the number of cells created as it increases
geometrically with the number of strata; large figures may imply that the average number of sampling
units per cell is too small. Nevertheless, even stratified sampling does not help when data are needed
about options with a low probability of choice in the population; in these cases a third method called
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choice-based sampling, actually a subset of the previous one, is required. The method consists in
stratifying the population based on the result of the choice process under consideration. This method is
fairly common in transport studies, as we will see in section 3.3. A major advantage is that data may
be produced at a much lower cost than with the other sampling methods; its main drawback is that the
sample thus formed may not be random and therefore the risk of bias in the expanded values is greater.

Sampling Error and Sampling Bias These are the two types of error that might occur when taking a
sample; combined, they contribute to the measurement error of the data. The first is simply due to the
fact that we are dealing with a sample and not with the total population, i.e. it will always be present due
to random effects. This type of error does not affect the expected values of the means of the estimated
parameters; it only affects the variability around them, thus determining the degree of confidence that
may be associated with the means; it is basically a function of sample size and of the inherent variability
of the parameter under investigation.

The sampling bias, on the other hand, is caused by mistakes made either when defining the population
of interest, or when selecting the sampling method, the data collection technique or any other part of the
process. It differs from the sampling error in two important respects:

� it can affect not only the variability around the mean of the estimated parameters but the values
themselves; therefore it implies a more severe distortion of the survey results;

� while the sampling error may not be avoided (it can only be reduced by increasing sample size), the
sampling bias may be virtually eliminated by taking extra care during the various stages of sampling
design and data collection.

Sample Size Unfortunately, there are no straightforward and objective answers to the calculation of
sample size in every situation. This happens, in spite of the fact that sample size calculations are based
on precise statistical formulae, because many of their inputs are relatively subjective and uncertain;
therefore they must be produced by the analyst after careful consideration of the problem in hand.

Determining sample size is a problem of trade-offs, as:

� too large a sample may imply a data-collection and analysis process which is too expensive given the
study objective and its required degree of accuracy; but

� too small a sample may imply results which are subject to an unacceptably high degree of variability
reducing the value of the whole exercise.

Somewhere between these two extremes lies the most efficient (in cost terms) sample size given the
study objective. In what follows it will be assumed that this consists in estimating certain population
parameters by means of statistics calculated from sample data; as any sample statistics are subject to
sampling error, it is also necessary to include an estimate of the accuracy that may be associated with
its value.

3.1.1.2 Sample Size to Estimate Population Parameters

This depends on three main factors: variability of the parameters in the population under study, degree
of accuracy required for each, and population size. Without doubt the first two are the most important;
this may appear surprising at first sight because, to many, it seems intuitively necessary to take bigger
samples in bigger populations in order to maintain the accuracy of the estimates. However, as will be
shown below, the size of the population does not significantly affect sample size except in the case of
very small populations.



P1: TIX/XYZ P2: ABC

JWST054-03 JWST054-Ortuzar February 24, 2011 13:24 Printer Name: Yet to Come

58 Modelling Transport

The Central Limit Theorem, which is at the heart of the sample size estimation problem, postulates
that the estimates of the mean from a sample tend to become distributed Normal as the sample size (n)
increases. This holds for any population distribution if n is greater than or equal to 30; the theorem holds
even in the case of smaller samples, if the original population has a Normal-like distribution.

Consider a population of size N and a specific property which is distributed with mean μ and variance
σ 2. The Central Limit Theorem states that the distribution of the mean (x̄) from successive samples is
distributed Normal with mean μ and standard deviation se (x̄), known as the standard error of the mean,
and given by:

se (x̄) =
√

(N − n)σ 2/[n(N − 1)] (3.1)

If only one sample is considered, the best estimate of μ is x̄ and the best estimate of σ 2 is s2 (the
sample variance); in this case the standard error of the mean can be estimated as:

se (x̄) =
√

(N − n)s2/nN (3.2)

and, as mentioned above, it is a function of three factors: the parameter variability (s2), the sample size
(n) and the size of the population (N). However, for large populations and small sample sizes (the most
frequent case) the factor (N − n)/N is very close to 1 and equation (3.2) reduces to:

se (x̄) = s√
n

(3.3)

Thus, for example, quadrupling sample size will only halve the standard error, i.e. it is a typical case
of diminishing returns of scale. The required sample size may be estimated solving equation (3.2) for n
and this is usually simpler to do in two stages, first calculating n from equation (3.3) such that:

n′ = s2

se (x̄)2
(3.4)

and then correcting for finite population size, if necessary, by:

n = n′

1 + n′

N

(3.5)

Although the above procedure appears to be both objective and relatively trivial it has two important
problems that impair its application: estimating the sample variance s2 and choosing an acceptable
standard error for the mean. The first one is obvious: s2 can only be calculated once the sample has been
taken, so it has to be estimated from other sources. The second one is related with the desired degree
of confidence to be associated with the use of the sample mean as an estimate of the population mean;
normal practice does not specify a single standard error value, but an interval around the mean for a
given confidence level. Thus, two judgements are needed to calculate an acceptable standard error:

� First, a confidence level for the interval must be chosen; this expresses how frequently the analyst is
prepared to make a mistake by accepting the sample mean as a measure of the true mean (e.g. the
typical 95% level implies an acceptance to err in 5% of cases).

� Second, it is necessary to specify the limits of the confidence interval around the mean, either in
absolute or relative terms; as the interval is expressed as a proportion of the mean in the latter case, an
estimate of this is required to calculate the absolute values of the interval. A useful option considers
expressing sample size as a function of the expected coefficient of variation (CV = σ /μ) of the data.

For example, if a Normal distribution is assumed and a 95% confidence level is specified, this means
that a maximum value of 1.96 se (x̄) would be accepted for the confidence interval (i.e. μ ± 1.96σ
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contains 95% of the Normal probability distribution); if a 10% error is specified we would get the
interval (μ ± 0.1μ) and it may be seen that:

se (x̄) = 0.1μ/1.96 = 0.051μ

and replacing this value in (3.4) we get:

n ′ = (s/0.051μ)2 = 384CV 2 (3.6)

Note that if the interval is specified as (μ ± 0.05μ), i.e. with half the error, n′ would increase fourfold
to 1536 CV2.

To complete this point it is important to emphasise that the above exercise is relatively subjective;
thus, more important parameters may be assigned smaller confidence intervals and/or higher levels
of confidence. However, each of these actions will result in smaller acceptable standard errors and,
consequently, bigger samples and costs. If multiple parameters need to be estimated the sample may be
chosen based on that requiring a larger sample size.

3.1.1.3 Obtaining the Sample

The last stage of the sampling process is the extraction of the sample itself. In some cases the procedure
may be easily automated, either on site or at the desk (in which case care must be taken that it is actually
followed on the field), but it must always be conducted with reference to a random process. Although the
only truly random processes are those of a physical nature (i.e. roll of a dice or flip of a coin), they are
generally too time consuming to be useful in sample selection. For this reason pseudo-random processes,
capable of generating easily and quickly a set of suitable random-like numbers, are usually employed
in sampling.

Example 3.1 Consider a certain area the population of which may be classified in groups according
to: automobile ownership (with and without a car); and household size (up to four and more than
four residents).

Let us assume that m observations are required by cell in order to guarantee a 95% confidence level in
the estimation of, say, trip rates; assume also that the population can be considered to have approximately
the following distribution (i.e. from historic data).

Car ownership Household size % of population

With car Four or less 9
More than four 16

Without car Four or less 25
More than four 50

There are two possible ways to proceed:

1. Achieve a sample with m observations by cell by means of a random sample. In this case it is necessary
to select a sample size which guarantees this for each cell, including that with the smallest proportion
of the population. Therefore, the sample size would be:

n = 100m/9 = 11.1m
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2. Alternatively, one can undertake first a preliminary random survey of 11.1m households where only
cell membership is asked for; this low-cost survey can be used to obtain the addresses of m households
even in the smallest group. Subsequently, as only m observations are needed by cell, it would suffice
to randomly select a (stratified) sample of 3m households from the other groups to be interviewed in
detail (together with the m already detected for the most restrictive cell).

As can be seen, a much higher sample is obtained in the first case; its cost (approximately three times
more interviews) must be weighed against the cost of the preliminary survey.

3.1.2 Conceptualisation of the Sampling Problem

In this part we will assume that the final objective of taking the sample is to calibrate a choice model for
the whole population. Following Lerman and Manski (1976) we will denote by P and f population and
sample characteristics respectively. We will also assume that each sampled observation may be described
on the basis of the following two variables:

i = observed choice of the sample individual (e.g. took a bus);

X = vector of characteristics (attributes) of the individual (age, sex, income, car ownership)
and of the alternatives in his choice set (walking, waiting and travel times, cost)

We will finally assume that the underlying choice process in the population may be represented by a
model with parameters θ ; in this case, the joint distribution of i and X is given by:

P(i, X/θ )

and the probability of choosing alternative i among a set of options with attributes X is:

P(i/X, θ)

Depending on the form in which each observation is extracted, the sample will have its own joint
distribution of i’s and X’s which we will denote by f (i, X/θ ). On the basis of this notation the sampling
problem may be formalised as follows (Lerman and Manski 1979).

3.1.2.1 Random Sample

In this case the distribution of i and X in the sample and population should be identical, that is:

f (i, X/θ ) = P(i, X/θ ) (3.7)

3.1.2.2 Stratified or Exogenous Sample

In this case the sample is not random with respect to certain independent variables of the choice model
(e.g. a sample with 50% low-income households and 50% high-income households is stratified if and
only if a random sample is taken inside each stratum). The sampling process is defined by a function f (X),
giving the probability of finding an observation with characteristics X; in the population this probability
is of course P(X). The distribution of i and X in the sample is thus given by:

f (i, X/θ ) = f (X)P(i/X, θ) (3.8)
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It is simple to show that a random sample is just a special case of stratified sample where
f (X) = P(X), because:

f (i, X/θ ) = P(X)P(i/X, θ) = P(i, X/θ ) (3.9)

3.1.2.3 Choice-based Sample

In this case the sampling procedure is defined by a function f (i), giving the probability of finding an
observation that chooses option i (i.e. it is stratified according to the choice). Now the distribution of
i and X in the sample is given by:

f (i, X/θ ) = f (i)P(X/ i, θ ) (3.10)

We had not defined the rightmost probability in (3.10), but we may obviate it on the basis of a Bayes
theorem stating:

P(X/ i, θ ) = P(i/X, θ)P(X)/P(i/θ ) (3.11)

The expression in the denominator, which had not been defined either, may be obtained assuming
discrete X from:

P(i/θ ) =
∑

X

P(i/X, θ)P(X) (3.12)

Therefore the final expression for the joint probability of i and X for a choice-based sample is clearly
more complex:

f (i, X/θ ) = f (i)P(i/X, θ)P(X)/
∑

X

P(i/X, θ)P(X) (3.13)

and it serves to illustrate not only that choice-based sampling is intuitively more problematic than the
other two approaches, but also that it has higher bias potential in what really concerns us: choice.

Thus, each sampling method yields a different distribution of choices and characteristics in the sample,
and there are no a priori reasons to expect that a single parameter estimation method would be applicable
in all cases.

Example 3.2 Assume that for the purposes of a transport study the population of a certain area has been
classified according to two income categories, and that there are only two modes of transport available
(car and bus) for the journey to work. Let us also assume that the population distribution is given by:

Low income High income Total

Bus user 0.45 0.15 0.60
Car user 0.20 0.20 0.40

Total 0.65 0.35 1.00

1. Random sample. If a random sample is taken, it is clear that the same population distribution would
be obtained.
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2. Exogenous sample. Consider a sample with 75% low income (LI) and 25% high income (HI)
travellers. From the previous table it is possible to calculate the probability of a low-income traveller
using bus, as:

P(Bus/LI) = P(LI and Bus)

P(LI and Bus) + P(LI and Car)
= 0.45

0.45 + 0.20
= 0.692

Now, given the fact that the exogenous sample has 75% of individuals with low income, the probability
of finding a bus user with low income in the sample is: 0.75 × 0.692 = 0.519. Doing this for the rest
of the cells, the following table of probabilities for the stratified sample may be built:

Low income High income Total

Bus user 0.519 0.107 0.626
Car user 0.231 0.143 0.374

Total 0.750 0.250 1.000

3. Choice-based sample. Let us assume now that we take a sample of 75% bus users and 25% car users.
In this case the probability of a bus user having low income may be calculated as:

P(LI/Bus) = P(LI and Bus)

P(LI and Bus) + P(HI and Bus)
= 0.45

0.45 + 0.15
= 0.75

Therefore, the probability of finding a low-income traveller choosing bus in the sample is 0.75 times
0.75, or 0.563. Proceeding analogously, the following table of probabilities for the choice-based
sample may be built:

Low income High income Total

Bus user 0.563 0.187 0.750
Car user 0.125 0.125 0.250

Total 0.688 0.312 1.000

As was obviously expected, each sampling method produces in general a different distribution in the
sample. The importance of the above example will increase when we consider what is involved in
the estimation of models using the various samples. For this it is necessary to acquire an intuitive
understanding of what calibration programs do; they simply search for the ‘best’ values of the model
coefficients associated with a set of explanatory variables; in this case best consists in replicating the
observed choices more accurately.

For the population as a whole the probability of actually observing a given data set may be found,
conceptually, simply by calculating the probabilities of choosing the observed option by different types
of traveller (with given attributes and choice sets). For example, in the first table in Example 3.2 (simple
random sample) the probability that a high-income traveller selects car is given by the ratio between the
probability of him having high income and using car, and the probability of him having high income,
that is:

0.20

0.15 + 0.20
= 0.572
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If we consider the second table (exogenous sample), the same probability is now given by:

0.143

0.107 + 0.143
= 0.572

This is no coincidence; in fact it was one of the most important findings of an interesting piece of
research by Lerman et al. (1976) in the USA. In practice it means that standard software may be used to
estimate models with data obtained from an exogenous sample.

It is also important to note that this is not the case for choice-based samples. To prove this, consider
calculating the same probability but using information from the third table:

0.125

0.187 + 0.125
= 0.400

As can be seen, the result is completely different. To end this theme it is interesting to mention
that Lerman et al. (1976) did also propose a method to use data from choice-based samples in model
estimation avoiding bias at the expense only of requiring knowledge of the actual market shares. This
involves weighting the observations by factors calculated as:

Prob (select the option in a random sample)

Prob (select the option in a choice based sample)

Thus, in our example the weighting factor for bus-based observation should be:

0.45 + 0.15

0.563 + 0.187
= 0.8

and for car users:

0.20 + 0.20

0.125 + 0.125
= 1.6

Note that it is necessary to have data about choices on each alternative, i.e. it would not be possible
to calibrate a model for car and bus, based on data for the latter mode only. We will come back to this
problem in section 8.4.2.

3.1.3 Practical Considerations in Sampling

3.1.3.1 The Implementation Problem

Stratified (and choice-based) sampling requires random sampling inside each stratum; to do so it is first
necessary to isolate the relevant group and this may be difficult in some cases. Consider for example a
case where the population of interest consists of all potential travellers in a city. Thus if we stratify by
area of residence, it may be relatively simple to isolate the subpopulation of residents inside the city
(e.g. using data from a previous survey); the problem is that it is extremely difficult to isolate and take a
sample of the rest, i.e. those living outside the city.

An additional problem is that in certain cases even if it is possible to isolate all subpopulations and
conforming strata, it may still be difficult to ensure a random sample inside each stratum. For example,
if we are interested in taking a mode choice-based sample of travellers in a city we will need to interview
bus users and for this it is first necessary to decide which routes will be included in the sample. The
problem is that certain routes might have, say, higher than average proportions of students and/or old
age pensioners, and this would introduce bias (Lerman and Manski 1979).
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3.1.3.2 Finding the Size of Each Subpopulation

This is a key element in determining how many people will be surveyed. Given certain stratification,
there are several methods available to find out the size of each subpopulation, such as:

1. Direct measurement. This is possible in certain cases. Consider a mode choice-based sample of
journey-to-work trips; the number of bus and metro tickets sold, plus traffic counts during the peak
hour in an urban corridor, may yield an adequate measure (although imperfect as not all trips during
the peak are to work) of the number of people choosing each mode. If we have a geographical
(i.e. zonal) stratification, on the other hand, the last census may be used to estimate the number of
inhabitants in each zone.

2. Estimation from a random sample. If a random sample is taken, the proportion of observations
corresponding to each stratum is a consistent estimator of the fraction of the total corresponding to
each subpopulation. It is important to note that the cost of this method is low as the only information
sought is that necessary to establish the stratum to which the respondent belongs.

3. Solution of a system of simultaneous equations. Assume we are interested in stratifying by chosen
mode and that we have data about certain population characteristics (e.g. mean income and car
ownership). Taking a small on-mode sample we can obtain modal average values of these variables
and postulate a system of equations which has the subpopulation fractions as unknowns.

Finally, the ‘failure rate’ of different types of surveys must be considered when designing sampling
frameworks. The sample size discussed above corresponds to the number of successful and valid res-
ponses to the data-collection effort. Some survey procedures are known to generate low valid response
rates (e.g. some postal surveys), but they may still be used because of their low cost (Richardson et al.
1995).

Example 3.3 Assume the following information is available:

Average income of population (I): 33 600 $/year

Average car ownership (CO): 0.44 cars/household

Assume also that small on-mode surveys yield the following:

Mode I ($ / year) CO (cars/household)

Car 78 000 1.15
Bus 14 400 0.05
Metro 38 400 0.85

If Fi denotes the subpopulation fraction of the total, the following system of simultaneous equations holds:

33 600 = 78 000F1 + 14 400F2 + 38 400F3

0.44 = 1.15F1 + 0.05F2 + 0.85F3

1 = F1 + F2 + F3

the solution of which is:

F1 = 0.2451

F2 = 0.6044

F3 = 0.1505

This means that if the total population of the area was 180 000 inhabitants, there would be approxi-
mately 44 100 car users 108 800 bus users and 27 100 metro users.
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3.2 Errors in Modelling and Forecasting
The statistical procedures normally used in (travel demand) modelling assume not only that the correct
functional specification of the model is known a priori, but also that the data used to estimate the model
parameters have no errors. In practice, however, these conditions are often violated; furthermore, even
if they were satisfied, model forecasts are usually subject to errors due to inaccuracies in the values
assumed for the explanatory variables in the design year.

The ultimate goal of modelling is often forecasting (i.e. the number of people choosing given options);
an important problem model designers face is to find which combination of model complexity and data
accuracy fits best the required forecasting precision and study budget. To this end, it is important to
distinguish between different types of errors, in particular:

� those that could cause even correct models to yield incorrect forecasts, e.g. errors in the prediction of
the explanatory variables, transference and aggregation errors; and

� those that actually cause incorrect models to be estimated, e.g. measurement, sampling and
specification errors.

In the next section consideration is given first to the types of errors that may arise with the broad
effects they may cause; then the trade-off between model complexity and data accuracy is examined with
particular emphasis on the role of simplified models in certain contexts.

3.2.1 Different Types of Error

Consider the following list of errors that may arise during the processes of building, calibrating and
forecasting with models.

3.2.1.1 Measurement Errors

These occur due to the inaccuracies inherent in the process of actually measuring the data in the
base year, such as: questions badly registered by the interviewee, answers badly interpreted by the
interviewer, network measurement errors, coding and digitising errors, and so on. These errors tend to be
higher in less developed countries but they can always be reduced by improving the data-collection effort
(e.g. by appropriate use of computerised interview support) or simply by allocating more resources to
data quality control; however, both of these cost money.

Measurement error, as defined here, should be distinguished from the difficulty of defining the variables
that ought to be measured. The complexity that may arise in this area is indicated in Figure 3.1.
Regretfully, modeller and traveller use different ‘units’ to express variables like time and distance. The
modeller works in seconds and metres where travellers perceive something they find it difficult to convert
in precise minutes and kilometres. Modellers just hope that measurements in our own units reflect, with
some unknown degree of error, the travellers’ perceptions that influence their choices. Ideally, modelling
should be based on the information perceived by individual travellers but whilst reported data may give
some insight into perception, its use raises the difficult question of how to forecast what users are going
to perceive in the future. So it appears inevitable that models will be endowed with perception errors
which tend to be greater for non-chosen alternatives due to the existence of self-selectivity bias (i.e. the
attributes of the chosen option are perceived as better and those of the rejected option as worse than they
are, such as to reinforce the rationality of the choice made).

Most models are used in order to forecast future conditions. This poses an interesting problem in the
choice of variables to be included. Let us assume that we can fit a model very well to a set of variables
with current data but that it may be difficult to forecast the future value of at least some of these. If
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Figure 3.1 Attribute measurement and choice

this is the case, although we can get accurate values for these independent variables during the survey,
their future values are only known with great uncertainty (a wide confidence interval). This problem can
take a simple form if the difficult variable is, for example, future fuel prices that are difficult to forecast
with any accuracy. But it may take a more complex form if the problem is to estimate the number of
individuals with specific characteristics of age, gender, income, employment type, marriage status and
number of children that will reside in a particular zone or location ten years from now.

3.2.1.2 Sampling Errors

These arise because the models must be estimated using finite data sets. Sampling errors are approximately
inversely proportional to the square root of the number of observations (i.e. to halve them it is necessary
to quadruple sample size); thus, reducing them may be costly. Daganzo (1980) has examined the problem
of defining optimal sampling strategies in the sense of refining estimation accuracy.
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3.2.1.3 Computational Errors

These arise because models are generally based on iterative procedures for which the exact solution,
if it exists, has not been found for reasons of computational costs. These errors are typically small in
comparison with other errors, except for cases such as assignment to congested networks and problems
of equilibration between supply and demand in complete model systems, where they can be very large
(see De Cea et al. 2005).

3.2.1.4 Specification Errors

These arise either because the phenomenon being modelled is not well understood or because it needs
to be simplified for whatever reason. Important subclasses of this type of error are the following:

� Inclusion of an irrelevant variable (i.e. one which does not affect the modelled choice process). This
error will not bias the model (or its forecasts) if the parameters appear in linear form, but it will tend
to increase sampling error; in a non-linear model, however, bias may be caused (see Tardiff 1979).

� Omission of a relevant variable; perhaps the most common specification error. Interestingly, models
incorporating a random error term (such as many of those we will examine in Chapters 4 and 7)
are designed to accommodate this error; however, problems can arise when the excluded variable is
correlated with variables in the model or when its distribution in the relevant population is different
from its distribution in the sample used for model estimation (see Horowitz 1981).

� Not allowing for taste variations on the part of the individuals will generally produce biased models,
as shown in Chapter 8. Unfortunately this is the case in many practical models of choice; exceptions
are the less yielding Multinomial Probit and Mixed Logit models, which we discuss in Chapters 7
and 8.

� Other specification errors, in particular the use of model forms which are not appropriate, such as
linear functions to represent non-linear effects, compensatory models to represent behaviour that might
be non-compensatory (see the discussion in Chapter 8), or the omission of effects such as habit or
inertia (see Cantillo et al. 2007). A full discussion of these forms of error is given by Williams and
Ortúzar (1982a).

All specification errors can be reduced in principle simply by increasing model complexity; however,
the total costs of doing this are not easy to estimate as they relate to model operation, but may induce
other types of errors which might be costly or impossible to eliminate (e.g. when forecasting more
variables and at a higher level of disaggregation). Moreover, removal of some specification errors may
require-extensive behavioural research and it must simply be conceded that such errors may be present
in all feasible models.

3.2.1.5 Transfer Errors

These occur when a model developed in one context (time and/or place) is applied in a different one.
Although adjustments may be made to compensate for the transfer, ultimately the fact must be faced that
behaviour might just be different in different contexts. In the case of spatial transfers, the errors can be
reduced or eliminated by partial or complete re-estimation of the model to the new context (although the
latter would imply discarding the substantial cost savings obtainable from transfer). However, in the case
of temporal transfer (i.e. forecasting), this re-estimation is not possible and any potential errors must just
be accepted (see the discussion in Chapter 9). This type of error will be greater for long-range planning
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applications as time will reduce the validity of the model as attitudes and preferences change over time,
and perhaps more importantly, the accuracy of the planning variables used as input.

3.2.1.6 Aggregation Errors

These arise basically out of the need to make forecasts for groups of people while modelling often needs
to be done at the level of the individual in order to capture behaviour better. The following are important
subclasses of aggregation error:

� Data aggregation. In most practical studies the data used to define the choice situation of individual
travellers is aggregated in some form or another; even when travellers are asked to report the char-
acteristics of their available options, they can only have based their choice on the expected values
of these characteristics. When network models are used there is aggregation over routes, departure
times and even zones; this means that the values thus obtained for the explanatory variables are, at
best, averages for groups of travellers rather than exact values for any particular individual. Models
estimated with aggregate data will suffer from some form of specification error (see Daly and Ortúzar
1990). Reducing this type of aggregation error implies making measurements under many more sets
of circumstances: more zones, more departure times, more routes, more socio-economic categories;
this costs time and money and increases model complexity.

� Aggregation of alternatives. Again due to practical considerations it may just not be feasible to attempt
to consider the whole range of options available to each traveller; even in relatively simpler cases
such as the choice of mode, aggregation is present as the large variety of services encompassing a
bus option, say (e.g. one-man operated single-decker, two-man operated double-decker, mini-buses,
express services), are seldom treated as separate choices.

� Model aggregation. This can cause severe difficulties to the analyst except in the case of linear models
where it is a trivial problem. Aggregate quantities such as flows on links are a basic modelling result in
transportation planning, but methods to obtain them are subject to aggregation errors which are often
impossible to eliminate. We will examine this problem in some detail in Chapters 4 and 9.

3.2.2 The Model Complexity/Data Accuracy Trade-off

Given the difficulties discussed above, it is reasonable to consider the dual problem of how to optimise
the return of investing in increasing data accuracy, given a fixed study budget and a certain level of model
complexity, to achieve a reasonable level of precision in forecasts. In order to tackle this problem we
must understand first how errors in the input variables influence the accuracy of the model we use.

Consider a set of observed variables x with associated errors ex (i.e. standard deviation); to find the
output error derived from the propagation of input errors in a function such as:

z = f (x1, x2, . . . , xn)

the following formula may be used (Alonso 1968):

e2
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∑
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+
∑

i

∑

j �=i

∂ f

∂xi

∂ f

∂x j
exi ex j rij (3.14)

where rij is the coefficient of correlation between xi and xj; the formula is exact for linear functions
and a reasonable approximation in other cases. Alonso (1968) used it to derive some simple rules to be
followed during model building in order to prevent large output errors; for example, an obvious one is to
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avoid using correlated variables, thus reducing the second term of the right-hand side of equation (3.14)
to zero.

If we take the partial derivative of ez with respect to exi and ignore the correlation term, we get:

∂ez

∂exi

=
(

∂ f

∂xi

)2 exi

ez
(3.15)

Using these marginal improvement rates and an estimation of the marginal costs of enhancing data
accuracy it should be possible, in principle, to determine an optimum improvement budget; in practice
this problem is not easy though, not least because the law of diminishing returns (i.e. each further
percentage reduction in the error of a variable will tend to cost proportionately more) might operate,
leading to a complex iterative procedure. However, equation (3.15) serves to deduce two logical rules
(Alonso 1968):

� concentrate the improvement effort on those variables with a large error; and
� concentrate the effort on the most relevant variables, i.e. those with the largest value of (∂ f/∂xi ) as

they have the largest effect on the dependent variable.

Example 3.4 Consider the model z = xy + w, and the following measurement of the independent
variables:

x = 100 ± 10; y = 50 ± 5; w = 200 ± 50

Assume also that the marginal cost of improving each measurement is the following:

Marginal cost of improving x (to 100 ± 9) = $ 5.00

Marginal cost of improving y (to 50 ± 4) = $ 6.00

Marginal cost of improving w (to 200 ± 49) = $ 0.02

Applying equation (3.14) we get:

e2
z = y2e2

x + x2e2
y + e2

w = 502 500

then ez = 708.87; proceeding analogously, values of improved ez in the cases of improving x, y or w may
be found to be 674.54, 642.26 and 708.08 respectively. Also from (3.15) we get:

∂ez

∂ex
= 10y2

708.87
= 35.2;

∂ez

∂ey
= 70.5;

∂ez

∂ew

= 0.0705

These last three values are the marginal improvement rates corresponding to each variable. To work
out the cost of the marginal improvements in ez we must divide the marginal costs of improving each
variable by their respective marginal rates of improvement. Therefore we get the following marginal
costs of improving ez arising from the various variable improvements:

Marginal improvement in x = 5/35.2 = $ 0.142

Marginal improvement in y = 6/70.05 = $ 0.085

Marginal improvement in w = 0.02/0.705 = $ 0.284

Therefore it would be decided to improve the measurement accuracy of variable y if the marginal
reduction in ez was worth at least $0.085.
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Let us now define complexity as an increase in the number of variables of a model and/or an increase
in the number of algebraic operations with the variables (Alonso 1968). It is obvious that in order to
reduce specification error (es) complexity must be increased; however, it is also clear that as there are
more variables to be measured and/or greater problems for their measurement, data measurement error
(em) will probably increase as well.

If total modelling error is defined as E = √
(es

2 + em
2), it is easy to see that the minimum of E does

not necessarily lie at the point of maximum complexity (i.e. maximum realism). Figure 3.2 shows not
only that this is intuitively true, but also that as measurement error increases, the optimum value can only
be attained at decreasing levels of model complexity.

Figure 3.2 Variation of error with complexity

Example 3.5 Consider the case of having to make a choice between an extremely simple model, which
is known to produce a total error of 30% in forecasts, and a new model which has a perfect specification
(i.e. es = 0) given by:

z = x1x2x3x4x5

where the xi are independent variables measured with a 10% error (i.e. em = 0.1 xi). To decide which
model is more convenient we will apply equation (3.14):

e2
z = 0.01[x2

1 (x2x3x4x5)2 + x2
2 (x1x3x4x5)2 + . . . + x2

5 (x1x2x3x4)2]

e2
z = 0.05[x1x2x3x4x5]2 = 0.05z2

that is, ez = 0.22z or a 22% error, in which case we would select the second model.

The interested reader can check to see that if it is assumed that the xi variables can only be measured
with 20% error, the total error of the second model comes out as 44.5% (i.e. we would now select the
first model even if its total error increased up to 44%).

Figure 3.3 serves to illustrate this point, which may be summarized as follows: if the data are not
of a very good quality it might be safer to predict with simpler and more robust models (Alonso
1968). However, to learn about and understand the phenomenon, a better-specified model will always be
preferable. Moreover, most models will be used in a forecasting mode where the values of the planning
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Figure 3.3 Influence of the measurement error

variables xi will not be observed but forecast. We know that some planning variables are easier to
forecast than others and that disaggregation makes predicting their future values an even less certain
task. Therefore, in choosing a model for forecasting purposes preference should be given to those using
planning variables which can be forecast, in turn, with greater confidence.

Consider, for example, that x1 is fuel price. An accuracy of 10 % can be expected in gasoline costs
over the year and areas where data was collected. However, the accuracy of the estimate of fuel prices
in ten years from now will decrease, probably to something like 40 %. If the errors in the other variables
remain as stated, it will be enough for the error in X1 to increase to 25 % to make the total error 32 %
and the simpler model preferable.

3.3 Basic Data-Collection Methods
3.3.1 Practical Considerations

The selection of the most appropriate data collection methods will depend significantly on the type of
models that will be used in the study; they will define what type of data is needed and therefore what
data collection methods are more appropriate. However, practical limitations will also have a strong
influence in determining the most appropriate type of survey for a given situation. The specification of
the desired model system and the design of a survey plan is not a simple matter and require considerable
skill and experience. For basic information on recruiting, training, questionnaire design, supervision and
quality control, the reader is referred to the ever popular book by Moser and Kalton (1985). Information
about survey procedures with a particular transport planning flavour may also be found in Stopher and
Meyburg (1979) and Richardson et al. (1995). In what follows we briefly discuss some of the most
typical practical constraints in transport studies.
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3.3.1.1 Length of the Study

This obviously has great importance because it determines indirectly how much time and effort it is
possible to devote to the data-collection stage. It is very important to achieve a balanced study (in terms
of its various stages) avoiding the all too frequent problem of eventually finding that the largest part of
the study budget (and time) was spent in data collection, analysis and validation (see Boyce et al. 1970).

3.3.1.2 Study Horizon

There are two types of situation worth considering in this respect:

� If the design year is too close, as in a tactical transport study, there will not be much time to conduct
the study; this will probably imply the need to use a particular type of analysis tool, perhaps requiring
data of a special kind.

� In strategic transport studies, on the other hand, the usual study horizon is 20 or more years into the
future. Although in principle this allows time to employ almost any type of analytical tool (with their
associated surveys), it also means that errors in forecasting will only be known in 20 or more years
time. This calls for flexibility and adaptation if a successful process of monitoring and re-evaluation
is to be achieved.

3.3.1.3 Limits of the Study Area

Here it is important to ignore formal political boundaries (i.e. of county or district) and concentrate on
the whole area of interest. It is also necessary to distinguish between this and the study area as defined
in the project brief; the former is normally larger as we would expect the latter to develop in a period of,
say 20 years. The definition of the area of interest depends again on the type of policies examined and
decisions to be made; we will come back to this issue below.

3.3.1.4 Study Resources

It is necessary to know, as clearly and in as much detail as possible, how many personnel and of what
level will be available for the study; it is also important to know what type of computing facilities will be
available and what restrictions to their use will exist. In general, the time available and study resources
should be commensurate with the importance of the decisions to be taken as a result. The greater the
cost of a wrong decision, the more resources should be devoted to getting it right.

There are many other possible restrictions, ranging from physical (i.e. sheer size and topography of
the locality) to social and environmental (e.g. known reluctance of the population to answer certain types
of questions), which need to be taken into account and will influence sample design.

A general practical consideration is that travellers are often reluctant to answer ‘yet another’ question-
naire. Responding to questions takes time and may sometimes be seen as a violation of privacy. This may
result in either flatly refusing to answer or in the provision of simplistic but credible responses, which
is actually worse. In many countries it is necessary to obtain permission from the authorities before
embarking on any traffic survey involving disruptions to travellers.

Modern technology offers a number of methods to collect information about trips, tours, destination,
modes or route choice, without requiring the active participation of the traveller, for example tracking
mobile phone locations. However, these present privacy issues which need to be handled carefully, with
sensitivity and, of course, according to the law which at the time of writing is not particularly clear in
most places. Moreover, these tracking methods do not offer much insight into the underlying behavioural
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intentions although some may be inferable from locations and timings. This is another fertile area for
further research.

3.3.2 Types of Surveys

Up to the mid-1970s a large number of household origin–destination (O–D) surveys, using a simple
random sample technique, were undertaken in urban areas of industrialised countries and also in many
important cities in developing countries. This large effort was very expensive and demanded enormous
quantities of time (a problem with collecting too much information is that a lot of time and money
must also be spent analysing it); in fact, as we have commented already, the data-collection effort has
traditionally absorbed a vital part of the resources available to conduct these large studies leaving, in
many cases, little time and money for the crucial tasks of preparing and evaluating plans.

In many urban areas, and particularly in large metropolitan areas, there is an important role for travel
survey data. In some situations this kind of data is used almost entirely for its richness in portraying the
existing situation and thus helping the analyst to identify problems related to the transport system. In
others, and such is our main interest, data is collected primarily for use in strategic transport modelling
and hence forecasting, but it still may be used for both purposes (Battellino and Peachman 2003).

Understanding the use of the data is one of the key steps in determining the survey methodology
for any travel survey. For example, activity models (Beckman et al. 1995) require large amounts of
data not only about the activities people perform, but also on the activity ‘infrastructure’ (e.g. opening
times of shops). However, the usual needs of travel survey data are to provide the basis for accurate
predictions, typically by a strategic transport planning model. In this case the key data elements are trips
between origins and destinations, rather than the underlying behavioural determinants, hence the term,
‘origin–destination’ study.

Stopher and Jones (2003) provide a rigorous, complete and useful guide of the elements a state-of-the-
art survey should consider. Here we will only concentrate on certain key elements required to enhance
the usefulness of the data as an aid to calibrating a contemporary supply-demand equilibration strategic
transport planning model. In that case, current best practice suggests that the data set would be likely to
have the following characteristics (Ampt and Ortúzar 2004):

� Consideration of stage-based trip data, ensuring that analyses can relate specific modes to specific
locations/times of day/trip lengths, etc.

� Inclusion of all modes of travel, including non-motorised trips.
� Measurements of highly disaggregated levels of trip purposes.
� Coverage of the broadest possible time period, e.g. 24 hours a day, seven days a week, and perhaps

365 days a year (to cover all seasons).
� Data from all members of the household.
� High-quality information robust enough to be used even at a disaggregate level (Daly and

Ortúzar 1990).
� Be part of an integrated data collection system incorporating household interviews as well as

origin–destination data from other sources such as cordon surveys.

Unfortunately, collecting data at this level of precision is not an easy task and is often precluded
by the sheer difficulty of convincing a sufficiently large sample of individuals to participate in such
a strenuous effort. Then, depending on the modelling objectives (i.e. strategic analysis versus de-
tailed tactical studies), the analyst may need to ease the burden on the respondents and settle for less
detailed information.
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3.3.2.1 Survey Scope

Figure 3.4 is useful to describe the scope of a study to capture all trips affecting a metropolitan area.
It is first necessary to define the study’s area of interest. Its external boundary is known as the external
cordon. Once this is defined, the area is divided into zones (we will look at some basic zoning rules in
section 3.4) in order to have a clear and spatially disaggregated idea of the origin and destination of trips,
and so we can spatially quantify variables such as population and employment.

Movements of
residents

Households

Non-residents moving
in, out and around the
study area

Trips with
origins and
destinations
outside the
area

Figure 3.4 Scope of data collection needed for a metropolitan O–D survey

The area outside the external cordon is also divided into zones but at a lesser level of detail (larger
zones). Inside the study area there can also be other internal cordons, as well as screen lines (i.e. an
artificial divide following a natural or artificial boundary with few crossings, such as a river or a railway
line), the purposes of which are discussed below. There are no hard and fast rules for deciding the location
of the external cordon and hence which areas will be considered external to the study; it depends on the
scope and decision levels adopted for the study, i.e. it is a very contextual problem.

Figure 3.4 implies that the following data are needed:

� Household survey: trips made by all household members by all modes of transport both within the
study area and leaving/arriving to the area during the survey period; this survey should include socio-
economic information (income, car ownership, family size and structure, etc.). This information is
very efficient at generating data that permits the estimation of trip generation and mode split models;
furthermore, data on household travel provides good information on the distribution of trip lengths in
the city, an important element in the estimation of trip distribution models.

� Intercept surveys, external cordon: data on people crossing the study area border, particularly non-
residents of the study area. This data can also be used to check and amplify the household data on
study area crossings, since there is usually only a small amount of data collected, even in a very
large survey. These are shorter surveys, carried out at points that intercept trips arriving and departing
the study area: off-kerb surveys, on board public transport vehicles or at mode interchange points
(i.e. airports).
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� Intercept surveys, internal cordons and screen lines: these are required to measure trips by non-
residents, and again to verify household data to some extent. They are important inputs to
other models.

� Traffic and person counts: they are low cost and are required for calibration, validation and for further
checks to other surveys. The integration of this data into the survey methodology is discussed below.

� Travel time surveys: these are required to calibrate and validate most models and may be needed for
both car and public transport travel.

� Other related data: to create robust forecasting models as needed in large metropolitan areas, it is also
important to have a survey methodology which allows integration of related data items that influence
travel behaviour (Richardson et al. 1995). Here we include:
– Land-use inventory; residential zones (housing density), commercial and industrial zones (by type

of establishment), parking spaces, etc.; these are particularly useful for trip generation models.
– Infrastructure and existing services inventories (public and private transport networks, fares, fre-

quency, etc.; traffic signal location and timings); these are essential for model calibration, especially
distribution and assignment models.

– Information from special surveys on attitudes and elasticity of demand (e.g. stated preference and
other methods).

Each of the above survey components requires a detailed design together with a carefully selected
sampling strategy. In what follows we give insights into the total methodological design and clues to the
necessary measures to integrate the diverse survey components.

3.3.2.2 Home Interview Travel Surveys

Home Interview or Household Travel Surveys are the most expensive and difficult type of survey but
offer a rich and useful data set. However, on many occasions interest will not be centred on gathering
data for the complete model system, but only for parts of it: the most typical case is that of mode choice
and assignment in short-term studies.

An interesting method, particularly suitable for corridor-based journey-to-work studies and which
has proved very efficient in practice, is the use of workplace interviews (see Dunphy 1979; Ortúzar
and Donoso 1983). These involve the local authority asking a sample of institutions (employers) in,
for example, the Central Business District (CBD) permission to interview a sample of their employees;
in certain cases it has been found efficient to ask for the sample to be distributed by residence of the
employee (e.g. those living in a certain corridor). It must be noted, however, that contrary to the case
of random household surveys, the data obtained in this case are choice based in terms of destination;
nevertheless it is mostly random with respect to mode.

Although we will be referring mainly to household surveys, most aspects of the general discussion
and indeed those about the design of measurement instrument are equally applicable to any other type
of origin-destination (O–D) survey.

General Considerations Both the procedures and measurement instruments used to collect informa-
tion on site have a direct and profound influence on the results derived from any data-collection effort.
This is why it has been recommended to include the measurement procedure as yet another element to be
considered explicitly in the design of any project requiring empirical data for its development. Wermuth
(1981), for example, has even proposed a categorisation of all the stages comprising a measurement
procedure. In this part we will refer to only two of these categories: the development and the use of
instruments designed to measure activity patterns outside the household.

We have already mentioned that the empirical measurement of travel behaviour is one of the main
inputs to the decision-making process in urban transport planning; in fact, it provides the basis for the



P1: TIX/XYZ P2: ABC

JWST054-03 JWST054-Ortuzar February 24, 2011 13:24 Printer Name: Yet to Come

76 Modelling Transport

formulation and estimation of models to explain and predict future travel activities. For this reason,
methodological deficiencies at this stage will have direct repercussions in all subsequent stages of the
transport planning process.

Frequent criticisms about household or workplace travel surveys have included:

� the surveys only measured average rather than actual travel behaviour of individuals;
� only part of the individual’s movements could be investigated;
� level-of-service information (for example about travel times) is poorly estimated by the respondent.

In fact, it has been found that variable measurements derived from traditional O–D surveys – for
example related to times, distances and costs of travel – have proved inadequate when compared with
values measured objectively for the same variables. That is, the reported characteristics have tended to
differ substantially from reality in spite of the fact that the individuals responding to the survey experience
the actual values of these level-of-service variables twice per day. It has also been concluded that the
bias has a systematic nature and is apparently related with user attitudes with respect to each mode; for
example in the case of public transport, access, waiting and transfer times (which are rather bothersome)
tend to be severely overestimated. It is interesting to note that from a conceptual point of view these
results would indicate that the subjective perception of level-of-service variables constitutes an important
determinant in modal choice (see the discussion in Ortúzar et al. 1983).

A methodological analysis of these criticisms leads to two conclusions (Brög and Ampt 1982). First,
travel behaviour information should not be sought in general terms (i.e. average values) but with reference
to a concrete temporal point of reference (e.g. a pre-assigned travel day). Second, it is not recommended
to examine the various activities in isolation, but rather to take the complete activity pattern as the basis
for analysis; for example, it can be shown that asking for starting and ending times of a trip yields more
accurate results than asking for its total duration. Thus, contemporary travel surveys employ an activity
recall framework (Ampt and Ortúzar 2004).

An Ongoing Data Collection Process The best approach to household travel data collection postulates
that information should be gathered for each day of the week throughout the year and over several years
(Richardson et al. 1995). In order to allow the use of data at any level of aggregation and to move away
from the need for a standard zoning system, the methodology also recommends geocoding all origin and
destination information.

Collecting data for each day of a given year allows capturing seasonal variations, as well as week-
end/weekday differences. Therefore, the approach has numerous advantages:

� It permits measuring changes in demand over time, and in particular, it allows the correlation of these
changes to changes in the supply system.

� Since respondents only report data for one or two days, it makes their task easy and reliable, at the
same time giving data over a longer period.

� The spread of the study over a year also results in lower operational costs.
� It allows for better quality control.

On the other hand, in this new approach there are several issues that need to be addressed on each
specific circumstance:

� It is necessary to wait for up to a year before there is sufficient data to meet the purposes for which the
study was designed (typically calibrate a full-scale model).

� If interviewers are used, it is necessary to keep them motivated over a longer period.
� It is necessary to develop weighting processes which take account of seasonal variations.
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� It is necessary to develop special methods for post-weighting annual data if it is combined with ongoing
survey data (as we discuss below).

Periodic Update of Matrices and Models Matrices and models to match the ongoing data collection
system should be updated periodically in order to maximise the benefit of the continuous information.
Notwithstanding, although it is possible to consider the preparation of partial trip matrices given specific
requirements; trip tables and models for the whole study area should not be updated more frequently
than every 12–18 months, depending on the type of city under study.

Implications for Data Collection Periodic updating of models and matrices is likely to have an effect
on the data collected. For example, which information is most sensitive to updating? In this context there
may be several elements that are worth periodic updating:

� Trip generation and attraction models.
� Travel matrices, reflecting the differential growth in different parts of the study area.
� Modal split, including non-motorised modes, reflecting the possible impacts of different

transport policies.
� Traffic levels in different parts of the network, allowing identification of differential growth in the

primary, secondary, access and local networks.
� Car ownership and household formation trends in various city boroughs.

The priority to apply in the case of each of these indicators will depend on the type of transport policies
being considered, the need to monitor their performance, and the general modelling needs. It will also
depend on their expected rates of change, their importance, and the costs associated with collecting data
for updating, including the social cost of bothering users of the transport system (see DICTUC 1998 for
a more detailed discussion).

It is also important to note the convenience of allowing estimation of other types of models likely to
be needed in the future, such as time-of-day choice models and dynamic models. On the other hand, the
availability of data collected on a continual basis allows monitoring user behaviour with respect to radical
interventions in the transport system. Examples are environmental emergencies where CBD car-entry
restrictions are increased, main road works, bus strikes, or changes in petrol prices, bus fares or parking
charges. The response to such policies (predictable or otherwise) provides basic information about users’
behavioural thresholds and creates a temporal database which should facilitate the development of more
sophisticated models.

Questionnaire Format and Design Since one of the aims of a survey is to achieve the highest possible
response rate to minimise non-response bias, it is recommended that mixed methods (i.e. based on
self-completion and personal interviews) are used to collect the data (Goldenberg 1996). In particular, a
self-completion system seems more appropriate in districts where people are used to ‘filling in forms’
(with personal interview validation follow-up) or where households cannot be accessed other than by
remote security bell systems, where attempts at personal interviews result in low response rates. This
combination capitalises on the cost-effectiveness and efficiency of high-quality self-completion designs
and ensures minimum response burden for all participants (Richardson et al. 1995).

Telephone-based surveys, although widely used in North America for their relative cost-effectiveness,
are not recommended for several reasons (Ampt and Ortúzar 2004):

� Even where prompts are sent to households in advance (e.g. in the form of mini-diaries), they tend
to suffer from extensive proxy reporting (i.e. one person reporting on behalf of others) leading to
significant under-reporting of trips.
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� Although phone ownership is very high in countries where phone lists are used as sampling frame,
there are often up to 40% of unlisted households (Ampt 2003); this means that at least 40% (plus those
households without phones) of the population cannot give data if a single method approach was used.

� Where random digit dialling is used to overcome this difficulty, the problem can be exacerbated by
the ire of people with unlisted numbers receiving calls.

� An increasing number of people in many countries have now only mobile phones; this means that,
even if mobile phone numbers are available, there is a mixture of household-based and person-based
sampling, which would need considerable effort if the weighting stage is to be effective.

In terms of layout, the order of the questions normally seeks to minimise the respondent’s resistance
to answering them, so difficult questions (e.g. relating to income) are usually put at the end. The survey
instrument (and any personal interviews) should try to satisfy the following criteria:

� The questions should be simple and direct.
� Make sure each question serves a specific purpose; an excessive number of questions degrades the

response rate and increases trip omissions.
� The number of open questions should be minimised.
� Travel information must include the purpose of the trip. It is interesting to acquire stage-based trip

data (i.e. all movements on a public street) to ensure that analyses can relate specific modes to specific
locations, times of day, etc.

� Collect information so that complete tours can be re-constructed during analysis.
� Seek information about all modes of travel, including non-motorised travel.
� All people in the household should be included in the survey, including non-family members, like

maids in developing countries.
� To facilitate the respondent’s task of recording all travel, an activity-recall framework is recommended,

whereby people record travel in the context of activities they have undertaken rather than simply
trips they have made; this has been shown to result in much more accurate travel measurement
(Stopher 1998).

� Since people have difficulty recalling infrequent and discretionary activities, even when they are recent,
a travel day or days should be assigned to each household in advance. Respondents should be given
a brief diary in advance of these days; the information in the diary may then be transferred to the
self-completion form or reported to the interviewer at the end of the day (or as soon as possible).

� Finally, all data should be collected at the maximum level of disaggregation (x-y co-ordinate level)
based on a geographical information system (GIS).

The survey instrument needs to be designed for minimum respondent burden (Ampt 2003), maximum
response rate (CASRO 1982) and hence greatest robustness of the data:

� Self-completion designs need to focus on overall layout since they are the researchers’ only contact
with the respondent. The layout needs to be clear and concise, and in general it should lead respondents
onto the next question. Layouts should usually be designed to encourage every respondent to reply,
whether or not they are used to filling out forms (i.e. be user friendly, nicely presented and using
simple language).

� The strength of personal interviews lies in the ease of response for survey participants, so the focus
needs to be on training interviewers to understand the context of the survey and making sure the survey
designs are easy for them to administer.
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For either type of household survey, it is recommended that the survey be divided into two parts:
(1) personal and household characteristics and identification and (2) trip data. We will briefly review the
information sought in each part:

� Personal and household characteristics and identification: this part includes questions designed to
classify the household members according to their relation to the head of the household (e.g. wife,
son), sex, age, possession of a driving licence, educational level and occupation. In order to reduce the
possibility of a subjective classification, it is important to define a complete set of occupations (non-
household surveys are usually concerned only with the person being interviewed; however, the relevant
question are the same or very similar). This part also includes questions designed to obtain socio-
economic data about the household, such as characteristics of the house, identification of household
vehicles (including a code to identify their usual user), house ownership and family income.

� Trip data: this part of the survey aims at detecting and characterising all trips made by the household
members identified in the first part. A trip is now defined as any movement outside a building or
premises with a given purpose; but the information sought considers trips by stages, where a stage is
defined by a change of mode (including walking). Each stage is characterised on the basis of variables
such as origin and destination (normally expressed by their nearest road junction or full postcode, if
known), purpose, start and ending times, mode used, amount of money paid for the trip, and so on.
Ideally, analysis should be able to link trips in a logical way to re-construct tours and to generate
Productions and Attractions by household.

Definition of the Sampling Framework The scope of mobility surveys usually includes all travellers
in an area (Figure 3.4). Thus, it not only includes residents, but also visitors to households, in hotels,
other people in non-private dwellings (such as hospitals) and travellers that pass through the area on the
survey days.

Once the scope has been defined, the sampling frame needs to be determined. In other words, what type
of list will provide information on all residents, visitors and people who pass through the area, in order
to choose a sample of those people and trips. Although there are various options, the household sample
frame, while complex, is usually the most straightforward. If a census has been conducted recently and
information on all dwellings is available, this can be ideal. Alternatively, a block list of the whole region
(prepared for any reason, e.g. for a utility company or for a previous survey) could be used, but a key
issue is that it should be very up-to-date. Although Census data is only available every ten years in
most places, in certain countries the government possesses a list of all dwellings officially registered for
paying property taxes and this can be a useful starting point. If such lists are not available, several other
methods can be used, the most typical one in industrialised nations being telephone listings (Stopher and
Metcalf 1996) complemented by other methods if telephone ownership or listings are not universal. If
no ‘official’ frame is available, it is always possible to simply sample blocks at random, enumerate the
households in the block, and randomly sample from these.

Choosing the sampling frame for travel by non-residents is more complicated. It is recommended that
this be done in the following way:

� Obtain a list of all non-private dwellings and select a sample (possibly stratified by size or by type
of visitor).

� Obtain a list of public transport interchanges where people are likely to arrive and leave the metropolitan
region (e.g. airports, train stations, and long-distance bus stations). Ideally this will produce a sampling
of travellers at each intercept point, although in some cases it will be necessary to sample sites.

� Obtain a list of all road crossing points of the area’s external cordon. As with public transport
interchanges, ideally all cross-points should be included, although in some cases they will need to
be sampled.
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However, the above procedure does not guarantee a perfect sampling frame. Fortunately, with some clear
exceptions, the importance of trips made by visitors is generally much smaller than that of residents in
any given study area.

Sample Size Travel surveys are always based on some type of sampling. Even if it were possible to
survey all travellers on a specific service on a given day, this would only be a sample of travellers making
trips in a given week, month or year. The challenge in sampling design is to identify sampling strategies
and sizes that allow reasonable conclusions, and reliable and unbiased models, without spending excessive
resources on data collection. Often there is more than one way of obtaining the relevant information.
For some data needs it may be possible to gather the information either through household surveys or
through intercept surveys. In these situations it is best to use the method that delivers the most precise
data at the lowest cost (DICTUC 1998).

There are well-documented procedures for estimating the sample size of household surveys so that
it is possible to satisfy different objectives; for example, estimation of trip rates, and trip generation by
categories, levels of car ownership and even of mode choice variables for different income strata (Stopher
1982). Given reasonable budget limitations, the analyst faces the question of whether it is possible to
achieve all these objectives with a given sample of households in a certain metropolis (see for example,
Purvis 1989). In general, these methods require knowledge about the variables to be estimated, their
coefficients of variation, and the desired accuracy of measurement together with the level of significance
associated with it.

The first requirement, although both obvious and fundamental, has been ignored many times in the
past. The majority of household O–D surveys have been designed on the basis of vague objectives, such
as ‘to reproduce the travel patterns in the area’. What is the meaning of this? Is it the elements of the
O–D matrix which are required, and if this is the case, are they required by purpose, mode and time of
day, or is it just the flow trends between large zones which are of interest?

The second element (coefficient of variation of the variable to be measured) was an unknown in the
past, but now it may be estimated using information from the large number of household O–D surveys
which have been conducted since the 1970s. Finally, the accuracy level (percentage error acceptable to
the analyst) and its confidence level are context-dependent matters to be decided by the analyst on the
basis of personal experience. Any sample may become too large if the level of accuracy required is too
strict. It can be said that this aspect is where the ‘art’ of sample size determination lies.

Once these three factors are known, the sample size (n) may be computed using the following formula
(M.E. Smith 1979):

n = CV2 Z 2
α

E2
(3.16)

where CV is the coefficient of variation, E is the level of accuracy (expressed as a proportion) and Zα is
the standard normal value for the confidence level (α) required.

Example 3.6 Assume that we want to measure the number of trips per household in a certain area,
and that we have data about the coefficient of variation of this variable for various locations in the USA
as follows:

Area CV

Average for U.S.A. (1969) 0.87
Pennsylvania (1967) 0.86
New Hampshire (1964) 1.07
Baltimore (1962) 1.05
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As all the values are near to one, we can choose this figure for convenience. As mentioned above,
the decision about accuracy and confidence level is the most difficult; equation (3.16) shows that if
we postulate levels which are too strict, sample size increases exponentially. On the other hand, it is
convenient to fix strict levels in this case because the number of trips per household is a crucial variable
(i.e. if this number is badly wrong, the accuracy of subsequent models will be severely compromised).
In this example we ask for 0.05 level of accuracy at a 95% level.

For α = 95% the value of Zα is 1.645, therefore we get:

n = 1.0(1.645)2/(0.05)2 = 1084

that is, it would suffice to take a sample of approximately 1100 observations to ensure trip rates with a
5% tolerance 95% of the time. The interested reader may consult M.E. Smith (1979) for other examples
of this approach.

The situation changes, however, if it is necessary to estimate origin-destination (O–D) matrices. For
example, M.E. Smith (1979) argues that a sample size of 4% of all trips in a given study area would be
needed to estimate levels higher than 1100 trips between O–D pairs at the 90% confidence level with a
standard error of 25%. This effectively means that if there are less than 1100 trips between two zones, a
sample size of less than 4% would not be sufficient to detect them.

Example 3.7 Trips by O–D cell in Santiago, at the municipality level (e.g. just 34 zones), were analysed
using data from the 1991 Household survey (Ortúzar et al. 1993). It was observed that only 58% of the
O–D cells contained more than 1000 trips. Thus, it would seem necessary to postulate a sample size
of 4% of trips (and by deduction, 4% of households) to estimate an O–D matrix at the municipality
level with a 25% standard error and 90% confidence limits. However, if the effect of response rates is
considered (even if they were as high as 75%), as there were about 1 400 000 households in the city
this would imply an initial sample size of nearly 75 000 households. It is doubtful that such a large
sample size (and the associated costs and levels of effectiveness) are justified to accomplish such a
meagre objective.

Clearly, the driving force behind large sample sizes is the need to obtain trip matrices at the zone level.
It has also been shown that it is very difficult to reduce the measurement error to an acceptable level in
areas with more than say 100 zones, since the sample size required is close to that of the population (M.E.
Smith 1979). Hence, if the objective of the study includes estimating an O–D matrix, it is necessary to
use a combination of survey methods, including both household and intercept surveys, to take advantage
of their greater efficiencies for different data objectives.

Optimisation Strategies for Sample Design To achieve a sampling design that yields a smaller sample
size, it is necessary to devise strategies that estimate, say, trip generation rates by socio-economic status.
One approach is to use a multi-stage stratified random sampling heuristic which produces better results
than the classic method devised by M.E. Smith (1979); unfortunately, it requires a lot of effort by the
analyst and does not guarantee a unique solution (DICTUC 1998). The heuristic begins by ordering the
socio-demographic classes according to the degree to which they are represented in the population. Next
the zones in the study area are allocated a class based on the most frequently occurring socio-economic
group in them. Then a random sample of zones of each socio-economic type is selected (i.e. of the order
of 1% of all households). After that the remaining zones are categorised in priority order and are chosen
as necessary to reach the difference between the sample already selected and the minimum required for
each new class. The procedure is repeated until all classes have the minimum sample size required (say
30 or 50 observations).

This procedure was applied in Santiago for the 264-zone system defined in the 1991 O–D survey
(Ortúzar et. al. 1993) and for a stratification of 14 classes based on income and car ownership. The final
solution achieved was a sample size of 1312 households located in only 15 zones, which guaranteed
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a minimum of 30 observations per class. However, in certain zones, notably those containing high-
income people, the solution implied somewhat unreasonable sample sizes (i.e. around 20% of the zonal
population). A better solution was found by solving the following optimisation problem (Ampt and
Ortúzar 2004):

Minimise
∑

i∈{classes}

∑

j∈{zones}
α j ηij

subject to

0 ≤ α j ≤ δ
∑

j∈{zones}
α jηij ≥ μi

where αj is the proportion of households to interview in zone j and δ a reasonable limit (e.g. a maximum
of 5%), ηij is the number of households of class i in zone j, and μi is the minimum acceptable sample
size for each class i (i.e. 30 or 50 observations).

Using the same information as in the previous case, it was found that the problem could be optimally
solved yielding a sample of just 482 households. More interestingly, for a stratification with 26 classes
(i.e. adding household size as stratifying variable), it was found that an optimum sample size of 1372
households, guaranteeing a minimum of 30 observations in each of the specified classes, would be
possible by collecting data in only 17 of the 264 zones.

However, as no limit was enforced for δ, some values of αj were again near 20% of the zone population.
So, by applying the restriction of δ being less than 5%, a sample of 1683 households in only 27 zones
was finally obtained. Note that the method permits segmentations other than by socio-economic criteria.
For example, it is also possible to identify spatial differences in terms of physical area (i.e. distance from
the CBD) or access to the public transport network, and to increase the number of classes considered for
the optimisation (Ortúzar et al. 1998).

Finally, remember that the design can also be improved by allowing for different response rates
between different groups. In principle it is possible to estimate the number of households required in a
gross sample (μi) to achieve a given minimum number of responses for each class, thereby ensuring a
design that will yield even higher-quality trip generation data.

Sample Size for a Continuous Survey A final challenge consists of designing a sampling strategy
for a continuous survey. If a sample of say 15 000 households is required in year 1 to fulfil the initial
modelling requirements of a metropolitan area, an ongoing survey would probably have the following
form or something similar:

Year 1 Year 2 Year 3 Year 4 Year 5
15 000 5000 5000 5000 5000

This method requires smaller ongoing input after the first year, which offers several advantages:

� A smaller well-trained field force and administrative procedures which are likely to ensure very high
quality data with minimal effort in subsequent years.

� The appropriate authorities make a financial commitment for four years in year 1, reducing the risk of
difficulties over repeat funding in say year 4.
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But it does require the development of an annual weighting and integration system to ensure the data
is readily usable for modelling, and this system needs to be robust and easy to use. We need to ensure
that all the data at the end of year 2 is representative of year 2, that all the data at the end of year 3 is
representative of that year, and so on. Such a procedure provides an up-to-date representation of existing
travel behaviour for modelling and other purposes. In developing cities (i.e. where rapid changes occur in
car ownership, land-use spread and distribution), this would mean a more accurate modelling capability
than has ever been possible in the past. It would also provide a larger sample size for use in the second
and subsequent years, enabling more detailed questions to be asked of the data in them. Furthermore, if
it is assumed that the data will be used for other purposes as well as modelling, the annual data collection
method will provide essential time series data. Here are some examples:

� Changes in travel patterns (by mode) related to changes in car ownership levels and distribution,
pollution levels or land-use patterns.

� Changes in choice of mode related to changes in supply patterns, e.g. improvements for pedestrians,
expansion of the public transport network.

The way in which data from the second and subsequent years should be integrated and combined with
data from the first year has to occur at four levels: household, vehicle, person and trip. In this sense it is
important to consider three things:

� Careful sample selection and high response rates to ensure the 15 000 households in year 1
are representative of the city; then weighting and expansion procedures should be applied as
described below.

� Make sure the 5000 households in year 2 are representative of the city (i.e. spatially and on all
other parameters used for the first year of the sample selection); again, weighting procedures need to
be applied.

� At the end of year 2, the database will consist of 20 000 households but it will contain the raw data
and the weighting factors only.

In smaller-sized cities, or in areas where there is little change in size and structure, it may not be necessary
to have such a complicated sampling strategy, but it still depends on the uses of the data. For example,
an equal sample for each of the years in a five-year period could be appropriate.

3.3.2.3 Other Important Types of Surveys

Roadside Interviews These provide useful information about trips not registered in household surveys
(e.g. external–external trips in a cordon survey). They are often a better method for estimating trip matrices
than home interviews as larger samples are possible. For this reason, the data collected are also useful in
validating and extending the household-based information.

Roadside interviews involve asking a sample of drivers and passengers of vehicles (e.g. cars, public
transport, goods vehicles) crossing a roadside station, a limited set of questions; these include at least
origin, destination and trip purpose. Other information such as age, sex and income is also desirable but
seldom asked due to time limitations; however, well trained interviewers can easily add at least part of
these data from simple observation of the vehicle and occupants (with obvious difficulties in the case of
public transport).

The conduct of these interviews requires a good deal of organisation and planning to avoid unnecessary
delays, ensure safety and deliver quality results. The identification of suitable sites, co-ordination with
the police and arrangements for lighting and supervision are important elements in the success of these
surveys. We shall concentrate here on issues of sample size and accuracy.
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Example 3.8 Let us assume a control point where N cars cross and we wish to take a sample of n
vehicles to survey. Let us also assume that of these n, X1 cars travel between the origin–destination pair
O–D1. In this case it can be shown that X1 has a hyper geometric distribution H (N, N1, n), where N1 is
the total number of travellers between pair O–D1, and that its expected value and variance are given by:

E(X1) = np with p = N1/N

V (X1) = np(1 − p)(1 − n/N )

Using a Normal approximation (based on the Central Limit theorem) the distribution of X1 is:

X1 ∼ N (np, np(1 − p)(1 − n/N ))

and an estimator for p is:

p̂ = X1

n

Therefore

p̂ ∼ N

(
p,

p(1 − p)(1 − n/N )

n

)

and an approximate 100(1 − α)% confidence interval for p is given by:

[
p̂ − z

√
p(1 − p)(1 − n/N )

n
, p̂ + z

√
p(1 − p)(1 − n/N )

n

]

where z is the standard Normal value for the required confidence level (1.96 for the 95% level). We
typically require that the absolute error e associated with p̂ does not exceed a pre-specified value
(usually 0.1), that is:

E = z

√
p(1 − p)(1 − n/N )

n
≤ e

Working algebraically on this expression we get:

n ≥ p(1 − p)(1 − n/N )

(e/z)2

or equivalently:

n ≥ p(1 − p)

(e/z)2 + p(1 − p)/N
(3.17)

It can be seen that, for a given N, e and z, the value p = 0.5 yields the highest (i.e. most conservative)
value for n in (3.17). Taking this value and considering e = 0.1 (i.e. a maximum error of 10%) and
z equal 1.96, we obtain the values in Table 3.1.
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Table 3.1 Variation of sample size with observed flow

N (passengers/period) n (passengers/period) 100 n/N (%)

100 49 49.0
200 65 32.5
300 73 24.3
500 81 16.2
700 85 12.1
900 87 9.7
1100 89 8.1

Example 3.9 An examination of historical data during preparatory work for a roadside interview revealed
that flows across the survey station varied greatly throughout the day. Given this, it was considered too
complex to try to implement the strategy of Table 3.1 in the field. Therefore, the following simplified
table was developed:

Estimated observed flow
(passengers/period) Sample size (%)

900 or more 10.0 (1 in 10)
700 to 899 12.5 (1 in 8)
500 to 699 16.6 (1 in 6)
300 to 499 25.0 (1 in 4)
200 to 299 33.3 (1 in 3)
1 to 199 50.0 (1 in 2)

The fieldwork procedure requires stopping at random the corresponding number of vehicles, inter-
viewing all their passengers and asking origin, destination and trip purpose. In the case of public-transport
trips, given the practical difficulties associated with stopping vehicles for the time required to interview
all passengers, the survey may be conducted with the vehicles in motion. For this it is necessary to define
road sections rather than stations and the number of interviewers to be used depends on the observed
vehicle-occupancy factors at the section. However, even this approach may be unworkable if the vehicles
are overloaded.

Cordon Surveys These provide useful information about external–external and external–internal trips.
Their objective is to determine the number of trips that enter, leave and/or cross the cordoned area, thus
helping to complete the information coming from the household O–D survey. The main one is taken at
the external cordon, although surveys may be conducted at internal cordons as well. In order to reduce
delay they sometimes involve stopping a sample of the vehicles passing a control station (usually with
police help), to which a short mail-return questionnaire is given. In some Dutch studies a sample of
licence plates is registered at the control station and the questionnaires are sent to the corresponding
addresses stored in the Incomes and Excise computer. An important problem here is that return-mail
surveys are known to produce biased results: this is because less than 50% of questionnaires are usually
returned and it has been shown that the type of person who returns them is different to those that do not
(see Brög and Meyburg 1980). This is why in many countries roadside surveys often ask a rather limited
number of questions (i.e. occupation, purpose, origin, destination and modes available) to encourage
better response rates.
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Figure 3.5 Household survey data consistency check

Screen-line Surveys Screen lines divide the area into large natural zones (e.g. at both sides of a river
or motorway), with few crossing points between them. The procedure is analogous to that of cordon
surveys and the data also serve to fill gaps in and validate (see Figure 3.5) the information coming from
the household and cordon surveys. Care has to be taken when aiming to correct the household survey
data in this way, because it might not be easy to conduct the comparison without introducing bias.

3.3.3 Survey Data Correction, Expansion and Validation

Correction and weighting are essential in any travel survey (Stopher and Jones 2003); the following
sections discuss an approach deemed appropriate for the contemporary surveys described above, which
are conducted over a period of several years.

3.3.3.1 Data Correction

The need to correct survey data in order to achieve results which are not only representative of the whole
population, but also reliable and valid, has been discussed at length (Brög and Erl 1982; Wermuth 1981).
It is now accepted that simply expanding the sample is not appropriate, although for many years it was
the most commonly practised method. Brög and Ampt (1982) identify a series of correction steps as
follows.

Corrections by Household Size and Socio-Demographic Characteristics To make corrections that
guarantee that the household size, age and sex, housing type and vehicle ownership distributions of the
sampled data represent that in the population (based on Census data), an iterative approach is needed,
since more simplistic methods do not guarantee correct results (see the discussion by Deville et al. 1993).
Multi-proportional fitting (see sections 5.2.3 and 5.6.2), also known as ‘raking ratio’ (Armoogum and
Madre 1998), is probably the best approach in this case, since it guarantees convergence in few iterations.
Furthermore, its application has the additional advantage of not requiring the subsequent calculation of
expansion factors. Stopher and Stecher (1993) give an almost pedagogical example of this approach.

The method is particularly valid if the secondary population data has been gathered close to the time
of the travel survey. However, it may not be appropriate if the travel survey is done several years after
the Census as the urban population may change rather quickly, particularly in less-developed countries.
In this case it would be necessary to calculate proportions of households in each group and to compute
expansion factors in the more traditional form (Ortúzar et al. 1993; Richardson et al. 1995).
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The multi-proportional method does not guarantee that each cell value will be identical in the Census
and in the travel survey since in any matrix there is an important degree of indeterminacy (i.e. many
combinations of cell values can give rise to the same totals of rows and columns). In particular, due to
its multiplicative characteristics, a cell with a zero will always end up with a zero value. Furthermore,
certain special matrix structures (that contain zeroes in some key positions) can lead to non-convergence
of the method (see section 5.6.1 for an example).

To avoid bias in the multi-proportional correction, because we are correcting by items as diverse as,
say, household size (number of persons) on the one hand, and personal characteristics (sex and age) on
the other, it is better to define unique categories, thus avoiding classes that consider – for example – two
to four persons, six or more persons, etc. Nevertheless, it is easy to imagine occasions on which it would
be necessary to group some category because it is not represented in the sample for a given zone. In that
case, it is convenient to check if it is possible to group similar zones instead of making the correction at
such a disaggregate level (Stopher and Stecher 1993).

Additional Corrections in Household Surveys In addition to the corrections by household size,
vehicle ownership and socio demographics, there are two other correction procedures necessary –
depending on whether it is a personal interview or self-completion survey (Richardson et al. 1995).
These procedures are noted below:

Corrections for non-reported data These are needed when certain elements of the survey have not been
answered (item non-response). In self-completion surveys, interviewing a validation sample of people
using personal interviews and then weighting the data accordingly (Richardson et al. 1995) is used to
address this. This type of correction is not usually needed when personal interviews are used because
interviewers must be well trained and supervised thereby decreasing the incidence of item non-response
(but see the discussion in Stopher and Jones 2003).

Corrections for non-response These are needed when a household or individual does not respond,
i.e. does not return the survey instrument or refuses verbally or by mail to respond to the survey
(Zimowski et al. 1998). This can be attributed to a variety of causes, and it is important to differentiate
between genuine sample loss (e.g. vacant dwellings which do not generate travel should be ineligible),
and refusals (where the person could be travelling but not responding, clearly eligible). In the case of
personal interviews, it has been recommended that corrections should be based on the number of visits
necessary to achieve a response, since it has been shown that this is associated with strong differences in
travel behaviour (Kam and Morris 1999; Keeter et al. 2000); however, there is also evidence suggesting
that these differences might be small (Kurth et al. 2001).

In self-completion surveys, on the other hand, it was originally believed that corrections could be done
based on the number of follow-up reminders needed to generate a household response (Richardson et al.
1995) but the problem is likely to be more complex than for personal interviews (see the discussions
by Polak 2002, and Richardson and Meyburg 2003). Related to this, it is interesting to mention that
reductions in non-response bias due to the inadequate representation of certain population strata (i.e. by
income) have been reported using special factoring techniques that take into account the differences in
return rates by different types of households by zones (Kim et al. 1993).

A final related point is how to decide when the response by a household is considered complete. The
US National Travel Survey uses the ‘fifty-percent’ rule (at least 50% of adults over 18 years of age
completed the survey), after arguments that excluding households where not everybody responded may
exaggerate bias, and data are weighted to mitigate the person-level non-response in sampled households.
Research on this subject allowed detecting the most likely types of households and the most likely non
respondent (DRCOG 2000). Interestingly, trip rates by the sample including 50% households have been
found to be not statistically different to a sample including only households with 100% of members
responding (see Ampt and Ortúzar 2004).
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Integration Weighting for a Continuous Survey Integration weighting is required to unite each wave
of the survey; in this case it is recommended to proceed as follows (Ampt and Ortúzar 2004):

� Household weighting should occur for each ‘important’ variable (as chosen in prior consultation), for
example household size, car ownership or household income.

� Vehicle weighting should be done in the same way. A variable of particular importance here is the age
of the vehicle, since without correct weighting it would appear as if the fleet was not ageing.

� Person weighting. Here factors of importance are likely to be income and education, for example.
� Trip weighting. Number of trips and mode are likely to be the key variables in this case – all done

according to the same general principles described above.

In this way the data will be representative of the population in every year of the survey. Of course this is
not perfect, but with a good sampling scheme it should be very robust. For example, in year 2 the sample
will actually reflect real changes in household size (say) that may be occurring. Hence if one wanted to
use years 1 and 2 to reflect the situation in year 2 (which is exactly what a government agency would
like to do), it would be necessary to weight the year 1 data set to have the proper household size that is
actually observed in year 2. Clearly if a given year coincides with a Census year, the weighting process
can take on a whole new meaning, although this is likely to occur only about once a decade.

Example 3.10 Table 3.2 presents the number of samples gathered in the first three years of a continuous
survey, stratified according to household size. If we consider households of size 1 say, we can see that
they constitute 13.33% of the sample in year 1 (i.e. 2000/15 000) 17% of the sample of year 2, and if
added without reweighting 14.25% of the sample for both years. However, this would be akin to the
proverbial mixing of apples and pears.

Table 3.2 Weighting procedures for integration

Weighted values for years 1 and 2
Household size

1 2 3 4 5 Total
Year 1 2000 13.33% 3000 20.00% 4000 26.67% 5000 33.33% 1000 6.67% 15 000
Year 2 850 17.00% 1200 24.00% 1000 20.00% 1500 30.00% 450 9.00% 5 000
Total 2850 14.25% 4200 21.00% 5000 25.00% 6500 32.50% 1450 7.25% 20 000
Reweighting values for year 1

1 2 3 4 5
Year 1 17.00/13.33 1.275 1.200 0.750 0.900 1.350
Reweighting procedure

1 2 3 4 5
Year 1 2550 3600 3000 4500 1350 15 000
Year 2 850 1200 1000 1500 450 5 000
Total 3400 17% 4800 24% 4000 20% 6000 30% 1805 9% 20 000

To integrate the data properly we need first to calculate (appropriate) weights for year 1 to ensure
that both sets have the same proportions as measured in the latest year (based on the assumption that
the new sample drawn each year represents the characteristics of that year’s population). These weights
are calculated in the next part of the table, and are equal to the ratio between the percentages (for each
strata) of years 2 and 1 (i.e. 24/20 = 1.2 in the case of households of size 2). The final part of the table
shows the result of adding the weighted year-1 data to the year-2 data, to achieve a final sample of 20 000
households that has the same distribution according to household size as it occurs in year 2.
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3.3.3.2 Imputation Methods

Survey non-response makes identification of population parameters problematic and, normally, iden-
tification of non-response data is only possible if certain assumptions (frequently not testable) are
made about the distribution of missing data. Non-response does not, however, necessarily preclude
identification of the bounds on parameters. There are several state-of-practice imputation methods rang-
ing from deductive imputation, to use of overall or class means, to hot and cold-deck imputation and so on
(Armoogum and Madre 1998). In fact, the organizations conducting major surveys usually release data
files that provide non-response weights or imputations to be used for estimating population parameters.
Stopher and Jones (2003) recommend distinguishing between imputation and inference. The latter can
be used initially and is particularly useful for certain types of variables (i.e. if a person does not indicate
s/he is a worker but reports trips to work). However, there are some variables that may not be safe to
infer due, for example, to changing social structures.

Imputation is defined as the substitution of values for missing data, based on certain rules or procedures.
It is worth noting, however, that most imputation methods do not preserve the variance of the imputation
variable (for example income), and therefore, they can produce inconsistent estimates when the variable
that contains imputations is included in a model. For this reason, some researchers even believe that to
impute values increases the bias in some instances, and is simply translated in makeshift data. Thus, it
is recommended that the changes produced upon imputing values are registered, and if it is possible,
to have their effects evaluated. Horowitz and Manski (1998) show how to bind the asymptotic bias of
estimates using typical weights and imputations. They provide a thorough mathematical treatment of the
subject and illustrate it with empirical examples using real data.

Another approach to solving this and other problems consists of making multiple imputations and
thereafter combining the estimators of the resulting models in each case to obtain consistent values that
include a consideration of the errors associated with the imputation process (Brownstone 1998).

In the Santiago 2001 O-D Survey (DICTUC 2003), 543 households out of 15 537 did not answer
the family income question. Due to the strong asymmetry of the income distribution a logarithmic
transformation of the data was used which allowed us to centre the distribution and achieve a better
resemblance of a Normal distribution. Multiple imputations were successfully produced using a linear
model based on the Student t-distribution with five degrees of freedom (Lange et al. 1989), estimated
using Gibbs sampling (Geman and Geman 1984). Outliers were detected and removed from the estimation
process; as it turned out, they were found to be wrongly coded meaning that the process had the secondary
advantage of allowing for further checks on the quality of the data.

3.3.3.3 Sample Expansion

Once the data have been corrected it is necessary to expand them in order to represent the total population;
to achieve this expansion factors are defined for each study zone as the ratio between the total number
of addresses in the zone (A) and the number obtained as the final sample. However, often data on A are
outdated leading to problems in the field. The following expression is fairly general in this sense:

Fi = A − A(C + C D/B)/B

B − C − D

where Fi is the expansion factor for zone i, A is the total number of addresses in the original population
list, B is the total number of addresses selected as the original sample, C is the number of sampled
addresses that were non-eligible in practice (e.g. demolished, non-residential), and D is the number of
sampled addresses where no response was obtained. As can be seen, if A was perfect (i.e. C = 0) the factor
would simply be A/(B − D) as defined above. On the other hand, if D = 0 it can be seen that the formula
takes care of subtracting from A the proportion of non-eligible cases, in order to avoid a bias in Fi.
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3.3.3.4 Validation of Results

Data obtained from O–D surveys are normally submitted to three validation processes. The first simply
considers on site checks of the completeness and coherence of the data; this is usually followed by their
coding and digitising in the office. The second is a computational check of valid ranges for most variables
and in general of the internal consistency of the data. Once these processes are completed, the data is
assumed to be free of obvious errors.

In mobility studies the most important validation is done within the survey data itself and not with
secondary data such as traffic counts at screen lines and cordons in the study area. The reason is that each
method has its own particular biases which confound this task. For example, gross comparisons, such as
number of trips crossing a cordon or number of trips by mode, often give relatively poor comparisons.

Although state-of-the-art survey techniques minimise these problems, the use of independent data to
check figures from all components of a metropolitan O–D travel survey (see the discussion in Stopher
and Jones 2003) is still recommended. Objective comparisons of these figures, taking into account the
strengths and weaknesses of each survey method make it possible to detect potential biases and to take
steps to amend them. Furthermore, if matrices are to be adjusted (see section 12.4.7), it is essential to
reserve independent data to validate the final results. This requires good judgement and experience, since
if insufficient care is given to the task it is easy to produce corrections to the O–D matrices that do not
correspond to reality.

3.3.4 Longitudinal Data Collection

Most of the discussion so far has been conducted under the implicit assumption that we are dealing
with cross-sectional (snap-shot) data. However, as we saw in Chapter 1, travel behaviour researchers
are becoming increasingly convinced that empirical cross-sectional models have suffered from lack of
recognition of the inter-temporality of most travel choices. Panel data are a good alternative to incorporate
temporal effects because in this data structure a given group of individuals is interviewed at different
points in time.

In this part we will attempt to provide a brief sketch of longitudinal or time-series data-collection
methods and problems; we will first define various approaches and then we will concentrate on the
apparently preferred one: panel data. In Chapter 8 we will consider the added problems of modelling
discrete choices in this case.

We will finally examine some evidence about the likely costs of a panel data-collection exercise in
comparison with the more typical cross-sectional approach.

3.3.4.1 Basic Definitions

1. Repeated cross-sectional survey. This is one which makes similar measurements on samples from an
equivalent population at different points in time, without ensuring that any respondent is included
in more than one round of data collection. This kind of survey provides a series of snapshots of
the population at several points in time; however, inferences about the population using longitudinal
models may be biased with this type of data and it may be preferable to treat observations as if they
were obtained from a single cross-sectional survey (see Duncan et al. 1987).

2. Panel survey. Here, similar measurements (i.e. the panel waves), are made on the same sample at
different points in time. There are several types of panel survey, for example:
� Rotating panel survey. This is a panel survey in which some elements are kept in the panel for only

a portion of the survey duration.
� Split panel survey. This is a combination of panel and rotating panel survey.
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� Cohort study. This is a panel survey based on elements from population sub-groups that have shared
a similar experience (e.g. birth during a given year).

Although the use of panel data has increased in many areas, especially since the pioneering
work of Heckman (1981), in transport there are only a few examples, which can be classified into
two groups:

� Long survey panels. These consist of repeating the same survey (i.e. with the same methodology
and design) at ‘separate’ times, for example once or twice a year for a certain number of years or
before-and-after an important event. Some famous examples are the Dutch Panel (Van Wissen and
Meurs 1989) and the Puget Sound Transportation Panel (PSTP) in the United States (Murakami
and Watterson 1990).The main problem of this kind of panel is attrition (i.e. losing respondents)
between successive surveys (known as waves).

� Short survey panels: These are multi-day data where repeated measurements on the same sample
of units are gathered over a ‘continuous’ period of time (e.g. two or more successive days), but
the survey is not necessarily repeated in subsequent years. Some recent examples of this type of
panel are the two-day time-use diary for the US National Panel Study of Income Dynamics and
the six-week travel and activity diary data panels collected in Germany (Axhausen et al. 2002) and
Switzerland (Axhausen et al. 2007). In this case attrition is not a problem, but the infrequent changes
in mode choice and low data variability (both the attributes of each mode and the respondents’
socioeconomic characteristics are practically fixed) are, as this may cause difficulties in estimating
models, as discussed by Cherchi and Ortúzar (2008b).

If a substantive intervention is planned for a system, panels have even more significant advantages
for evaluating changes (Kitamura 1990a). Indeed, Van Wissen and Meurs (1989), based on the Puget
Sound Panel, described how the effects of policies could change trends; also, it is easier to capture these
changes using observations of the same individuals, as part of their current behaviour may be explained
by previous experiences. Although the advantages of panels seem clear, there are precious few panels
built around a substantial system change that would allow modelling changes in mode choice; notable
exceptions are the before and after study developed in Amsterdam around an extension of its urban
motorway system (Kroes et al. 1996) and the Santiago Panel (Yañez et al. 2009a) built around the
introduction of Transantiago, a radical change to the public transport system of Santiago, Chile (Muñoz
et al. 2009).

It is important to distinguish between longitudinal survey and panel data. The former consist of
periodic measurements of certain variables of interest. Finally, although in principle it is possible to
obtain panel data from a cross-sectional survey, measurement considerations argue for the use of a panel
survey design rather than retrospective questioning to obtain reliable panel data.

3.3.4.2 Representative Sampling

Panel designs are often criticised because they may become unrepresentative of the initial population
as their samples necessarily age over time. However, this is only strictly true in cohort study designs
considering an unrepresentative sample to start with; for example, if the sample consists of people
with a common birth year, individuals joining the population either by birth or immigration will not be
represented in the design.

In general, a panel design should attempt to maintain a representative sample of the entire population
over time. So, it must cope not only with the problems of birth, immigration or individual entry by
other means, but also be able to handle the incorporation of whole new families into the population (e.g.
children leaving the parental home, couples getting divorced). A mechanism is needed to maintain a
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representative sample that allows families and individuals to enter the sample with known probabilities,
but this is not simple (for details see Duncan et al. 1987).

3.3.4.3 Sources of Error in Panel Data

A panel design may add to (or detract from, if it is not done with care) the quality of the data. Although
repeated contact and interviewing are generally accepted to lead to better-quality information, panels
have typically higher rates of non-response than cross-sectional methods, and run the risk of introducing
contamination as we discuss below.

Effects on Response Error Respondents in long survey panels have repeated contact with interviewers
and questionnaires at relatively long time intervals; this may improve the quality of the data for the
following reasons:

� Repeated interviewing over time reduces the amount of time between event and interview, thus tending
to improve the quality of the recalled information.

� Repeated contact increases the chances that respondents will understand the purpose of the study; also
they may become more motivated to do the work required to produce more accurate answers.

� It has been found that data quality tends to improve in later waves of a panel, probably because of
learning, by respondents, interviewers or both.

However, in the case of short survey panels, the quality of responses tends to decrease with the number
of days considered (i.e. less trips are reported and travel by slow modes is omitted) due to fatigue.

Non-response Issues Under the generic non-response label, there are included several important issues
which have two basic sources: the loss of a unit of information (attrition) and/or the loss of an item of
information. Hensher (1987) discusses in detail how to test and correct for this type of error.

The non-response problems associated with the initial wave of a panel are not different to those of
cross-sectional surveys, so very little can be done to adjust for their possible effects. In contrast, plenty
of data have been gathered about non- respondents in subsequent waves; this can be used to determine
their main characteristics, enabling non-response to be modelled as part of the more general behaviour
of interest (see Kitamura and Bovy 1987).

Typical large panel designs spend a great amount of effort attending to the ‘care and feeding’ of
respondents: this involves instructing interviewers to contact respondents many times and writing letters
of encouragement specifically tailored to the source of respondents’ reluctance. This ‘maintenance
policies’ are often considered important by panel administrators, as are the use of incentives to encourage
cooperation (Yañez et al. 2009a).

Response Contamination Evidence has been reported that initial-wave responses in panel studies may
differ from those of subsequent waves; for this reason in some panel surveys the initial interviews are
not used for comparative purposes. A crucial question is whether behaviour itself, or just its reporting,
is being affected by panel membership. Evidence about this is not conclusive, but it seems to depend on
the type of behaviour measured. For example, Traugott and Katosh (1979) found that participants in a
panel about voting behaviour increased their voting (i.e. changed behaviour) as time went by; however,
it was also found that this was caused partly by greater awareness of the political process and partly by
the fact that individuals who were less politically motivated tended to drop out of the panel.

Treatment of Repeated Observations Another problem, which is more specific to short survey panels,
relates to the presence of repeated observations. It is normal to expect that individuals, in different days,
may repeat exactly the same trips (typical cases are the systematic trips to work that are often made
every day with the same characteristics: time, cost, purpose, mode, and so on). So, especially when these
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data are used for model estimation, a crucial question here is which should be the optimum length of the
short survey panel as the way in which repeated information is treated may affect the estimation results
(Cherchi et al. 2009; Yañez et al. 2009b).

3.3.4.4 Relative Costs of Longitudinal Surveys

Questions about the relative costs of longitudinal studies cannot be answered without reference to the
alternatives to them. One obvious comparison is between a single cross-sectional survey, with questions
about a previous period, and a two-wave panel. However, if the longitudinal study is designed to keep its
basic sample representative each year and if enough resources are devoted to the task, it can also serve
as an (annual) source of representative cross-sectional data and thus ought to be compared with a series
of such surveys rather than just a single one.

Duncan et al. (1987) have made rough calculations on these lines, concluding that in the first case the
longitudinal survey would cost between 20 to 25% more than the cross-sectional survey with retrospective
questions. However, they also conclude that in the second case the field costs of each successive wave
of the cross-sectional study would be between 30 and 70% higher than additional waves of the panel
survey, depending on the length of the interview.

Other costs are caused by the need to contact and persuade respondents in the case of panels and by
the need to sample again with each fresh cross-section in the other case. Finally, there are other data
processing costs associated with panels but these must be weighed against the greater opportunity to
check for inconsistencies, analysis of non-response, consideration of inertia effects in modelling and
so forth.

3.3.5 Travel Time Surveys

The requirement for detailed and accurate travel time, vehicle speed and delay data is important for the
calibration and validation of model systems. Travel times are a key determinant of travel costs therefore
it is important to ensure the model correctly represents delays in the network of interest. In principle, one
would expect traffic on the road network to be subject to variability in their travel time. Nevertheless,
travel times on buses, and even metro, can also be affected by congestion and disruption. The focus here
is mostly on vehicle travel times on congested networks but the principles are applicable to other modes.
Travel times can be divided into:

� Running times, whilst the vehicle is moving.
� Delays, when the vehicle is stopped because of congestion or traffic control measures (traffic lights,

stop sign, etc.).

Travel times can be very variable as a result of traffic control measures and simply congestion levels.
For short links measurement errors will also be significant. As the variability over a single link would be
too high for most models, it is preferable to observe travel times on segments covering several junctions to
reduce it and make results more representative of the type of model used. For strategic models segments
should include at least five links or be at least 1 km long (whatever is the longest). For smaller scale
models one may use shorter segments but observations will have to be repeated more to obtain a reliable
estimate despite local variability in travel times.

The most common technique for travel time measurements is known as the ‘moving observer method’.
In this case, a probe car is driven at the average speed of the traffic stream and times are recorded for
stretches of road. Maintaining an average speed is difficult and the normal requirement is for the driver
to overtake as many vehicles (in the relevant class) as vehicles overtake him. An observer in the car (or a
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GPS based instrument), record times at regular intervals or when passing identifiable locations (i.e. key
junctions, a particular bridge or building).

The design of a travel time survey requires:

� Specifying the level of accuracy required.
� Identification of one or more circuits to be surveyed.
� Identification of the road sections of interest.
� Selection of a method for data collection: observer, GPS or other.
� Selection of the days and times when the surveys will be conducted.
� Number of runs that will be needed for each circuit and survey times.

The accuracy required will depend on the objective of the model. For large scale strategic models it
is desirable to have an accuracy of some 5 to 8 km/hr (around ± 10%). For operational studies, a better
accuracy of 2 to 5 km/hr is desirable. In the case of disaggregate mode choice models, as discussed in
Chapters 7 to 9, it has been found that the level of accuracy should be very high indeed (i.e. average
travel times for the peak period will not adequately represent those experienced by travellers within the
peak, and it has been recommended to group individuals according to departure time in, at most, 15 min
intervals, see Daly and Ortúzar 1990).

The circuits to be surveyed should be representative of the study area of interest. They should cover
roads and streets of different types and flow levels, with emphasis on those types considered most
important. The length of the road sections should be chosen to reduce the variability encountered at
junctions, especially if signal controlled. For dense urban areas, sections should contain between 7 and
10 signal controlled junctions.

The sample size and the number of runs to be undertaken, will depend also on the variability observed
on different types of roads under different conditions. Equation (3.16) above can be used to estimate
more accurately both the number of segments (links between junctions) in a road section and the number
of runs. Ideally, the coefficient of variation CV should be estimated from observations. Typical values for
the CV would be between 9 and 15 for roads with low and high variability. If we require 90% confidence
to be within a 10% error, this results in three to seven runs for this range. It is often recommended that
at least five runs are undertaken to ensure any special circumstance does not unduly affect the results.

3.4 Stated Preference Surveys
3.4.1 Introduction

The previous discussion has been conducted under the implicit assumption that any choice data cor-
responded to revealed preference (RP) information; this means data about actual or observed choices
made by individuals. It is interesting to note that we are seldom in a position to actually observe choice;
normally we just manage to obtain data on what people report they do (or more often, what they have
done on the previous day or, better, in the pre-assigned travel day).

In terms of understanding travel behaviour, RP data have limitations:

� Observations of actual choices may not provide sufficient variability for constructing good models
for evaluation and forecasting. For example, the trade-offs between alternatives may be difficult to
distinguish so the attribute level combinations may be poor in terms of statistical efficiency.

� Observed behaviour may be dominated by a few factors making it difficult to detect the relative
importance of other variables. This is particularly true with secondary qualitative variables (e.g.
public-transport information services, security, décor) which may also cost money and we would like
to find out how much do travellers value them before allocating resources among them.
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� The difficulties in collecting responses for policies which are entirely new, for example a completely
new mode (perhaps a people mover) or cost-recovery system (e.g. electronic road pricing).

These limitations would be surmounted if we could undertake real-life controlled experiments within
cities or transport systems, but the opportunities for doing this in practice are very limited. Thus, where
data from real markets is not available for predicting behaviour or eliciting reliable preference functions,
researchers have had to turn to stated preference (SP) methods. These cover a range of techniques,
which have in common the collection of data about respondent’s intentions in hypothetical settings as
opposed to their actual actions as observed in real markets. The three most common SP methods have
been contingent valuation (CV), conjoint analysis (CA) and stated choice (SC) techniques. In transport,
SC techniques have tended to dominate (see some examples in Ortúzar 2000) and for this reason, we
will focus on this method providing only a brief description of the CV and CA survey approaches. Note
also that in the transport arena the SP label has not embraced contingent valuation, as in fields such as
marketing or environmental economics; further, in transport practice the SP label has generally referred
to either CA or SC without a formal distinction (see the discussion in Ortúzar and Garrido 1994b).

3.4.1.1 Contingent Valuation and Conjoint Analysis

As a coherent technique, CV primarily deals solely with eliciting willingness-to-pay (WTP) information
for various policy or product options (Mitchell and Carson 1989). In this case, the policy (e.g. a way
to reduce accident risk) is presented to respondents who are then asked how much they are willing to
pay for having it. Four types of CV questions are typically used in practice; direct questioning, biding
games, payment options and referendum choices. In CV studies, the policy or product is kept static and
the outcome, in the form of WTP, is for the entire product or policy. As such, CV questions cannot be
used to disentangle the WTP for individual characteristics or attributes of the product or policy under
study. We will come back to this technique in section 15.4.

Unlike CV, traditional conjoint analysis allows the researcher to examine the preferences, and even
WTP if a price or cost attribute is included, not only for the entire policy or product, but also of the
individual characteristics of the object(s) under study. In CA, respondents are presented with a number of
alternative policies or products and are asked to either rate or rank them (see Figure 3.6). The levels of the
characteristics or attributes of the various policies or products are systematically varied and become the
independent variables which are regressed against the ratings or rankings data. The parameter weights
for each attribute reflect the marginal preference or ‘part-worth’ for that attribute. Thus, if a cost or
price attribute is included as part of the product or policy presented to respondents, then the ratio of any
non-price parameter to the price or cost parameter reflects the marginal WTP for the associated non-price
attribute (Gaudry et al. 1989). The special difficulties associated with estimating WTP when flexible
discrete choice functions, such as those we will discuss in section 8.6 are used to model the situation in
hand, are discussed by Sillano and Ortúzar (2005).

Traditional CA has had limited acceptance in transport studies due to a number of criticisms that have
been levelled against the method over the years (Louviere and Lancsar 2009). Firstly, it has been argued
that the statistical methods primarily used to analyse CA data are inappropriate, in that the dependent
variable of a linear regression model should be, at a minimum, interval scaled. As such, using ranking
data as a dependent variable certainly violates this assumption, although some argue that even ratings
data also is not interval level data, given how respondents psychologically use the ratings metric. A
second criticism lies not in how the data is analysed but with the very use of ratings or rankings data
as measurement metric. Respondents in real life do not rate or rank alternatives and even if they did
different people would approach such scales in psychologically different manners. As such, it has been
argued that outputs of CA surveys have no psychologically meaningful interpretation (Louviere and
Lancsar 2009). So, SC methods have tended to dominate transport studies.
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Fare Interchange Time on bus Walk time

10 mins15 minsNo change70 p

Fare Interchange Time on bus Walk time

8 mins20 minsNo change70 p

Fare Interchange Time on bus Walk time

10 mins15 minsNo change85 p

Fare Interchange Time on bus Walk time

8 mins15 mins1 change85 p

Figure 3.6 Example of stated-preference ranking exercise

3.4.1.2 Stated Choice Methods

Stated choice studies are similar to CA methods insofar as respondents are presented with a number of
hypothetical alternatives; however, the two methods differ in terms of the response metric. Whereas CA
asks respondents to rank or rate the alternatives (with all alternatives shown to respondents at the same
time), respondents undertaking a SC survey are asked to choose their preferred alternative from amongst
a subset of the total number of hypothetical alternatives constructed by the analyst. In asking respondents
to make a choice, rather than a rating or ranking, the two criticisms levelled at CA are avoided. Firstly, the
analysis of discrete choice data requires a different set of econometric models specifically developed to
analyse such data; thus, the choice metric is consistent with the statistical model applied to it. Secondly,
the selection of the single preferred alternative is psychologically consistent across respondents and a
task that is common to individuals in real markets. A further distinction between the two methods is that
CA tasks typically present respondents with a relatively large number of alternatives, simultaneously, to
rate or rank, whereas SC methods typically present only a few alternatives at a time (and in most cases
only two), changing them and having respondents repeat the choice task.

On the other hand, the primary distinction between RP and SC surveys is that in the latter case
individuals are asked about what they would choose to do (or how would they rank/rate certain options)
in one or more hypothetical situations. The degree of artificiality of these situations may vary, according
to the needs and rigour of the exercise:
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� The decision context may be a hypothetical or a real one; in other words, the respondent may be asked
to consider an actual journey or one that she might consider undertaking in the future.

� Some of the alternatives offered may be hypothetical although it is recommended that one of them be
an existing one, for example the mode just chosen by the respondent including all its attributes.

A crucial problem with stated preference data collection in general, is how much faith we can put
on individuals actually doing what they stated they would do when the case arises (for example, after
introducing a new option). In fact, experience in the 1970s was not good in this sense, with large
differences between predicted and actual choice (e.g. only half the people doing what they said they
would) found in many studies (see Ortúzar 1980a).

The situation improved considerably in the 1980s and good agreement with reality was reported
from models estimated using SC data (Louviere 1988a). However, this occurred because data-collection
methods improved enormously and became very demanding, not only in terms of survey design expertise
but also in their requirements for trained survey staff and quality-assurance procedures. The interested
reader can consult the excellent book by Louviere et al. (2000).

The main features of an SC survey may be summarised as follows:

(a) It is based on the elicitation of respondents’ statements of how they would respond to different
hypothetical (travel) alternatives.

(b) Each option is represented as a ‘package’ of different attributes like travel time, price, headway,
reliability and so on.

(c) The analyst constructs these hypothetical alternatives so that the individual effect of each attribute can
be estimated; this is achieved using experimental design techniques that ensure the parameters of the
chosen attributes are estimated with the smallest standard errors. In reality, an experimental design
is nothing more than a matrix of numbers used to assign values to the attributes of each alternative.
By using experimental design theory, the assignment of these values occurs in some non-random
manner, and by systematically varying the design attributes, the analysts are able to control as many
factors as possible influencing the observed choices. In creating the design in a specific and precise
manner, the analyst seeks to ensure the ability to obtain reliable parameter estimates with minimal
confoundment with the other parameter estimates.

(d) The researcher has to make sure that respondents are given hypothetical alternatives they can
understand, appear plausible and realistic, and relate to their current level of experience.

(e) The responses given by individuals are analysed to provide quantitative measures of the rela-
tive importance of each attribute; for this choice models are estimated as discussed in detail in
Chapter 8.

However, the process of constructing effective SP surveys is far from simple and quite time consuming
if done correctly. Extensive qualitative and secondary research is advised to determine the relevant set of
alternatives, attributes and attribute levels that will be used to make up the hypothetical alternatives. In
what follows we give advice based on useful discussions and comments by Dr. John M. Rose, Institute
of Transport and Logistics Studies, University of Sydney, one of the leading experts in this subject.

In preparing a SP survey, the analyst will need to address at least the following issues:

� Will the experiment be labelled (i.e. the names of the alternatives have substantive meaning beyond
their ordering; see Figure 3.7) or unlabelled (see Figure 3.8) and will a non purchase or status quo
alternative be presented (see Figure 3.7b)? We will come back to this last issue in section 3.4.2.6.

� In deciding what attributes to use, we need to determine what factors best represent those influencing
choices between the various alternatives. Note that other external criteria may also influence this task;
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(a) Standard design

(b) Design including a non-purchase option

Figure 3.7 Example of labelled mode SC tasks

for example, if the outputs from the study will be used as inputs into, say a network model, the
attributes should accommodate the constraints or needs of the latter (e.g. if a network model does not
allow for a comfort attribute, the analyst will need to determine whether it is worthwhile including
comfort in the SC study); we will come back to this issue below.

Figure 3.8 Example of unlabelled route SC task
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� With regards to attribute levels, the analyst needs to define values for each one, including specific
quantitative values (e.g. $5, $10 and $20) or qualitative labels (‘low’, ‘medium’ and ‘high’). Once
the above have been defined, further pre-testing and piloting is also recommended. This may result in
further refinements of the survey instrument. Only once the analyst is satisfied with the survey, should
the SC study be put out to field.

3.4.2 The Survey Process

In setting up a SP survey, analysts should aim to follow the five stages illustrated in Figure 3.9. The
first stage requires that the study objectives be clearly defined and clarified. This involves identifying the
population of interest as well as refining the experimental objects, or alternatives that will be studied.
Definitions and descriptions of new alternatives should also be defined and tested.

The second stage requires outlining the set of assumptions reflecting our overall beliefs as to what
qualities are important for an experimental design to display. These assumptions will dictate the statistical
properties of the design generated in Stage 3 of the process. As there exist many different possible

1. Clarify study objectives and define objects of interest

2. Define experimental assumptions

a. Define experimental conditions 
b. Population of study
c. Define study objects 
           i. Alternatives
          ii. Attributes and attribute levels

a. Specify desirable design properties 

a. Test design for misspecification 

b. Specify expected model type
c. Specify expected utility functions    
           i. Define expected coding structure
          ii. Specify prior parameter estimates

3. Generate experimental design

4. Conduct post  design generation testing

5. Conduct questionnaire

b. Construct the design

a. Randomise choice tasks

a. Specify design considerations    
           i. Determine number of choice tasks
          ii. Specify any design constraints

b. Randomise design dimension locations    
           i. Randomise attribute order
          ii. Randomise alternatives

Figure 3.9 Steps in designing a stated preference experiment
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experimental designs for any given problem (each with different statistical properties), specifying the
assumptions and outlining the properties that the analyst deems important is critical to generate the
design. Unfortunately, in the vast majority of SP studies, this second stage is generally ignored with
researchers generating designs without fully appreciating what assumptions led to them, or whether the
generated designs are appropriate for meeting the needs of the study.

The actual method for constructing a design in Stage 3 is dependent on the assumptions made in
Stage 2, with different assumptions requiring different design generation methods. Thus, even if the
analyst skips Stage 2, implicit assumptions are still being made in generating the design.

Stage 4 represents an ideal stage in the process rather than a necessary one; unfortunately, as with
Stage 2, it is often ignored in practice. In this stage, the analyst performs tests, usually in the form of
simulations, in order to determine how the design is likely to perform in practice. This type of tests may
allow the analyst to correct any issues with the design before going to field.

The final stage of the design generation process involves taking the design and using it to construct
the questionnaire that will be given to respondents.

3.4.2.1 Clarifying Study Objectives and Defining Objects of Interest

This stage involves the analyst gaining an understanding of the specific context or problem under study,
the population of interest, as well as the types of choices that sampled respondents will be asked to make.

Typically, the choice context (experimental conditions) is an input that is not under the analyst’s control,
being supplied by an external client or determined by the study objectives. Nevertheless, understanding
the context of the study is crucial to the success of SP studies and in special circumstances in-depth
interviews and seeking specialist knowledge may be vital in this task (Ortúzar and Palma 1992). Armed
with this knowledge, the analyst will then need to determine what behavioural outputs are of direct
interest, such as determining the subjective value of time (SVT), WTP for risk reductions, or just
estimating a generalised cost of travel formulation.

After gaining a full understanding of the problem under study, the analyst is next required to indentify
and understand the population of interest. This involves determining who the sample respondents are,
where they are likely to be located, how they will be sampled and how will they be surveyed. Under-
standing such questions at this stage is important, as they will influence the type of questionnaire that
will be used and this will likely influence the type of experimental design generated.

For example, if respondents are located in a geographically dispersed pattern and have limited access
to internet, mail-back paper and pencil surveys may be the only option. In such cases, the experimental
design will be more difficult to adapt to individual specific circumstances. Where respondents may be
surveyed using a computer or over the internet, the experiment may adapt to each individual’s reported
circumstances (e.g. if a respondent does not have access to a car, then the car alternative may be removed
from the survey for that respondent). The type of survey used will also have implications in terms of
the data collected, which will determine whether the assumptions made in Stage 2 of the survey design
process transfer from the design over to the data finally gathered. As well as having an impact upon
survey design, understanding the population of interest will also provide further insights in the sampling
required for the study (see Stage 3). Finally, in understanding the population of interest, the analyst may
determine for example, whether different segments should be sampled, and hence whether more than
one experimental design or survey questionnaire is necessary.

Understanding the population of interest as well as the overall study objectives will provide insights
into the number of and diversity of alternatives applicable to various sampled individuals when making
decisions within the study context. Such knowledge will assist in constructing the choice tasks that will
be used in the SP survey. Figure 3.7 showed two different choice tasks that might be considered for
a mode choice study. That in Figure 3.7a requires respondents to choose between train, bus and car
alternatives, whereas the choice task in Figure 3.7b allows the respondent to also select none of these
alternatives. If the objective of the study was to model commuter choice, then the first choice task can
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be applied without problems for respondents who cannot choose not to travel to work; however, it might
not be adequate for respondents who can telecommute (i.e. work from home), and in that case the second
choice task should be preferable. Similarly, for non-commuting trips the second choice task might be
more appropriate given that most non-commuting trips can be considered discretionary in nature (at least
for non-teenagers).

Attributes and Alternatives The construction of realistic, or technologically feasible, alternatives
requires the following four distinct tasks:

a) The range of options is usually given by the objective of the exercise; however, one should not omit
realistic alternatives a user might consider in practice. For example, in studying potential responses
of car drivers to new road-pricing initiatives it may not be sensible to consider only alternative modes
of travel; changes to departure time or to alternative destinations (to avoid the most expensive road
charges) may be very relevant responses. By ignoring them one places the respondent in a more
artificial (less realistic) context, perhaps triggering inappropriate or unrealistic responses (we will
discuss this type of issue further in section 3.4.2.6).

b) The set and nature of the attributes should also be chosen to ensure realistic responses. The most
important attributes must be present and they should be sufficient to describe the technologically
feasible alternatives. Care must be applied here as particular combinations of attributes (e.g. a high-
quality, high-frequency, low-cost alternative) may not be seen as realistic by respondents thus reducing
the value of the whole exercise. Care must be taken also if the number of attributes is deemed
excessive (say higher than six); Carson et al. (1994) found that fatigue effects make respondents
simplify their choices by focusing on a smaller number of attributes or simply answering at random
or in lexicographic fashion (Sælensminde 1999). In this sense, recent work has shown that there may
be limits, which are culturally affected, on the number of choice tasks, alternatives, attributes and even
their range of variation, that are acceptable in a given study (Caussade et al. 2005; Rose et al. 2009a).

c) To ensure that the right attributes are included and that the options are described in an easy-to-
understand manner, it is advantageous to undertake a small number of group discussions (e.g. focus
groups) with a representative sample of individuals. A trained moderator will make sure all relevant
questions regarding perception of alternatives, identification of key attributes and the way in which
they are described and perceived by subjects, and the key elements establishing the context of the
exercise are all discussed and reported. Focus groups cost money and in many cases the researcher
will be tempted to skip them believing a good understanding of the problem and context already
exists. In that case, it will be even more essential to undertake a carefully monitored pilot survey
where any issues of attribute description and alternative presentation can be explored.

d) The selection of the metric for most attributes is relatively straightforward. However, there are
some situations that may require more careful consideration, in particular with respect to qualitative
attributes like ‘comfort’ or ‘reliability’. For example travel time reliability can be presented as a
distribution of journey times on different days of a working week, or as the probability of being delayed
by more of a certain time. For more on this issue see the discussion of stimulus presentation below.

e) Finally, in relation to the number of levels that each attribute can take, it is important to bear in mind
that Wittink et al. (1982) found evidence that variables with more levels could be perceived as more
important by respondents; we will come back to this issue in relation to another topic below.

3.4.2.2 Defining Experimental Assumptions

For any SC study, there exist many potential experimental designs that can be constructed. The analyst’s
aim is to choose a particular design construction method and generate the design. This will depend upon
many different considerations, most of which reflect the personal beliefs of the analyst as to what are
important properties the design must possess. However, some decisions do not reflect the personal biases
or beliefs of the analyst but, rather, are influenced by the problem being studied.
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Labelled or Unlabelled Experiments In many instances the decision to treat an experiment as either
labelled or unlabelled will depend upon the problem under study. In particular, mode choice studies
will generally require a labelled experiment, whereas route choice problems are in general amenable to
unlabelled SC experiments. Nevertheless, the decision as to whether either type of experiment is used is
crucial, as it typically impacts upon the number and type of parameters that will be estimated as part of
the study.

Generally, unlabelled experiments require only the estimation of generic parameters whereas labelled
experiments may require the estimation of either alternative specific or generic parameters, or combina-
tions of both. Prior knowledge of the number of likely (design related) parameter estimates is important
as each one represents an additional degree of freedom required for estimation purposes. General ex-
perimental design theory posits that the Fischer Information (or Hessian) matrix (I) will be singular if
the number of choice observations (each one equivalent to a choice task) is smaller than the number of
parameters (see Goos 2002). As such, the minimum number of choice tasks required for an experimental
design is equal to or greater than the number of (design related) parameters to be estimated. Note that
the inclusion of a status quo alternative does not impact upon the minimum number of choice tasks
required for a design, as it does not require the estimation of any attribute related parameter estimates.
The decision to use a labelled rather than an unlabelled choice experiment may also impact upon the
generation of orthogonal designs, as discussed in section 3.4.2.3.

Imposing Attribute Level Balance This is another consideration in generating designs. Attribute level
balance occurs when each attribute level appears an equal number of times, within each attribute, over
the entire design. This is generally considered a desirable property, although it may impact upon the
statistical efficiency of the design (see section 3.4.2.3). If present, it ensures that each point in preference
space is equally represented, so that parameters can be estimated equally well on the whole range of
levels, instead of having more or less data points at only some of the attribute levels (which may affect
how the design performs in practice). Nevertheless, it is worth noting that attribute level balance may
require larger designs than dictated by the number of parameter estimates requirement.

Example 3.11 Consider a design with four attributes, where two have two levels, one has three levels
and the last has four levels. In the classical jargon in this field we would refer to this as a 22 31 41 factorial
design; note that the product of levels to the power of attributes (48 in this case) represents the total
number of choice tasks needed to recover all effects (i.e. main or linear effects and all interactions), i.e.
a full factorial design (more about this below).

Assuming each attribute will produce a unique parameter estimate (i.e. main effects only), the smallest
design would require just four choice tasks based on the number of parameters criterion; however, to
maintain attribute level balance, the smallest possible design would require 12 choice tasks (12 being
divisible without remainder by 2, 3 and 4).

Number of Attribute Levels This should reflect the researchers’ belief as to the relationship each
level has to the overall contribution to utility and whether the relationship is expected to be linear or non-
linear from one level to the next. If nonlinear effects are expected for a certain attribute and the analyst
suspects that the attribute will be, say, dummy coded (see Example 3.11) prior to analysis, then more
than two levels will be needed to model appropriately the suspected nonlinearities. Where dummy coded
(or effects and/or orthogonal coded) attributes are included, the number of levels for these attributes is
predetermined. However, the more levels used, the higher the potential number of choice tasks required
due to additional parameters being estimated. Also, mixing the number of attribute levels for different
attributes may yield a higher number of choice tasks (due to attribute level balance).

Varying the Range of Attributes Research into the impact of this suggests that using a wide range
(e.g. $0–$30) is statistically preferable to using a narrow range (e.g., $0–$10) as this will theoretically
lead to parameter estimates with a smaller standard error; however, using too wide a range may also be



P1: TIX/XYZ P2: ABC

JWST054-03 JWST054-Ortuzar February 24, 2011 13:24 Printer Name: Yet to Come

Data and Space 103

problematic (see Bliemer and Rose, 2008). In fact, having too wide an attribute level range may result in
choice tasks with dominated alternatives; whereas having too narrower a range may result in alternatives
for which the respondent will have trouble distinguishing between (see Cantillo et al. 2006). However,
such considerations are purely statistical in nature and analysts should also consider practical limitations
upon the possible range that the attribute levels can take; that is, the attribute levels shown to respondents
must make sense to them (must be realistic). Hence there will be often a trade-off between the statistical
preference for a wider attribute level range and practical considerations that may limit this range.

Inclusion of Interaction Effects These are important when the effects of two variables are not additive
(see Figure 3.10); including interactions will impact upon the number of choice tasks required of a design.
This is because each interaction effect will have a corresponding parameter estimate and hence it requires
an additional degree of freedom, and in turn, an additional choice task. As such, Rose and Bliemer (2009)
suggest starting the design generation process by specifying the ‘worst case’ utility specification (i.e.
in terms of all the effects that might be tested, along with any non-linear parameterisation that may
be estimated). Generating a design with too few choice tasks will likely preclude the estimation of
potentially valid utility specifications at a later stage, whilst generating a design with more than the
minimum number of choice tasks does not preclude the estimation of simpler model forms.

Figure 3.10 Presence and absence of attribute interaction: (a) without interaction, (b) with interaction

Once decisions for each of the above have been made, several different experimental design generation
procedures can be considered. The easiest method is to employ a full factorial (FF) design, i.e. one
consisting of all possible choice tasks. One benefit of using a FF design is that all main effects and
interaction effects will be orthogonal. Unfortunately, the number of choice tasks in a FF design will
typically be too large and many of the choice tasks will have dominated or unrealistic alternatives.

Fractional Factorial Designs Due to the practical impossibility of dealing with FF designs, many
analysts rely on the so-called fractional factorial designs, which consist of a subset of choice tasks
from the full factorial. To construct a fractional factorial design, one could randomly select choice tasks
from the FF; however, more intelligent strategies are possible. Numerous methods have been explored
within the literature as to how to select choice tasks in a structured manner, so that the best possible
data from the SC experiment will be produced for estimating models. The most widely known fractional
factorial design type is the orthogonal design, which is produced so as to have zero correlations between
the attributes within the SC experiment (and thus it is excellent for estimating linear models, see Rose
and Bliemer 2009). Although there are several types of orthogonal designs, we will consider here only
the most popular one, consisting of constructing a simple orthogonal array.
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Example 3.12 Consider a situation with five attributes, two at two levels and the rest at three levels (i.e.
a 22 33 design). In this case, depending on the number of interactions to be tested, the number of options
required would vary as follows in a classical orthogonal design:

� 108 to consider all effects (i.e. a full factorial design);
� 81 to consider principal effects and all interactions between pairs of attributes, ignoring effects of a

higher order;
� 27 to consider principal effects and interactions between one attribute and all the rest;
� 16 only if no interactions are considered.

More recently, several researchers have suggested other types of fractional factorial designs such as
D-optimal or D-efficient designs (Rose and Bliemer 2008). In generating these types of designs, re-
searchers define its efficiency in terms of variances (the roots of which are the standard errors, as we will
see in Chapter 8) and covariances of the parameter estimates; the lower these (co)variances, the more
efficient the experimental design. As such, the objective in generating this type of design is to choose
attribute level combinations that will result in the smallest possible parameter (co)variances. In order to
do so, the analyst must make a number of assumptions about the model to be estimated as well as the
parameter estimates that will be obtained. This enables the expected asymptotic covariance matrix (S2)
of the design to be calculated, from which the (co)variances are derived; note that it is calculated as the
negative inverse of I (see section 8.4.1), the Fisher information or Hessian matrix. Understanding what
model will be estimated is important, as S2 for a given design will be different for different econometric
model specifications.

Nevertheless, two competing schools of thought have emerged within the literature as to what parameter
priors are appropriate to use in generating experimental designs for SC studies. The first creates designs
under the so-called null hypothesis, namely zero valued parameter priors (Street et al. 2005), whilst
the competing school assumes non-zero valued parameter priors. Clearly, in the latter case, one has to
decide what these non-zero valued parameter priors are, typically leading to more efficient designs if the
population parameter estimates are truly non-zero. However, this comes at the expense of the effort to
obtain parameter priors (Rose and Bliemer 2008).

Within the first school of thought, whilst not necessary, further assumptions are typically made in
generating SC designs. Firstly, it is generally assumed that designs that are orthogonal within alternatives
and which maximise the differences in attribute levels between alternatives (i.e. will be correlated between
alternatives) will be optimal (see Burgess and Street 2003; 2005; Street and Burgess 2004; 2007). This
is because under the assumption that the parameters are all zero, any discrete choice model will collapse
to a linear model and therefore an orthogonal design will be optimal. This also acknowledges the fact
that discrete choice models are really difference in the utilities models (see section 7.3.1).

A second assumption which has been less well communicated for this class of designs, is that S2

is usually constructed under the assumption that the analyst will apply orthogonal codes to models
estimated using data collected with the design. As such, the efficiency of the design may be reduced if a
different coding system is used in practice, which is typically the case. Finally, optimal designs for this
type of design have only been produced under the assumption of estimating Multinomial Logit (MNL)
models, which are the simplest discrete choice models (Domencich and McFadden 1975). Nevertheless,
the appeal of this approach is two-fold:

� Respondents are forced to make trade-offs on each and every attribute of the design, as no two attributes
in any given choice situation will, where possible, take the same value.

� The approach does not require a priori knowledge of the parameter estimates, and this may be
particularly suitable for designs which have mainly qualitative attributes.
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The second design school of thought utilise non-zero valued parameter priors, assuming some prior
knowledge about their values. Original research into generating efficient designs assumed that researchers
had exact knowledge about the expected parameter estimates (e.g. θ1 = −0.2; θ 2 = 1.0). Designs
generated under such an assumption are known as locally optimal designs as their (co)variances will
be minimised only at the precise values assumed for the prior parameters (see Rose and Bliemer 2005;
Scarpa and Rose 2008).

More recently, researchers have produced Bayesian efficient designs that do not assume precise
knowledge of the parameter estimates. Such designs allow for the true population to fall within some
distribution of possible parameter estimates, such that the analyst optimises over the distribution of
possible priors (e.g. θ1 ∼ N(−0.8, 0.2)). In this approach, we generally let go of the principle of
orthogonality and generate designs in a manner that can be expected to minimise the elements of S2

associated with the (non-linear) discrete choice model estimated on the data (Bliemer and Rose 2006;
Bliemer et al. 2009; Carlsson and Martinsson 2002; Ferrini and Scarpa 2007; Fowkes 2000; Huber and
Zwerina 1996; Kanninen 2002; Kessels et al. 2006; Rose and Bliemer 2008; Sándor and Wedel 2001;
2002; 2005; Scarpa and Rose 2008; Toner et al. 1998; Watson et al. 2000).

The main advantage of this approach is that the generated design is directly related to the expected
outcome of the modelling process. Besides, it can be optimised for any model type, not just MNL, or for
a range of model types (Rose et al. 2009b). Further, the approach can assume any data structure (i.e. it is
not limited to assuming orthogonal coding). However, while the first school can prove optimality of their
designs (under the null hypothesis), the second school generally cannot (under the non-null hypothesis).
Therefore these designs are typically called efficient and not optimal designs.

A Note on Dummy, Effects and Orthogonal Coding Data If the marginal impact upon utility
is believed to be non-linear from one attribute level to another, the analyst may wish to test this by
transforming the data using dummy, effects or orthogonal codings. Within the literature, the former
remains the preferred method, although effects and orthogonal codings offer a number of advantages
over it.

In all cases, the analyst creates D = L − 1 new variables in the data, where L is the total number
of levels for the attribute being transformed. For dummy coding transformations, the researcher uses
a series of zeros and ones to map the original levels to the newly created D variables. To create the
mapping, each newly dummy variable corresponds to the first L − 1 levels of the original attribute.
To create the dummy codes, every time level l appears for the original attribute, the corresponding
newly created dummy variable takes the value 1; otherwise, it takes the value zero. This occurs for
all but the last attribute level (the base level) which does not have a corresponding dummy variable.
In that case, the last attribute level will take the value zero for all dummy coded variables (see Table
3.3). Effects coding use the same pattern of mapping creating E = L − 1 effects coded variables;
however, the base level takes the value −1 for all the E effects coded variables (see Table 3.3).

Finally, like dummy and effects coding, orthogonal coding requires the creation of O = L − 1 new
variables. However, unlike dummy and effects coding here we use orthogonal polynomial contrasts
to populate the O new variables (see Table 3.3). Thus, each successive orthogonal coded variable
corresponds to a higher order polynomial effect for the pre-transformed attribute (i.e. ok1 → xk (linear
effect), ok2 → xk

2 (quadratic effect), ok3 → xk
3 (cubic effect), etc.). Rather than directly taking the

polynomial power of the original variable and using these directly (which will induce correlation in

(continued)
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the data), orthogonal coding uses orthogonal polynomial contrasts which retain orthogonality within
each attribute (see Chihara 1978).

Table 3.3 Example of dummy, effects and orthogonal coding

Dummy Coding Effects Coding Orthogonal Coding
Attribute

Levels D1 D2 D3 D4 D5 E1 E2 E3 E4 E.5 O1 O2 O3 O4 O5

2
1 1 – – – – 1 – – – – 1 – – – –
2 0 – – – – −1 – – – – −1 – – – –

3
1 1 0 – – – 1 0 – – – −1 1 – – –
2 0 1 – – – 0 1 – – – 0 −2 – – –
3 0 0 – – – −1 −1 – – – 1 1 – – –

4

1 1 0 0 – – 1 0 0 – – −3 1 −1 – –
2 0 1 0 – – 0 1 0 – – −1 −1 3 – –
3 0 0 1 – – 0 0 1 – – 1 −1 −3 – –
4 0 0 0 – – −1 −1 −1 – – 3 1 1 – –

5

1 1 0 0 0 – 1 0 0 0 – −2 2 −1 1 –
2 0 1 0 0 – 0 1 0 0 – −1 −1 2 −4 –
3 0 0 1 0 – 0 0 1 0 – 0 −2 0 6 –
4 0 0 0 1 – 0 0 0 1 – 1 −1 −2 −4 –
5 0 0 0 0 – −1 −1 −1 −1 – 2 2 1 1 –

6

1 1 0 0 0 0 1 0 0 0 0 −5 5 −5 1 −1
2 0 1 0 0 0 0 1 0 0 0 −3 −1 7 −3 5
3 0 0 1 0 0 0 0 1 0 0 −1 −4 4 2 −10
4 0 0 0 1 0 0 0 0 1 0 1 −4 −4 2 10
5 0 0 0 0 1 0 0 0 0 1 3 −1 −7 −3 −5
6 0 0 0 0 0 1 1 1 1 1 5 5 5 1 1

Example 3.13 Consider the orthogonal design for two attributes, A and B, and four choice tasks
shown in Table 3.4. The rows represent choice tasks and the columns have the attribute level values
that would be shown in each choice task. In this case the correlation structure (i.e. the correlation
coefficients for the variables in each column) is orthogonal by construction (see Wonnacott and
Wonnacott 1990).

Table 3.4 Original orthogonal design

Choice task A B
1 1 3
2 2 1
3 3 4
4 4 2

Correlation Structure
A B

A 1 0
B 0 1

Table 3.5 demonstrates dummy, effects and orthogonal coding transformations for this design. The
correlation structure is also given at the base of the table for each coding type (it can be simply
computed using the data analysis tool in Excel). As can be seen, both dummy and effects codings
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induce correlation within the data, even if the original design from which they were created was
orthogonal (uncorrelated). Orthogonal coding, despite being largely ignored within the literature,
avoids this problem.

Table 3.5 Dummy, effect and orthogonal code comparison

Dummy Codes Effects Codes Orthogonal Codes
Choice task AD1 AD2 AD3 BD1 BD2 BD3 AE1 AE2 AE3 BE1 BE2 BE3 AO1 AO2 AO3 BO1 BO2 BO3

1 1 0 0 0 0 1 1 0 0 0 0 1 −3 1 −1 1 −1 −3
2 0 1 0 1 0 0 0 1 0 1 0 0 −1 −1 3 −3 1 −1
3 0 0 1 0 0 0 0 0 1 −1 −1 −1 1 −1 −3 3 1 1
4 0 0 0 0 1 0 −1 −1 −1 0 1 0 3 1 1 −1 −1 3

Correlation Structure
Al1 Al2 Al3 Bl1 Bl2 Bl3 Al1 Al2 Al3 Bl1 Bl2 Bl3 Al1 Al2 Al3 Bl1 Bl2 Bl3

Al1 1 0 −0.3 −0.3 −0.3 −0.3 1 0.5 0.5 0 −0.5 0.5 1 0 0 0 0 1
Al2 −0.3 1 −0.3 1 −0.3 −0.3 0.5 1 0.5 0.5 −0.5 0 0 1 0 0 −1 0
Al3 −0.3 −0.3 1 −0.3 −0.3 −0.3 0.5 0.5 1 −0.5 −1 −0.5 0 0 1 −1 0 0
Bl1 −0.3 1 −0.3 1 −0.3 −0.3 0 0.5 −0.5 1 0.5 0.5 0 0 −1 1 0 0
Bl2 −0.3 −0.3 −0.3 −0.3 1 −0.3 −0.5 −0.5 −1 0.5 1 0.5 0 −1 0 0 1 0
Bl3 1 0.3 0.3 0.3 0.3 1 0.5 0 0.5 0.5 0.5 1 1 0 0 0 0 1

Aside from the issue of correlation, a further reason for preferring to use effects and orthogonal codes
over dummy codes, is that the base level of dummy coded variables will be perfectly confounded
with the model constants and hence indistinguishable from each other. By using non-zero base level
codes, effects and orthogonal codings avoid such confoundment and allow for independent estimates
of the base level.

3.4.2.3 Generating the Experimental Design

In practice, there are several different approaches that one might employ to generate a workable experi-
mental design, all of which reflect the analyst own beliefs about what are the most important properties
for a SC experimental design to display.

Traditional Orthogonal Designs Methods These have been historically the most common experi-
mental design types. Orthogonality is related to the correlation structure of the design attributes. By
forcing them to have zero correlations, each attribute is independent of all others. Several methods for
constructing orthogonal designs exist in practice, including but not limited to methods such as generat-
ing balanced incomplete blocked designs (BIBD), Latin Squares designs, orthogonal in the differences
fractional factorial designs, and fold-over designs; all these have been discussed extensively elsewhere
(Bunch et al. 1996; Fowkes and Wardman 1988; Louviere et al. 2000; Rose and Bliemer 2008).

We will only consider the most widely applied orthogonal design type: the LKJ orthogonal fractional
factorial design (where L is the number of levels, K the number of attributes and J the number of
alternatives); two types of LKJ designs have been described in the past. The first involves attributes
that are uncorrelated both within and between alternatives; such designs are termed simultaneous
orthogonal designs, as all alternatives are generated at the same time. The second type involves

(continued)
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first locating an orthogonal design for the first alternative, and using the same design to construct
subsequent alternatives by re-arranging the rows of the design (Louviere et al. 2000); such designs
are known as sequentially generated LKJ orthogonal fractional factorial designs.

In generating an orthogonal design sequentially, the analyst needs only locate an orthogonal
design for a single alternative, whereas the simultaneous design approach requires the generation
of an orthogonal design considering the correlation structure of all attributes, irrespective of which
alternative they belong to. For this reason, the sequential design approach will generally result in
designs with smaller numbers of choice tasks, as the theoretical minimum number of choice tasks
required for a design does not necessarily guarantee that an orthogonal design may be located.

Example 3.14 Consider a design with three alternatives, each described by seven attributes with
three attribute levels. The smallest simultaneous fractional factorial orthogonal design that can be
constructed with 21 design attributes (7 attributes across 3 alternatives) has 72 choice tasks (see Hahn
and Shapiro, 1966 or the websites mentioned below).

In comparison, the smallest sequential orthogonal design (where it is only necessary to locate an
orthogonal design that is uncorrelated for 7 attributes) has only 12 choice tasks.

One limitation of the sequential design process is that such designs are appropriate only for
unlabelled SC experiments. Note also that designs generated under the null hypothesis of zero prior
parameters, as described above, are sequentially generated LKJ orthogonal fractional factorial designs.

Independent of the actual process used, a number of useful websites and software are available for
obtaining orthogonal designs (see Hedayat et al. 1999). Further, several software packages such as
SPSS (www.spss.com), SAS (www.sas.com) and Ngene 1.0 (www.choice-metrics.com) are also able to
generate a range of orthogonal designs.

D-Optimal Design Method Under the Null Hypothesis Traditionally, an analyst would construct
a sequential orthogonal design by simply assigning choice tasks randomly from the first alternative to
make up the second and subsequent alternatives. More recently, a new optimality criterion has been
developed to construct optimal orthogonal SC designs specifically generated for MNL models using
orthogonal codes. These designs maintain (within alternative) orthogonality, whilst also minimizing S2

under the assumption that the parameters will be zero and the attributes will be orthogonal coded.
In practice, this typically results in the attribute levels across alternatives being made as different

as possible. As such, these designs will generally increase the trade-offs that respondents are forced
to make across all attributes maximising the information obtained in terms of the importance that
each attribute plays on choice (Burgess and Street 2005; Street and Burgess 2004). Street and Burgess
(2007), Street et al. (2005) and Rose and Bliemer (2008), provide detailed discussions of the exact
procedures used in generating this class of design. Finally, Ngene 1.0 and Burgess (http://crsu.science.uts.
edu.au/choice/choice.html) provide computing capabilities for generating such designs.

D-Efficient Design Methods Under the Non-Null Hypothesis An alternative approach to generating
SC experiments involves selecting a design that is likely to provide an S2 matrix containing values
which are as small as possible, under the assumption that the parameters will not be zero. Given that their
asymptotic standard errors obtained from discrete choice models are simply the square roots of the leading
diagonal of this matrix, the smaller the matrix elements (or at a minimum, it’s diagonal elements), the
smaller the asymptotic standard errors for each parameter. However, these efficient designs are unlikely
to be orthogonal.

http://www.spss.com
http://www.sas.com
http://www.choice-metrics.com
http://crsu.science.uts.edu.au/choice/choice.html
http://crsu.science.uts.edu.au/choice/choice.html
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Efficient designs constructed under the non-null hypothesis differ to those generated under the null
hypothesis in that they attempt to mimic the performance of the model to be estimated post data
collection. If after extensive pre-design research, including focus groups, in-depth interviews and pilot
studies, one expects that the selected attributes have no impact upon choice (equivalent to assuming
that the parameters will be statistically equal to zero), then one could question why the study is being
conducted at all. In this way, the objective function defining optimality in generating a non-null prior
parameter efficient design may be considered a practical one, as the design seeks to minimise the standard
errors one is expecting to obtain in practice.

Nevertheless, efficient designs constructed under the non-null parameter prior hypothesis require a
number of strong assumptions:

� The analyst must first decide what model type is likely to be estimated once the data has been collected,
in order to decide what matrix will be specifically used in generating the design. This is because S2

for one discrete choice model will differ from that of any other discrete choice model; for example,
that corresponding to the MNL model is different to that of a Nested Logit (NL) or Mixed Logit (ML)
model (see Bliemer and Rose 2008; 2009; Rose et al. 2009b). But recall that optimal designs generated
under the null-hypothesis assumption can only assume a MNL model specification.

� The analyst must also assume what the population parameter estimates will be in order to predict S2

for a design. The reason is that for any Logit model S2 is analytically equal to the negative inverse of
the second derivatives of the model’s log-likelihood function (as we will see in section 8.3) and these
are, in turn, a function of the model probabilities. But the model probabilities are a function of the
utilities, which are in turn a function of the design attributes and the parameter estimates.

As discussed above, the analyst can assume prior parameter estimates in a Bayesian-like fashion when
constructing a design. The assumption of prior parameters does not need to be too restrictive. Precise
prior parameter values need not be provided (though such designs have been generated in the past; see for
example, Carlsson and Martinsson 2002). Rather, prior parameter distributions that (hopefully) contain
the true population parameter values can be used. Such designs are then optimised over a range of
possible parameter values, without the analyst having to know the precise population values in advance
(see Sándor and Wedel 2001; Kessels et al. 2006). This, however, increases substantially the computing
time required to generate the design. Rose and Bliemer (2008) outline the precise steps used to generate
this type of design, whilst Bliemer and Rose (2008), Bliemer et al. (2009) and Rose et al. (2009b) provide
details of the analytical second derivatives (needed to compute S2) for a range of different Logit models.

Measuring Statistical Efficiency Rather than attempting to minimise the elements of S2 of a given
design directly, a number of measures of the statistical efficiency of a design have been proposed and
can be used instead. The most common is the D-error, which uses the scaled determinant (i.e. raised
to the power 1/K to account for the number of parameters to be estimated) of S2 to measure efficiency.
Another, less popular measure, is A-error that is based on the trace of S2.

The determinant of a matrix is a single summary statistic of the magnitude of the elements contained
within the matrix. The smaller the determinant, the smaller, on average, the values contained within the
matrix will be. In the case of designs generated under the null hypothesis, assuming orthogonal coding
and a MNL model structure, the D-error measure is converted to a D-optimality statistic, which is a
percentage value of the design’s overall efficiency. Typically designs with values of around 90 percent or
higher, are said to represent desirable designs of this class. For all other efficient designs, the objective
is to minimise the D-error.

Another measure of statistical efficiency, proposed by Bliemer and Rose (2009), is S-error. McFadden
(1974) described a direct relationship between the matrix S2 of Logit models and the sample size required
to locate statistically significant parameter estimates. Bliemer and Rose (2009) proposed exploiting this
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relationship to calculate the sample size requirements for SC experiments. The S-error of a design
provides the theoretically minimum sample size required to obtain asymptotically significant parameter
estimates from it. As with D-error, the objective is to find a design that minimises S-error. In order to
calculate the S-error of a design, the analyst must also construct its matrix S2.

Independent of the precise efficiency measure used, minimizing the elements of S2 for a design also
reduces the expected asymptotic standard errors (i.e. the square roots of the diagonals of the matrix). As
such, for any given sample size, smaller asymptotic standard errors mean smaller confidence intervals
around the parameters estimates, as well as larger asymptotic t-ratios for each parameter. Hence, efficient
designs are constructed specifically for the purpose of producing more reliable study results.

Alternatively, efficient designs may produce the same asymptotic standard errors as other designs
given smaller sample sizes. This is because the S2 of all discrete choice models are divisible by N, the
sample size, and as such, the asymptotic standard errors are also divisible by the square root of N. The
result of this is that there exists an inescapable diminishing return in terms of the statistical significance
of the parameter estimates obtained from each additional respondent added to a survey.

Example 3.15 Let the Fisher information matrix with N respondents be denoted by IN (θ). Since
IN (θ) = N · I1(θ), it holds that S2

N = (IN (θ))−1 = 1
N (I1(θ))−1 = 1

N S2
1, such that:

seN (θ ) = se1(θ)√
N

. (3.18)

Hence, it is clear that the asymptotic standard errors provide diminishing improvements (decreases) for
larger sample sizes.

Methods for Generating Designs Under the Non-Null Hypothesis A number of algorithms have
been implemented for generating efficient designs under the non-null hypothesis; these tend to be
either row or column-based algorithms. Row-based algorithms (e.g. Modified Federov algorithm,
see Cook and Nachtsheim 1980) typically start by creating a set of candidate choice tasks (either
generating a full factorial or a fractional factorial design) and then select choice tasks either randomly
or based on some form of efficiency criterion.

Column-based algorithms start with a random design and change the attribute levels within each
attribute of the design. Row-based algorithms have the benefit of being able to remove dominated
choice tasks from the candidate set; however, such algorithms typically struggle with maintaining
attribute level balance. Column-based algorithms, on the other hand, typically have little difficulty in
maintaining attribute level balance but can often result in dominated choice tasks.

The most popular algorithm appears to be the RSC (relabelling, swapping and cycling) algorithm
(Huber and Zwerina 1996; Sándor and Wedel 2001). It has three separate operations; however, some
may be omitted if required. The algorithm begins with a randomly constructed design after which the
columns and rows are changed using relabelling, swapping, and cycling techniques, or combinations
thereof. Relabelling occurs where all attribute levels of an attribute are switched (e.g. the combination
{1, 2, 1, 3, 2, 3} might be relabelled {3, 2, 3, 1, 2, 1}). The swapping operation involves switching
the levels of only a few attribute levels at a time rather than all attribute levels (e.g. the attribute
combination {1, 2, 1, 3, 2, 3} might become {3, 2, 1, 1, 2, 3}). Finally, cycling replaces all attribute
levels in each choice task simultaneously, by replacing the first attribute level with the second level,
the second level with the third, etc. As such, cycling can only be performed if all attributes have
exactly the same set of feasible levels.

A Note on Blocking of Designs Often the total number of choice tasks generated from a design may be
too large for any one respondent to handle. In such cases, the researcher may turn to blocking the design.
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One way of doing this is by means of modular algebra deciding one effect that will be confounded (see
Galilea and Ortúzar, 2005). For orthogonal designs, blocking involves finding an additional ‘blocking’
column which may be used to allocate subsets of the generated choice tasks to different respondents.
By using an orthogonal blocking column, the allocation of the choice tasks to respondents will be
independent of the attribute levels shown to each (i.e. one respondent will not view choice tasks with
only high prices and another choice tasks with low prices). For non-orthogonal efficient designs, it is
unlikely that an orthogonal blocking column may be located. In such a case, the analyst may produce
a near orthogonal blocking column by minimising the largest correlation between the blocking column
and the design attributes. This approach will be demonstrated in section 3.4.3.

A Note on the Need for Prior Information in Generating Designs One of the main criticisms of
generating SC experiments is the requirement for prior knowledge about parameter priors and model
structure. With regards to the first issue, researchers have shown that where no prior information about
likely parameter values is known, a traditional orthogonal design will most likely generate good results as
it is actually generated under the assumption of no priors. However, where prior information is available
it is generally possible to obtain greater statistical efficiency by relaxing the orthogonality constraint
(see Rose and Bliemer 2009 for a review of this literature). Thus, even if the only information that
the analyst has is that a parameter will take a particular sign (e.g. a cost parameter will be negative), a
Bayesian uniform distribution may be used to generate a D-efficient design under the non-null hypothesis
with advantage.

The issue of requiring advanced knowledge about the model structure is far more complicated. Our
case study above assumed a MNL model. Unfortunately, different discrete choice models have different
S2 matrices as each one produces more or less parameter estimates. As such, optimising a design for a
MNL model does not ensure that it will be optimal for other model forms.

Equations for constructing the S2 matrix for other model structures have been reported; for example,
Bliemer et al. (2009) compare designs optimised for the Nested Logit (NL) model with those generated for
the MNL. Sándor and Wedel (2002) examined the cross-sectional formulation of the random parameters
Mixed Logit (ML) model, and Bliemer and Rose (2008) explored the panel formulation of this same
model. It is worth noting, however, that these researchers have found that designs optimised for the MNL
model typically perform well when analysed using other model forms, with the exception of the cross
sectional version of the random parameters ML model. In any case and to overcome this criticism, Rose
et al. (2009b) introduced a form of model averaging, where the S2 matrix for different model structures
can be computed and a weighted efficiency measure generated.

A Note on Interaction Effects and SC Designs Quite often, analysts are interested in estimating
interaction effects in addition to main effects (see Figure 3.10). Using the traditional design method of
constructing orthogonal designs, this meant that the attributes of the design were allocated to particular
columns so that not only were the effects orthogonal with each other, but so too were some or all of
the interaction columns (formed by multiplying two or more main effects columns together). Recall that
orthogonal designs minimise the elements contained within the S2 matrix of linear models. Indeed, they
tend to produce zero covariances suggesting that the parameter estimates of the effects of interest are
independent of one another.

Given that the experimental design literature originated with the examination of linear models (i.e.
ANOVA and regression models), such designs were deemed important. Nevertheless, discrete choice
models are not linear models (although they do collapse to linear models when all parameter estimates
are simultaneously zero). As such, the same problems that exist for main effects exist for interaction
terms when it comes to estimating discrete choice models. In fact, a design that is capable of detecting
independent interaction effects under the null hypothesis will produce non-zero covariances when the
parameters are no longer zero, suggesting that there exist correlation between the parameters of interest.
Thus, in order to minimise the standard errors and covariances of any interaction effects of interest, prior
parameter estimates are required for these also.
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3.4.2.4 Conduct Post Design Generation Testing

Once a design has been generated, it is possible to test how it might be expected to perform in practice.
When conducted, such tests have typically taken one of two forms. Given a design, fix it and change the
parameter priors to test its efficiency under the new set of assumed parameters (see Rose and Bliemer
2008). In taking this approach, the researcher is able to determine the robustness of the design to
misspecification of the prior parameters. Some analysts have also employed Monte Carlo simulation to
test whether the correct data generation process has been used in generating the design as well as how
accurate the parameter estimates will be for various sample sizes (see Kessels et al. 2006; Ferrini and
Scarpa 2007).

A number of different statistical measures have been used to compare the prior parameters to those
obtained from the Monte Carlo simulation process. The two most popular are the mean square error
(MSE) and the relative absolute error (RAE), defined as follows:

MSE = 1

R

R∑

r=1

(
θ

(r )
k − θ̄

)2
(3.19)

RAE = 1

R

R∑

r=1

(
θ

(r )
k − θ̄

)
/θ̄ (3.20)

where θ
(r )
k is the parameter estimate for attribute k obtained at sample iteration r, and θ̄ is the known

prior parameter estimate used in constructing the Monte Carlo simulation.
Another popular statistic often used in these tasks is the expected mean square error of the parameter

estimates (EMSE). Unlike the MSE and RAE, this measure provides a single summary statistic of the
overall bias and variance across all parameter estimates, rather than for individual parameter estimates:

EMSE = 1

R

R∑

r=1

(
θ

(r )
k − θ̄

)T (
θ

(r )
k − θ̄

)
. (3.21)

3.4.2.5 Conduct Questionnaire

Once the experimental design has been generated, the next stage is to construct the questionnaire. Given
that the design is simply nothing more than a matrix of values, the analyst needs to convert this matrix
into something that respondents can meaningfully interpret and respond to. The task for the analyst is
therefore to convert each row of the design into a choice similar to that shown in Figures 3.7 and 3.8.
This may call, for example, for the use of high-quality graphic material to convey an impression of
what new rolling stock might be like. The researcher must be careful to avoid any implicit bias in the
illustrative material used. Graphic illustrations are often preferred to photographs because of the higher
control afforded in respect of the details included in them.

Example 3.16 In a study of the role of train frequency over demand for intercity travel (Steer and
Willumsen 1983) it was found that although different people perceived the key variable (frequency) in
different ways, almost nobody thought about it in terms of trains per hour or per day. Therefore the SC
survey started by ascertaining how was frequency (i.e. the analyst’s concept) viewed by the traveller,
for instance:

� ‘I took the last train that puts me in Newcastle before 11 a.m.; it was the 7:50 from Kings Cross’, or
� ‘I just turned up at the station and found that the next train to Newcastle was due in 15 minutes’.
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The interviewer then converted the different frequency attributes of the experimental design into the
same terms, for example: ‘To get to Newcastle before 11 a.m. you must now take the 7:30 train’ in a
low-frequency option, or ‘ . . . the 8:00 train’, in a high frequency one. Alternatively, ‘ . . . the next train
to Newcastle was in 30 . . . ‘ or ‘ . . . 10 minutes’, for each option. Travellers were then asked to choose
among alternatives described in terms they were familiar with and which affected their current journey
choices thus increasing realism and relevance.

In constructing the questionnaire, it is advised that the analyst randomise the order of the choice
tasks shown to different respondents in order to minimise possible order effects. That is, respondents
may use the first few choice tasks to learn what it is they are being asked to do, whereas they might
suffer fatigue for the last few choice tasks. Randomising the choice tasks over respondents should reduce
any interaction of these biases with the specific choice tasks of the design that might otherwise occur.
Although less common, it is also advised that the order of the alternatives and attributes be randomised
between respondents.

3.4.2.6 Nothing is Important

It has been recommended to add a null option to the experimental design, also known as a non-purchase
option. The reason is that if two or more options are presented to an individual who finds them all
unacceptable, and has no opportunity to reject the lot, it is possible that this will trigger a secondary
decision-making mechanism that could bias the results of the experiment. This important problem has
been ignored far too often in practice.

Example 3.17 Olsen and Swait (1998) studied the veracity of the following propositions for the case
of buying a product the sale of which is subject to strict prerequisites (e.g. concentrated orange juice,
where it is expected that many consumers would require it to be unsweetened):

� If a non-purchase option (NPO) is not present, the attribute weights will differ from those observed
when an NPO is offered in the design.

� If an NPO is included in the experimental design, the analyst should be able to identify more non-linear
preference structures than if the NPO were missing.

� Models based on data without an NPO may show low predictive capacity for choice situations including
an NPO, whereas models based on data including an NPO will present good predictive capacity in
any scenario.

Olsen and Swait (1998) used an experimental design with three brands, two levels for orange quality,
two levels of sweetness, two types of packing (single and in lots of four) and two levels of price per unit.
They also added a cheap option (with the supermarket brand name), consisting of a sweet orange juice
made from low-quality oranges. They postulated a factorial design allowing them to estimate the main
effects and all interactions between pairs of attributes.

Equal-sized samples (70 individuals) were presented with 16 situations involving three options, for
the designs with and without NPO. They also asked if consumers would veto the sale of a product if one
of its attributes had an unacceptable level.

They found that the parameters of the estimated models not only differed in magnitude but, as expected,
the model with NPO presented significant non-linear (interaction) effects. These results were confirmed
by an analysis of the responses to the question about vetoing a product depending on its characteristics
(i.e. 63% of the sample found the sweetened juice unacceptable; 57% of it found unacceptable the
requirement to buy packages of four units). Table 3.6 shows the percentage error in the predictions
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Table 3.6 Cross errors of prediction in market shares

Prediction error (%)

Alternative with NPO → without NPO without NPO → with NPO

1 3.8 24.8
2 −1.9 21.6
3 −2.8 37.9
NPO – −47.8

for each data set using the parameters estimated with the other set. There is no doubt that their initial
hypotheses were confirmed; so it may be concluded that nothing is indeed important.

3.4.2.7 Realism and Complexity

A key element in the success of SP surveys is the degree of realism achieved in the responses. Realism
must be preserved in the context of the exercise, the options that are presented and the responses that are
allowed. This can be achieved in a number of ways:

� Focusing on specific rather than general behaviour; for example, respondents should be asked how
they would respond to an alternative on a given occasion, rather than in general; the more abstract the
question the less reliable the response.

� Using a realistic choice context, in particular one the respondents have had recent personal experience
of (i.e. a pivot design).

� Retaining the constraints on choice required to make the context realistic; this usually means asking
respondents to express preferences in respect of a very recent journey without relaxing any of its
constraints: e.g. ‘if today you would prefer to use the car to visit your dentist in the evening directly
from work, then retain this restriction in your choices’. Easing these constraints will just produce
unrealistically elastic responses.

� Using existing (perceived) levels of attributes so that the options are built around existing experience.
� Using respondents’ perceptions of what is possible to limit the attribute values in the exercise. For

example, in considering improved rail services, do not offer options where the station is closer to home
than feasible.

� Ensuring that all relevant attributes are included in the presentation; this is especially im-
portant if developing travel choice models and not just measuring the relative importance of
different attributes.

� Keeping the choice experiments as simple as possible, without overloading the respondent. Re-
member we respond to very complex choices in practice but we do so over a long period of
time, acquiring experience about alternatives at our own pace and selecting the best for us. In an
SP exercise these choices are compressed on a very short period of time and must, therefore, be
suitably simplified.

� Allowing respondents to opt for a response outside the set of experimental alternatives. For example,
in a mode choice exercise if all options become too unattractive the respondent may decide to change
destination, time of travel or not to travel at all; allow her a ‘will do something else’ alternative. If a
computer-based interview is used it could be programmed to branch then to another exercise exploring
precisely these other options.

� Making sure that all the options are clearly and unambiguously defined. This could be quite diffi-
cult when dealing with qualitative attributes like security or comfort; for example, do not express
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alternatives as ‘poor’ or ‘improved’ as this is too vague and prone to different interpretations by
respondents. Describe instead what measures or facilities are involved in improving security or ride
comfort (closed circuit TV in all stations/attendants present at all times, . . ., air-conditioning in all
coaches as in InterCity trains).

3.4.2.8 Use of Computers in SP Surveys

Computers have been used now for several years in the conduct of surveys of many kinds, including SC
surveys. Computers do offer very significant advantages over ‘paper and pen’ methods but they have,
given present technology, a few limitations. Let us consider them first.

In the case of SC surveys one is most likely to use portable, preferably notebook size, microcomputers.
In the past, their main limitations were battery life and weight but modern machines have practically
overcome these problems. The second restriction is screen size and quality. Contemporary portable
computers offer a reasonable screen size and high-resolution colour screens permit the display of more
information, at a price. Also, a computer screen is perfectly suited to paired choices in their pure and
generalised (i.e. with an associated rating scale, see Ortúzar and Garrido 1994a) form. It is also possible
to display not only the attributes that vary as part of the SC experiment but also other features that
remain fixed, such as destination, clock times, or indeed anything else that may be relevant or useful to
the respondent.

What makes computer-based interviewing most attractive is, however, the task of tailoring the experi-
ment to the subject. Most stated preference interviews will include a questionnaire in which information
about the respondent and a recent journey (or purchase, etc.) is collected and used to build a subse-
quent experiment (i.e. pivot design). This questionnaire can be reproduced in software with the added
advantages of automatic entry validation and automatic routing (see Figure 3.11). With a computerised
system the responses to this initial questionnaire can be used to generate the SC experiments and options
automatically for each subject, following a specified design. Automatic routeing can be used to select
the appropriate experiment for each individual depending on her circumstances. Furthermore, range

Figure 3.11 Example of computerised questionnaire
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and logic checks on the responses and pop-up help screens or look-up information windows (e.g. for
timetables) can be incorporated to improve the quality of the interview.

Computers also allow for experimenting with adaptive designs, that is, modifying the experimental
design in the light of the responses of the subject (Holden et al. 1992; Toubia et al. 2007); although there
can be gains by adapting the design in a Bayesian sense, care must be exercised not to lose the desirable
properties of the sample and general design. In fact, Bradley and Daly (2000) caution against the use of
adaptive designs as they may lead to bias; also, the methods to implement this in the case of efficient
designs for more complex discrete choice models are very complex.

The use of computers for SC surveys also makes it possible to design more complex interviews than
might be attempted manually, although this complexity may never be apparent to the respondent, or even
to the interviewer. Moreover, good software permits randomisation of the order in which the options are
offered to each individual thus removing a further potential source of bias in the responses. Finally, as
all responses are stored directly on disk there are no data entry costs nor errors and data are available
immediately for processing.

A number of software packages offer excellent facilities for designing and coding very complex
interviews with a minimum of understanding of computing itself; among the best known are ACA
(Sawtooth Software), ALASTAIR (Steer Davies Gleave), MINT (Hague Consulting Group) and Ngene
1.0 (Choice Metrics). In summary, the practical advantages of computer-based SP interviews are:

� An interesting format that is consistent across interviews and respondents.
� Automatic question branching, prompting and response validation.
� Automatic data coding and storage.
� The ease with which the SP exercise can be tailored to each individual.
� The reduction in interview time achieved because the interviewer does not have to calculate and

prepare written options.
� Reduced training and briefing costs.
� The statistical advantages of randomising the sequence of choices.

On the debit side one has the initial cost of investing in hardware, software, insurance and the
requirement to provide some back-up services (disks, spare battery packs, modems, technical advice to
interviewers and supervisors, etc.) on location.

Another, everyday more attractive, possibility is conducting the interview remotely via a Web page
survey distributed through the Internet (see for example, Iragüen and Ortúzar 2004; Hojman et al.
2005). In this case the sampling frame is an important issue as well as the even more careful de-
sign of the survey instrument; this has to follow the already noted special recommendations for
mail-back surveys.

3.4.2.9 Quality Issues in Stated Preference Surveys

Stated-preference (SP) techniques have proved to be a powerful instrument in research and model
development in transport and other fields. Their value depends on the careful application of the guidelines
developed so far and discussed in the preceding pages. A key element in this is restricting the artificiality
of the exercise to the minimum required. The more the analyst is interested in predicting future behaviour
the more important it is to make sure the decision context is specific (an actual journey, not a hypothetical
one) and the response space is behavioural.

But one of the dangers of these techniques is that it is relatively easy to cut corners in order to
reduce costs. For example, one can allow the decision context to become less specific and more generic;
this makes the sampling easier, the questionnaire simpler and, not surprisingly, the resulting models
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quite believable as they reflect ‘ideal’ rather than constrained behaviour. The value of goodness-of-fit
indicators in stated preference surveys is entirely dependent on the quality and realism of the experiment.
The problem is that the models resulting from ‘cheaper’ studies will only be found to be flawed
much later.

The same is true of the analysis techniques discussed in Chapter 8. Good analysis will often require
combining SP and RP data to make sure the resulting models are well anchored (scaled) in the restrictions
and noise of real behaviour.

SP surveys can be a cost-effective way of refining and improving modelling tools but too much
emphasis on low cost, at the expense of quality assurance and sound analysis, is likely to lead to
disappointments and poor decision support.

3.4.3 Case Study Example

Consider a simple hypothetical transport evaluation study in which respondents will be asked to
choose between three different hypothetical routes. The study objective is to determine the role that
prices (i.e. petrol and toll costs), and travel times (i.e. travelling in free flow and congested traffic
conditions), have upon route choice. The study also requires determining how travel time reliability
may influence the choice of route.

Assume that secondary and qualitative research confirmed the above as the relevant set of attributes
influencing choice; the same research further identified the attribute levels shown in Table 3.7 as being
relevant to the study. Note that each attribute has three levels in this example but this need not be the
case, as different attributes are allowed to take different numbers of attribute levels. This was only
done here for the sake of simplicity.

Table 3.7 Attribute and attribute levels

Travel costs
Petrol $1.00, $1.50, $2.00
Toll $0.00, $2.00, $4.00
Travel times (minutes)
Free flow time 10, 15, 20
Congested time 10, 15, 20
Egress time 5, 10, 15
Travel time reliability
Probability of arriving early 0.1, 0.2, 0.3
Probability of arriving late 0.1, 0.3, 0.5

Further, given that we have chosen a route choice problem as our case study, an unlabelled SC
experiment is the most appropriate experimental design approach to consider. Recall, however, that
the processes and principles in constructing unlabelled SC surveys are a little different to those for
generating labelled SC surveys. As such, where differences do exist, we will make a special note.

Now armed with the appropriate set of alternatives (3), attributes (7) and attribute levels (3 for
each attribute), the goal becomes to generate an experimental design that can be used to cap-
ture data on the behavioural responses of individuals that will assist in answering the identified
study objectives.

(continued)
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The first step is to write out the most likely set of representative utility functions (V) that will
be estimated for the study. Equation (3.22) shows the expected utility functions to be used once
data has been collected. In writing out the equations, as shown below, it is easy to see that we
anticipate estimating generic parameters for the main effects only (i.e. the parameters are the same
across alternatives and there are no interactions) and no alternative specific constants (ASC); note
that if we had assumed a labelled choice experiment, the utility functions should reflect the mix of
expected alternative specific and generic parameters to be estimated. If ASC or interaction effects
were expected, these should be included in the utility specification. Likewise, any dummy, effects,
or orthogonal coded variables should also be included.

V (A) = θ1xPetA{1.00,1.50,2.00} + θ2xT ollA{0,2,4} + θ3xF FTA{10,15,20} + θ4xCongTA{10,15,20}
+ θ5xEgTA{10,15,20} + θ6xPr earlA{0.1,0.2,0.3} + θ7xPr earlA{0.1,0.3,0.5},

V (B) = θ1xPetB {1.00,1.50,2.00} + θ2xT ollB {0,2,4} + θ3xF FTB {10,15,20}
+ θ4xCongTB {10,15,20} + θ5xEgTB {10,15,20} + θ6xPr earlB {0.1,0.2,0.3} + θ7xPr earlB {0.1,0.3,0.5},

V (C) = θ1xPetC {1.00,1.50,2.00} + θ2xT ollC {0,2,4} + θ3xF FTC {10,15,20}
+ θ4xCongTC {10,15,20} + θ5xEgTC {10,15,20} + θ6xPr earlC {0.1,0.2,0.3} + θ7xPr earlC {0.1,0.3,0.5}.

(3.22)

At the same time as the utility specification is considered, the most likely model structure to be
estimated should also be decided. This is because different model structures will have more or less
parameter estimates (as we will see in Chapter 7). For example, if a Mixed Logit model with random
parameters is to be estimated (see section 7.6.2), then more than one parameter may be associated
with each attribute. Similarly, the Nested Logit model will require the estimation of additional scale
related parameters (see section 7.4.3) than the simpler MNL.

Given the model structure and expected utility specification, it is then possible to determine the
smallest number of choice tasks required in generating the design. For the present case study, assume
that we would like to estimate a simple MNL model with utility specification (3.22) on the data; in
that case, seven parameters need to be estimated. As such, the design is required to have seven choice
tasks at a minimum. As we are uncertain as to whether interaction effects might be present, and we
would like to allow for the possibility of a more advanced econometric model being estimated, we
may wish to produce a design with more than seven choice tasks.

On the other hand, assuming attribute level balance is required the final design should aim to have
more than seven choice tasks with their total number being divisible by three (i.e. as all attributes have
three levels, the number of choice tasks must be divisible by this number). Given this, we decided to
generate a design with 12 choice tasks, but we will block it so that each respondent faces only six of
them (i.e. assume that initial qualitative research indicated that respondents could answer only this
number of tasks comfortably).

We have constructed three different designs in our example (although in practice, it would be usual
to construct only one): an orthogonal design, a D-optimal design under the null-hypothesis, and a
D-efficient design under the non-null hypothesis. In generating the latter, information is required as
to the expected values of the parameter estimates. Now, prior parameter values may be established
from a number of sources. For example, the analyst may have some prior expectation as to the likely
sign, such as a cost parameter should be negative in a utility function. Alternatively, previous research
may also provide evidence as to what values the parameter estimates might take, or a pilot study may
provide an indication as to reasonably likely values.

For the current case study, assume that a review of the literature established that the set of parameter
estimates in Table 3.8 could act as good priors in setting up the experiment (see Zi et al. 2009). Note
that our reference did not include an Egress time attribute, and hence the prior parameter for this
attribute was taken as zero.
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Table 3.8 Parameter priors and prior standard errors

Travel costs ($)
Petrol −0.479 (0.0311)
Toll −0.426 (0.0362)
Travel times (min)
Free flow time −0.098 (0.0087)
Congested time −0.147 (0.0108)
Egress time 0.0 (0.0)
Travel time reliability
Probability of arriving early −0.120 (0.0827)
Probability of arriving late −0.305 (0.032)

Note that should the exact parameter estimates reported in Table 3.8 be used, with no additional
information, then a locally optimal design would result. In fact, the parameter estimates for the current
study are unlikely to match exactly those obtained in our reference study; for this reason we will
assume Bayesian prior parameter distributions in generating the design. To do this, we will take
draws from Bayesian multivariate Normal distributions using the reported parameter estimates as the
means of the distributions and their standard errors as the standard deviations (e.g. the Bayesian prior
parameter distribution for the petrol attribute is θ 1∼N(−0.479, 0.0311)). Although we have chosen
a multivariate Normal distribution here, we could have just as easily assumed Uniform distributions
or any other distributional assumption in generating the design (Rose and Bliemer 2009).

The three designs generated are shown in Table 3.9 and their correlation structures are reported
in Table 3.10. All designs were generated using Ngene 1.0. The first one, the traditional orthogonal
design, was constructed using the sequential design process. Thus, an orthogonal design was first
built for the first alternative; then its choice tasks were randomly re-arranged to build the second and
third alternatives (e.g. the first choice task in alternative 1 was randomly selected to be choice task
11 in alternative 2 and choice task 8 in alternative 3, and so on). As can be seen in Table 3.11, this
results in a design where the within alternative correlations are zero for the design attributes, but
the between alternative correlation structure may be non-zero. We will return to discuss the second
design after discussing the third.

Design 3 was constructed using the prior parameter estimates mentioned above. Here we require
estimating the design’s S2 matrix, and hence the Fisher information matrix IN (θ). Re-arranging the
design so that each row represents an alternative, and hence several rows combine to form a choice
task, IN (θ) may be calculated using simple matrix algebra (see Rose and Bliemer 2006), by means
of equations (3.23) and (3.24):

IN (θ) = (
ZT Z

) =
C∑

c=1

Jc∑

j=1

zT
jcz jc (3.23)

where

z jc =
(

x jkc −
Jc∑

i=1

xikc Pic

)
√

Pic (3.24)

Here j and i are used to denote alternatives, c a choice task, k a particular attribute and xjkc the attribute
level for the kth attribute of alternative j in choice task c. Finally, Pic represents the choice probability
of alternative i being chosen in choice task c.

(continued)
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Table 3.11 IN (θ) and S2 for the third design

IN (θ)
Var(θ1) Var(θ2) Var(θ3) Var(θ4) Var(θ5) Var(θ6) Var(θ7)

Var(θ1) 2.088 −1.974 0.026 0.045 −0.807 −1.525 2.761
Var(θ2) −1.974 27.323 0.065 −0.077 −20.218 −30.855 −5.141
Var(θ3) 0.026 0.065 0.376 0.002 −2.105 0.608 0.362
Var(θ4) 0.045 −0.077 0.002 0.091 0.374 −0.330 0.507
Var(θ5) −0.807 −20.218 −2.105 0.374 188.628 −36.823 3.175
Var(θ6) −1.525 −30.855 0.608 −0.330 −36.823 159.857 −14.522
Var(θ7) 2.761 −5.141 0.362 0.507 3.175 −14.522 213.312

S2

Var(θ1) Var(θ2) Var(θ3) Var(θ4) Var(θ5) Var(θ6) Var(θ7)
Var(θ1) 0.588 0.081 0.002 −0.179 0.016 0.024 −0.004
Var(θ2) 0.081 0.071 0.016 0.027 0.011 0.017 0.002
Var(θ3) 0.002 0.016 2.852 −0.161 0.034 −0.001 −0.005
Var(θ4) −0.179 0.027 −0.161 11.441 −0.018 0.022 −0.022
Var(θ5) 0.016 0.011 0.034 −0.018 0.008 0.004 0.000
Var(θ6) 0.024 0.017 −0.001 0.022 0.004 0.011 0.001
Var(θ7) −0.004 0.002 −0.005 −0.022 0.000 0.001 0.005

For the third design, Figure 3.12 shows the calculations used to construct IN (θ) assuming the
mean of the Bayesian parameter distributions given in Table 3.9. For known design values x, the first
problem is to calculate the expected probabilities for each choice task given the assumed model and
utility functions. Once the choice probabilities have been calculated, it is possible to construct the Z
matrix in equation (23) as well as IN (θ). Taking the inverse of IN (θ) produces S2 for the third design,
under the parameter priors assumed; these two matrices are shown in Table 3.11.

The D-error value for this design is then calculated as

D-error = det
(
S2(x, θ)

)1/K
(3.25)

and the value computed for the matrix S2 in Table 3.12 is 0.109162.
However, in generating this design we will not simply assume the parameter estimates shown in

the above figures and tables. Rather, we will use simulation methods to take draws from the assumed
multivariate Bayesian prior parameter distributions, let us call these � in general (i.e. recall they can
be Normal or any other distribution), and calculate S2 for each draw taken. The Bayesian Db-error
can therefore be calculated as:

Db-error =
∫

θ

det
(
S2(x,θ)

)1/K
φ(θ|�)dθ (3.26)

By fixing the simulated draws and changing the attribute level combinations of the design using
the algorithms discussed in section 3.4.2.3, the Bayesian Db-error can be calculated for each newly
generated design. That producing the lowest value is retained and used. In particular, the Bayesian
Db-error for Design 3 using 100 Halton draws (see Bhat 2001) in the simulation was 0.109749. Note
that the actual D-error or Bayesian Db-error value is actually meaningless, and can only be used to
compare designs constructed under the same set of assumptions.

(continued)
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Table 3.12 Prior parameter misspecification test

% variation θ1 Design 1 Design 2 Design 3
−100 0 0.195474 0.177806 0.119139
−80 −0.0958 0.196038 0.17958 0.117869
−60 −0.1916 0.196801 0.181486 0.116844
−40 −0.2874 0.197772 0.183523 0.116066
−20 −0.3832 0.198958 0.18569 0.11532

0 −0.479 0.200367 0.187988 0.115242
20 −0.5748 0.202007 0.190418 0.115196
40 −0.6706 0.203888 0.192982 0.115396
60 −0.7664 0.20617 0.195684 0.11584
80 −0.8622 0.208405 0.19528 0.11653

100 −0.958 0.21106 0.201519 0.117468

Although we do not show it here, a S2 matrix can also be calculated for the other two designs.
The interested reader can check that under the same assumptions used to generate the D-efficient
design for the non-null hypothesis (i.e. the same utility functions and prior parameter estimates),
the traditional orthogonal design would produce a D-error of 0.200367 and a Bayesian Db-error
of 0.201293, whilst the D-optimal design under the null hypothesis would produce a D-error of
0.187988 and a Bayesian Db-error of 0.1897077.

Coming back to the second design now (i.e. under the null-hypothesis), recall that it was generated
assuming a MNL model structure with parameter priors equal to zero and attribute levels recoded
into orthogonal codes. We do not show the precise design generation process here and the interested
reader is referred to Rose and Bliemer (2008) or Street et al. (2005) for the methods employed to
come up with the exact attribute level combinations for generating it. However, the design can also
be generated using similar methods as those shown for constructing the D-efficient design under the
non-null hypothesis.

In taking this approach, the design matrix would need to be transformed to allow for orthogonal
codes rather than the actual levels shown to respondents. Next, the parameter priors would be set
to zero and IN (θ) calculated. Unlike the D-efficient design under the non-null hypothesis, Street
and Burgess (2005) have derived a set of equations that allow the analyst to determine precisely
how efficient this class of design is. Rather than use the D-error value, Street and Burgess (2005)
maximise the D-efficiency of the design. Note that for our example, the D-efficiency is 72.07 percent,
which suggests that there could possibly be a better (i.e. nearer to the optimum) design under the
assumptions used in its construction.

Examining the design itself (Table 3.9), it is clear that under the assumptions used to generate it,
a typical outcome is that the attribute level differences will be maximised between the alternatives.
This can be seen, for example, by examining the petrol price attribute which never takes the same
level across alternatives. Similar differences exist for all other attributes. So, as we had mentioned,
this particular design generation process tends to maximise the trade-offs that respondents are asked
to make in choosing amongst their choice alternatives.

Once the design has been generated, various tests of how it might be expected to perform in
practice can be conducted. A simple one is to fix the design and systematically vary the parameter
priors, observing the impact of each change on the efficiency of the design. Table 3.12 shows the
D-error calculations when the first parameter prior is varied over a range of values. By examining

(continued)
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the impact upon efficiency given such parameter changes, the analyst may gain an understanding of
how robust the design will be over varying degrees of prior parameter misspecification.

Even though not explicitly stated, traditional orthogonal designs are generated under the null
hypothesis. As such, testing for prior parameter misspecification is not limited to D-efficient designs
constructed under the non-null hypothesis. Indeed, although rarely done in practice, it can be applied
to any generated design, including those generated under the null hypothesis assumption.

Once the design has been generated the survey can be finalised. To construct the choice tasks we
need to translate the generated design into a format that respondents can meaningfully interpret and
respond to. An examination of Figure 3.8 will reveal that the choice task shown there corresponds to
the first choice task taken from the D-optimal design under the null hypothesis in Table 3.10.

Sample Size and SC Experiments Equation (3.18) provides clues as to the sample size require-
ments for SC experiments. Bliemer and Rose (2009a; b) demonstrate how the sample size requirement
to obtain asymptotically statistically significant parameter estimates can be derived from this equation.
The asymptotic t-ratio value for a given parameter θ k may be calculated as:

tN (θk) = θk/

(
sek(θk)√

Nk

)
(3.27)

where Nk is the sample size that would be derived from the calculation for attribute k. Re-arranging
it we get:

Nk = tN (θk)2sek(θk)2

θ2
k

(3.28)

Thus, for any desirable asymptotic t-ratio value, say that for a 95% confidence level, 1.96, it is
possible to calculate the sample size requirement to achieve that asymptotic t-ratio value for a design
under various prior parameter assumptions.

For the case study above, taking the means of the prior parameter distributions as the true population
parameters, and obtaining the parameter standard errors from Table 3.11, the sample size requirements
according to each parameter, in order, would be: 11.12, 1.74, 125.27, 3096.82, 3.25 and 2.30 (the
reader can easily check this). Note that no sample size can be calculated for Egress time given
that it was assumed a zero prior parameter. Taking the largest sample size as the critical one, we
could say that the design requires at least 3097 respondents for all parameters to be statistically
significant. However, note that in making such calculations, Bliemer and Rose (2009a; b) suggest
that these sample sizes represent a theoretical minimum and that a larger sample size should probably
be adopted.

3.5 Network and Zoning Systems
One of the most important early choices facing the transport modeller is that of the level of detail
(resolution) to be adopted in a study. This problem has many dimensions: it refers to the schemes to be
tested, the type of behavioural variables to be included, the treatment of time, and so on. This section
concentrates on design guidelines for two of these choices: zoning system and network definition.

We shall see that in these two cases, as in other key elements of transport modelling, the final choices
reflect a compromise between two conflicting objectives: accuracy and cost. In principle greater accuracy
could be achieved by using a more detailed zoning and network system; in the limit, this would imply
recognising each individual household, its location, distance to access points to the network, and so
on. With a large enough sample (100% rate over several days) the representation of the current system
could be made very accurate indeed. However, the problem of stability over time weakens this vision of
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accuracy as one would need to forecast, at the same level of detail, changes at the individual household
level that would affect transport demand. This is a very difficult and mostly unnecessary task. Lesser
levels of detail therefore, are not only warranted on the grounds of economy but also on those of accuracy
whenever forecasting is involved (recall our discussion in section 3.2).

3.5.1 Zoning Design

A zoning system is used to aggregate the individual households and premises into manageable chunks
for modelling purposes. The main two dimensions of a zoning system are the number of zones and their
size. The two are, of course, related. The greater the number of zones, the smaller they can be to cover
the same study area. It has been common practice in the past to develop a zoning system specifically for
each study and decision-making context. This is obviously wasteful if one performs several studies in
related areas; moreover, the introduction of different zoning systems makes it difficult to use data from
previous studies and to make comparisons of modelling results over time.

The first choice in establishing a zoning system is to distinguish the study area itself from the rest of
the world. Some ideas may help in making this choice:

� In choosing the study area one must consider the decision-making context, the schemes to be modelled,
and the nature of the trips of interest: mandatory, optional, long or short distance, and so on.

� For strategic studies one would like to define the study area so that the majority of the trips have
their origin and destination inside it; however, this may not be possible for the analysis of transport
problems in smaller urban areas where the majority of the trips of interest are through-trips and a
bypass is to be considered.

� Similar problems arise with traffic management studies in local areas where again, most of the trips
will have their origin, destination or both, clearly outside the area of interest. What matters in these
cases is whether it is possible to model changes to these trips arising as a result of new schemes.

� The study area should be somewhat bigger than the specific area of interest covering the schemes to
be considered. Opportunities for re-routeing, changes in destination and so on, must be allowed for;
we would like to model their effects as part of the study area itself.

The region external to the study area is normally divided into a number of external zones. In some
cases it might be enough to consider each external zone to represent ‘the rest of the world’ in a particular
direction; the boundaries of these different slices of the rest of the world could represent the natural
catchment areas of the transport links feeding into the study area. In other cases, it may be advantageous
to consider external zones of increasing size with the distance to the study area. This may help in the
assessment of the impacts over different types of travellers (e.g. long- and short-distance).

The study area itself is also divided into smaller internal zones. Their number will depend on a
compromise between a series of criteria discussed below. For example, the analysis of traffic man-
agement schemes will generally call for smaller zones, often representing even car parks or major
generators/attractors of trips. Strategic studies, on the other hand, will often be carried out on the basis
of much larger zones. For example, strategic studies of London have been undertaken using fine zoning
systems of about 1000 zones (for about 7.2 million inhabitants) and several levels of aggregation of them
down to about 50 zones (at borough level). Examples of zone numbers chosen for various studies are
presented in Table 3.13.

As can be seen, there is a wide variety of models and number of zones per million inhabitants. These
vary depending on the nature of the model (tactical and short term planning, strategic and long term),
the resources available and the particular focus or set of problems addressed.
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Table 3.13 Typical zone numbers for studies

Location Population Number of zones Comments

London (2006) 7.2 million 2252 Fine level subzones
∼1000 Normal zones at LTS
∼230 LTS districts

52 Traffic boroughs
Montréal (2008) 3.4. million 1425 Normal zones
Leeds UK (2009) 0.7 million ∼560 Normal zones
Santiago (2009) 5.5 million ∼700 Normal zones
Dallas-Forth Worth (2004) 6.5 million 4875 Including 61 external zones
Washington DC (2008) 6.5 million ∼2200 Normal zones

463 Coarse zones
Bogotá (2000) 6.1 million 637 Normal zones
Dublin (2010) 1.7 million ∼650 And some 10,000 road links
Sydney (2006) 3.6 million 2690 Normal zones

Note also that sometimes a more aggregated zoning system is used for part of the model system, for
example trip generation and distribution; then a finer zoning system is often used for mode choice and
assignment: these are often referred to as Traffic Assignment Zones or TAZs.

Zones are represented in the computer models as if all their attributes and properties were concentrated
in a single point called the zone centroid. This notional spot is best thought of as floating in space and not
physically on any location on a map. Centroids are attached to the network through centroid connectors
representing the average costs (time, distance) of joining the transport system for trips with origin or
destination in that zone. Nearly as important as the cost associated with each centroid connector is
the node in the network it connects to. These should be close to natural access/egress points for the
zone itself. Locating centroids automatically at the centre of gravity of each zone and measuring their
distance to key nodes to produce centroid connectors is a quick fix valid only for the simplest ‘first cut’
network runs.

Centroids and centroid connectors play a key role in the quality of the rest of the models, but their
definition and coding does not follow a strict and objective approach; they rely a good deal on the
experience of the modeller. The centroide connector influences the route followed to load trips onto both
the road and public transport networks and therefore affects the total cost of travelling from Origin to
Destination and all the models that include them.

The following is a list of zoning criteria which has been compiled from experience in several
practical studies:

1. Zoning size must be such that the aggregation error caused by the assumption that all activities are
concentrated at the centroid is not too large. It might be convenient to start postulating a system with
many small zones, as this may be aggregated in various ways later depending on the nature of the
projects to be evaluated.

2. The zoning system must be compatible with other administrative divisions, particularly with census
zones; this is probably the fundamental criterion and the rest should only be followed if they do not
lead to inconsistencies with it.

3. Zones should be as homogeneous as possible in their land use and/or population composition; census
zones with clear differences in this respect (i.e. residential sectors with vastly different income levels)
should not be aggregated, even if they are very small.
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4. Zone boundaries must be compatible with cordons and screen lines and with those of previous zoning
systems. However, it has been found in practice that the use of main roads as zone boundaries should
be avoided, because this increases considerably the difficulty of assigning trips to zones, when these
originate or end at the boundary between two or more zones.

5. The shape of the zones should allow an easy determination of their centroid connectors; this is
particularly important for later estimation of intra-zonal characteristics. A zone should represent the
natural catchment area of the transport networks and its centroid connector(s) identified so as to
represent the average costs to access them.

6. Zones do not have to be of equal size; if anything, they could be of similar dimensions in travel time
units, therefore generating smaller zones in congested than in uncongested areas.

It is advantageous to develop a hierarchical zoning system, as in the London Transportation Studies,
where subzones are aggregated into zones which in turn are combined into districts, traffic boroughs
and finally sectors. This facilitates the analysis of different types of decisions at the appropriate level of
detail. Hierarchical zoning systems benefit from an appropriate zone-numbering scheme where the first
digit indicates the broad area, the first two the traffic borough, the first three the district, and so on.

3.5.2 Network Representation

The transportation network is deemed to represent a key component of the supply side of the modelling
effort, i.e. what the transport system offers to satisfy the movement needs of trip makers in the study
area. The description of a transport network in a computer model can be undertaken at different levels
of detail and requires the specification of its structure, its properties or attributes and the relationship
between those properties and traffic flows. For an early general review of network representation issues,
see Lamb and Havers (1970).

3.5.2.1 Network Details

The transport network may be represented at different levels of aggregation in a model. At one extreme
one has models with no specific links at all; they are based on continuous representations of transport
supply (Smeed 1968). These models may provide, for example, a continuous equation of the average
traffic capacity per unit of area instead of discrete elements or links. At a slightly higher level of
disaggregation one can consider individual roads but include speed-flow properties taken over a much
larger area; see for example Wardrop (1968).

Normal practice, however, is to model the network as a directed graph, i.e. a system of nodes and
links joining them (see Larson and Odoni 1981), where most nodes are taken to represent junctions and
the links stand for homogeneous stretches of road between junctions. Links are characterised by several
attributes such as length, speed, number of lanes and so on, and are normally unidirectional; even if
during input a single two-way link is specified for simplicity, it will be converted into two one-way links
in the internal computer representation of the network. A subset of the nodes is associated with zone
centroids, and a subset of the links to centroid connectors. Currently, the principal source of network
data would be one of the many digital maps available for most cities. One should not assume, however,
that they are error free. They will need checking, updating, pruning (to focus on the network of interest)
and complementing with observations on items like on-street parking, pedestrian friction, bus lanes and
other features that may affect their performance. A very simple configuration of this type is presented in
Figure 3.13.

A problem with this scheme is that ‘at-node’ connectivity is offered to each link joining it at no cost.
In practice, some turning movements at junctions may be much more difficult to perform than others;
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Figure 3.13 A road network coded as nodes and links
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indeed, some turning movements may not be allowed at all. In order to represent these features of real
road networks better, it is possible to penalise and/or ban some turning movements. This can be done
manually by expanding the junction providing separate (sometimes called dummy) links for each turning
movement and associating a different cost to each. Alternatively, some commercial computer programs
are capable of performing this expansion in a semi-automatic way, following simple instructions from
the user about difficult or banned movements.

The level of disaggregation can be increased further when detailed traffic simulation models are used.
In these cases additional links are used at complex junctions to account for the performance of reserved
lanes, give-way lines, and so on.

Sometimes networks are subsets of larger systems; they may be cordoned off from them thus defining
access or cordon points where the network of interest is connected to the rest of the world. These points
are sometimes called ‘gateways’ and dummy links may be used to connect them to external zones.

A key decision in setting up a network is how many levels to include in the road hierarchy. If more
roads are included, the representation of reality should be better; however, there is again a problem of
economy versus realism which forces the modeller to select some links for exclusion. Moreover, it does
not make much sense to include a large number of roads in the network and then make coarse assumptions
about turning movements and delays at junctions. It is not sensible either to use a very detailed network
with a coarse zoning system as then spatial aggregation errors (i.e. in terms of centroid connections to
the network) will reduce the value of the modelling process. This is particularly important in the case of
public-transport networks, as we will see in Chapter 11. What matters is to make route choice and flows
as realistic as possible within the limitations of the study.

Jansen and Bovy (1982) investigated the influence of network definition and detail over road assign-
ment accuracy. Their conclusion was that the largest errors were obtained at the lower levels in the
hierarchy of roads. Therefore, one should include in the network at least one level below the links of
interest: for example, in a study of A (trunk) roads one should also include B (secondary) roads.

In the case of public-transport networks an additional level of detail is required. The modeller must
specify the network structure corresponding to the services offered. These will be coded as a sequence of
nodes visited by the service (bus, rail), normally with each node representing a suitable stop or station.
Junctions without bus stops can, therefore, be excluded from the public-transport network. Two types of
extra links are often added to public-transport networks. These are walk links, representing the parts of
a journey using public transport made on foot, and links to model the additional costs associated with
transferring from one service (or mode) to another.

3.5.2.2 Link Properties

The level of detail provided about the attributes of links depends on the general resolution of the network
and on the type of model used. At the very minimum the data for each link should include its length, its
travel speeds (either free-flow speeds or an observed value for a given flow level) and the capacity of the
link, usually in passenger car equivalent units (pcu) per hour.

In addition to this a cost-flow relationship is associated with each link as discussed below. In some cases,
more elaborate models are used to relate delay to traffic flow, but these require additional information
about links, for example:

� Type of road (e.g. expressway, trunk road, local street).
� Road width or number of lanes, or both.
� An indication of the presence or otherwise of bus lanes, or prohibitions of use by certain vehicles

(e.g. lorries).
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� Banned turns, or turns to be undertaken only when suitable gaps in the opposing traffic become
available, and so on.

� Type of junction and junction details including signal timings.
� Storage capacity for queues and their presence at the start of a modelling period.

Some research results have identified other attributes of routes as important to drivers, for example
tolls (see Chapter 16), signposting and fuel consumption (see for example Outram and Thompson 1978
and Wootton et al. 1981). Work in the Netherlands has shown that (weighted) time and distance explains
only about 70% of the routes actually chosen. The category of the road (motorway, A road, B road),
the predictability of the time taken, scenic quality, traffic signals and capacity help to explain additional
routes. As our understanding of how these attributes influence route choice improves, we will be able
to develop more accurate assignment models. The counterpart of this improvement will be the need to
include other features of roads, like their scenic quality, gradient, and so on.

3.5.2.3 Network Costs

Most current assignment techniques assume that drivers seek to minimise a linear combination of time,
distance (associated to fuel costs) and tolls (if any), sometimes referred to as generalised cost for route
choice. This is known to be a simplifying assumption as there may be differences not only in the
perception of time, but also about its relative importance compared with other route features. However,
the majority of network models in use today deal only with travel time, distance and tolls.

When modelling travel time as a function of flow one must distinguish two different cases. The first
case is when the assumption can be made that delay on a link depends only on the flow on the link
itself; this is typical of long links away from junctions and therefore it has been used in most inter-urban
assignment models so far. The second case is encountered in urban areas where the delay on a link
depends in an important way on flows on other links, for example for non-priority traffic at a give-way
or roundabout junction.

The introduction of very general flow-delay formulations is not difficult until one faces the next issue,
equilibration of demand and supply. There, the mathematical treatment of the first case (often called the
separable cost function case) is simpler than the second; however, there are now techniques for balancing
demand and supply in the case of link-delay models depending on flows on several links, i.e. when
the effect of each link flow cannot be separated. Chapter 11 will provide a fuller discussion of cost-
flow relationships.

3.5.2.4 Public Transport Networks

Public Transport networks are more complex than road networks. They require an identification of the
route taken by each service as a unique sequence of links. It is also necessary to identify the locations
where stops are possible and also those where interchange with other services is permissible. The
frequency of the service and in some cases the actual timetable and the fare, must also be specified and
included in the network description. Access to stops may be on foot or by another mode and this can
be represented by centroide connectors in the simpler models and by one or more auxiliary networks of
access modes in more realistic undertakings. This is why the centroide connectors for public transport
are always different from those used for the road network.

The public transport network could be entirely independent of the road network as in the case of most
rail and metro services; alternatively, the speed of the service may be affected by road traffic as in the
case of buses and on-street running of trams, even when priority measures to support them help to reduce
the impact of road congestion.
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In addition to the effect of road congestion, it is sometimes necessary to account for the issue of
passenger congestion: crowding on buses and trains leading to discomfort and even having to miss a
service because it was full and impossible to board.

Exercises
3.1 We require estimating the population of a certain area for the year 2020 but we only have available

reliable census information for 1990 and 2000, as follows:

P1990 = 240 ± 5 and P2000 = 250 ± 2

To estimate the future population we have available the following model:

Pn = Pbtd

where Pn is the population in the forecast year (n), Pb the population in the base year (b), t is the
population growth rate and d = (n − b)/10, is the number of decades to extrapolate growth.

Assume that the data from both censuses is independent and that the model does not have any
specification error; in that case,
(a) find out with what level of accuracy is it possible to forecast the population in the year 2020;
(b) you are offered the census information for 2010, but you are cautioned that its level of accuracy

is worse than that of the previous two censuses:

P2010 = 265 ± 8

Find out whether it is convenient to use this value.
(c) repeat the analysis assuming that the specification error of the model is proportional to d, and

that it can be estimated as 12d%.
3.2 Consider the following modal-split model between two zones i and j (but we will omit the zone

indices to alleviate notation):

P1(	t/θ ) = exp(−θ t1)

exp(−θ t1) + exp(−θ t2)
= 1

1 + exp −θ (t2 − t1)
= 1

1 + exp(−θ 	t)

P2(	t/θ ) = 1 − P1 = exp(−θ 	t)

1 + exp(−θ 	t)

where tk is the total travel time in mode k, and θ a parameter to be estimated.
During the development of a study, travel times were calculated as the average of five measure-

ments (observations) for each mode, at a cost of $1 per observation, and the following values were
obtained:

t1 = 12 ± 2 min t2 = 18 ± 3 min

(a) If the estimated value for θ is 0.1, compute a confidence interval for P1.
(b) Assume you would be prepared to pay $3 per each percentage point of reduction in the error of

P1; find out whether in that case it would be convenient for you to take 10 extra observations in
each mode whereby the following values for tk would be obtained:

t1 = 12 ± 1 min t2 = 17.5 ± 1.5 min

3.3 Consider an urban area where 100 000 people travel to work; assume you possess the following
information about them:
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(i) General information:

Average number of Family income
Mode cars per household (1000$/year)

Car 2.40 120
Underground 1.60 60
Bus 0.20 10

Total 0.55 25

(ii) Population distribution

Cars per household

Family income (1000$/year) 0 1 2+ Total

Low (< 25) 63.6 15.9 0.0 79.5
Medium (25–75) 6.4 3.7 2.4 12.5
High (> 75) 0.0 2.4 5.6 8.0
Total 70.0 22.0 8.0 100.0

You are required to collect a sample of travellers to estimate a series of models (with a maximum
of 8 parameters) which guarantee a negligible specification error if you have available at least 50
observations per parameter. You are also assured that if you take a 20% random sample of all
travellers the error will be negligible and there will be no bias.

Your problem is to choose the most convenient sampling method (random, stratified or choice-
based), and for this you have available also the following information:

Hourly cost of an interviewer ...................................................................................$2 per hour
Questionnaire processing cost..................................................................................0.3 per form
Time required to classify an interviewee.............................................................................4 min
Time required to complete an interview............................................................................10 min

You are also given the following table containing recommended choice-based sample sizes:

Subpopulation size % to be interviewed

< 10 000 25
10 000–15 000 20
15 000–30 000 15
30 000–60 000 10
>60 000 5

3.4 Consider the following results of having collected stratified (based on income I) and choice-based
samples of a certain population:
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Stratified sample

Mode Low I Medium I High I

Car 3.33 18.00 20.00
Bus 33.34 7.20 4.00
Underground 3.33 4.80 6.00
Total 40.00 30.00 30.00

Choice-based sample

Mode Low I Medium I High I Total

Car 6.67 20.00 13.33 40.00
Bus 17.24 2.07 0.69 20.00
Underground 16.67 13.33 10.00 40.00

(a) If you know that the income-based proportions in the population are 60, 25 and 15% respectively
for low, medium and high income, find an equivalent table for a random sample. Is it possible to
validate your answer?

(b) Compute the weighting factors that would be necessary to apply to the observations in the choice-
based sample in order to estimate a model for the choice between car, bus and underground using
standard software (i.e. that developed for random samples).
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4
Trip Generation Modelling

As we saw in Chapter 1, the trip generation stage of the classical transport model aims at predicting
the total number of trips generated by (Oi) and attracted to (Dj) each zone of the study area. This can be
achieved in a number of ways: starting with the trips of the individuals or households who reside in each
zone or directly with some of the properties of the zones: population, employment, number of cars, etc.
The subject has also been viewed as a trip frequency choice problem: how many shopping (or other pur-
pose) trips will be carried out by this person type during a representative week? This is usually undertaken
using discrete choice models, as discussed in Chapters 7 to 9, and it is then cast in terms like: what is the
probability that this person type will undertake zero, one, two or more trips with this purpose per week?

In this chapter we concentrate on the first approach (i.e. predicting the totals Oi and Dj from data on
household socioeconomic attributes), and also give a glimpse about the second which has advantages in
some studies.

We will start by defining some basic concepts and will proceed to examine some of the factors
affecting the generation and attraction of trips. Then we will review the main modelling approaches,
starting with the simplest growth-factor technique. Before embarking on more sophisticated approaches
we will present a reasonable review of linear regression modelling, which complements well the previous
statistical themes presented in Chapters 2 and 3.

We will then consider zonal and household-based linear regression trip generation models, giving some
emphasis to the problem of non-linearities which often arise in this case. We will also address for the first
time the problem of aggregation (e.g. obtaining zonal totals), which has a trivial solution here precisely
because of the linear form of the model. Then we will move to cross-classification models, where we
will examine not only the classical category analysis specification but also more modern approaches
including the person category analysis model. We then examine the relationship between trip generation
and accessibility including a short discussion on trip frequency models. The chapter ends with two short
sections: the first discusses the problem of predicting future values for the explanatory variables in the
models, and the second the problems of stability and updating of trip generation parameters.

4.1 Introduction
4.1.1 Some Basic Definitions

As always, definitions play an important role in our understanding of any phenomenon. Travel is no
different. The question is, what is the basic event of interest for our models, activities involving a short

Modelling Transport, Fourth Edition. Juan de Dios Ortúzar and Luis G. Willumsen.
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period of stay in a location (sojourn), the displacement from one location to another (trip or journey), or
a sequence of such trips and sojourns that start and end at home and constitute an outing or a tour? What
about tours that are not based at home? The modeller must bear all these options in mind while settling
on a set from the following list to develop and apply a set of models.

Trip or Journey This is a one-way movement from a point of origin to a point of destination. We are
usually interested in all vehicular trips. Walking trips less than a certain study-defined threshold (say 300
metres or three blocks) have often been ignored as well as trips made by infants of less than five years of
age. However, this emphasis is changing with greater attention being paid to non-motorised trips and, as
discussed in the previous chapter, due to the requirements of the recall activity framework recommended
for mobility surveys.

Home-based (HB) Trip This is one where the home of the trip maker is either the origin or the
destination of the journey. Note that for visitors from another city their Hotel acts as a temporary home
in most studies.

Non-home-based (NHB) Trip This, conversely, is one where neither end of the trip is the home of
the traveller.

Trip Production This is defined as the home end of an HB trip or as the origin of an NHB trip
(see Figure 4.1).

Figure 4.1 Trip productions and attractions

Trip Attraction This is defined as the non-home end of an HB trip or the destination of an NHB trip
(see Figure 4.1).

Trip Generation This is often defined as the total number of trips generated by households in a zone,
be they HB or NHB. This is what most models would produce and the task then remains to allocate NHB
trips to other zones as trip productions.

Sojourn A short period of stay in a particular location. It usually has a purpose associated with this
stay: work, study, shopping, leisure, etc.

Activity An endeavour or interest often associated with a purpose as above but not necessarily linked
to a fixed location. One could choose to go shopping or to the cinema in different locations.

Tour or Trip Chain A set of linked sojourns and trips. The last three concepts correspond better to the
idea of travel as derived demand (i.e. it depends strongly on the demand for other activities) but initially
were used mainly by discrete choice modellers in practice (see Daly et al. 1983). Contemporary models,
particularly of the trip frequency type, are more typically interested in tours.
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4.1.2 Characterisation of Journeys

4.1.2.1 By Purpose

It has been found in practice that a better understanding of travel and trip generation models can be
obtained if journeys by different purposes are identified and modelled separately. In the case of HB trips,
a number of categories have been employed:

� travel to work;
� travel to school or college (education trips);
� shopping trips;
� social and recreational journeys;
� escort trips (to accompany or collect somebody else);
� other journeys.

The first two are usually called compulsory (or mandatory) trips and all the others are called discre-
tionary (or optional) trips. The latter category encompasses all journeys made for less routine purposes,
such as health and personal business (need to obtain a passport or a certificate). Note that social and
cultural contexts may change the importance of different types of trips and therefore the most appropriate
classification. NHB trips are sometimes separated into ‘on business’ and ‘other’ but are often kept as a
single category because they only amount to 15–20% of all total travel.

4.1.2.2 By Time of Day

Trips are sometimes classified into peak and off-peak period trips; the proportion of journeys by different
purposes usually varies greatly with time of day. This type of classification, although important, gets
more complicated when tours rather than trips are of interest, as a complete tour may comprise trips
made at several times of the day.

Table 4.1 summarises data from the Greater Santiago 1977 Origin Destination Survey (DICTUC,
1978) as an example of good and bad traits; the morning (AM) peak period (the evening peak period
is sometimes assumed to be its mirror image) occurred between 7:00 and 9:00 and the representative
off-peak period was taken between 10:00 and 12:00. Some comments are in order with respect to this
table. Firstly, note that although the vast majority (87.18%) of trips in the AM peak are compulsory (i.e.
either to work or education), this is not the case in the off-peak period. Secondly, a typical trait of a
developing country emerges from the data: the large proportion of trips for bureaucratic reasons in both

Table 4.1 Example of trip classification

AM Peak Off Peak

Purpose No. % No. %

Work 465 683 52.12 39 787 12.68
Education 313 275 35.06 15 567 4.96
Shopping 13 738 1.54 35 611 11.35
Social 7 064 0.79 16 938 5.40
Health 14 354 1.60 8 596 2.74
Bureaucracy 34 735 3.89 57 592 18.35
Accompanying 18 702 2.09 6 716 2.14
Other 1 736 0.19 2 262 0.73
Return to home 24 392 2.72 130 689 41.65
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periods. Thirdly, a problem caused by faulty classification, or lack of forward thinking at the data-coding
stage, is also clearly revealed: the return to home trips (which account for 41.65% of all off-peak trips)
are obviously trips with another purpose; the fact that they were returning home is not as important as
to why they left home in the first place. In fact, these data needed recoding in order to obtain adequate
information for trip generation modelling (see Hall et al. 1987). This kind of problem used to occur
before the concepts of trip productions and attractions replaced concepts such as origins and destinations,
which did not explicitly address the generating capacity of home-based and non-home-based activities.

4.1.2.3 By Person Type

This is another important classification, as individual travel behaviour is heavily dependent on socioe-
conomic attributes. The following categories are usually employed:

� income level (e.g. three strata: low, middle and high income);
� car ownership (typically three strata: 0, 1 and 2 or more cars);
� household size and structure (e.g. six strata in the classical British studies).

It is important to note that the total number of strata can increase very rapidly (e.g. 54 in the above
example) and this may have strong implications in terms of data requirements, model calibration and
use. For this reason trade-offs, adjustments and aggregations are usually required (see the discussion in
Daly and Ortúzar 1990).

4.1.3 Factors Affecting Trip Generation

In trip generation modelling we are typically interested not only in person trips but also in freight trips.
For this reason models for four main groups (i.e. personal and freight, trip productions and attractions)
have usually been required. In what follows we will briefly consider some factors which have been found
important in practical studies. We will not discuss freight trip generation modelling, however (although
a little had been done by the end of the century), but postpone a discussion on the general topic of freight
demand modelling until Chapter 13.

4.1.3.1 Personal Trip Productions

The following factors have been proposed for consideration in many practical studies:

� income;
� car ownership;
� family size;
� household structure;
� value of land;
� residential density;
� accessibility.

The first four (income, car ownership, household structure and family size) have been considered in
several household trip generation studies, while value of land and residential density are typical of zonal
studies. The last one, accessibility, has rarely been used although many studies have attempted to include
it. The reason is that it offers a way to make trip generation elastic (responsive) to changes in the transport
system; we will come back to this issue in section 4.3.
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4.1.3.2 Personal Trip Attractions

The most widely used factor has been roofed space available for industrial, commercial and other services.
Another factor used has been zonal employment, and certain studies have attempted to incorporate an ac-
cessibility measure. However, it is important to note that in this case not much progress has been reported.

4.1.3.3 Freight Trip Productions and Attractions

These normally account for few vehicular trips; in fact, at most they amount to 20% of all journeys in
certain areas of industrialised nations, although they can still be significant in terms of their contribution
to congestion. Important variables include:

� number of employees;
� number of sales;
� roofed area of firm;
� total area of firm.

To our knowledge, neither accessibility nor types of firm have ever been considered as explanatory
variables; the latter is curious because it would appear logical that different products should have different
transport requirements.

4.1.4 Growth-factor Modelling

Since the early 1950s several techniques have been proposed to model trip generation. Most methods
attempt to predict the number of trips produced (or attracted) by household or zone as a function of
(generally linear) relations to be defined from available data. Prior to any comparison of results across
areas or time, it is important to be clear about the following aspects mentioned above:

� what trips to be considered (e.g. only vehicle trips and walking trips longer than three blocks);
� what is the minimum age to be included in the analysis (i.e. five years or older).

In what follows we will briefly present a technique which may be applied to predict the future number
of journeys by any of the categories mentioned above. Its basic equation is:

Ti = Fi ti (4.1)

where Ti and ti are respectively future and current trips in zone i, and Fi is a growth factor.
The only problem of the method is the estimation of Fi, the rest is trivial. Normally the factor is related

to variables such as population (P), income (I) and car ownership (C), in a function such as:

Fi = f (Pd
i , I d

i , Cd
i )

f (Pc
i , I c

i , Cc
i )

(4.2)

where f can even be a direct multiplicative function with no parameters, and the superscripts d and c
denote the design and current years respectively.

Example 4.1 Consider a zone with 250 households with car and 250 households without car. Assuming
we know the average trip generation rates of each group:

car-owning households produce: 6.0 trips/day
non-car-owning households produce: 2.5 trips/day
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we can easily deduce that the current number of trips per day is:

ti = 250 × 2.5 + 250 × 6.0 = 2125 trips/day

Let us also assume that in the future all households will have a car; therefore, assuming that income
and population remain constant (a safe hypothesis in the absence of other information), we could estimate
a simple multiplicative growth factor as:

Fi = Cd
i /Cc

i = 1/0.5 = 2

and applying equation (4.1) we could estimate the number of future trips as:

Ti = 2 × 2125 = 4250 trips/day

However, the method is obviously very crude. If we use our information about average trip rates and
make the assumption that these will remain constant (which is actually the main assumption behind one
of the most popular forecasting methods, as we will see below), we could estimate the future number
of trips as:

Ti = 500 × 6 = 3000

which means that the growth factor method would overestimate the total number of trips by approx-
imately 42%. This is very serious because trip generation is the first stage of the modelling process;
errors here are carried through the entire process and may invalidate work on subsequent stages.

In general growth factor methods are mostly used in practice to predict the future number of external
trips to an area; this is because they are not too many in the first place (so errors cannot be too large) and
also because there are no simple ways to predict them. In some cases, they are also used, at least as a sense
check, for interurban toll road studies. In the following sections we will discuss other (superior) methods
which can also be used in principle to model personal and freight trip productions and attractions. How-
ever, we will just make explicit reference to the case of personal trip productions as this is the area not only
where there is more practical experience, but also where the most interesting findings have been reported.

4.2 Regression Analysis
The next subsection provides a brief introduction to linear regression. The reader familiar with this
subject can proceed directly to subsection 4.2.2.

4.2.1 The Linear Regression Model

4.2.1.1 Introduction

Consider an experiment consisting in observing the values that a certain variable Y = {Yi} takes for
different values of another variable X. If the experiment is not deterministic we would observe different
values of Yi for the same value of Xi.

Let us call fi (Y |X) the probability distribution of Yi for a given value Xi; thus, in general we could
have a different function fi for each value of X as shown in Figure 4.2.

However, such a completely general case is intractable; to make it more manageable certain hypotheses
about population regularities are required. Let us assume that:

1. The probability distributions fi (Y | X) have the same variance σ 2 for all values of X.
2. The means μi = E (Yi) form a straight line known as the true regression line and given by:

E(Yi ) = a + bXi (4.3)

where the population parameters a and b, defining the line, must be estimated from sample data.
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Figure 4.2 General distributions of Y given X

3. The random variables Y are statistically independent; this means, for example, that a large value of
Y1 does not tend to make Y2 large.

The above weak set of hypotheses (see for example Wonnacott and Wonnacott 1990) may be written
more concisely as:

The random variables Yi are statistically independent with mean a + b Xi and variance σ 2.

With these Figure 4.2 changes to the distribution shown in Figure 4.3.
It is sometimes convenient to describe the deviation of Yi from its expected value as the error or

disturbance term ei, so that the model may also be written as:

Yi = a + bXi + ei (4.4)

Note that we are not making any assumptions yet about the shape of the distribution of Y (and e,
which is identical except that their means differ) provided it has a finite variance. These will be needed
later, however, in order to derive some formal tests for the model. The error term is as usual composed
of measurement and specification errors (recall the discussion in Chapter 3).

Figure 4.3 Distribution of Y assumed in linear regression
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4.2.1.2 Estimation of a and b

Figure 4.4 can be labelled the fundamental graph of linear regression. It shows the true (dotted) regression
line E (Y) = a + b X, which is of course unknown to the analyst, who must estimate it from sample data
about Y and X. It also shows the estimated regression line Ŷ = â + b̂ X; as is obvious, this line will not
coincide with the previous one unless the analyst is extremely lucky (though he will never know it). In
general the best he can hope is that the parameter estimates will be close to the target.

Figure 4.4 True and estimated regression lines

It is important to distinguish between the errors ei, which are not known and pertain to the true
regression line, and the differences εi, between observed (Yi) and fitted values (Ŷi). Least squares
estimation, which is the most attractive line-fitting method, results from the minimization of

√
εi .

If we make the following change of variables xi = Xi − X , where X is the mean of X, it is easy to
show that the previous regression lines keep their slopes (b and b̂ respectively) but obviously change
their intercepts (a and â respectively) in the new axes (Y, x). The change is convenient because the new
variable x has the following property:

∑
i xi = 0.

Under this transformation, the least square estimators are given by:

â = Y (4.5)

which ensures that the fitted line goes through the centre of gravity (X ,Y ) of the sample of n obser-
vations, and

b̂ =
∑

i
xi Yi

∑
i

x2
i

(4.6)

It worth noting that if Xi can be written as a linear combination of the intercept a, that is, if Xi is equal
to some constant for all i, expression (4.6) would be undefined since xi would be equal to zero for all i,
and, therefore, its denominator would be equal to zero.

These estimators have the following interesting properties:

E(â) = a Var(â) = σ 2/n

E(b̂) = b Var(b̂) = σ 2
/ ∑

i

x2
i
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In passing, the formula for the variance of b̂ has interesting implications in terms of experimental
design. First, it can be noted that the variance of both estimators decrease with the sample size n. Also,
if the values X are too close together, as in Figure 4.5a, their deviations from the mean X will be small
and consequently the sum of xi will be small; for this reason the variance of b̂ will be large and so b̂ will
be an unreliable estimator. In the contrary case, depicted in Figure 4.5b, even though the errors ε are of
the same size as previously, b̂ will be a reliable estimator. Therefore, the analyst can improve the quality
of the estimators by increasing the sample size and by sampling more cases for which X takes values
that are further apart from the mean X .

Figure 4.5 Goodness-of-fit and experimental design: (a) unreliable (Xi close), (b) reliable (Xi spread out)

If a fourth, stronger, hypothesis is considered, that the expected value of e conditional on X is zero,
the least squares estimators (4.5) and (4.6) acquire some desirable statistical properties. In this case (i.e.
when the mean of e weighed by the probability of occurrence of X is zero) the least square estimators
are said to be unbiased (i.e. their expected values are equal to the true values a and b) and consistent (i.e.
they can be as near as desired to the true values as the sample size goes to infinity).

This important assumption may be easily violated if a relevant variable is omitted from the model and
it is correlated with the observed X. For example, consider that the number of trips generated depends on
household’s income and number of cars, variables that are positively correlated since it is more likely to
have a car as income grows. If the number of cars is omitted from the model, the least square estimator
of the effect of income will account for both the effect of income and of the number of cars, and will
therefore be larger than the true coefficient of income. Methods to test and to correct for the violation
of this assumption exist in the literature; the interested reader is referred to Greene (2003) for further
descriptions and to Guevara and Ben-Akiva (2006) for an application to discrete choices.

If in addition to Hypothesis 4, hypotheses 1 and 3 hold, the least squares estimators (4.5) and (4.6) are
not only consistent and unbiased, but are also the Best (the most efficient, and those with the smallest
variance) among all possible Linear and Unbiased Estimators (BLUE). This result is known as the
Gauss-Markov theorem; methods to test and to correct for violations of hypotheses 1 and 3 can be found
in the literature. In section 4.2.2 we present a practical case where the failure of Hypothesis 3 is corrected.
For further examples and applications, the interested reader is again referred to Greene (2003).

4.2.1.3 Hypothesis Tests for b̂

To carry out these hypothesis tests we need to know the distribution of b̂ and for this, we need to
consider the strong hypothesis that the variables Y are distributed Normal. Note that in this case the least
squares estimators will not just be BLUE, but BUE (i.e. Best Unbiased Estimators) among all possible
linear and non-linear estimators. This assumption may be strong when the sample is small, but as the
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sample size increases it will begin to hold no matter which is the true distribution thanks to the Law of
Large Numbers.

Now, as b̂ is just a linear combination of the Yi, it follows that it is also distributed N (b, σ 2/
∑

i xi
2).

This means we can standardise it in the usual way, obtaining

z = b̂ − b

σ
/√

(
∑

i x2
i )

(4.7)

which is distributed N (0,1); it is also useful to recall that z2, the quadratic form (see 2.5.4.1), is distributed
χ2 with one degree of freedom. However we do not know σ 2, the variance of Y with respect to the true
regression. A natural estimator is to use the residual variance s2 around the fitted line:

s2 =
∑

i
(Yi − Ŷ i )2

n − 2

We divide by (n − 2) to obtain an unbiased estimator because two degrees of freedom have been used
to calculate â and b̂ which define Ŷi (see Wonnacott and Wonnacott 1990).

However, if we substitute s2 by σ 2 in (4.7) the standardised b̂ becomes distributed Student (or t) with
(n − 2) degrees of freedom:

t = b̂ − b

s
/√

(
∑

i x2
i )

(4.8)

The denominator of (4.8) is usually called standard error of b̂ and is denoted by sb, hence we can
write (4.8) as: t = (b̂ − b)/sb.

The t-test A typical null hypothesis is H0: b = 0; in this case (4.8) reduces to:

t = b̂/sb (4.9)

and this value needs to be compared with the critical value of the Student statistics for a given significance
level α and the appropriate number of degrees of freedom. One problem is that the alternative hypothesis
H1 may imply unilateral (b > 0) or bilateral (b not equal 0) tests; this can only be determined by
examining the phenomenon under study.

Example 4.2 Assume we are interested in studying the effect of income (I) in the number of trips by
non-car-owning households (T), and that we can use the following relation:

T = a + bI

As in theory we can conclude that any influence must be positive (i.e. higher income always means
more trips) in this case we should test H0 against the unilateral alternative hypothesis H1: b > 0. If H0

is true, the t-value from (4.9) is compared with the value tα ;d , where d are the appropriate number of
degrees of freedom, and the null hypothesis is rejected if t > tα ;d (see Figure 4.6).

On the other hand, if we were considering incorporating a variable the effect of which in either
direction was not evident (for example, number of female workers, as these may or may not produce
more trips than their male counterparts), the null hypothesis should be the bilateral H1: b �= 0, and H0

would be rejected if 0 is not included in the appropriate confidence interval for b̂.

The F-test for the Complete Model Figure 4.7a shows the set of values (â, b̂) for which null hypotheses
such as the one discussed above are accepted individually. If we were interested in testing the hypothesis
that both estimators are equal to 0, for example, we could have a region such as that depicted in
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Figure 4.6 Rejection region for α = 5%

Figure 4.7b; i.e. accepting that each parameter is 0 individually does not necessarily mean accepting that
both should be 0 together.

Figure 4.7 Acceptance regions for null hypothesis: (a) both parameters individually, (b) both parameters together

Now, to make a two-parameter test it is necessary to know the joint distribution of both estimators. In
this case, as their marginal distributions are Normal, the joint distribution is also bivariate Normal. The
F-statistic used to test the trivial null hypothesis H0: (a, b) = (0, 0), provided as one of the standards in
commercial computer packages, is given by:

F =
(

n â2 +
∑

i

x2
i b̂

2

)
/2s2

H0 is accepted if F is less than or equal to the critical value Fα (2, n −2). Unfortunately the test is not
very powerful (i.e. it is nearly always rejected), but similar ones may be constructed for more interesting
null hypotheses such as (a, b) = (Y , 0).

4.2.1.4 The Coefficient of Determination R2

Figure 4.8 shows the regression line and some of the data points used to estimate it. If no values of x
were available, the best prediction of Yi would be Y . However, the figure shows that for a particular
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Figure 4.8 Explained and unexplained deviations

value xi the error of this method could be high: (Yi − Y ). When xi is known, on the other hand, the best
prediction for Yi is Ŷi and this reduces the error to just (Yi − Ŷi), i.e. a large part of the original error has
been explained. From Figure 4.8 we have:

(Yi − Y ) = (Ŷi − Y ) + (Yi − Ŷi ), ∀i
total deviation explained deviation unexplained deviation

If we square the total deviations and sum over all values of i, we get the following:
∑

i
(Yi − Y )2 = ∑

i
(Ŷi − Y )2 + ∑

i
(Yi − Ŷi )2

total variation explained variation unexplained variation
(4.10)

Now, because (Ŷi − Y ) = b̂xi it is easy to see that the explained variation is a function of the
estimated regression coefficient b̂. The process of decomposing the total variation into its parts is known
as analysis of variance of the regression, or ANOVA (note that variance is just variation divided by
degrees of freedom).

The coefficient of determination is defined as the ratio of explained to total variation:

R2 = �(Ŷ i −Y )2

�(Yi − Y )2
(4.11)

It has limiting values of 1 (perfect explanation) and 0 (no explanation at all); intermediate values may
be interpreted as the percentage of the total variation explained by the regression. The index is trivially
related to the sample correlation R, which measures the degree of association between X and Y (see
Wonnacott and Wonnacott 1990).

4.2.1.5 Multiple Regression

This is an extension of the above for the case of more explanatory variables and, obviously, more
regressors (b̂ parameters). The solution equations are similar, although more complex, but some extra
problems arise which are usually important, such as the following:

1. Multicollinearity. This occurs when there is a linear relation between the explanatory variables.
Equivalent with what occurred when one explanatory variable was a linear function of the inter-
cept in (4.6), in this case the equations for the regressors b̂ are not independent and cannot be
solved uniquely.
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2. How many regressors to include. To make a decision in this case, several factors have to be taken
into consideration:
� Are there strong theoretical reasons to include a given variable, or is it important for policy testing

with the model?
� Is the estimated sign of the coefficient consistent with theory or intuition and is the variable

significant (i.e. is H0 rejected in the t-test?)?
If in doubt, one way forward is to take out the variable in question and re-estimate the regression in
order to examine the effect of its removal on the rest of the coefficients; if this is not too important
the variable can be left out for parsimony (the model is simpler and the rest of the parameters can
be estimated more accurately). Commercial software packages provide an ‘automatic’ procedure
for tackling this issue (the stepwise approach); however, this may induce some problems, as we will
comment below. We will come back to this general problem in section 8.4 (Table 8.1) when discussing
discrete choice model specification issues.

3. Coefficient of determination. This has the same form as (4.11). However, in this case the inclusion of
another regressor always increases R2; to eliminate this problem the corrected R2 is defined as:

R
2 = [R2 − k/(n − 1)][(n − 1)/(n − k − 1)] (4.12)

where n stands for sample size as before and k is the number of regressors b̂.
In trip generation modelling the multiple regression method has been used both with aggregate

(zonal) and disaggregate (household and personal) data. The first approach has been practically
abandoned in the case of trip productions, but it is still the premier method for modelling trip
attractions. In this sense, it is worth noting that expressions (4.11) and (4.12) will have values
between 0 and 1 if and only if the least square model considers an intercept, that is, if model (4.4)
is not forced to consider a equal to zero. Also, (4.12) is a good tool to compare models as long as
the variables Y used for the cases under analysis are the same. For example, if the analyst wants to
compare a model for the number of trips as a function of zone attributes and another one using the
logarithm of the number of trips, the measures are not appropriate since the denominator in (4.11) is
not the same for both models.

4. Hypothesis testing. If the analyst is interested in testing a hypothesis regarding a specific estimator,
the t-test described in (4.8) may be used. However, if the hypothesis involves a linear restriction
between many estimators, an F-test should be used instead. In this case we need to estimate first a
restricted model, where the restrictions to be tested hold and calculate the Sum of Squared Residuals
of the Restricted model (SSRR) which is equal to �εi

2 = � (Yi − Ŷi)2 and is often an output of
regression software. Second, we need to estimate an unrestricted model (i.e. where the restrictions
are not imposed) and calculate the SSRU . Then, the F statistic is computed as follows, where k is the
number of variables in the unrestricted model, and r is the number of restrictions imposed:

F̂ = {SSRR − SSRU }
SSRU

(n − k)

r
∼ Fr,n−k

This statistic follows an F distribution with r and n-k degrees of freedom. The intuition of the test
is as follows: if the restrictions are true, SSRR should be similar to SSRU and the statistic should be
near to zero. On the contrary, if the statistic is larger than Fr,n-k the null hypothesis can be rejected for
some desired confidence level.

4.2.2 Zonal-based Multiple Regression

In this case an attempt is made to find a linear relationship between the number of trips produced
or attracted by zone and average socioeconomic characteristics of the households in each zone. The
following are some interesting considerations:
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1. Zonal models can only explain the variation in trip making behaviour between zones. For this reason
they can only be successful if the inter-zonal variations adequately reflect the real reasons behind
trip variability. For this to happen it would be necessary that zones not only had a homogeneous
socioeconomic composition, but represented as wide as possible a range of conditions. A major
problem is that the main variations in person trip data occur at the intra-zonal level.

2. Role of the intercept. One would expect the estimated regression line to pass through the origin;
however, large intercept values (i.e. in comparison to the product of the average value of any variable
and its coefficient) have often been obtained. If this happens the equation may be rejected; if on the
contrary, the intercept is not significantly different from zero, it might be informative to re-estimate
the line, forcing it to pass through the origin.

3. Null zones. It is possible that certain zones do not offer information about certain dependent variables
(e.g. there can be no HB trips generated in non-residential zones). Null zones must be excluded
from analysis; although their inclusion should not greatly affect the coefficient estimates (because
the equations should pass through the origin), an arbitrary increment in the number of zones which
do not provide useful data will tend to produce statistics which overestimate the accuracy of the
estimated regression.

4. Zonal totals versus zonal means. When formulating the model the analyst appears to have a choice
between using aggregate or total variables, such as trips per zone and cars per zone, or rates such as
trips per household per zone and cars per household per zone. In the first case the regression model
would be:

Yi = θ0 + θ1 X1i + θ2 X2i + . . . + θk Xki + Ei

whereas the model using rates would be:

yi = θ0 + θ1x1i + θ2x2i + . . . + θk xki + ei

with yi = Yi/Hi; xi = Xi/Hi; ei = Ei/Hi and Hi the number of households in zone i.
Both equations are almost identical, in the sense that they seek to explain the variability of trip

making behaviour between zones, and in both cases the parameters have the same meaning. Their
unique and fundamental difference relates to the error-term distribution in each case; it is obvious that
the constant variance condition of the model cannot hold in both cases, unless Hi was itself constant
for all zones i.

Now, as the aggregate variables directly reflect the size of the zone, their use should imply that
the magnitude of the error actually depends on zone size; this heteroskedasticity (variability of the
variance) has indeed been found in practice. Using multipliers, such as 1/Hi, allows heteroskedasticity
to be reduced because the model is made independent of zone size. In this same vein, it has also been
found that the aggregate variables tend to have higher intercorrelation (i.e. multicolinearity) than the
rates. It is important to note that models using aggregate variables often yield higher values of R2, but
this is just a spurious effect because zone size obviously helps to explain the total number of trips (see
Douglas and Lewis 1970). What is certainly unsound is the mixture of rates and aggregate variables
in a single model.

To end this theme it is important to remark that even when rates are used, zonal based regression
is conditioned by the nature and size of zones (i.e. the spatial aggregation problem). This is clearly
exemplified by the fact that inter-zonal variability diminishes with zone size as shown in Table 4.2,
constructed with data from Perth (Douglas and Lewis 1970).



P1: TIX/XYZ P2: ABC

JWST054-04 JWST054-Ortuzar February 24, 2011 13:7 Printer Name: Yet to Come

Trip Generation Modelling 153

Table 4.2 Inter-zonal variation of personal productions for
two different zoning systems

Zoning system
Mean value of

trips/household/zone
Inter-zonal

variance

75 small zones 8.13 5.85
23 large zones 7.96 1.11

4.2.3 Household-based Regression

Intra-zonal variation may be reduced by decreasing zone size, especially if zones are homogeneous.
However, smaller zones imply a greater number of them and this has two consequences:

� more expensive models in terms of data collection, calibration and operation;
� larger sampling errors, which are assumed non-existent by the multiple linear regression model.

For these reasons it seems logical to postulate models which are independent of zone boundaries. At
the beginning of the 1970s it was believed that the most appropriate analysis unit in this case was the
household (and not the individual); it was argued that a series of important interpersonal interactions
inside a household could not be incorporated even implicitly in an individual model (e.g. car availability,
that is, which member has use of the car). This thesis was later challenged as we will see in section 4.3.3,
but with little practical success.

In a household-based application each home is taken as an input data vector in order to bring into
the model all the range of observed variability about the characteristics of the household and its travel
behaviour. The calibration process, as in the case of zonal models, may proceed stepwise, testing each
potential explanatory variable in turn until the best model (in terms of some summary statistics for a
given confidence level) is obtained. Care has to be taken with automatic stepwise computer packages
because they may leave out variables which are slightly worse predictors than others left in the model,
but which may prove much easier to forecast.

In actual fact, stepwise methods are not recommended; it is preferable to proceed the other way around,
i.e. test a model with all the variables available and take out those which are not essential (on theoretical
or policy grounds) and have low significance or an incorrect sign.

Example 4.3 Consider the variables trips per household (Y), number of workers (X1) and number of cars
(X2). Table 4.3 presents the results of successive steps of a stepwise model estimation; the last row also
shows (in parenthesis) values for the t-ratio (equation 4.9). Assuming large sample size, the appropriate
number of degrees of freedom (n − 2) is also a large number so the t-values may be compared with
the critical value 1.645 for a 95% significance level on a one-tailed test (we know the null hypothesis is
unilateral in this case as Y should increase with both X1 and X2).

Table 4.3 Example of stepwise regression

Step Equation R2

1 Y = 2.36 X1 0.203
2 Y = 1.80 X1 + 1.31 X2 0.325
3 Y = 0.91 + 1.44X1 + 1.07X2

(3.7) (8.2) (4.2) 0.384
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The third model is a reasonable equation in spite of its low R2. The intercept 0.91 is not large (compare
it with 1.44 times the number of workers, for example) and the regression coefficients are significantly
different from zero (H0 is rejected in all cases). The model could probably benefit from the inclusion of
further variables if they were available.

An indication of how good these models are may be obtained from comparing observed and modelled
trips for some groupings of the data (see Table 4.4). This is better than comparing totals because in such
cases different errors may compensate and the bias would not be detected. As can be seen, the majority
of cells show a reasonable approximation (i.e. errors of less than 30%). If large bias were spotted it
would be necessary to adjust the model parameters; however, this is not easy as there are no clear-cut
rules to do it, and it depends heavily on context.

Table 4.4 Comparison of trips per household (observed/estimated).

Number of workers in household

No. of cars 0 1 2 3 or more

0 0.9/0.9 2.1/2.4 3.4/3.8 5.3/5.6
1 3.2/2.0 3.5/3.4 3.7/4.9 8.5/6.7
2 or more – 4.1/4.6 4.7/6.0 8.5/7.8

4.2.4 The Problem of Non-Linearity

As we have seen, the linear regression model assumes that each independent variable exerts a linear
influence on the dependent variable. It is not easy to detect non-linearity because apparently linear
relations may turn out to be non-linear when the presence of other variables is allowed for in the model.
Multivariate graphs are useful in this sense; the example of Figure 4.9 presents data for households
stratified by car ownership and number of workers. It can be seen that travel behaviour is non-linear with
respect to family size.

It is important to mention that there is a class of variables, those of a qualitative nature, which usually
shows non-linear behaviour (e.g. type of dwelling, occupation of the head of the household, age, sex).
In general there are two methods to incorporate non-linear variables into the model:

Figure 4.9 An example of non-linearity
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1. Transform the variables in order to linearise their effect (e.g. take logarithms, raise to a power).
However, selecting the most adequate transformation is not an easy or arbitrary exercise, so care is
needed; also, if we are thorough, it can take a lot of time and effort.

2. Use dummy variables. In this case the independent variable under consideration is divided into several
discrete intervals and each of them is treated separately in the model. In this form it is not necessary
to assume that the variable has a linear effect, because each of its portions is considered separately
in terms of its effect on travel behaviour. For example, if car ownership was treated in this way,
appropriate intervals could be 0, 1 and 2 or more cars per household. As each sampled household
can only belong to one of the intervals, the corresponding dummy variable takes a value of 1 in that
class and 0 in the others. It is easy to see that only (n − 1) dummy variables are needed to represent
n intervals.

Example 4.4 Consider the model of Example 4.3 and assume that variable X2 is replaced by the
following dummies:

Z1, which takes the value 1 for households with one car and 0 in other cases;

Z2, which takes the value 1 for households with two or more cars and 0 in other cases.

It is easy to see that non-car-owning households correspond to the case where both Z1 and Z2 are 0.
The model of the third step in Table 4.3 would now be:

Y = 0.84 + 1.41X1 + 0.75Z1 + 3.14Z2 R2 = 0.387
(3.6) (8.1) (3.2) (3.5)

Even without the better R2 value, this model would be preferable to the previous one just because the
non-linear effect of X2 (or Z1 and Z2) is clearly evident and cannot be ignored. Note that if the coefficients
of the dummy variables were for example, 1 and 2, and if the sample never contained more than two cars
per household, the effect would be clearly linear. The model is graphically depicted in Figure 4.10.

Figure 4.10 Regression model with dummy variables
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Looking at Figure 4.10, the following question arises: would it not be preferable to estimate separate
regressions for the data on each group, as in that case we would not require each line to have the same
slope (i.e. the coefficient of X1)? The answer is in general no unless we had a reasonable amount of data
for each class. The fact is that the model with dummies uses all the data, while each separate regression
would use only part of it, and this is in general disadvantageous. It is also interesting to mention that
the use of dummy variables tends to reduce problems of multicolinearity in the data (see Douglas and
Lewis 1971).

4.2.5 Obtaining Zonal Totals

In the case of zonal-based regression models, this is not a problem as the model is estimated precisely at
this level. In the case of household-based models, though, an aggregation stage is required. Nevertheless,
precisely because the model is linear the aggregation problem is trivially solved by replacing the average
zonal values of each independent variable in the model equation and then multiplying it by the number
of households in each zone. However, it must be noted that the aggregation stage can be a very complex
matter in non-linear models, as we will see in Chapter 9.

Thus, for the third model of Table 4.3 we would have:

Ti = Hi (0.91 + 1.44X 1i + 1.07X 2i )

where Ti is the total number of HB trips in zone i, Hi is the total number of households in it and Xji is
the average value of variable Xj for the zone.

On the other hand, when dummy variables are used, it is also necessary to know the number of
households in each class for each zone; for instance, in the model of Example 4.4 we would require:

Ti = Hi (0.84 + 1.41X 1i ) + 0.75H1i + 3.14H2i

where Hji is the number of households of class j in zone i.
This last expression allows us to appreciate another advantage of using dummy variables over separate

regressions. To aggregate the models in that latter case, it would be necessary to estimate the average
number of workers per household (X1) for each car-ownership group in each zone, and this may be
complicated for long-term forecasts.

4.2.6 Matching Generations and Attractions

It might be obvious to some readers that the models above do not guarantee, by default, that the total
number of trips originating (the origins Oi) at all zones will be equal to the total number of trips attracted
(the destinations Dj) to them, that is the following expression does not necessarily hold:

∑

i

Oi =
∑

j

D j (4.13)

The problem is that this equation is implicitly required by the next sub-model (i.e. trip distribution)
in the structure; it is not possible to have a trip distribution matrix where the total number of trips (T)
obtained by summing all rows is different to that obtained when summing all columns (see Chapter 5).

The solution to this difficulty is a pragmatic one which takes advantage of the fact that normally the trip
generation models are far ‘better’ (in every sense of the word) than their trip attraction counterparts. The
first usually are fairly sophisticated household-based models with typically good explanatory variables.
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The trip attraction models, on the other hand, are at best estimated using zonal data. For this reason,
normal practice considers that the total number of trips arising from summing all origins Oi is in fact the
correct figure for T; therefore, all destinations Dj are multiplied by a factor f given by:

f = T
/ ∑

j

D j (4.14)

which obviously ensure that their sum also adds to T .

4.3 Cross-Classification or Category Analysis
4.3.1 The Classical Model

4.3.1.1 Introduction

Although linear regression was the early recommended approach for trip generation, from the late 1960s
an alternative method for modelling trip generation appeared and quickly became established as the
preferred one in the United Kingdom. The method was known as category analysis in the UK (Wootton
and Pick 1967) and cross-classification in the USA; there it went through a similar development process
as the linear regression model, with earliest procedures being at the zonal level and subsequent models
based on household information.

The method is based on estimating the response (e.g. the number of trip productions per household
for a given purpose) as a function of household attributes. Its basic assumption is that trip generation
rates are relatively stable over time for certain household stratifications. The method finds these rates
empirically and for this it typically needs large amounts of data; in fact, a critical element is the number
of households in each class. Although the method was originally designed to use census data in the UK,
a serious problem of the approach remains the need to forecast the number of households in each stratum
in the future.

4.3.1.2 Variable Definition and Model Specification

Let tp (h) be the average number of trips with purpose p (and at a certain time period) made by members
of households of type h. Types are defined by the stratification chosen; for example, a cross-classification
based on m household sizes and n car ownership classes will yield mn types h. The standard method for
computing these cell rates is to allocate households in the calibration data to the individual cell groupings
and total, cell by cell, the observed trips Tp (h) by purpose group. The rate tp (h) is then the total number
of trips in cell h, by purpose, divided by the number of households H(h) in it. In mathematical form it is
simply as follows:

t p(h) = T p(h)/H (h) (4.15)

The ‘art’ of the method lies in choosing the categories such that the standard deviations of the frequency
distributions depicted in Figure 4.11 are minimised.

The method has, in principle, the following advantages:

1. Cross-classification groupings are independent of the zone system of the study area.
2. No prior assumptions about the shape of the relationship are required (i.e. they do not even have to

be monotonic, let alone linear).
3. Relationships can differ in form from class to class (e.g. the effect of changes in household size for

one or two car-owning households may be different).
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Figure 4.11 Trip-rate distribution for household type

And in common with traditional cross-classification methods it also has several disadvantages:

1. The model does not permit extrapolation beyond its calibration strata, although the lowest or high-
est class of a variable may be open-ended (e.g. households with two or more cars and five or
more residents).

2. There are no statistical goodness-of-fit measures for the model, so only aggregate closeness to the
calibration data can be ascertained, but see the discussion in 4.3.2.

3. Unduly large samples are required; otherwise, cell values will vary in reliability because of differ-
ences in the numbers of households being available for calibration at each one. For example, in the
Monmouthshire Land Use/Transportation Study (see Douglas and Lewis 1971) the estimators for 108
categories (six income levels, three car ownership levels and six household structure levels) shown in
Table 4.5 were found, using a sample of 4000 households.

Table 4.5 Household frequency distribution

No. of categories

21 69 9 7 2

No. of households surveyed 0 1–49 50–99 100–199 200+

Accepted wisdom suggests that at least 50 observations per cell are required to estimate the mean
reliably; thus, this criterion would be satisfied in only 18 of the 108 cells for a sample of 4000 house-
holds. There may be some scope for using stratified sampling to guarantee more evenly distributed
sample sizes in each category. This involves, however, additional survey costs.

4. There is no effective way to choose among variables for classification, or to choose best groupings
of a given variable; the minimisation of standard deviations hinted at in Figure 4.11 would require an
extensive ‘trial and error’ procedure which may be considered infeasible in practical studies.

4.3.1.3 Model Application at Aggregate Level

Let us denote by q the person type (i.e. with and without a car), by ai(h) the number of households of
type h in zone i, and by Hq (h) the set of households of type h containing persons of type q. With this we
can write the trip productions with purpose p by person type q in zone i, Oqp

i , as follows:

Oqp
i =

∑

h∈Hq (h)

ai (h)t p(h) (4.16)
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To verify how the model works it is possible to compare these modelled values with observed values
from the calibration sample. Inevitable errors are due to the use of averages for the rates tp (h); one
would expect a better stratification (in the sense of minimising the standard deviation in Figure 4.11) to
produce smaller errors.

There are various ways of defining household categories. The first application in the UK (Wootton
and Pick 1967) employed 108 categories as follows: six income levels, three car ownership levels (0, 1
and 2 or more cars per household) and six household structure groupings, as in Table 4.6.

Table 4.6 Example of household structure grouping

Group No. employed Other adults

1 0 1
2 0 2 or more
3 1 1 or less
4 1 2 or more
5 2 or more 1 or less
6 2 or more 2 or more

The problem is clearly how to predict the number of households in each category in the future. The
method most commonly used (see Wilson 1974) consists in, firstly, defining and fitting to the calibration
data, probability distributions for income (I), car ownership (C) and household structure (S); secondly,
using these to build a joint probability function of belonging to household type h = (I, C, S). Thus, if
the joint distributions function is denoted by φ (h) = φ (I, C, S), the number of households in zone i
belonging to class h, ai (h), is simply given by:

ai (h) = Hi · φ(h) (4.17)

where Hi is the total number of households in the zone. This household estimation model may be partially
tested by running it with the base-year data used in calibration. The total trips estimated with equation
(4.16), but with simulated values for ai (h), can then be checked against the actual observations.

One further disadvantage of the method can be added at this stage:

5. If it is required to increase the number of stratifying variables, it might be necessary to increase the
sample enormously. For example, if another variable was added to the original application discussed
above and this was divided into three levels, the number of categories would increase from 108 to
324 (and recall the discussion on Table 4.5).

4.3.2 Improvements to the Basic Model

4.3.2.1 Equivalence between Category Analysis and Linear Regression

Some of the limitations of the basic model above may be overcome by noting that Category Analysis
estimators can be obtained using a linear regression model with dummy variables representing each
category (Goodman 1973). This result can be easily shown recalling that if a dummy variable is
defined for each category this is equivalent to running separate least squares models with no more
variables than an intercept. Then, from equation (4.5), it follows directly that the least square estimator
is identical to the average of Y for each category.

(continued)
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Given this equivalence, the disadvantage of not having statistical goodness-of-fit measures for the

model disappears. One can use, for example, the R
2

measure (4.12) to compare different potential

category structures; however, a small shift is needed. To make R
2

comparable among different models
and be constrained between 0 and 1, we need to consider an intercept, but in that case the model would
not be identifiable because the category dummies will add up to one (i.e. equal to the intercept). As
noted by Guevara and Thomas (2007), this can be solved by setting one of the categories as the base
and using dummies for all the others. Then, the model intercept corresponds to the estimated trip rate
of the base category and the estimators associated with each other dummy variable will correspond

to the difference between the trip rate of the respective category and that one used as a base. The R
2

calculated in this way and also the F-test may be used to compare different groupings of alternative
variables for stratification.

Equally, the analyst may use the t-test (4.8) as a statistical measure of the reliability of the
estimates in each category. The analyst may consider valid, for example, only stratifications for
which the estimators are different to zero at the 95% confidence level.

Another practical limitation of the basic model is that in some cases the number of observations in
the sample is too small or even inexistent, precluding the estimations of trip rates for some categories.
However, if the analyst is interested in having an estimate for such categories there is the following
alternative; if it is assumed that the impact of an additional variable level in the number of trips
is independent of other variables, one can formulate a linear model that depends on each of the
variables’ levels. For example, if we consider that the number of trips depends on Income and Car
ownership, and that those variables are divided into two levels (Low and High income; 0 and 1+
cars), the following linear model could be formulated:

Tripsi = θIL ILow i + θIH IHigh i + θM0 M0 i + θM1 M1 i + ei

where ILow is equal to 1 if the household belongs to the low income category and zero otherwise.
Other variables are defined equivalently and ei corresponds to an error term.

However, it can be noted that this model is not estimable since there is a problem of multicolinearity,
as ILow +IHigh = M0 + M1 = 1. To achieve estimation the model needs to be normalised, that
is, to use some of the categories as a base or reference. This can be achieved, for example, by

considering model (4.18), where we also included an intercept to make the R
2

comparable among
different models:

Tripsi = α + αIH IHigh i + αM1 M1 i + ei (4.18)

It follows that even if we do not have, for example, observations for households of low income
and high motorisation, their trip rates may be calculated as α̂ + α̂M1 if we accept the hypothesis of a
linear effect of income and car ownership in the number of trips.

On the other hand, even if there are enough observations to estimate the trip rates for all categories,
the analyst may be interested in estimating a model such as (4.18); as it involves the estimation
of fewer parameters with the same data, it would result in estimators with smaller variance. This
hypothesis can be tested, for example, by adding a non linear interaction calculated as the product
of ILow times M1 or, equivalently, a dummy variable for the combined effect of belonging to a high
income motorised household. This alternative model can be shown to be equivalent to considering
one dummy variable per category.

Tripsi = α + αIH IHigh i + αM1 M1 i + αMI IHigh i · M1 i + e′
i

The validity of this linear assumption can be tested by checking the joint significance of the
interaction variables through a F-test, as described in 4.2.1.5. In this case k = 4 and r = 1, because
the unrestricted model involves the estimation of four coefficients and only one of them is constrained
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to zero in the restricted model (4.18). The SSRR corresponds to model (4.18) and the SSRU to the
model including ILow • M1. If the statistic is smaller than the critical value Fr,n-k, the null hypothesis
is accepted meaning that the linear model (4.18) is acceptable. If the statistic is larger than Fr,n-k the
model with interactions should be considered. It is worth noting that since in this case the interaction
term involves the inclusion of only one additional variable, the t-statistic (4.8) could also be used but
the F-test is the tool applied in general.

Another interesting test, beyond the linearity assumption, has to do with the possibility of using an
additional variable for classification say, household size. In such case, the following model may be
estimated, where SL would take the value one if the household size is large and zero otherwise, say:

Tripsi = α + αIH IHigh i + αM1 M1 i + αS3 SL i + e′′
i

To find out whether the inclusion of household size is a good idea, an F-test can be used in general
and a t-test in the particular case of needing just one additional variable to do it; the significance level
to be used in this latter case deserves some attention, though. The usual procedure is to consider it
as small as possible, generally 5%, to reduce Type I errors (i.e. rejecting the null hypothesis when
it is true). However, as excluding household size may cause endogeneity, because the variable may
be correlated with income or car ownership, the cost of excluding it when it should be there (Type II
error) may be higher than the cost of including it if it should not be considered (Type I error). Since
there is a trade off between Type I and Type II errors, it may be advisable to consider a significance
level of 10% or even 20% in this case.

Another possibility is that the analyst may want to explore the validity of the threshold used
to define Low and High income strata, say. This can be easily achieved by running a regression

considering the alternative thresholds and comparing the R
2

of both models. In general, the model

with the larger R
2

should be preferred, as it will explain a larger portion of the variance. However, if

the model with the larger R
2
results in unreasonable signs or size of coefficients, or if it affects their

significance, the alternative should be chosen instead.
Guevara and Thomas (2007) point out that even after all the potential improvements to Category

Analysis described above, the R
2
of this type of models tend to be very low (i.e. less than 0.2 or

0.3). This is not surprising since the model is indeed extremely simplistic. The consideration of more
realistic relationships between explanatory variables and the number of trips may be attained by
means of linear regression. The models described in the next subsection represent an improvement
in that direction.

4.3.2.2 Regression Analysis for Household Strata

A mixture of cross-classification and regression modelling of trip generation may be the most appropriate
approach on certain occasions. For example, in an area where the distribution of income is unequal it
may be important to measure the differential impact of policies on different income groups; therefore
it may be necessary to model travel demand for each income group separately throughout the entire
modelling process. Assume now that in the same area car ownership is increasing fast and, as usual, it is
not clear how correlated these two variables are; a useful way out may be to postulate regression models
based on variables describing the size and make-up of different households, for a stratification according
to the two previous variables.

Example 4.5 Table 4.7 presents the 13 income and car-ownership categories (Ci) defined in ESTRAUS
(1989) for the Greater Santiago 1977 origin-destination data. As can be seen, the bulk of the data
corresponds to households with no cars and low income. Also note that categories 7 and 10 have rather
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few data points; this is, unfortunately, a general problem of this approach. Even smaller samples for very
low income and high car ownership led to the aggregation of some categories at this range.

Table 4.7 Stratification of the 1977 Santiago sample

Household car ownership

Household income (US$/month) 0 1 2+ Total

< 125 6 564 (C1) 215 (C2) 6 779
125–250 4 464 (C3) 627 (C4) 5 091
250–500 1 532 (C5) 716 (C6) 87 (C7) 2 334
500–750 305 (C8) 436 (C9) 118 (C10) 859
> 750 169 (C11) 380 (C12) 301 (C13) 790
Total 12 974 2 373 506 15 853

The independent variables available for analysis (i.e. after leaving out the stratifying variables) included
variables of the stage in the family cycle variety, which we will discuss in section 4.4. However, after
extensive specification searches it was found that the most significant variables were: number of workers
(divided into four classes depending on earnings and type of job), number of students and number
of residents.

Linear regression models estimated with these variables for each of the 13 categories were judged
satisfactory on the basis of correct signs, small intercepts, reasonable significance levels and R2 values
(e.g. between 0.401 for category 4, and 0.682 for category 7; see Hall et al. 1987).

Finally, one assumption that may be lifted in this case and that may improve even more the adjustment
and the quality of the models, is to accept that some coefficients may be the same across categories. This
will involve the joint estimation of the 13 models and necessarily produce and increase in efficiency, that
is, a reduction in the variance of the estimators.

4.3.3 The Person-category Approach

4.3.3.1 Introduction

This is an alternative to the household-based models discussed above, which was originally proposed
by Supernak (1979). It was argued that this approach offered the following advantages (Supernak
et al. 1983):

1. A person-level trip generation model is compatible with other components of the classical transport
demand modelling system, which is based on trip makers rather than on households.

2. It allows a cross-classification scheme that uses all important variables and yields a manageable
number of classes; this in turn allows class representation to be forecast more easily.

3. The sample size required to develop a person-category model can be several times smaller than that
required to estimate a household-category model.

4. Demographic changes can be more easily accounted for in a person-category model as, for example,
certain key demographic variables (such as age) are virtually impossible to define at household level.

5. Person categories are easier to forecast than household categories as the latter require forecasts
about household formation and family size; these tasks are altogether avoided in the case of person
categories. In general the bulk of the trips are made by people older than 18 years of age; this
population is easier to forecast 15 to 20 years ahead as only migration and survival rates are needed
to do so.
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The major limitation that a person-category model may have relates precisely to the main reason why
household-based models were chosen to replace zonal-based models at the end of the 1960s; this is the
difficulty of introducing household interaction effects and household money costs and money budgets
into a person-based model. However, Supernak et al. (1983) argue that it is not clear how vital these
considerations are and how they can be effectively incorporated even in a household-based model; in
fact, from our discussion in sections 4.2.3 and 4.3.1 it is clear that this is done in an implicit fashion only.

4.3.3.2 Variable Definition and Model Specification

Let tj be the trip rate, that is, the number of trips made during a certain time period by (the average)
person in category j; tjp is the trip rate by purpose p. Ti is the total number of trips made by the inhabitants
of zone i (all categories together). Ni is the number of inhabitants of zone i, and αji is the percentage of
inhabitants of zone i belonging to category j. Therefore the following basic relationship exists:

Ti = Ni

∑

j

α j i t j (4.19)

As in other methods, trips are divided into home-based (HB) and non-home-based (NHB), and can be
further divided by purpose (p) which may apply to both HB and NHB trips.

Model development entails the following stages:

1. Consideration of several variables which are expected to be important for explaining differences in
personal mobility. Also, definition of plausible person categories using these variables.

2. Preliminary analysis of trip rates in order to find out which variables have the least explanatory
power and can be excluded from the model. This is done by comparing the trip rates of categories
which are differentiated by the analysed variable only and testing whether their differences are
statistically significant.

3. Detailed analysis of trip characteristics to find variables that define similar categories. Variables which
do not provide substantial explanation of the data variance, or variables that duplicate the explanation
provided by other better variables (i.e. easier to forecast or more policy responsive) are excluded.
The exercise is conducted under the constraint that the number of final categories should not exceed
a certain practical maximum (for example, 15 classes).

For this analysis the following measures may be used: the coefficient of correlation (Rjk), slope (mjk)
and intercept (ajk) of the regression tjp = ajk + mjk tkp. The categories j and k may be treated as similar if
these measures satisfy the following conditions (Supernak et al. 1983):

Rjk > 0.900

0.75 < mjk < 1.25 (4.20)

ajk < 0.10

These conditions are quite demanding and may be changed.

4.3.3.3 Model Application at the Aggregate Level

Zonal home-based productions are computed in a straightforward manner using equation (4.19), or
a more disaggregated version explicitly including trip purpose if desired. However, the estimation of
trip attractions in general and NHB trip productions at the zonal level is more involved and requires
the development of ad hoc methods heavily dependent on the type of information available at each
application (see Supernak 1979 for a Polish example).
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4.4 Trip Generation and Accessibility
As we mentioned in Chapter 1, the classical specification of the urban transport planning (four-stage)
model incorporates an iterative process between trip distribution and assignment which leaves trip
generation unaltered. This is true even in the case of more contemporary forms which attempt to solve
the complex supply-demand equilibration problem appropriately, as we will discuss in Chapter 11. A
major disadvantage of this approach is that changes to the network are assumed to have no effects on trip
productions and attractions. For example, this would mean that the extension of an underground line to a
location which had no service previously would not generate more trips between that zone and the rest.
Although this assumption may hold for compulsory trips, it may not hold in the case of discretionary
trips (e.g. consider the case of shopping trips and a new line connecting a low-income zone with the
city’s central market, which features more competitive prices than the zone’s local shops).

To solve this problem, modellers have attempted to incorporate a measure of accessibility (i.e. ease
or difficulty of making trips to/from each zone) into trip generation equations; the aim is to replace
On

i = f
(
Hn

i

)
by On

i = f
(
Hn

i , An
i

)
, where H n

i are household characteristics and An
i is a measure of

accessibility by person type.
Typical accessibility measures take the general form:

An
i =

∑

j

f (En
j , Ci j )

where En
i is a measure of attraction of zone j and Cij the generalised cost of travel between zones i and

j. A typical analytical expression used to this end has been:

An
i =

∑

j

En
j exp(−βCi j )

where β is a calibration parameter from the gravity model, as discussed in Chapter 5.
Unfortunately this procedure has seldom produced the expected results in the case of aggregate urban

modelling applications because the estimated parameters of the accessibility variable have either been
non-significant or of the wrong sign. This issue has remained highly topical for many years and it is clearly
related to two interesting and yet unresolved problems: model dynamics and modelling with longitudinal
instead of cross-sectional data (Chapter 1). Ortúzar et al. (2000b) give an interesting discussion of the
problem and offer an example of what can be gained by using stated preference data in this context.

New emphasis was given to elastic trip generation models by work done in the UK on induced traffic
in the assessment of trunk road schemes (Department of Transport 1997). This work has led to the study
of trip generation methods which are sensitive to changes in accessibility, as it is recognised that the
classical methods are not adequate in this sense. Daly (1997) proposes a three-component framework
for trip generation:

� The individual in his/her household context formulates an activity pattern for the period to be modelled,
say a day. Out-of-home activities are of course the only activities that generate trips.

� The out-of-home activities are organised into ‘sojourns’, which are defined as stays at a specific
location, each of which has a primary purpose (and possibly secondary purposes at the same
location too).

� A travel plan is formulated to link the sojourns, in particular deciding which require to be visited
by separate home-based tours (two or more trips) and which can be linked with other sojourns by
non-home-based trips.

From here it appears reasonable to try and model the number of sojourns generated by a household or
person, and to split those sojourns between home-based tours and non-home-based trips. One practical
modelling point that follows immediately from this framework is that the dependent variables (i.e.
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number of tours and/or trips, or alternatively number of sojourns that can be reached) will be integers:
0, 1, 2, 3, etc. Moreover, the decision between whether to travel or not (i.e. between 0 and 1) can be
expected to be taken on a different basis from the decision on whether to make more than one trip (the
former decision is whether to take part in an activity at all, and the latter is how to organise the time and
location given that some participation will take place). Another point is that travel by all modes needs
to be included to ensure that all out-of-home activities are considered; thus the exclusion of short trips
or trips by non-motorised modes will detract from the quality of the model. This is therefore consistent
with the contemporary approach to O–D data collection discussed in Chapter 3.

The variables to be included in the model are the same as in the classical methods discussed above,
but it is hoped that accessibility can be incorporated. However, there may be a negative cross influence
between home-based and non-home-based accessibilities; for example, if home-based trips can be made
easily (i.e. in a small town) then fewer non-home-based trips will be needed.

Predictions of number of sojourns must be made for each travel purpose (and note that the variables
influencing each type may vary). Logically we should model compulsory purposes first and then the non-
mandatory purposes can be modelled, conditional upon the decisions made for the compulsory purposes.
Similarly, the choice between meeting a travel need by a home-based tour or a non-home-based trip as a
detour on a previously planned tour should be modelled explicitly (Algers et al. 1995), but independent
models are conceivable in the interest of simplicity. Finally, although trip frequency models may be
set up to describe the behaviour of complete households (i.e. considering all the interactions that may
be relevant to the number of trips made), the development of person-based models is much simpler in
practice, given the data that is usually available.

4.5 The Frequency Choice Logit Model
Daly (1997) discussed several models, concluding that the most adequate was one with a Logit form
(see Chapter 7) and which would predict the total number of trips by first calculating the probability
that each individual would choose to make a trip. The total travel volume can then be obtained
by multiplying the number of individuals of each type by their probabilities of making a trip. The
extension needed to deal with individuals that make more than one trip is presented subsequently.

If V is the utility of making a trip (assuming that the utility of not travelling is zero, with no loss
of generality), the probability of making a trip is given by:

P1 = 1

1 + exp(−V )

where V is usually specified as being a linear function of unknown parameters θ :

V =
∑

k

θk Xk

where X are measured data items such as income, car ownership and household size, and the
accessibility that needs to be input in a form consistent with utility-maximising theory (i.e. the theory
behind the Logit model). For this, the preferred form is to use a result by Williams (1977) made
popular by Ben-Akiva and Lerman (1979), which states that the correct form of accessibility is
the ‘logsum’ of the destination (or mode) choice model; furthermore, and as we discuss in section
7.4, because in this case we have a Nested Logit structure, the parameter multiplying the logsum
accessibility variable must lie between 0 and 1. If this condition is not met, the model predictions
may violate common sense (Williams and Senior 1977).

(continued)
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The Logit model represents the choice of each individual whether or not to make a trip, and this
means it is particularly suited to dealing with disaggregate data. But aggregate data can also be used;
then the probabilities P represent proportions rather than probabilities. However, to obtain the best
chance of finding a significant relationship between accessibility and number of trips use disaggregate
data as it preserves the maximum amount of variance. In order to model higher trip frequencies, Daly
(1997) proposes the use of a hierarchical structure representing an indefinite number of choices
(Figure 4.12).

0 1+

1 2+

2 3+
etc.

Figure 4.12 ‘Stop-go’ trip generation model

At each hierarchical level, the choice is whether to make further journeys or to stop at the present
number (hence the name ‘stop-go model’). Because of the possibly strong difference in behaviour
between the 0/1+ choice and the remaining choices, it has been found preferable to model the first
choice using a separate model. However, because there are often little data on travellers making
multiple journeys, it is also necessary to model the remaining choices with a single ‘stop-go’ model
(i.e. which predicts the same probability of stopping at every level of the hierarchy).

It has been found that applying this model system is straightforward. If the probability of making
any journeys is p (from the 0/1+ model) and the probability of choosing the ‘go’ option at each
subsequent stage is q (from the stop-go model), then the expected number of journeys is simply:

t = p/(1 − q)

The method has been applied in several studies in Europe (Daly 1997), obtaining coefficients for the
accessibility variable ranging from 0.07 to 0.33 for various trip purposes. A more aggregate version
of the model, using linear regression on trips observed at an intercept survey of most roads to the
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North of Chile, also gave good results yielding accessibility measures (of the log-sum type) with
significant coefficients of the proper sign and magnitude (Iglesias et al. 2008).

4.6 Forecasting Variables in Trip Generation Analysis
The choice of variables used to predict (household) trip generation rates has long been an area of concern
for transportation planners; these variables typically include household numbers, household size (and/or
structure), number of vehicles owned and income. However, interest arose in the early 1980s on research
aimed at enriching trip generation models with theories and methods from the behavioural sciences. The
major hypothesis behind this work was that the social circumstances in which individuals live should
have a considerable bearing on the opportunities and constraints they face in making activity choices; the
latter in turn, may lead to differing travel behaviour. For example, it is clear that whether a person lives
alone or not should affect the opportunities to coordinate and trade-off activities with others in order to
satisfy their travel necessities. Thus, a married couple with young pre-school children will generally find
themselves less mobile than a similar couple without children or with older children who require less
intensive care. Elderly and retired persons living with younger adults are likely to be more active outside
the home than elderly people living alone or with persons roughly their own age.

At the household level the situation is quite similar: households of unrelated individuals, for example,
tend to follow a pattern of activities that is less influenced by the presence of other household members
(and which normally leads to more frequent trips) than is the case of households of related individ-
uals (obviously with similar size, and other characteristics). This is due to the reduced coordination
among different members and also to the fact that their activity patterns typically involve fewer home-
centred activities.

One way of introducing these notions into the modelling of trip generation is to develop a set of
household types that effectively captures these distinctions and then add this measure to the equations
predicting household behaviour. One possible approach considers the age structure of the household
and its lifestyle. The approach is consistent with the idea that travel is a derived demand and that travel
behaviour is part of a larger allocation of time and money to activities in separate locations. For example,
the concept of lifestyle can be made operational as the allocation of varying amounts of time to different
(activity) purposes both within and outside the home, where travel is just part of this time allocation
(see Allaman et al. 1982). It appears that the time allocation of individuals varies systematically across
various segments of the population, such as age, sex, marital status and even race; this may be because
different household structures place different demands on individuals.

One set of hypotheses that can be tested empirically is whether the major break points (or stages) in
the life (or family) cycle are consistent with major changes of time allocation. For example, the break
points may be:

� the appearance of pre-school children;
� the time when the youngest child reaches school age;
� the time when a youth leaves home and either lives alone, with other young adults, or marries;
� the time when all the children of a couple have left home but the couple has not yet retired;
� the time when all members of a household have reached retirement age.

It is usually illuminating to compare households at one stage of this life cycle with households of the
immediately preceding stage.

The concepts of lifestyle and stage of family cycle are important from two points of view: first, that
of identifying stable groupings (based on age or sex) with different activity schedules and consequently
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demands for travel; second, that of allowing the tracing of systematic changes which may be based
on demographic variations (e.g. changes in age structure, marital or employment status). Numerous
demographic trends of significance in terms of travel behaviour have been receiving increasing attention
since the early 1980s (see Spielberg et al. 1981). One of the most significant for predicting travel behaviour
is the changing ratio of households to population, particularly in industrialised nations. Although the
rate of population growth has been falling steadily since the 1980s, the rate of household formation
has increased in some cases. This is due, among other reasons, to increases in the number of single-
parent households and the number of persons who are setting up individual households. Therefore, travel
forecasting methodologies which implicitly assume stable ratios of households to population (as is often
the case) will be severely affected by this structural shift in the demographic composition of society.

Another trend which has been well discussed is the overall ageing of the population, again particularly
in industrialised nations. This is important because age tends to be associated with a decline in mobility
and a change in lifestyle. It is interesting to note though, that differences in trip generation by age may
reflect in part the so-called cohort effects. This means that older people may travel less, simply because
they always did so, rather than because of their age. However, this effect may be largest for people
over 65 and declining trip generation rates for other age groups probably reflect a true decrease in the
propensity of travel.

Finally, another trend worth noting is the increase in the proportion of women joining the labour force.
Its significance for transportation planning and forecasting stems from two effects. The first is simply
the direct employment effect, where time allocation and consequently travel behaviour are profoundly
influenced by the requirements of actually being employed. The second one is more subtle and concerns
changes in household roles and their impacts on lifestyle, particularly for couples with children.

To end this section it is interesting to mention that the ideas discussed above led to a proposal for
incorporating a household structure variable in trip generation modelling, which was tested with real
data (Allaman, et al. 1982). The household structure categories proposed were based on the age, sex,
marital status and last name of each household member. These variables allowed the determination
of the presence or absence of dependents in the household, the number and type of adults present,
and the relationship among household members. However, although models using this variable were
pronounced a considerable improvement over traditional practice by Allaman et al. (1982), further tests
with a different data set performed by McDonald and Stopher (1983) led to its rejection. This was not
only on the basis of statistical evidence but also on policy sensitivity (i.e. it is difficult to use household
structure as a policy variable) and ease of forecasting grounds (i.e. forecasting at zone level, particularly
to obtain a distribution of households by household structure category, appears to be very problematic).
McDonald and Stopher (1983) argue that in these two senses a variable of the housing type variety should
be preferred and it is bound to be easier to use by a local government planning agency.

4.7 Stability and Updating of Trip Generation Parameters
4.7.1 Temporal Stability

Transport models, in general, are developed to assist in the formulation and evaluation of transport plans
and projects. Although on many occasions use has been made of descriptive statistics for examining
travel trends, most developments have used cross-sectional data to express the amount of travel in terms
of explanatory factors; these factors need to be both plausible and easy to forecast for the model to be
policy sensitive in the design-year. A key (often implicit) assumption of this approach is that the model
parameters will remain constant (or stable) between base and design years.

Several studies have examined this assumption in a trip generation context, finding in general that
it cannot be rejected when trips by all modes are considered together (see Kannel and Heathington
1973; Smith and Cleveland 1976), even in the case of the rather crude zonal-based models (although
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these are not recommended anyway, for reasons similar to those discussed in section 4.2.2; see Downes
and Gyenes 1976). However, later analyses reported different results. For example, Hall et al. (1987)
compared observed trip rates and regression coefficients of models fitted to household data collected for
Santiago in 1977 and 1986, and found them significantly different. Copley and Lowe (1981) reported
that although trip rates by bus for certain types of household categories seemed reasonably stable over
time, car trip rates appeared to be highly correlated with changes in real fuel prices. The latter has the
following potential implications:

1. If there is non-zero elasticity of car trip rates to fuel prices, the usual assumption of constant trip rates
in a period of rapidly increasing petrol prices could lead to serious over-provision of highway facilities.
If, on the other hand, fuel prices were to fall in real terms, the constant trip rates assumption would
lead to under-provision (which is precisely what was experienced in the UK and other industrialised
countries towards the end of the 1980s).

2. Furthermore, the balance between future investments in public and private transport facilities may be
judged incorrectly if based on the assumption of constant trip rates over time.

Clearly then, the correct estimation of the effect of fuel prices on trip rates (and of any other similar
longitudinal effects) is of fundamental importance for policy analysis. Unfortunately it cannot be tackled
with the cross-sectional data sets typically available for transportation studies.

Another factor affecting the stability of trip generation models over time is the evidence available on
changes in travel behaviour. We do change our mind and the set of activities we would like to achieve
is not fixed. Behavioural change programmes have an effect in reducing the number of trips (often by
combining them into more efficient tours on a different day of the week) and in transferring some of them
to more environmentally friendly modes. These techniques work because the individual does benefit from
saving time spent travelling. There is some evidence that even without these interventions people do
change their travel behaviour in response to easier home working and greater awareness of health and
environmental issues. The opportunity for changes seems to be most clear when a major intervention
into the transport and activity system takes place. This would partially explain, for example, the greater
than expected shift to public transport when Congestion Charging was first introduced in London.

4.7.2 Geographic Stability

Temporal stability is often difficult to examine because data (of similar quality) are required for the
same area at two different points in time. Thus on many occasions it may be easier to examine ge-
ographic stability (or transferability) as data on two different locations might become available (for
example, if two institutions located in different areas decide to conduct a joint research project). Ge-
ographic transferability should be seen as an important attribute of any travel demand model for the
following reasons:

1. It would suggest the existence of certain repeatable regularities in travel behaviour which can be
picked up and reflected by the model.

2. It would indicate a higher probability that temporal stability also exists; this, as we saw, is essential
for any forecasting model.

3. It may allow reducing substantially the need for costly full-scale transportation surveys on different
metropolitan areas (see the discussion on Chapter 9).

It is clear that not all travel characteristics can be transferable between different areas or cities;
for example, the average work trip duration is obviously context dependent, that is, it should be a



P1: TIX/XYZ P2: ABC

JWST054-04 JWST054-Ortuzar February 24, 2011 13:7 Printer Name: Yet to Come

170 Modelling Transport

function of area size, shape and the distributions of workplaces and residential zones over space.
However, transferability of trip rates should not be seen as unrealistic: trips reflect needs for individuals’
participation in various activities outside the home and if trip rates are related to homogeneous groups
of people, they can be expected to remain stable and geographically transferable within the same
cultural context.

The transferability of trip generation models (typically trip rates on a household-category analysis
framework) has been tested relatively rarely, producing normally unsatisfactory results (see Caldwell
and Demetski 1980; Daor 1981); the few successful examples have considered only part of the trips, for
example trips made by car (see Ashley 1978). On the other hand, Supernak (1979, 1981) reported the
successful transferability of the personal-category trip generation model, both for Polish and American
conditions. Finally, Rose and Koppelman (1984) examined the transferability of a discrete choice trip
generation model, allowing for adjustment of modal constants using local data. One of their conclusions
was that context similarity appeared to be an important determinant of model transferability; also, because
their results showed considerable variability, they caution that great care must be taken in order to ensure
that the transferred model is usable in the new context.

4.7.3 Bayesian Updating of Trip Generation Parameters

Assume we want to estimate a trip generation model but lack funds to collect appropriate survey
data; a possible (but inadequate) solution is to use a model estimated for another (hopefully similar)
area directly. However, it would be highly desirable to modify it in order to reflect local conditions
more accurately.

This can be done by means of Bayesian techniques for updating the original model parameters
using information from a small sample in the application context. Bayesian updating considers a prior
distribution (i.e. that of the original parameters to be updated), new information (i.e. to be obtained
from the small sample) and a posterior distribution corresponding to the updated model parameters
for the new context. Updating techniques are very important in a continuous planning framework;
we will see this theme appearing in various parts of this book.

Consider, for example, the problem of updating trip rates by household categories; following
Mahmassani and Sinha (1981) we will employ the notation in Table 4.8.

Table 4.8 Bayesian updating notation for trip generation

Variable Prior information New information

Mean trip rate t1 ts
No. of observations n1 ns

Trip rate variance S2
1 S2

s

The mean trip rate of a category (or cell), is of course the average of a sample of household trip
rates. According to the Central Limit Theorem, if the number of observations in a cell is at least 30, the
sample distribution of the cell (mean) trip rates may be considered distributed Normal independently
of the distribution of the household trip rates. Therefore, the prior distribution of the cell trip rates
for the original model is N(t1, S2

1/n1), because t1 and S2
1/n1 are unbiased estimators of its mean and

variance. Similarly, the cells for the small sample (new information) may be considered distributed
Normal with parameters ts and S2

s /ns .
Bayes’ theorem states that if the prior and sample distributions are Normal with known vari-

ances σ 2, then the posterior (updated) distribution of the mean trip rates is also Normal with the
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following parameters:

t2 = 1/ σ 2
1

1/ σ 2
1 +1/ σ 2

s

t1 + 1/ σ 2
s

1/ σ 2
1 +1/ σ 2

s

ts (4.21)

σ 2
2 = 1

1/ σ 2
1 +1/ σ 2

s

(4.22)

which, substituting by the known values S2 and n, yield:

t2 = n1S2
s t1 + nsS2

1 ts

n1 S2
s + ns S2

1

(4.23)

σ 2
2 = S2

1 S2
s

n1 S2
s + ns S2

1

(4.24)

It is important to emphasise that this distribution is not that of the individual trip rates of each
household in the corresponding cell, but that of the mean of the trip rates of the cell. In fact the
distribution of the individual rates is not known; the only information we have is that they share the
same (posterior) mean t2.

Example 4.6 The mean trip rate, its variance and the number of observations for two household
categories, obtained in a study undertaken 10 years ago are shown below:

Household categories

Variable (prior data) 1 2

Trips per day 8 5
No. of observations 65 300
Trip rate variance 64 15
Mean trip variance 0.98 0.05

It is felt that these values might be slightly out of date for direct use today, but there are not enough
funds to embark on a full-scale survey. A small stratified sample is finally taken, which yields the
values shown below:

Household categories

Variable (new data) 1 2

Trips per day 12 6
No. of observations 30 30
Trip rate variance 144 36
Mean trip variance 4.80 1.20

The reader can check that by applying equations (4.23) and (4.24) it is possible to estimate the
following trip rate values and variances:

(continued)
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Household categories

Posterior 1 2

Trip rate (trips/day) 8.68 5.04
Variance 0.82 0.05

Exercises
4.1 Consider a zone with the following characteristics:

Household type No. Income ($/month) Inhabitants Trips/day

0 cars 180 4 000 4 6
1 car 80 18 000 4 8
2 or more cars 40 50 000 6 11

Due to a decrease in import duties and a real income increase of 30% it is expected that in five years
time 50% of households without a car would acquire one. Estimate how many trips would the zone
generate in that case; check whether your method is truly the best available.

4.2 Consider the following trip attraction models estimated using a standard computing package (t-ratios
are given in parentheses);

Y = 123.2 + 0.89X1 R2 = 0.900
(5.2) (7.3)

Y = 40.1 + 0.14X2 + 0.61X3 + 0.25X4 R2 = 0.925
(6.4) (1.9) (2.4) (1.8)

Y = −1.7 + 2.57X1 − 1.78X4 R2 = 0.996
(−0.6) (9.9) (−9.3)

where Y are work trips attracted to the zone, X1 is total employment in the zone, X2 is industrial
employment in the zone, X3 is commercial employment in the zone and X4 is service employment.

Choose the most appropriate model, explaining clearly why (i.e. considering all its pros and cons).
4.3 Consider the following two AM peak work trip generation models, estimated by household

linear regression:

y = 0.50 + 2.0x1 + 1.5x2 R2 = 0.589
(2.5) (6.9) (5.6)

y = 0.01 + 2.3x1 + 1.1Z1 + 4.1Z2 R2 = 0.601
(0.9) (4.6) (1.9) (3.4)

where y are household trips to work in the morning peak, x1 is the number of workers in the
household, x2 is the number of cars in the household, Z1 is a dummy variable which takes the value
of 1 if the household has one car and Z2 is a dummy which takes the value of 1 if the household has
two or more cars.
(a) Choose one of the models explaining clearly the reasoning behind your decision.
(b) Graphically depict both models using appropriate axis.
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(c) If a zone has 1000 households (with an average of two workers per household), of which 50%
has no cars, 35% has only one car and the rest exactly two cars, estimate the total number of
trips generated by the zone, Oi, with both models. Discuss your results.

4.4 The following table presents data collected in the last household O–D survey (made ten years ago)
for three particular zones:

Zone Residents/HH Workers/HH Mean Income Population

I 2.0 1.0 50 000 20 000
II 3.0 2.0 70 000 60 000
III 2.5 2.0 100 000 100 000

Ten years ago two household-based trip generation models were estimated using this data. The
first was a linear regression model given by:

y = 0.2 + 0.5x1 + 1.1Z1 R2 = 0.78

where y are household peak hour trips, x1 is the number of workers in the household and Z1 is
a dummy variable which takes the value of 1 for high income (> 70 000) households and 0 in
other cases.

The second was a category analysis model based on two income strata (low and high income) and
two levels of family structure (1 or less and 2 or more workers per household). The estimated trip
rates are given in the following table:

Income

Family structure Low High

1 or less 0.8 1.0
2 or more 1.2 2.3

If the total number of trips generated today during the peak hour by the three zones are given by:

Zone Peak hour trips

I 8 200
II 24 300
III 92 500

and it is estimated that the zone characteristics (income, number of households and family structure)
have remained stable, decide which model is best. Explain your answer.
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5
Trip Distribution Modelling

We have seen how trip generation models can be used to estimate the total number of trips emanating
from a zone (origins, productions) and those attracted to each zone (destinations, attractions). Productions
and attractions provide an idea of the level of trip making in a study area but this is seldom enough
for modelling and decision making. What is needed is a better idea of the pattern of trip making, from
where to where do trips take place, the modes of transport chosen and, as we shall see in Chapter 10, the
routes taken.

The pattern of travel can be represented, at this stage, in at least two different ways. The first one
is as a ‘trip matrix’ or ‘trip table’. This stores the trips made from an Origin to a Destination during a
particular time period; it is also called an Origin Destination (O-D) matrix and may be disaggregated by
person type and purpose or perhaps the activity undertaken at each end of the trip. This representation is
needed for all assignment models.

The second way of presenting a trip pattern is to consider the factors that generate and attract trips, i.e.
on a Production-Attraction (P-A) basis, with Home generally being treated as the ‘producing’ end, and
Work, Shop etc as the ‘attracting’ end. By necessity, a P-A matrix will cover a longer time span, (usually
a day) than an O-D matrix. Take for example a journey to school and back. On an O-D basis this will
generate one trip in the morning from Home to School and one back in the afternoon; on a P-A basis the
Home end will generate two school trips and the School end will attract two school trips during the day.
Note that the P-A treatment is closer, but not equivalent, to the idea of tours.

Trip patterns obtained through intercept surveys (i.e. roadside interviews or public transport ques-
tionnaires) will result in O-D matrices which are probably partial; not all O-D pairs would have been
sampled. Even the combination of intercept and home interview surveys will fail to produce matrices
where all cells have been sampled. Modelling is required to generate fuller matrices in either P-A or
O-D format.

A number of methods have been put forward over the years to distribute trips (from a trip generation
model) among destinations; some of the simplest are only suitable for short-term, tactical studies where
no major changes in the accessibility provided by the network are envisaged. Others seem to respond
better to changes in network cost and are therefore suggested for longer-term strategic studies or for
tactical ones involving important changes in relative transport prices; these are often P-A based.

Trip Distribution is often seen as an aggregate problem with an aggregate model for its solution. In
fact, most of its treatment in this chapter shares that view. However, the choice of destination can also be
treated as a discrete choice (disaggregate) problem, and treated with models at the level of the individual.
This is discussed in greater detail in subsequent chapters.

Modelling Transport, Fourth Edition. Juan de Dios Ortúzar and Luis G. Willumsen.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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This chapter starts by detailing additional definitions and notation used; these include the idea of
generalised costs of travel. The next section introduces methods which respond only to relative growth
rates at origins and destinations; these are suitable for short-term trend extrapolation. Section 5.3 discusses
a family of synthetic models, the best known being the gravity model. Approaches to model generation,
in particular the entropy-maximising formalism, are presented in section 5.4. An important aspect of
the use of synthetic models is their calibration, that is the task of fixing their parameters so that the
base-year travel pattern is well represented by the model; this is examined in section 5.5. Section 5.6
presents a variation on the gravity model calibration theme which enables more general forms for the
model. Other synthetic models have also been proposed and the most important of them, the intervening-
opportunities model, is explored in section 5.7. Finally, the chapter concludes with some practical issues in
distribution modelling.

5.1 Definitions and Notation
It is now customary to represent the trip pattern in a study area by means of a trip matrix. This is
essentially a two-dimensional array of cells where rows and columns represent each of the z zones in the
study area (including external zones), as shown in Table 5.1.

The cells of each row i contain the trips originating in that zone which have as destinations the zones
in the corresponding columns. The main diagonal corresponds to intra-zonal trips. Therefore: Tij is the
number of trips between origin i and destination j; the total array is {Tij} or T; Oi is the total number of
trips originating in zone i, and Dj is the total number of trips attracted to zone j. Pi is the number of trips
produced or generated in a zone i and Qj those attracted to zone j.

We shall use lower case letters, tij, oi and dj to indicate observations from a sample or from an earlier
study; capital letters will represent our target, or the values we are trying to model for the corresponding
modelling period.

The matrices can be further disaggregated, for example, by person type (n) and/or by mode
(k). Therefore:

T kn
ij are trips from i to j by mode k and person type n;

Okn
i is the total number of trips originating at zone i by mode k and person type n, and

so on.

Table 5.1 A general form of a two-dimensional trip matrix

Destinations

Origins 1 2 3 . . . j . . . z
∑

i
Tij

1 T11 T12 T13 . . . T1j . . . T1z O1

2 T21 T22 T23 . . . T2j . . . T2z O2

3 T31 T32 T33 . . . T3j . . . T3z O3

...
I Ti1 Ti2 Ti3 . . . Tij . . . Tiz Oi

...
Z Tz1 Tz2 Tz3 . . . Tzj . . . Tzz Oz

∑
i

Tij D1 D2 D3 . . . Dj . . . Dz
∑

ij Tij = T
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Summation over sub- or superscripts will be indicated implicitly by omission, e.g.

T n
ij =

∑

k

T kn
ij

T =
∑

ij

Tij and t =
∑

ij

tij

In some cases it may be of interest to distinguish the proportion of trips using a particular mode and
the cost of travelling between two points:

pk
ij is the proportion of trips from i to j by mode k;

ck
ij is the cost of travelling between i and j by mode k.

The sum of the trips in a row should equal the total number of trips emanating from that zone; the sum
of the trips in a column should correspond to the number of trips attracted to that zone. These conditions
can be written as:

∑

j

Tij = Oi (5.1a)

∑

i

Tij = D j (5.1b)

If reliable information is available to estimate both Oi and Dj then the model must satisfy both
conditions; in this case the model is said to be doubly constrained. In some cases there will be information
only about one of these constraints, for example to estimate all the Oi’s, and therefore the model will
be said to be singly constrained. Thus a model can be origin or production constrained if the Oi’s, are
available, or destination or attraction constrained if the Dj’s are at hand.

The cost element may be considered in terms of distance, time or money units. It is often convenient to
use a measure combining all the main attributes related to the disutility of a journey and this is normally
referred to as the generalised cost of travel. This is typically a linear function of the attributes of the
journey weighted by coefficients which attempt to represent their relative importance as perceived by
the traveller. One possible representation of this for mode k is (omitting superscript k for simplicity):

Cij = a1tv
ij + a2tw

ij + a3t t
ij + a4tn

ij + a5 Fij + a6φ j + δ (5.2)

where

t v
ij is the in-vehicle travel time between i and j;

tw
ij is the walking time to and from stops (stations) or from parking area/lot;

t t
ij is the waiting time at stops (or time spent searching for a parking space);

tn
ij is the interchange time, if any;

Fij is a monetary charge: the fare charged to travel between i and j or the cost of using the car for
that journey, including any tolls or congestion charges (note that car operating costs are often not
well perceived and that electronic means of payment tend to blur somehow the link between use
and payment);
φj is a terminal (typically parking) cost associated with the journey from i to j;
δ is a modal penalty, a parameter representing all other attributes not included in the generalised
measure so far, e.g. safety, comfort and convenience;
a1 . . .6 are weights attached to each element of cost; they have dimensions appropriate for conversion
of all attributes to common units, e.g. money or time.
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If the generalised cost is measured in money units (a5 = 1) then a1 is sometimes interpreted as the
value of time (or more precisely the value of in-vehicle time) as its units are money/time. In that case, a2

and a3 would be the values of walking and waiting time respectively, and in many practical studies they
have been taken to be two or three times the expected value of a1.

The generalised cost of travel, as expressed here, represents an interesting compromise between
subjective and objective disutility of movement. It is meant to represent the disutility of travel as
perceived by the trip maker; in that sense the value of time should be a perceived value rather than an
objective, resource-based, value. However, the coefficients a1 . . . 6 used are often provided externally to
the modelling process, sometimes specified by government. This presumes stability and transferability
of values for which there is, so far, only limited evidence.

As generalised costs may be measured in money or time units it is relatively easy to convert one into
the other. For example, if the generalised cost is measured in time units, a1 would be 1.0, a2. . .3 would
probably be between 2.0 and 3.0, and a5. . .6 would represent something like the ‘duration of money’.

There are some theoretical and practical advantages in measuring generalised cost in time units.
Consider, for example, the effect of income levels increasing with time; this would increase the value of
time and therefore increase generalised costs and apparently make the same destination more expensive.
If, on the other hand, generalised costs are measured in time units, increased income levels would appear
to reduce the cost of reaching the same destination, and this seems intuitively more acceptable. There
are formal reasons in evaluation to prefer expressing generalised cost in time units; the interested reader
is referred to the excellent book by Jara-Dı́az (2007).

A distribution model tries to estimate the number of trips in each of the matrix cells on the basis of any
information available. Different distribution models have been proposed for different sets of problems
and conditions. We shall explore, first, models which are mainly useful in updating a trip matrix, or in
forecasting a future trip matrix, where information is only available in terms of future trip rates or growth
factors. We shall then study more general models, in particular the gravity model family. We shall finally
explore the possibility of developing modal-split models from similar principles.

5.2 Growth-Factor Methods
Let us consider first a situation where we have a basic trip matrix t, perhaps obtained from a previous
study or estimated from recent survey data. We would like to estimate the matrix corresponding to the
design year, say 10 years into the future. We may have information about the growth rate to be expected
in this 10-year period for the whole study area; alternatively, we may have information on the likely
growth in the number of trips originating and/or attracted to each zone. Depending on this information
we may be able to use different growth-factor methods in our estimation of future trip patterns.

5.2.1 Uniform Growth Factor

If the only information available is about a general growth rate τ for the whole of the study area, then
we can only assume that it will apply to each cell in the matrix:

Tij = τ · tij for each pair i and j (5.3)

Of course τ = T/t, i.e. the ratio of expanded over previous total number of trips.

Example 5.1 Consider the simple four-by-four base-year trip matrix of Table 5.2. If the growth in traffic
in the study area is expected to be of 20% in the next three years, it is a simple matter to multiply all cell
values by 1.2 to obtain a new matrix as in Table 5.3.
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Table 5.2 Base-year trip matrix

1 2 3 4
∑

j

1 5 50 100 200 355

2 50 5 100 300 455
3 50 100 5 100 255
4 100 200 250 20 570∑

i
205 355 455 620 1635

The assumption of uniform growth is generally unrealistic except perhaps for very short time spans
of, say, one or two years. In most other cases one would expect differential growth for different parts of
the study area.

Table 5.3 Future estimated trip matrix with τ = 1.2

1 2 3 4
∑

j

1 6 60 120 240 426

2 60 6 120 360 546
3 60 120 6 120 306
4 120 240 300 24 684∑

i
246 426 546 744 1962

5.2.2 Singly Constrained Growth-Factor Methods

Consider the situation where information is available on the expected growth in trips originating in
each zone, for example shopping trips. In this case it would be possible to apply this origin-specific
growth factor (τ i) to the corresponding rows in the trip matrix. The same approach can be followed if
the information is available for trips attracted to each zone; in this case the destination-specific growth
factors (τ j) would be applied to the corresponding columns. This can be written as:

Tij = τi · tij for origin-specific factors (5.4)

Tij = τ j · tij for destination-specific factors (5.5)

Example 5.2 Consider Table 5.4, a revised version of Table 5.2 with growth predicted for origins:

Table 5.4 Origin-constrained growth trip table

1 2 3 4
∑

j
Target Oi

1 5 50 100 200 355 400

2 50 5 100 300 455 460
3 50 100 5 100 255 400
4 100 200 250 20 570 702∑

i
205 355 455 620 1635 1962

This problem can be solved immediately by multiplying each row by the ratio of target Oi over the base
year total (� j ), thus giving the results in Table 5.5.
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Table 5.5 Expanded origin-constrained growth trip table

1 2 3 4
∑

j
Target Oi

1 5.6 56.3 112.7 225.4 400 400

2 50.5 5.1 101.1 303.3 460 460
3 78.4 156.9 7.8 156.9 400 400
4 123.2 246.3 307.9 24.6 702 702∑

i
257.7 464.6 529.5 701.2 1962 1962

5.2.3 Doubly Constrained Growth Factors

An interesting problem is generated when information is available on the future number of trips origi-
nating and terminating in each zone. This implies different growth rates for trips in and out of each zone
and consequently having two sets of growth factors for each zone, say τ i and �j. The application of an
‘average’ growth factor, say Fij = 0.5 (τ i + �j) is only a poor compromise as none of the two targets or
trip-end constraints would be satisfied. Historically a number of iterative methods have been proposed to
obtain an estimated trip matrix which satisfies both sets of trip-end constraints, or the two sets of growth
factors, which is the same thing.

All these methods involve calculating a set of intermediate correction coefficients which are then
applied to cell entries in each row or column as appropriate. After applying these corrections to say, each
row, the totals for each column are calculated and compared with the target values. If the differences are
significant, new correction coefficients are calculated and applied as necessary.

In transport these methods are known by their authors as Fratar in the US and Furness elsewhere. For
example Furness (1965) introduced ‘balancing factors’ Ai and Bj as follows:

Tij = tij · τi · � j · Ai · B j (5.6)

or incorporating the growth rates into new variables ai and bj:

Tij = tij · ai · b j (5.7)

with ai = τ i Ai and bj = �j Bj.
The factors ai and bj (or Ai and Bj) must be calculated so that the constraints (5.1) are satisfied. This

is achieved in an iterative process which in outline is as follows:

1. set all bj = 1.0 and solve for ai; in this context, ‘solve for ai’ means find the correction factors ai that
satisfy the trip generation constraints;

2. with the latest ai solve for bj, e.g. satisfy the trip attraction constraints;
3. keeping the bj’s fixed, solve for ai and repeat steps (2) and (3) until the changes are sufficiently small.

This method produces solutions within 3 to 5% of the target values in a few iterations when certain
conditions are met. A tighter degree of convergence may be important from the perspective of model
system consistency, see Chapter 11. This method is often called a ‘bi-proportional algorithm’ because of
the nature of the corrections involved. The problem is not restricted to transport; techniques to solve it
have also been ‘invented’, among others, by Kruithof (1937) for telephone traffic and Bacharach (1970)
for updating input-output matrices in economics. The best treatment of its mathematical properties seems
to be due to Bregman (see Lamond and Stewart 1981).

It will be shown below that this method is a special case of entropy-maximising models of the gravity
type if the effect of distance or separation between zones is excluded. But in any case, the Furness method
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tries to produce the minimum corrections to the base-year matrix t necessary to satisfy the future year
trip-end constraints.

The most important condition required for the convergence of this method is that the growth rates
produce target values Ti and Tj such that

∑

i

τi

∑

j

tij =
∑

i

� j

∑

i

tij = T (5.8)

Enforcing this condition may require correcting trip-end estimates produced by the trip
generation models.

Example 5.3 Table 5.6 represents a doubly constrained growth factor problem:

Table 5.6 Doubly constrained matrix expansion problem

1 2 3 4
∑

j
Target Oi

1 5 50 100 200 355 400

2 50 5 100 300 455 460
3 50 100 5 100 255 400
4 100 200 250 20 570 702∑

i
205 355 455 620 1635

Target Dj 260 400 500 802 1962

The solution to this problem, after three iterations on rows and columns (three sets of corrections for all
rows and three for all columns), is shown in Table 5.7:

Table 5.7 Solution to the doubly constrained matrix expansion problem

1 2 3 4
∑

j
Target Oi

1 5.25 44.12 98.24 254.25 401.85 400

2 45.30 3.81 84.78 329.11 462.99 460
3 77.04 129.50 7.21 186.58 400.34 400
4 132.41 222.57 309.77 32.07 696.82 702∑

i
260.00 400.00 500.00 802.00 1962

Target Dj 260 400 500 802 1962

Note that this estimated matrix is within 1% of meeting the target trip ends, more than enough accuracy
for this problem.

5.2.4 Advantages and Limitations of Growth-Factor Methods

Growth-factor methods are simple to understand and make direct use of observed trip matrices and
forecasts of trip-end growth. They preserve the observations as much as is consistent with the information
available on growth rates. This advantage is also their limitation as they are probably only reasonable for
short-term planning horizons or when changes in transport costs are not to be expected.

Growth-factor methods require the same database as synthetic methods, namely an observed (sampled)
trip matrix; this is an expensive data item. The methods are heavily dependent on the accuracy of the
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base-year trip matrix. As we have seen, this is never very high for individual cell entries and therefore the
resulting matrices are no more reliable than the sampled or observed ones. Any error in the base-year may
well be amplified by the application of successive correction factors. Moreover, if parts of the base-year
matrix are unobserved, they will remain so in the forecasts. Therefore, these methods cannot be used to
fill in unobserved cells of partially observed trip matrices.

Another, important, limitation is that the methods do not take into account changes in transport costs
due to improvements (or new congestion) in the network. Therefore they are of limited use in the analysis
of policy options involving new modes, new links, pricing policies and new zones.

5.3 Synthetic or Gravity Models
5.3.1 The Gravity Distribution Model

Distribution models of a different kind have been developed to assist in forecasting future trip patterns
when important changes in the network take place. They start from assumptions about group trip
making behaviour and the way this is influenced by external factors such as total trip ends and distance
travelled. The best known of these models is the gravity model, originally generated from an analogy
with Newton’s gravitational law. These models estimate trips for each cell in the matrix without directly
using the observed trip pattern; therefore they are sometimes called synthetic as opposed to growth-
factor models.

Probably the first rigorous use of a gravity model was by Casey (1955), who suggested such an
approach to synthesise shopping trips and catchment areas between towns in a region. In its simplest
formulation the model has the following functional form:

Tij = αPi Pj

d2
ij

(5.9)

where Pi and Pj are the populations of the towns of origin and destination, dij is the distance between i
and j, and α is a proportionality factor (with units trips·distance2/population2).

This was soon considered to be too simplistic an analogy with the gravitational law and early improve-
ments included the use of total trip ends (Oi and Dj) instead of total populations, and a parameter n for
calibration as the power for dij. This new parameter was not restricted to being an integer and different
studies estimated values between 0.6 and 3.5.

The model was further generalised by assuming that the effect of distance or ‘separation’ could be
modelled better by a decreasing function, to be specified, of the distance or travel cost between the zones.
This can be written as:

Tij = αOi Dj f (cij) (5.10)

where f (cij) is a generalised function of the travel costs with one or more parameters for calibration.
This function often receives the name of ‘deterrence function’ because it represents the disincentive to
travel as distance (time) or cost increases. Popular versions for this function are:

f (cij) = exp(−βcij) exponential function (5.11)

f (cij) = c−n
ij power function (5.12)

f (cij) = cn
ij exp(−βcij) combined function (5.13)

The general form of these functions for different values of their parameters is shown in Figure 5.1.
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Figure 5.1 Different deterrence functions

5.3.2 Singly and Doubly Constrained Models

The need to ensure that the restrictions (5.1) are met requires replacing the single proportionality factor
α by two sets of balancing factors Ai and Bj as in the Furness model, yielding:

Tij = Ai Oi B j D j f (cij) (5.14)

In a similar vein one can again subsume Oi and Dj into these factors and rewrite the model as:

Tij = ai b j f (cij) (5.15)

The expression in (5.14) or (5.15) is the classical version of the doubly constrained gravity model.
Singly constrained versions, either origin or destination constrained, can be produced by making one set
of balancing factors Ai or Bj equal to one. For an origin-constrained model, Bj = 1.0 for all j, and

Ai = 1

/ ∑

j

D j f (cij) (5.16)

In the case of the doubly constrained model the values of the balancing factors are:

Ai = 1

/ ∑

j

B j D j f (cij) (5.17)

Bj = 1

/ ∑

i

Ai Oi f (cij) (5.18)

The balancing factors are, therefore, interdependent; this means that the calculation of one set requires
the values of the other set. This suggests an iterative process analogous to Furness’s which works well
in practice: given set of values for the deterrence function f (cij), start with all Bj = 1, solve for Ai and
then use these values to re-estimate the Bj’s; repeat until convergence is achieved.

A more general version of the deterrence function accepts empirical values for it and these depend
only on the generalised cost of travel. To this end, travel costs are aggregated into a small number (say 10
or 15) of cost ranges or cost bins, indicated by a superscript m. The deterrence function then becomes:

f (cij) =
∑

m

Fmδm
ij (5.19)
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Figure 5.2 Typical trip length distribution in urban areas

where Fm is the mean value for cost bin m, and δm
ij is equal to 1 if the cost of travelling between i and j

falls in the range m, and equal to 0 otherwise.
The formulations (5.11) and (5.12) have one parameter for calibration; formulation (5.13) has two,

β and n, and formulation (5.19) has as many parameters as cost bins. These parameters are estimated
so that the results from the model reproduce, as closely as possible, the trip length (cost) distribution
(TLD) of the observations. A theoretical reason for this requirement is offered below, but meanwhile it
is enough to note that the greater the number of parameters, the easier it is to obtain a closer fit with the
sampled trip length distribution.

It has been observed, in particular in urban areas, that in the case of motorised trips, the trip length
distribution has a shape of the form depicted in Figure 5.2. This shows that there are few short motorised
trips, followed by a larger number of medium-length trips; as distance (cost) increases, the number of
trips decays again with a few very long trips. The negative exponential and power functions reproduce
reasonably well the second part of the curve but not the first. That is one of the reasons behind the
combined formulation which is more likely to fit better both parts of the TLD. The greater flexibility of
the cost-bin formulation permits an even better fit. However, the approach requires the assumption that
the same TLD will be maintained in the future; this is similar but more stringent to requiring β to be the
same for the base and the forecasting years.

It is interesting to note that the bulk of the representational and policy relevance advantages of the
gravity model lies in the deterrence function; the rest is very much like the Furness method.

5.4 The Entropy-Maximising Approach
5.4.1 Entropy and Model Generation

We shall introduce now the entropy-maximisation approach which has been used in the generation of a
wide range of models, including the gravity model, shopping models and location models. The approach
has a number of followers and detractors but it is generally acknowledged as one of the important
contributions to improved modelling in transport. There are several ways of presenting the approach;
we have chosen an intuitive rather than strictly mathematical formulation. For a stricter presentation and
references to related and alternative approaches, see Wilson (1974).
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Consider a system made up of a large number of distinct elements. A full description of such a system
requires the complete specification of its micro states, as each is distinct and separable. This would
involve, for example, identifying each individual traveller, its origin, destination, mode, time of journey,
and so on. However, for many practical purposes it may be sufficient to work on the basis of a more
aggregate or meso state specification; following our example, a meso state may just specify the number
of trips between each origin and each destination. In general, there will be numerous and different micro
states which produce the same meso state: John Smith and Pedro Pérez, living in the same zone, may
exchange destinations generating different micro states but keeping the same meso state.

There is always an even higher level of aggregation, a macro state, for example the total number of
trips on particular links, or the total trips generated and attracted to each zone. To obtain reliable measures
of trip making activity it is often easier to make observations at this higher level of aggregation. In fact,
most of our current information about a system is precisely at this level. In a similar way, estimates
about the future are usually restricted to macro-state descriptions because of the uncertainties involved
in forecasting at more disaggregate levels: for example, it is easier to forecast the population per zone
than the number of households in a particular category residing in each zone.

The basis of the method is to accept that, unless we have information to the contrary, all micro states
consistent with our information about macro states are equally likely to occur. This is in fact a sensible
assumption given our ignorance about meso and micro states. A good way of enforcing consistency with
our knowledge about macro states is to express our information as equality constraints in a mathematical
programme. As we are interested in the meso-state descriptions of the system, we would like to identify
those meso states which are most likely, given our constraints about the macro states.

It is possible to show, see Wilson (1970), that the number of micro states W {Tij} associated with the
meso state Tij is given by:

W {Tij} = T !∏
ij Tij!

(5.20)

As it is assumed that all micro states are equally likely, the most probable meso state would be the one
that can be generated in a greater number of ways.

Therefore, what is needed is a technique to identify the values of {Tij} which maximise W in (5.20).
For convenience we seek to maximise a monotonic function of W, namely log W, as both problems have
the same maximum. Therefore:

log W = log
T !∏
ij Tij!

= log T ! −
∑

ij

log Tij! (5.21)

Stirling’s (short) approximation for log X! = X log X − X, can be used to make it easier to optimise:

log W = log T ! −
∑

ij

(Tij log Tij − Tij) (5.22)

Usually the term log T! is a constant, therefore it can be omitted from the optimisation problem. The
rest of the equation is often referred to as the entropy function:

log W ′ = −
∑

ij

(Tij log Tij − Tij) (5.23)

Maximising log W ′, subject to constraints corresponding to our knowledge about the macro states,
enables us to generate models to estimate the most likely meso states, in our case the most likely matrix
T. The key to this model generation method is, therefore, the identification of suitable micro, meso and
macro state descriptions, together with the macro level constraints that must be met by the solution to
the optimisation problem.
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In some cases, there may be additional information in the form of prior or old values for the meso
states, for example an outdated trip matrix t. The problem may be recast with this information and the
revised objective function becomes:

log W ′′ = −
∑

ij

(Tij log Tij/tij − Tij + tij) (5.24)

This is an interesting function in which each element in the summation takes the value zero if Tij = tij

and otherwise is a positive value which increases with the difference between T and t. Therefore −log
W ′ ′ ′ is a good measure of the difference between T and t; it can further be shown that

− log W ′′ ≈ 0.5
∑

ij

(Tij − tij)2

tij
(5.25)

where the right-hand side is another good measure of the difference between prior and estimated meso
states. Models can be generated minimising −log W ′ ′ subject to constraints reflecting our knowledge
about macro states. The resulting model is the one with the meso states closest to the prior meso states,
in the sense of equation (5.24) or approximately (5.25), and which satisfies the macro state constraints.

5.4.2 Generation of the Gravity Model

Consider the definition of micro, meso and macro states from the discussion above. The problem
becomes the maximisation of log W ′ subject to the following two sets of constraints corresponding to the
meso states:

Oi −
∑

j

Tij = 0 (5.26)

D j −
∑

i

Tij = 0 (5.27)

These two sets of constraints reflect our knowledge about trip productions and attractions in the zones
of the study area. We are only interested in matrix entries that can be interpreted as trips, therefore we
need to introduce the additional constraint that:

Tij ≥ 0

The constrained maximisation problem can be handled forming the Lagrangian:

L = log W ′ +
∑

i

α′
i

{
Oi −

∑

i

Tij

}
+

∑

j

α′′
i

{
D j −

∑

i

Tij

}
(5.28)

Taking the first partial derivatives with respect to Tij and equating them to zero we obtain:

∂L

∂Tij
= − log Tij − α′

i − α′′
j = 0 (5.29)

therefore

Tij = exp (−α′
i − α′′

j ) = exp (−α′
i ) exp (−α′′

j )

The values of the Lagrange multipliers are easy to find; making a simple change of variables:

Ai Oi = exp (−α′
i ) and Bj D j = exp (−α′′

j )

we obtain

Tij = Ai Oi B j D j (5.30)
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On the other hand, the use of −log W ′ ′ as an objective function generates the model:

Tij = Ai Oi B j O j tij (5.31)

which is, of course, the basic Furness model. The version resulting in equation (5.30) corresponds to
the case when there is no prior information, e.g. all tij = 1. These two models are close to but not
yet the gravity model. What is missing is the deterrence function term. Its introduction requires an
additional constraint:

∑

ij

Tijcij = C

where C is the (unknown) total expenditure in travel in the system (in generalised cost units if they are
in use). Restating this constraint as

C −
∑

ij

Tijcij = 0 (5.32)

one can maximise log W ′ subject to (5.26), (5.27) and (5.32), and using the same constrained optimisation
technique it is possible to obtain the Lagrangian:

L = log W ′ +
∑

i

α′
i

⎧
⎨

⎩Oi −
∑

j

Tij

⎫
⎬

⎭ +
∑

j

α′′
j

{
D j −

∑

i

Tij

}
+ β

{
C −

∑

ij

Tijcij

}
(5.33)

Again, taking its first partial derivatives with respect to Tij and equating them to zero gives

∂L

∂Tij
= − log Tij − α′

i − α′′
j − βcij = 0 (5.34)

therefore

Tij = exp (−α′
i − α′′

j − βcij) = exp (−α′
i )exp (−α′′

j )exp (−βcij) (5.35)

Making the same change of variables as before one obtains:

Tij = Ai Oi B j D j exp (−βcij) (5.36)

which is the classic gravity model. The values for the balancing factors can be derived from the
constraints as:

Ai = 1

/ [
∑

i

B j Dj exp (−βcij)

]
and Bj = 1

/ [
∑

i

Ai Oi exp (−βcij)

]

If one of (5.26a) or (5.26b) is omitted from the constraints a singly constrained gravity model
is obtained.

The Lagrange multipliers α′
i and α′′

j are the dual variables of the trip generation and attraction con-
straints and relate to the variations in entropy for a unit variation in trip generation and attraction. The
value of β is related to the satisfaction of condition (5.32). In general C can only be estimated and
therefore β is left as a parameter for calibration in order to adjust the model to each specific area. Values
of β cannot, therefore, be easily borrowed from one place to another. A useful first estimate for the value
of β is one over the average travel cost; in effect, β is precisely measured in inverse of travel cost units.

The use of a different cost constraint, such as (5.37) instead of (5.32),

C ′ −
∑

ij

Tij log cij = 0 (5.37)
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results in a model of the form

Tij = Ai Oi B j D j exp (−β ′ log cij) = Ai Oi B j D j c
−β′
ij (5.38)

i.e. the gravity model with an inverse power deterrence function!
The reader can verify that the use of constraints (5.32) and (5.37) leads to a gravity model with a

combined deterrence function. A further interesting approach is to disaggregate constraint (5.32) into
several trip cost groups or bins indicated, as before, by a superscript m:

Cm −
∑

ij

Tijcijδ
m
ij = 0 for each m (5.39)

The maximisation of (5.23) subject to (5.26), (5.27) and (5.39) leads to:

Tij = Ai Oi B j Dj

∑

m

Fmδm
ij = ai b j

∑

m

Fmδm
ij (5.40)

which is, of course, the gravity model with a cost-bin deterrence function. This model has some attractive
properties, which will be discussed in section 5.6.

5.4.3 Properties of the Gravity Model

As can be seen, entropy maximisation is quite a flexible approach for model generation. A whole family of
distribution models can be generated by casting the problem in a mathematical programming framework:
the maximisation of an entropy function subject to linear constraints representing our level of knowledge
about the system. The use of this formalism has many advantages:

1. It provides a more rigorous way of specifying the mathematical properties of the resulting model.
For example, it can be shown that the objective function is always convex; it can be shown also that,
provided the constraints used, say (5.26) and (5.27) have a feasible solution space, the optimisation
problem has a unique solution even if the set of parameters Ai and Bj is not unique (one is redundant).

2. The use of a mathematical programming framework also facilitates the use of a standard tool-kit of
solution methods and the analysis of the efficiency of alternative algorithms.

3. The theoretical framework used to generate the model also assists in providing an improved interpre-
tation of the solutions generated by it. We have seen that the gravity model can be generated from
analogies with the physical world or from entropy-maximising considerations; the latter are closely
related to information theory, to error measures and to maximum likelihood in statistics, and the three
provide alternative ways of generating the same mathematical form of the gravity model. Although
the functional form is the same, each theoretical framework provides a different interpretation to the
problem and the solution found. Each may be more appropriate in specific circumstances. We shall
come back to this equifinality issue in Chapter 8.

4. The fact that the gravity model can be generated in a number of different ways does not make it
‘correct’. The appropriateness of the model depends on the acceptability of the assumptions required
for its generation and their interpretation. No model is ever appropriate or correct in itself, it can only
be more or less suitable to handle a decision question given our understanding of the problem, of the
options or schemes to be tested, the information available or collectable at a justifiable cost, and the
time and resources securable for analysis; see the discussion on calibration and validation below.

It is interesting to contrast the classical gravity model as in equation (5.36) with Furness’s method as
derived above in equation (5.31). We can see that one possible interpretation of the deterrence function
is to provide a synthetic set of prior entries for each cell in the trip matrix (i.e. use of exp (− β cij) instead
of tij). Both the deterrence function and the prior matrix tij take the role of providing ‘structure’ to the
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resulting trip matrix. This can be seen more clearly if one multiplies and divides the right-hand side of
equation (5.31) by T and subsumes this constant in the balancing factors:

Tij = T ai b j tij/T = a′
i b

′
j pij (5.41)

where pij = tij/T , thus giving a better-defined meaning to ‘structure’ as the proportion of the total trips
allocated to each origin-destination pair.

Example 5.4 It is useful to illustrate the gravity model with an example related to the problem of
expanding a trip matrix. Consider the cost matrix of Table 5.8 together with the total trip ends as in Table
5.6, and attempt to estimate the parameters ai and bj of a gravity model of the type:

Tij = ai b j exp (−βcij)

Table 5.8 A cost matrix and trip-end totals for a gravity model estimation

Cost matrix (minutes)

1 2 3 4 Target Oi

1 3 11 18 22 400

2 12 3 12 19 460
3 15.5 13 5 7 400
4 24 18 8 5 702
Target Dj 260 400 500 802 1962

given the information that the best value of β is 0.10. The first step would be to build a matrix of the
values exp (−β cij), as in Table 5.9.

Table 5.9 The matrix exp (−β cij) and sums to prepare for a gravity model run

exp (−β cij)

1 2 3 4
∑

j

1 0.74 0.33 0.17 0.11 1.35

2 0.30 0.74 0.30 0.15 1.49
3 0.21 0.27 0.61 0.50 1.59
4 0.09 0.17 0.45 0.61 1.31∑

i
1.34 1.51 1.52 1.36 5.74

Base 1 2 3 4
∑

j
Target Ratio

1 253.12 113.73 56.48 37.86 461.19 400 0.87

2 102.91 253.12 102.91 51.10 510.04 460 0.90
3 72.52 93.12 207.23 169.67 542.54 400 0.74
4 31.00 56.48 153.52 207.23 448.23 702 1.57∑

i
459.54 516.45 520.15 465.87 1962.00

Target 260 400 500 802
Ratio 0.57 0.77 0.96 1.72
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With these values we can calculate the resulting total ‘trips’ (5.74) and then expand each cell in the
matrix by the ratio 1962/5.74 = 341.67. This produces a matrix of base trips which now has to be
adjusted to match trip-end totals. This process is the same as Furness iterations. The values for ai and bj

are the product of the corresponding correction factors; these factors will then be multiplied by the basic
expansion factor 341.67. The resulting gravity model matrix is given in Table 5.10.

Table 5.10 The resulting gravity model matrix with trip length distribution

1 2 3 4
∑

j
Target Ratio ai

1 155.73 99.00 64.46 74.17 393.36 400 1.02 1.17

2 57.54 200.22 106.73 90.98 455.56 460 1.01 1.07
3 25.87 47.01 137.16 192.77 402.81 400 0.99 0.68
4 20.86 53.77 191.65 444.08 710.37 702 0.99 1.28∑

i
260.00 400.00 500.00 802.00 1962.00

Target 260 400 500 802
Ratio 1.00 1.00 1.00 1.00
bj 179.17 253.50 332.37 570.53

Ranges (min)

Cost 1.0–4.0 4.1–8.0 8.1–12.0 12.1–16.0 16.1–20.0 20.1–24 Sum

Trips 355.9 965.7 263.3 72.9 209.2 95.0 1962

The reader may wish to verify that the balancing factors ai and bj are only unique to a multiplicative
constant. It is also possible to calculate, as usual, the standard balancing factors Ai and Bj dividing each
corresponding ai and bj by the target values Oi and Dj.

5.4.4 Production-Attraction Format

Note that the Gravity model can also be used with a Production-Attraction format. In fact, there are
some very good reasons to prefer the P-A format in demand modelling. The P-A approach is closer to
dealing with simple tours (from and to home) rather than trips. Travellers would consider, in choosing
their destination, the cost of getting there and returning home and not just the outward journey. The
gravity model is then treated in the same way as for trips although travel costs and the interpretation
of the results are, of course, different. In this case, one should use an average of the costs of travelling
between the two zones. These costs should correspond to the correct time periods: the generalised cost
of the outward and inward journeys. These times will depend on the trip purpose. In an aggregate model,
these times can only be an average as some travellers will have earlier and others later, the two legs of
the tour. The correct average measure, an inclusive value or logsum, will be discussed at a later chapter.
Note further, that using the sum of the two costs (outward and return trips) for an extended gravity model
with a new β’ is not consistent with the most accepted theories of behaviour.

The resulting P-A matrix will have to be converted into a directional O-D matrix in order to perform
the assignment procedure. To achieve this it is essential to have the distribution of the times for outbound
and inbound trips, the best source of which will come from a good set of home interviews; during
intercept surveys the answers to the question about ‘return’ trips are fairly unreliable. If we are only
interested in the 24-hour case, the two demand matrices are practically the same as it is assumed that
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each production–attraction trip is made once in each direction during the day. This is of course, an
approximation but probably a reasonable one.

However, when a shorter-period OD matrix is required, some trips will be made in the production-
to-attraction direction while others only in the opposite one. Two different approaches can be used to
overcome this problem. The first is very simplistic and requires to produce a matrix for just a single
purpose, typically ‘to work’, and then assume that these trips follow just one direction of travel, thus
producing, for example, the morning journey to work from production to attraction. Survey data must
be used to correct for shift work, flexible working hours and trips for other purposes being made during
the morning peak; however, the pattern of the morning peak is still dominated by this journey-to-work
purpose. The second and better approach is to use survey data directly to determine the proportions of
the matrices for each purpose which are deemed appropriate for the part of the day under consideration.
For example, a typical morning peak matrix may consist of 70% production-to-attraction movements
and only 15% of attraction-to-production movements.

There is a case for handling the mode choice model also in a P-A format. The same argument used
for the gravity model applies here. The choice of mode of travel is surely dependent on all trips of the
tour; at least the P/A format captures the attributes of two of these trips. This argument is even stronger
for any advanced ‘time of travel choice’ model.

5.4.5 Segmentation

The gravity model can be applied with different levels of segmentation. The most obvious one is by
journey purpose as different ‘generators and attractors’ will apply for Journey to Work, to School,
Shopping and Other.

It may also be desirable to segment by person type, at least ‘car owners’ and ‘non car owners’ as
they are likely to have slightly different influences in trip patterns and would certainly perceive costs in
different ways. Most non-car owners will perceive public transport costs as the measure of separation.
Car owners, on the other hand, will be influenced by a combination of car and public transport costs,
their two basic options. In this case, an appropriate average of these should be incorporated in the model,
again a logsum as discussed later.

Although this segmentation, car and non-car owners, is possible at the production end it is not quite
appropriate for the attraction end, especially in forecasting mode. Therefore, we will have these two
segments competing for a set of job (and education) places at the attraction end. This requires a very
simple extension of the gravity model equivalent at using an asymmetric matrix of 2NxN.

5.5 Calibration of Gravity Models
5.5.1 Calibration and Validation

Before using a gravity distribution model it is necessary to calibrate it; this just makes sure that its
parameters are such that the model comes as close as possible to reproducing the base-year trip pattern.
Calibration is, however, a very different process from validation of a model.

In the case of calibration one is conditioned by the functional form and the number of parameters
of the chosen model. For example, the classical gravity model has the parameters Ai, Bj, and β (that is
Z + Z + 1 parameters, Z being the number of zones). The parameters Ai and Bj are calibrated during the
estimation of the gravity model, as part of the direct effort to satisfy constraints (5.1). Note that at least
one of the Ai or Bj is redundant as there is an additional condition

∑
i Oi = ∑

j D j = T , and therefore
one of the (5.1) constraints is linearly dependent on the rest. The parameter β, on the other hand, must
be calibrated independently, as we do not have complete information about the total expenditure C in the
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study area. If we had this information, we could have used it directly without having to estimate β by
other means. If the combined deterrence function (5.13) is used, we would have an additional parameter
and therefore some additional flexibility in calibrating the gravity model.

The validation task is different. In this case one wants to make sure the model is appropriate for
the decisions likely to be tested with it. It may be that the gravity model is not a sufficiently good
representation of reality for the purpose of examining a particular set of decisions. It follows from this
that the validation task depends on the nature of the policies and projects to be assessed.

A general strategy for validating a model would then be to check whether it can reproduce a known
state of the system with sufficient accuracy. As the future is definitively not known, this task is sometimes
attempted by trying to estimate some well- documented state in the past, say a matrix from an earlier
study. However, it is seldom the case that such a past state is sufficiently well documented. Therefore,
less demanding validation tests incorporating data not used during estimation are often employed, for
example: to check whether the number of trips across important screenlines or along main roads is
well reproduced.

5.5.2 Calibration Techniques

As we have seen, the parameters Ai and Bj are estimated as part of the Furness (bi-proportional) balancing
factor operations. The parameter β must be calibrated to make sure that the trip length distribution (TLD)
is reproduced as closely as possible. This is a tall order for a single parameter. We shall see later how to
improve on this but meantime, what is needed is a practical technique to estimate the best value for β,
say β∗.

A naive approach to this task is simply to ‘guess’ or to ‘borrow’ a value for β, run the gravity model and
then extract the modelled trip length distribution (MTLD). This should be compared with the observed
trip length distribution (OTLD). If they are not sufficiently close, a new guess for β can be used and the
process repeated until a satisfactory fit between MTLD and OTLD is achieved; this would then be taken
as the best value β∗. Note that a set of home or roadside interviews will produce OTLDs with much
greater accuracy than that of individual cell entries in the trip matrix, because the sampling rate for trip
lengths is in effect much higher in this case.

The naive approach is not, however, very practical. Running a doubly constrained gravity model is
time consuming and the approach provides no guidance on how to choose a better value for β if the
current one is not satisfactory. Conventional curve-fitting techniques are unlikely to work well because
the gravity model is not just non-linear but also complex analytically; the Ai’s and Bj’s are also functions
of β through the two sets of equations (5.17) and (5.18).

A number of calibration techniques have been proposed and implemented in different software pack-
ages. The most important ones were compared by Williams (1976), who found that a technique due to
Hyman (1969) was particularly robust and efficient. We shall describe briefly here Hyman’s method.

At any stage in the calibration process a trip matrix T (β), function of the current estimate of β, is
available. This matrix also defines a total number of trips

∑
ij Ti j (β) = T (β). The method is based on

the following requirement for β:

c(β) =
∑

ij

[Tij(β)cij]/T (β) = c∗ =
∑

ij

(NijCij)/
∑

ij

Nij (5.42)

where c∗ is the mean cost from the OTLD and Nij is the observed (and expanded) number of trips for
each origin destination pair. The method can be described as follows:

1. Start the first iteration making m = 0 and an initial estimate of β0 = 1/c∗.
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2. Using the value of β0 calculate a trip matrix using the standard gravity model. Obtain the mean
modelled trip cost c0 and estimate a better value for β as follows:

βm = β0c0/c∗

3. Make m = m + 1. Using the latest value for β (i.e. βm−1) calculate a trip matrix using a standard
gravity model and obtain the new mean modelled trip cost cm−1 and compare it with c∗. If they
are sufficiently close, stop and accept βm−1 as the best estimate for this parameter; otherwise go to
step 4.

4. Obtain a better estimate of β as:

βm+1 = (c∗ − cm−1)βm − (c∗ − cm)βm−1

cm − cm−1

5. Repeat steps 3 and 4 as necessary, i.e. until the last mean modelled cost cm−1 is sufficiently close to
the observed value c∗.

The recalculations in step 3 are made to approximate closer to the equality in (5.42). A few improve-
ments can be introduced to this method, in particular from the computational point of view. Hyman’s
approach has been shown to be robust and to offer, in general, advantages over alternative algorithms.

5.6 The Tri-proportional Approach
5.6.1 Bi-proportional Fitting

We have seen in section 5.4.2 how Furness’s method can be derived from a mathematical programming
framework. This non-linear mathematical program can be solved by a number of algorithms, including
Newton’s method. However, it is possible to show that the method originally proposed by Furness is
indeed a practical and efficient algorithm, in particular for large matrices. The method is often referred to
as the bi-proportional algorithm as it involves successive corrections by rows and then columns to satisfy
the constraints; the algorithm stops when the corrections are small enough, i.e. when the constraints are
met within reasonable tolerances.

The conditions necessary for the existence of a unique solution are that constraints (5.26a) and (5.26b)
define a feasible solution space in non-negative Tij’s. This requires

∑
i Oi = ∑

j D j but this is not a
sufficient condition. The model has a multiplicative form and therefore it preserves the zeros present in
the prior matrix {tij}. The existence of many zero entries in the prior matrix may prevent the satisfaction
of one or more constraints. In summary, the product ak bj ck is unique but not each individual factor;
there are two-degrees of indeterminacy (say α and β) that can have arbitrary values without affecting the
value of the product:

ai αb j βck/αβ = ai b j ck

Example 5.5 Consider the case where a previously empty zone k is expected to see development in
the future, thus originating and attracting trips. The cell entries for tik and tkj would have been zero
whilst the future Ok and Dk are non-zero. Therefore in this case there are no possible multiplicative
correction factors capable of generating a matrix satisfying the constraints for zone k. It may be possible,
however, to replace these empty cell values by ‘guesses’, i.e. suitable values borrowed from similar
zones. Nevertheless, the presence of zeros in the prior matrix may cause subtler but no less difficult
problems. If we try to solve the problem in Example 5.1 but with the prior matrix in Table 5.11, it will
be found that this problem has no feasible solution in non-negative Tij; there are only 11 unknowns and
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7 independent constraints but the position of the zeros is such that there is no feasible solution and the
bi-proportional algorithm oscillates without converging.

Table 5.11 A revised version of the doubly constrained growth factor
problem in Table 5.6

1 2 3 4
∑

j
Target Oi

1 5 50 100 200 355 400

2 0 50 0 0 50 460
3 50 100 5 100 255 400
4 100 200 250 20 570 702∑

i
155 400 355 320 1230

Target Dj 260 400 500 802 1962

Readers familiar with linear algebra will be able to describe this problem in terms of the rank of the
original and an augmented matrix containing the last column in Table 5.7. Furthermore, the reader may
verify that after 10 iterations with this problem the corrected matrix stands as in Table 5.12:

Table 5.12 The matrix from problem in Table 5.11 after 10 Furness iterations

1 2 3 4
∑

j
Target Oi

1 3.4 0.7 61.0 355.3 420 400

2 0 388.2 0 0 388 460
3 65.5 2.8 5.9 345.7 420 400
4 191.2 8.3 433.1 101.0 734 702∑

i
260 400 500 802 1962

Target Dj 260 400 500 802 1962

Several comments can be made at this stage:

1. The matrix after 10 iterations looks quite different from the prior one, thus casting some doubt about
the realism, either of the old matrix, its zeros or the new trip-end totals.

2. The main problem seems to be in the second row, where there is a big difference (about 20%) between
target and modelled total. There is no way this row can add up to 460 as the only non-zero cell entry
has a maximum of 400 trips. The constraints do not generate a feasible solution space.

3. The problem seems ill-conditioned, e.g. a small change in a cell entry can make the problem a feasible
one and produce a fairly different trip matrix. For example, the zero in cell t2, 4 could have arisen
because of the sample used; replacing this zero by a 1 produces the matrix in Table 5.13 after the
same 10 iterations. This is a much improved match with a fairly different matrix. In fact, it matches
the targets with better than 1% accuracy. There is now a feasible solution space.

Real matrices are often sparse and the occurrence of this type of difficulty cannot be discarded as
an academic problem. Failure to converge in a few iterations may well indicate that the presence and
location of zeros in the prior matrix prevents the existence of a feasible solution with the new trip ends.
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Table 5.13 The matrix from problem in Table 5.11 plus a single trip in cell
2, 4 after 10 Furness iterations

1 2 3 4
∑

j
Target Oi

1 4.1 4.5 76.2 315.4 400 400

2 0 339.2 0 119.1 458 460
3 77.3 17.0 7.2 298.5 400 400
4 178.6 39.3 416.6 68.9 703 702∑

i
260 400 500 802 1962

Target Dj 260 400 500 802 1962

5.6.2 A Tri-proportional Problem

We have already presented the gravity model with a very flexible deterrence function that takes discrete
values constrained by a functional form for each cost bin. This was written in equation (5.40) as:

Tij = ai b j

∑

m

Fmδm
ij

The main advantages of this model are its flexibility and the ease of calibration. In effect, we can
define any number of cost bins and the deterrence function can take any positive value for them; we
could even represent situations where, for example, there are few short trips, many intermediate trips,
few long trips and again a larger number of long-distance commuting trips.

The calibration of this model requires finding suitable values for the deterrence factor Fm for each
cost bin so that the number of trips undertaken for that distance is as close as possible to the observed
number. This task is, in fact, very similar to the problem of grossing up a matrix to match trip-end totals.
In this case we can start with a unity value for the deterrence factors and then correct these and the
parameters ai and bj until the trip ends and the TLD constraints are met. It seems natural to extend the
bi-proportional algorithm to handle this third dimension (cost bins) and utilise a tri-proportional method
to calibrate the model.

The principles behind the technique were proposed by Evans and Kirby (1974). Murchland (1977)
has shown that the application of successive corrections on a two-, three- or multi-dimensional space
conforms to just one of a group of possible algorithms to solve this type of problems; furthermore, the
method is simple to program and does not make excessive demands on computer memory.

Example 5.6 The tri-proportional algorithm can be illustrated with the problem stated in Table 5.8 and
with the trip length distribution (cost-bin) targets of Table 5.14.

Table 5.14 TLD target values for a tri-proportional gravity model calibration

Ranges

1.0–4.0 4.1–8.0 8.1–12.0 12.1–16.0 16.1–20.0 20.1–24+
TLD 365 962 160 150 230 95

The model can then be solved using balancing operations to match trip targets by origin, destination
and cost bin. After five complete iterations, the matrix and modelled trips by cost bin Tk shown in
Table 5.15 are obtained.
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Table 5.15 The matrix from problem in Table 5.14 after five iterations, including values for
balancing factors ai, bj and Fk

1 2 3 4
∑

j
ai

1 161.6 102.5 60.8 72.5 397.4 1.27

2 56.5 199.4 101.2 101.0 458.0 1.13
3 18.9 48.7 116.7 217.1 401.4 0.60
4 23.0 49.5 221.3 411.5 705.3 1.14
∑

i
260 400 500 802 1962

bj 0.57 0.70 0.87 1.63

Ranges
1.0–4.0 4.1–8.0 8.1–12.0 12.1–16.0 16.1–20.0 20.1–24+

TLD 365 962 160 150 230 95
Tk 360.9 966.5 159.0 149.8 230.3 95.5
Fk 224.55 220.13 87.54 102.05 54.66 34.90

Of course, in this case the balancing factors are again not unique, at least up to two arbitrary multi-
plicative constants. Another way of expressing this is to say the balancing factors have two degrees of
indeterminacy, the two multiplicative constants. It is easy to see that if we multiply each ai by a factor
� and each bj by another factor τ , and then divide each Fk by � τ , the modelled matrix will remain
unchanged.

5.6.3 Partial Matrix Techniques

The tri-proportional calibration method has been used with a full trip length distribution, i.e. one that
has an entry from observations in each cell. It would certainly be advantageous if one could calibrate
a suitable gravity model without requiring a complete or full trip matrix. This is particularly important
as we know that the cost of collecting data to obtain a complete trip matrix is rather high; furthermore,
the accuracy of some of the cell entries is not very high and in calibration we actually use aggregations
of the data, namely the TLD and the total trip ends Oi and Dj. Having explored the preferred methods
for calibration, it should be clear that the possibility of calibrating gravity models with an incomplete or
partial matrix does actually exist. For example, we can calibrate a gravity model with exponential cost
function just with the total trip ends and a good estimate of the average trip cost, c∗.

The calibration of a gravity model with general deterrence function using the tri-proportional method
is even more attractive in this case, as we could use just roadside interviews on cordons and screen-lines
to obtain good TLDs and trip ends for some but not all the zones in the study area. There would be no
need to use trip generation models except for forecasting purposes.

Example 5.7 The basic idea above can be described with the aid of a 3 × 3 matrix. Consider first a
bi-proportional case where the full matrix-updating problem is to adjust a base-year matrix as follows:

adjusted to produces

a b c
d e f
g h i

P
Q
R

A B C
D E F
G H I

S T U
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In the case of a partial matrix, for example a survey where entries a and h cannot be observed, we
would adjust only to trip ends excluding the corresponding total:

adjusted to produces

b c
d e f
g i

P—A
Q

R—H

B C
D E F
G I

S—A T —H U

To fill in the missing cells we could use a gravity model; in the case of this example, one without
deterrence function:

Tij = ai b j

The estimated values of ai and bj (using data from the observed cells) would then be used to fill in
these cells.

An extension to the tri-proportional case is almost trivial. Kirby (1979) has shown that there are two
basic conditions required for a valid application of this approach:

1. The gravity model must fit both the available data we have and the data that are not avail-
able, i.e. the model must be a good model for the two regions of the matrix: the observed and
the unobserved.

2. The two regions of the matrix should not be separable, i.e. it should not be possible to split the matrix
into two or more independent matrices, typically:

Internal External

× × × × × × × × × × × × ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
× × × × × × × × × × × × ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
× × × × × × × × × × × × ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Internal × × × × × × × × × × × × ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
× × × × × × × × × × × × ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
× × × × × × × × × × × × ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
× × × × × × × × × × × × ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ × × × × × × × ×
External ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ × × × × × × × ×

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ × × × × × × × ×

The problem is that each separate area has the two (or three in the tri-proportional case) degrees of
indeterminacy and therefore the balancing factors cannot produce unique products, and hence trip
estimates. This problem is also referred to as the non-identifiability of unique products for unobserved
cell entries. As the figure above shows, this is likely to occur when roadside interviews take place
only on a cordon to a study area. The provision of interviews on a screen-line will probably eliminate
the problem as it would generate observations for the ‘internal-internal’ matrix.
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5.7 Other Synthetic Models
5.7.1 Generalisations of the Gravity Model

The classic gravity model is by far the most commonly used aggregate trip distribution model. It has
a number of theoretical advantages and there is no lack of suitable software to calibrate and use it. It
can be easily extended further to incorporate more than one person type and it can even be used to
model certain types of freight movements. However, the classic gravity model does not exhaust all the
theoretical possibilities. We explore here three other approaches which, although they are much less
used, offer real alternatives to the classic gravity model. The first one is simply a generalisation of the
gravity model itself; the second one is the intervening-opportunities model, and the third one the family
of direct demand models discussed in Chapter 6.

A number of authors have suggested extending the classic gravity model to account for not just the
deterrent effect of distance but also for the fact that the farther away one is willing to travel the greater
the number of opportunities to satisfy your needs.

Fang and Tsao (1995) suggested an entropy distribution model with quadratic costs:

Tij = Ai Bj Oi D j e−βCij−λTijCij (5.43)

Ai = 1∑
j

B j D j e−βCij−λTijCij
, B j = 1∑

j
Ai Oi e−βCij−λTijCij

(5.44)

They call it a self-deterrent gravity model. The inclusion of a ‘congestion term’ λTijCij in the exponent
is the main extension to the classic model. The parameters β and λ are expected to have the same sign; if
they have a different sign this would indicate that certain trips have economies of scale: they become more
attractive the greater number of people undertaking them. If λ = 0 we have the classic gravity model.

De Grange et al. (2010) generalised this approach and proposed to:

min

{Tij} Z =
∑

ij

TijCij + 1

β

∑

ij

Tij(ln Tij − 1) − ρ

β

∑

ij

Tij ln Sij + λ

2β

∑

ij

CijT
2

ij

s.t. (5.45)
∑

j

Tij = Oi (μi )

∑

i

Tij = D j (γ j )

where

Sij =
n∑

k=1
k �=i,k �= j

Dke−C jk (5.46)

This term Sij represents the accessibility to destinations as perceived from the origin i. Applying the
optimality conditions to (5.45) results in

Tij = Ai Bj Oi Dj (Sij)
ρe−βCij−λTijCij (5.47)

Ai = 1∑
j

B j Dj (Sij)ρe−βCij−λTijCij
(5.48)

Bj = 1∑
i

Ai Oi (Sij)ρe−βCij−λTijCij
(5.49)
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They find the best fit parameters using Maximum Likelihood techniques.
Here if calibration results in ρ = 0 we find Fang and Tsao’s model. This is a very general model that

De Grange et al. estimated for Santiago using different levels of aggregation.

5.7.2 Intervening Opportunities Model

The basic idea behind the intervening-opportunities model is that trip making is not explicitly related
to distance but to the relative accessibility of opportunities for satisfying the objective of the trip. The
original proponent of this approach was Stouffer (1940), who also applied his ideas to migration and the
location of services and residences. But it was Schneider (1959) who developed the theory in the way it
is presented today.

Consider first a zone of origin i and rank all possible destinations in order of increasing distance
from i. Then look at one origin–destination pair (i, j), where j is the mth destination in order of distance
from i. There are m −1 alternative destinations actually closer (more accessible) to i. A trip maker would
certainly consider those destinations as possible locations to satisfy the need giving rise to the journey:
these are the intervening opportunities influencing a destination choice. Let α be the probability of a trip
maker being satisfied with a single opportunity; the probability of her being attracted by a zone with D
opportunities is then α D.

Consider now the probability qm
i of not being satisfied by any of the opportunities offered by the mth

destinations away from i. This is equal to the probability of not being satisfied by the first, nor the second,
and so on up to the mth:

qm
i = qm−1

i (1 − αDm
i ) (5.50)

therefore, omitting the subscript i for simplicity we get

qm − qm−1

qm
= − αDm (5.51)

Now, if we make xm the cumulative attractions of the intervening opportunities at the mth destination:

xm =
∑

m

Dm

we can rewrite (5.50) as

qm − qm−1

qm−1
= −α [xm−1 − xm] (5.52)

The limit of this expression for infinitesimally small increments is, of course,

dq (x)

q (x)
= −α dx (5.53)

Integrating (5.53) we obtain:

log q (x) = −αx + constant

or

q (x) = Ai exp (−αx) (5.54)

where Ai is a parameter for calibration. This relationship expresses the chance of a trip purpose not
being satisfied by any of the m destinations (m = 1, . . ., M) from i as a negative exponential function
of the accumulated or intervening opportunities at that distance from the origin. The trips T m

ij from i to
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a destination j (which happens to be the mth away from i) is then proportional to the probability of not
being satisfied by any of the m − 1 closer opportunities minus the probability of not being satisfied by
any of the opportunities up to the mth destination:

T m
ij = Oi [qi (xm−1) − qi (xm)]

T m
ij = Oi Ai [exp(−αxm−1) − exp(−αxm)]

(5.55)

It is easy to show that the constant Ai must be equal to

Ai = 1/
[
1 − exp(−αxM )

]
(5.56)

to ensure that the trip end constraints are satisfied. The complete model then becomes:

T m
ij = Oi

[exp(−αxm−1) exp(−αxm)]

[1 − exp(−αxM )
(5.57)

Wilson (1970) has shown that this expression can also be derived from entropy-maximisation
considerations.

The intervening-opportunities model is interesting because it starts from different first principles in its
derivation: it uses distance as an ordinal variable instead of a continuous cardinal one as in the gravity
model. It explicitly considers the opportunities available to satisfy a trip purpose at increased distance
from the origin. However, the model is not often used in practice, probably for the following reasons:

� the theoretical basis is less well known and possibly more difficult to understand by practitioners;
� the idea of matrices with destinations ranked by distance from the origin (the nth cell for origin i is

not destination n but the nth destination away from i) is more difficult to handle in practice;
� the theoretical and practical advantages of this function over the gravity model are not overwhelming;
� lack of suitable software.

In Chapter 12 we will discuss a more general version of this model that combines gravity and
intervening-opportunities features. This is due to Wills (1986) and lets the data decide which combi-
nation of the two models fits reality better. However, the computational complexity of this new model
is considerable.

5.7.3 Disaggregate Approaches

The whole discussion about distribution models has been cast in terms of zonal based produc-
tions/attractions and origins and destinations. We may have increased disaggregation by considering
journey purposes and simple person types (with and without a car). Couched in these terms we obtain
the number of trips undertaken between each OD pair. It can be argued, as it is in Chapters 7 to 9, that
this is too coarse to capture the rich characteristics of travel behaviour; to achieve this capture we need
to mode to the level of individuals, or at least, representative individuals.

In this context we do not deal with the number of trips to a particular destination but rather with
the probability that a (representative) individual would choose a particular destination to satisfy some
basic need. These disaggregate models are probabilistic although they may share apparently similar
functional forms.

For example, a disaggregate model that would consider the choice of destination as discussed in
Chapter 7, is likely to have a multinomial logit model structure with a form similar to a singly constrained
gravity model.
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5.8 Practical Considerations
We have discussed a number of frequently used models to associate origins and destinations and estimate
the number of trips between them. While doing so, we have omitted a number of practical considerations
that must necessarily affect the accuracy attainable from the use of such models. These stem from the
inherent limitations of our modelling framework and our inability to include detailed descriptions of
reality in the models. We shall discuss these features under the general headings below.

5.8.1 Sparse Matrices

Observed trip matrices are almost always sparse, i.e. they have a large number of empty cells, and it is
easy to see why. A study area with 500 zones (250 000 cells) may have some 2.5 million expected total
trips during a peak hour. This yields an average of 10 trips per cell; however, some OD pairs are more
likely to contain trips than others, in particular from residential to high employment areas, thus leaving
numerous cells with a very low number of expected trips. Consider now the method used to observe this
trip matrix, perhaps roadside interviews. If the sampling rate is 20% (1 in 5) then the chances of making
no observations on a particular OD pair are very high.

This sampled trip matrix will then be expanded, probably using information about the exact sampling
ratios in each interview station. The problem generated when expanding empty cells has already been
alluded to in section 5.3.4. It may be possible to fill in gaps in the matrix through the use of a partial
matrix approach; alternatively, it may be desirable to ‘seed’ empty cells with a low number and use
an alternative matrix expansion method such as that discussed in Chapter 12. It is important to realise,
however, that ‘observed’ trip matrices normally contain a large number of errors and that these will be
amplified by the expansion process.

5.8.2 Treatment of External Zones

It may be quite reasonable to postulate the suitability of a synthetic trip distribution model in a study
area, in particular for internal-to-internal trips. However, a significant proportion of the trips may have
at least one end outside the area. The suitability of a model which depends on trip distance or cost, a
variable essentially undefined for external trips, is thus debatable.

Common practice in such cases is to take these trips outside the synthetic modelling process: roadside
interviews are undertaken on cordon points at the entrance/ exit to the study area. The resulting matrix
of external-external (E − E) and external-internal (E − I) trips is then updated and forecast using
growth factor methods, in particular those of Furness. However, a number of trip ends from the trip
generation/attraction models correspond to the E − I trips and these must be subtracted from the trip-end
totals for inclusion as constraints to the synthetic models.

5.8.3 Intra-zonal Trips

A similar problem occurs with intra-zonal trips. Given the limitations of any zoning system, the cost
values given to centroid connectors are a very crude but necessary approximation to those experienced in
reality. The idea of an intra-zonal trip cost is then poorly represented by these centroid connector costs.
Some commercial software allows the user to add/subtract terminal costs to facilitate better modelling
of these trips; the idea is that by manipulating these intra-zonal costs one would make the gravity model
fit better. However, this is not very good; it is actually preferable to remove intra-zonal trips from the
synthetic modelling process and to forecast those using even simpler approaches. This typically assumes
that intra-zonal trips are a fixed proportion of the trip ends calculated by the trip generation models.
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Moreover, intra-zonal trips are not normally loaded onto the network as they move from a centroid
to itself. This makes it less essential to model them in detail. However, in reality, some of these trips
use the modelled network. Nevertheless, this problem is probably of significance only for rather coarse
zoning systems.

5.8.4 Journey Purposes

Different models are normally used for different trip purposes and/or person types. Typically, the journey
to work will be modelled using a doubly constrained gravity model while almost all other purposes will be
modelled using singly constrained models. This is because it is often difficult to estimate trip attractions
accurately for shopping, recreational and social trips and therefore proxies for trip attractiveness are
used: retail floor space, recreational areas, population.

Some trip purposes may be more sensitive to cost and therefore deserve the use of different values for
the deterrence function.

5.8.5 K Factors

The gravity model can provide a reasonable representation of trip patterns provided they can be explained
mainly by the size of the generation and attraction power of zones and the deterrence to travel generated
by distance (generalised cost). We recognise that most individual decisions on residential location and/or
choice of employment incorporate many other factors; therefore, the gravity model could only model
destination choice at an aggregate level if the importance of these other factors were much reduced on
aggregation. However, there are always aggregate effects that do not conform to a simple gravity model.
In some circumstances, there may be pairs of zones which have a special association in terms of trip
making; for example, a major manufacturer may be located in one zone and most of its employees in
another, perhaps as a result of a housing estate developed by the company. In this case, it is likely that
more trips will take place between these two points than predicted by any model failing to consider
this association, for example the gravity model. This has led to the introduction of an additional set of
parameters Kij to the gravity model as follows:

Tij = Kij Ai Oi Bij exp (−βcij) (5.58)

Some practical studies have used these K factors in an attempt to improve the calibration of the model.
This, of course, they do; with the full set of K factors we now have even more flexibility than necessary
to reproduce the observed trip matrix; in fact, just the K factors are enough to achieve this; the other
parameters are surplus to requirement: Kij factors identical to the observed Tij will do the trick; but then
we no longer have a model nor any forecasting ability left.

The best advice that can be given in respect of K factors is: try to avoid them. If a study area has a
small number of zone pairs (say, less than 5% of the total) with a special trip making association which is
likely to remain in the future, then the use of a few K factors might be justified, sparingly and cautiously.
But the use of a model with a full set of K factors cannot be justified. However, K factors are related to
incremental forms of the gravity model as we discuss in Chapter 12.

5.8.6 Errors in Modelling

It would appear that many of these practical issues reduce the accuracy of the modelling process. This
is, in effect, true and it constitutes a reflection of the contrast between the limitations of the state of the
art in transport modelling and the complexities and inherent uncertainties of present and future human
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behaviour. These practical issues are not restricted to distribution modelling; they are present, in one
form or another, in other parts of the modelling process.

Because many of the cells in a trip matrix will have small values, say between 0 and 5 in the sample and
perhaps 20 to 30 in the expanded or synthesised matrix, their corresponding errors will be relatively large.
A small number of studies have tackled the task of calibrating synthetic models and then comparing the
resulting trip matrices with observed ones. An investigation by Sikdar and Hutchinson (1981) used data
from 28 study areas in Canada to calibrate and test doubly constrained gravity models. The researchers
found that the performance of these models was poor, equivalent to a randomly introduced error in the
observations of about 75 to 100%; these results reinforce the call for caution in using the results of such
models. This should not be entirely surprising; to model a trip matrix with the use of a few parameters
(twice the number of zones for an exponential deterrence function) is a very tall order. This is certainly
one of the reasons why few studies nowadays make use of the gravity model in its conventional form.
In many cases, however, it is desirable to consider how changes in transport costs would influence trip
patterns, in particular for more optional purposes like shopping and recreation. In these cases, the idea of
using pivot point or incremental versions of the gravity model becomes more attractive, see Chapter 12.

The treatment of errors in modelling has received attention for some time. There seem to be two
methods deserving consideration in this field: statistical and simulation approaches. Statistical methods
are very powerful but they are not always easy to develop or to implement. They follow the lines suggested
in Chapter 3 when discussing the role of data errors in the overall accuracy of the modelling process.
Errors in the data are then traced through to errors in the outputs of the models. The UK Department
of Transport provides advice in the Traffic Appraisal Manual (Department of Transport 1985) on the
sensitivity of distribution models to errors in the input data. To some extent the simplest problem is
to follow data errors, in particular those due to sampling, through the process of building matrices. A
more demanding problem is to follow these errors when a synthetic distribution model is used. One of
the advances of the early 1980s was the development of approximate analytical techniques to estimate
the output errors due to sampling variability. For example, the work of Gunn et al. (1980) established
approximate expressions for the confidence interval for cell estimates for the tri-proportional formulation
of the gravity model. The 95% confidence interval for the number of trips in a cell (i, j) is given by the
range {Cij/Tij to Tij Cij}, where Cij is a confidence factor given by:

Cij = exp

⎛

⎜⎝2

⎡

⎣1

/ ∑

ij

nijk + 1

/ ∑

jk

nijk + 1

/ ∑

ki

nijk

⎤

⎦
0.5

⎞

⎟⎠ (5.59)

where nijk are the number of trips sampled in the observed cells and therefore the summations are over
observed cells only. This expression covers only errors due to sampling; data collection and processing
errors are likely to increase the range. Moreover, there are other sources of error in the model estimates
which are more difficult to quantify; these are mis-specification errors, due to the fact that the model is
only a simplified and imperfect representation of reality. Mis-specification errors will, again, increase
the range for any confidence interval estimates.

Simulation techniques may play a useful role in cases where analytical expressions for confidence inter-
vals of model output do not exist and are difficult to develop. One can calibrate a model assuming that the
data available contain no errors; one would then introduced controlled, but realistic, variability in the data
and recalibrate the model. This process could be repeated several times to obtain a range of parameters,
each calibrated with a slightly different set of ‘survey’ data. This process is, of course, quite expensive
in time and computer resources and it is therefore attempted mostly for research purposes. However, this
type of research can provide useful insights into the stability of model parameters to data errors.

A simpler use of Monte Carlo simulation is in testing the sensitivity of model output to input data in a
forecasting mode. One knows that future planning data are bound to contain errors; the use of simulation
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in this case involves the introduction of reasonable ‘noise’ into these data and then running the model
with each of these future data sets. The results provide an idea of the sensitivity of model output to
errors in these planning variables. As no recalibration is involved (the model is assumed to be calibrated
with no errors in the base year) the demand on time and resources, although large, is less than in the
previous case.

5.8.7 The Stability of Trip Matrices

The stability of trip matrices over time is an issue seldom discussed in transport demand modelling. We
know from experience that reality is not entirely repeatable from day to day. We can observe significant
day-to-day variations at the level of traffic flows on any link in a network. One would typically expect
some 10% variation on flow levels on similar days and on the same day of the week over similar weeks (i.e.
excluding seasonal variations). These variations are easily observed, as permanent and semi-permanent
automatic traffic counters are easy to install and maintain and are mostly reliable. These variations in
traffic flows may result from at least two sources: variations in the trip matrices that originate them
and day-to-day changes in route choice. The question arises, therefore, about the extent of day-to-day
variations at the level of trip matrix cell values. This information is much more difficult to come by as
very rarely repeated data is collected on trip matrices, in the same location, on different days.

Traffic counts are the result of an aggregation of trips into trip matrices and therefore this aggregation
process will tend to compensate some of the random variations at the trip matrix level. Leonard and
Tough (1979) report on the collection of detailed origin– destination (trip table and traffic count) data on
four consecutive days in the centre of Reading, UK. The data was collected to help in the development
of a detailed simulation model. Observers recorded car number plates, thus tracking the route vehicles
took through the centre of Reading together with their points of entry/exit and parking. Therefore, there
were no interview or reporting errors but only a 10% sample was collected over four days (Monday to
Thursday) for some 80 links and 40 zones. However, the data was independently analysed by Willumsen
(1982) to look at day-to-day variations at link flow and OD matrix level. He used the percentage mean
absolute error (%MAE) for both traffic levels and trip matrices:

% MAE = 100 % ×
(

∑

a

|V a − V b|
/∑

a

V a

)
(5.60)

and

% MAE = 100 % ×
(

∑

ij

|T a
ij − T b

ij |
/ ∑

ij

T a
ij

)
(5.61)

where the indices a and b relate to observed flows V and OD trips Tij on different days. Willumsen (1982)
found that typical variations were:

Tuesday Wednesday Thursday

% MAE Link Matrix Link Matrix Link Matrix

Monday 11 76 11 72 12 75

Tuesday 13 68 14 85
Wednesday 12 70
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Here we see that the day-to-day variations at flow level are consistent with expectations, whereas those
at the trip matrix level are much larger. This is partly because, at trip matrix level, we are dealing with
small values and sparse matrices, but even then the evidence suggests that variations at this level can be
quite significant.

This is a rather ‘inconvenient truth’ because it weakens the case for collecting travel data on different
days and putting it all together in an ‘average (usually working) day’. The representativeness of this
average day is seldom questioned and we have few tools to consider it seriously. This limitation applies
to all our approaches: aggregate, disaggregate and activity based models.

These results suggest that efforts to obtain a very accurate trip matrix may not be warranted as it
will only be a snapshot. The objective for a destination choice model in this context should not be
to replicate an observed or underlying trip matrix, but to estimate one that captures the main features
of the underlying trip matrices that, when loaded onto the network, produce link flows consistent
with observations.

The results also suggest that one should be more careful when testing how the value of a scheme or
plan changes with variations in the estimated trip matrix used during assessment. Sensitivity analysis
seems a particularly appropriate way to investigate the effects of varying the trip matrix.

Exercises
5.1 A small study area has been divided into four zones and a limited survey has resulted in the following

trip matrix:

1 2 3 4

1 – 60 275 571
2 50 – 410 443
3 123 61 – 47
4 205 265 75 –

Estimates for future total trip ends for each zone are as given below:

Zones
Estimated future

origins
Estimated future

destinations

1 1200 670
2 1050 730
3 380 950
4 770 995

Use an appropriate growth-factor method to estimate future inter-zonal movements.
Hint: check conditions for convergence of the chosen method first.

5.2 A study area has been divided into three large zones, A and B on one side of a river and C on the
other side. It is thought that travel demand between these zones will depend on whether or not the
O−D pair is at the same side of the river. A small sample home interview survey has been undertaken
with the following results:

Blank entries indicate unobserved cells.
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Destination

Origin A B C

A 12 10 8
B 5 3
C 4 7

Assume a model of the type Tij = RiSjFk where the parameter Fk can be used to represent the
fact that the O−D pair is on the same side of the river or not. Calibrate such a model using a
tri-proportional algorithm and fill the empty cells in the matrix above.

5.3 A transport study is being undertaken incorporating four cities A, B, C and D. The travel costs
between these cities in generalised time units are given below; note that intra-urban movements are
excluded from this study:

Destination

Origin A B C D

A – 1.23 1.85 2.67
B 1.23 – 2.48 1.21
C 1.85 2.48 – 1.44
D 2.67 1.21 1.44 –

Roadside interviews have been undertaken at several sites and the number of drivers interviewed is
shown below together with their respective origins and destinations. Blank entries indicate unob-
served cells.

Destination

Origin A B C D

A – 6 2
B – 1 4
C 8 – 8
D 6 18 6 –

Assume now that a gravity model of the type Tij = RiSjFk is to be used for this study area with
only two cost bins. The first cost bin will cover trips costing between 0 and 1.9 and the second trips
costing more than 1.9. Calibrate such a model using a tri-proportional method on this partial matrix.
Provide estimates of the parameters Ri, Sj and Fk and of the missing entries in the matrix, excluding
intra-urban trips. Are these estimates unique?
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6
Modal Split and Direct
Demand Models

6.1 Introduction
In this chapter we shall discuss firstly mode choice as an aggregate problem. It is interesting to see how far
we can get using similar approaches to those pursued in deriving and using trip distribution models. We
will also examine methods to estimate generation, distribution and modal split simultaneously, the
so-called direct demand models. Finally, we will examine the need for consistency between the
parameters and structure of distribution and mode choice models, a topic often disregarded by prac-
titioners at their peril.

The choice of transport mode is probably one of the most important classic model stages in transport
planning. This is because of the key role played by public transport in policy making. Almost without
exception travelling in public transport modes uses road space more efficiently and produce fewer
accidents and emissions than using a private car. Furthermore, underground and other rail-based modes
do not require additional road space (although they may require a reserve of some kind) and therefore do
not contribute to road congestion. Moreover, if some drivers could be persuaded to use public transport
instead of cars the rest of the car users would benefit from improved levels of service. It is unlikely that
all car owners wishing to use their cars could be accommodated in urban areas without sacrificing large
parts of the fabric to roads and parking space.

The issue of mode choice, therefore, is probably the single most important element in transport
planning and policy making. It affects the general efficiency with which we can travel in urban areas,
the amount of urban space devoted to transport functions, and whether a range of choices is available to
travellers. The issue is equally important in inter-urban transport as again rail modes can provide a more
efficient mode of transport (in terms of resources consumed, including space), but there is also a trend to
increase travel by road.

It is important then to develop and use models which are sensitive to those attributes of travel that
influence individual choices of mode. We will see how far this necessity can be satisfied using aggregate
approaches, where alternative policies need to be expressed as modifications to useful if rather inflexible
functions like the generalised cost of travel.

Modelling Transport, Fourth Edition. Juan de Dios Ortúzar and Luis G. Willumsen.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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6.2 Factors Influencing the Choice of Mode
The factors influencing mode choice may be classified into three groups:

1. Characteristics of the trip maker. The following features are generally believed to be important:
� car availability and/or ownership;
� possession of a driving licence;
� household structure (young couple, couple with children, retired, singles, etc.);
� income;
� decisions made elsewhere, for example the need to use a car at work, take children to school, etc;
� residential density.

2. Characteristics of the journey. Mode choice is strongly influenced by:
� the trip purpose; for example, the journey to work is normally easier to undertake by public transport

than other journeys because of its regularity and the adjustment possible in the long run;
� time of the day, when the journey is undertaken; late trips are more difficult to accommodate by

public transport;
� whether the trip is undertaken alone or with others.

3. Characteristics of the transport facility. These can be divided into two categories. Firstly, quantitative
factors such as:
� components of travel time: in-vehicle, waiting and walking times by each mode;
� components of monetary costs (fares, tolls, fuel and other operating costs);
� availability and cost of parking;
� reliability of travel time and regularity of service.

Secondly, qualitative factors which are less easy (or impossible) to measure in practice, such as:
� comfort and convenience;
� safety, protection, security;
� the demands of the driving task;
� opportunities to undertake other activities during travel (use the phone, read, etc.).

Note that we have described these in terms of journeys or trips. A richer concept is that of tours
with trips as their components. It is clear that the choice of mode is made more on a tour basis (that is
considering the requirements of all trips) than on a single trip. If one chooses the car for the first leg of a
tour this is likely to remain the choice for the other legs. A good mode choice model would be based at
least on simple tours (from home and back) and should include the most important of these factors. It is
easy to visualise how the concept of generalised cost can be used to represent several of the quantitative
factors included under 3.

Mode choice models can be aggregate if they are based on zonal (and inter-zonal) information. We
can also have disaggregate models if they are based on household and/or individual data (see Chapter 7).

A simplistic but useful way to think about mode choice is as follows. Given that somebody knows
where it is going (Destination) this person has many alternative ‘routes’ to get there; some involve just
driving the car whereas others may require to walk to a subway station, take the train, alight at some
other station and, say, walk to the final destination (plus many other combinations of modes and routes).
This person can then choose the lowest generalised cost option, among all of these, and in doing so the
physical route and the combination of modes would be found. If all people think the same we would
have an ‘all or nothing’ route and mode choice model. Alas, life is not so simple for a number of reasons:

� Some people do not have a car available so their choice set will be more limited; this would be the
minimum segmentation required.
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� As we will see, congestion, both on roads and in public transport, make the choice of more than one
route a necessity.

� Generalised costs cannot hope to capture all the relevant elements that determine mode choice; this is
particularly relevant in the case of the choice between car and public transport that focus on parameters
additional to those relevant for route choice.

� Different people would perceive costs in different ways and would seek to minimise a different
‘version’ of generalised costs (time versus money minimisers, for example); we must allow, therefore,
for a degree of dispersion in choices to consider other factors, not fully visible to the analyst, in
mode preferences.

� The modelled costs in a zonal based model are only centroid-to-centroid averages of the costs (time,
money) actually perceived by individuals; for example, some may live closer to a rail station and
therefore be more inclined to use public transport.

The combined effect of these influences is dispersion in the choices of mode made at each Origin-
Destination pair. The nature of this dispersion is influenced by the three groups of factors and conditions
mentioned above.

6.3 Trip-end Modal-split Models
In the past, in particular in the USA, personal characteristics were thought to be the most important
determinants of mode choice and therefore attempts were made to apply modal-split models immediately
after trip generation. In this way the different characteristics of the individuals could be preserved and
used to estimate modal split: for example, the different groups after a category analysis model. As at that
level there was no indication to where those trips might go the characteristics of the journey and modes
were omitted from these models.

This was consistent with a general planning view that as income grew most people would acquire cars
and would want to use them. The objective of transport planning was to forecast this growth in demand
for car trips so that investment could be planned to satisfy it. This was characterised as the ‘predict and
provide’ approach to transport planning, today considered a blind and dangerous alley. The modal-split
models of that time related the choice of mode only to features like income, residential density and car
ownership. In some cases the availability of reasonable public transport was included in the form of an
accessibility index.

In the short run these models could be very accurate, in particular if public transport was available in
a similar way throughout the study area and there was little congestion. However, this type of model is,
to a large extent, defeatist in the sense of being insensitive to policy decisions; it appears that there is
nothing the decision maker can do to influence the choice of mode. Improving public transport, restricting
parking, charging for the use of roads, none of these would have any effect on modal split according
to these trip-end models. What was missing was a way to incorporate the aggregate characteristics of
alternative modes to make choice more policy sensitive.

6.4 Trip Interchange Heuristics Modal-split Models
Modal-split modelling in Europe was dominated, almost from the beginning, by post-distribution models;
that is, models applied after the gravity or other distribution model. This has the advantage of facilitating
the inclusion of the characteristics of the journey and that of the alternative modes available to undertake
them. However, they make it more difficult to include the characteristics of the trip maker as they may
have already been aggregated in the trip matrix (or matrices).
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The first models included only one or two characteristics of the journey, typically (in-vehicle) travel
time. It was observed that an S-shaped curve seemed to represent this kind of behaviour better, as in
Figure 6.1, showing the proportion of trips by mode 1 (T 1

ij

/
Tij) against the cost or time difference.

Figure 6.1 Empirical Modal-split curve

These were empirical curves, obtained directly from the data and following a similar approach to the
curves used to estimate what proportion of travellers would be diverted to use a (longer but faster) bypass
route: hence their name of diversion curves. For example, the London Transportation Study (Phase III)
used diversion curves for trips to the central area and non- central trips (the former more likely to be
made by public transport) and for different trip purposes.

Another approach has been to use, by analogy, a version of Kirchhoff formulation in electricity. The
proportion of trip makers between origin i and destination j that chooses model k as a function of the
respective generalised costs by model k, Ck

ij is given by:

Pk
ij = (Ck

ij)
−n

k∑

1

(Ck
ij)

−n

(6.1)

where n is a parameter to be calibrated or transferred from another location or time (values for n between
4 and 9 have been suggested for both mode and route choice models of this nature). With a judicious
choice of n this formulation produces a curve not too dissimilar from the Logit equation. Kirchhoff’s
model can be derived from entropy maximisation principles assuming that the generalised costs are
perceived in a logarithmic fashion as in equation (5.37) and (5.38). The interested reader can also verify
that this formulation is consistent with the Box-Cox transformation on the utility function of a Logit
model when τ = 0 (see section 8.3).

Model (6.1) is sometimes considered attractive because the choice of mode (or route) depends on the
ratio of costs (to a power) and not on their difference. As we will see, one of the issues with most Logit
models is that a 5 minute difference in a 30 minute journey has the same effect as a 5 minute difference
in a 6 hour trip.

One normal limitation of these models is that they can only be used for trip matrices of travellers with
a choice available to them. This often means the matrix of car-available persons, although modal split
can also be applied to the choice between different public-transport modes.
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The above models have limited theoretical basis and therefore their interpretation and forecasting
ability must be in doubt. Further, as these models are aggregate they are unlikely to model in full the
constraints and characteristics of the modes available to individual households.

6.5 Synthetic Models
6.5.1 Distribution and Modal-split Models

The entropy-maximising approach can be used to generate models of distribution and mode choice
simultaneously. In order to do this we need to cast the entropy-maximising problem in terms of, for
example, two modes as follows:

Maximise log W {T k
ij } = −

∑

ijk

(
T k

ij log T k
ij − T k

ij

)
(6.2)

subject to
∑

jk

T k
ij − Oi = 0 (6.3)

∑

ik

T k
ij − D j = 0 (6.4)

∑

ijk

T k
ij Ck

ij − C = 0 (6.5)

It is easy to see that this problem leads to the solution:

T k
ij = Ai Oi B j D j exp (−βCk

ij) (6.6)

P1
ij = T 1

ij

Tij
= exp (−βC1

ij)

exp (−βC1
ij) + exp (−βC2

ij)
(6.7)

where P1
ij is the proportion of trips travelling from i to j via mode 1. The functional form in (6.7) is

known as Logit and it is discussed in greater detail in the next chapter. However, it is useful to reflect
here on some of its properties:

� it generates an S-shaped curve, similar to some of the empirical diversion curves of Figure 6.1;
� if C1 = C2, then P1 = P2 = 0.5;
� if C2 is much greater than C1, then P1 tends to 1.0;
� the model can easily be extended to multiple modes.

P1
ij = exp (−βC1

ij)∑
k

exp (−βCk
ij)

(6.8)

It is obvious that in this formulation β plays a double role. It acts as the parameter controlling dispersion
in mode choice and also in the choice between destinations at different distances from the origin. This
is probably asking too much of a single parameter, even if underpinned by a known theoretical basis.
Therefore a more practical joint distribution/modal-split model has been used in many studies. This has
the form (Wilson 1974):

T kn
ij = An

i On
i B j D j exp(−βn K n

ij )
exp(−λnCk

ij)∑
k

exp(−λnCk′
ij )

(6.9)
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where K n
ij is the composite cost of travelling between i and j as perceived by person type n. In principle

this composite cost may be specified in different ways; for example, it could be taken to be the minimum
of the two costs or, perhaps better, the weighted average of these:

K =
∑

k

PkCk (i, j and n omitted for simplicity)

However, it is interesting to note that some of the formulations used in many early studies are, in fact,
inappropriate. The mode choice or mode split component of this is a binary choice model of the form:

P1
ij = exp (−λC1

ij)

exp (−λC1
ij) + exp (−λC2

ij)
= 1

1 + exp(−λ(C2
ij − C1

ij)

The right hand side of the equation shows clearly that the proportion choosing one mode depends only
on the differences in generalised costs. This property suggests, in some cases, segmenting the demand
by trip length so that, say, a 5 minute saving is more important in a short trip than in a long one. There
are, however, other ways of compensating for this.

The proportion of trips using one mode, say 1, is shown in Figure 6.2 as a function of the scaling
parameter λ and the differences in costs between the two modes. The figure also includes the plot of the
Kirchhoff model (solid line) with the power value of −8. Note that in this case, it is important that the cost
range for each of the modes is 5 to 120 generalised min. Note that the greater the value of λ the closer is
the Logit model to an ‘all or nothing’ allocation of trips to the cheapest mode.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1101009080706050403020100-10-20-30-40-50-60-70-80-90-100-110

P1

Cost 2 - Cost 1

Propor�on using mode 1 for different λs  

0.25 0.1 0.05 0.02 Kirchhoff 8λ

Figure 6.2 Proportion selecting mode 1 for Logit model with different λ and Kirchhoff with power of −8
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Example 6.1 Consider the weighted average form above and examine what happens when a new, more
expensive mode (C2 > C1) is added to an existing unimodal system. In the initial state we would have:

K =
∑

k

PkCk = C1

and in the final state, i.e. after the introduction of mode 2:

K ∗ = P1C1 + P2C2

However, by definition P1 + P2 = 1 and therefore:

K ∗ = (1 − P2)C1 + P2C2 = C1 + P2(C2 − C1)

K ∗ = K + P2(C2 − C1)

Now, as both P2 and (C2 − C1) are greater than zero, we conclude that K∗ > K, which is nonsensical
as the introduction of a new option, even if it is more expensive, should not increase the composite
costs; at worst they should remain the same. The use of the wrong composite costs will lead to mis-
specified models.

6.5.2 Distribution and Modal-split Structures

Williams (1977) has shown that the only correct specification, consistent with the prevailing theory of
rational choice behaviour (see section 7.2), is:

K n
ij = −1

λn
log

∑

k

exp (−λnCk
ij) (6.10)

where the following restriction must be satisfied:

βn ≤ λn (6.11)

We will come back to this restriction in Chapter 7. Intuitively, it means that the importance of costs
is more critical in the choice of mode than in the choice of destination. If this is not the case, the model
structure in (6.9), simultaneous or sequential, would be inappropriate. The composite cost measure (6.10)
has the following properties:

� K ≤ Mink {Ck}

� Lim
λ→∞

K = Mink {Ck}, that is ‘all-or-nothing’ mode choice

� d K
dCk = Pk

The first of these properties means that when a new alternative is added, even if it is very unattractive
in principle, the composite costs will either reduce (somebody must like it) or at most remain the same.
The second property highlights the importance of λn as a weight attached in the choice to generalised
costs. For a very large λn the model will predict an ‘all-or-nothing’ choice of the least generalised
cost alternative.

The model ((6.9)–(6.11)) is frequently found in practice in aggregate applications, in particular in
urban areas. One of the problems in practice, however, is that modellers sometimes fail to check whether
the restriction (6.11) is satisfied. As the destination and mode choice models may have been calibrated
independently, it is quite possible that the restriction is not satisfied. If this is the case, the combined
models (gravity and then mode choice) will produce pathological results. This structure, often described
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as G/D/MS/A (Generation, Distribution, Mode Split and Assignment), would be wrong if β > λ; in that
case the structure G/MS/D/A would be probably the correct one.

It has been found in practice that the structure itself may be different for different journey purposes.
Typically, the correct structure would be G/D/MS/A for journey to work and G/MS/D/A for other
purposes. This would reflect a condition where it is easier to change destination for, say, a shopping trip
than to change mode.

Note that in the case of the G/MS/D/A structure one starts by calculating the composite cost by mode
n of reaching all destinations from each origin i:

K n
i = −1

β
log

⎛

⎝
∑

j

exp(−βCn
ij )

⎞

⎠ (6.12)

Then, this composite costs are used to obtain mode splits by origin i.

P 1
i = 1

1 + exp(−λ(K 2
i − K 1

i ))
(6.13)

Separate gravity models are developed using the costs of each mode with mode-specific trip generations
but sharing the attraction trip ends. Although this is a generation based mode choice model it takes into
account fully the costs of reaching each destination by each mode.

For many applications these aggregate models remain valid and in use. However, for a more refined
handling of personal characteristics and preferences we now have disaggregate models which respond
better to the key elements in mode choice and make a more efficient use of data collection efforts; these
are discussed in Chapters 7 to 9.

6.5.3 Multimodal-split Models

Figure 6.3 depicts possible model structures for choices involving more than two modes. The N-way
structure which became very popular in disaggregate modelling work, as we will see in Chapter 7, is the
simplest; however, because it assumes that all alternatives have equal ‘weight’, it can lead to problems
when some of the options are more similar than others (i.e. they are correlated), as demonstrated by the
famous blue bus-red bus example (Mayberry 1973).

Example 6.2 Consider a city where 50% of travellers choose car (C) and 50% choose bus (B). In terms
of model (6.8), which is an N-way structure, this means that CC = CB. Let us now assume that the
manager of the bus company, in a stroke of marketing genius, decides to paint half the buses red (RB)
and half of them blue (BB), but manages to maintain the same level of service as before. This means that
CRB = CBB, and as the car mode has not changed this value is still equal to CC. It is interesting to note
that model (6.8) now predicts:

PC = exp (−βCC)

exp (−βCC) + exp (−βCRB) + exp (−βCBB)
= 0.33

when one would expect PC to remain 0.5, and the buses to share the other half of the market equally
between red and blue buses. The example is, of course, exaggerated but serves well to show the problems
of the N-way structure in the presence of correlated options (in this case completely correlated). We will
come back to this in Chapter 7.

The ‘added-mode’ structure, depicted in Figure 6.3b, was used by many ‘pragmatic’ practitioners in
the later 1960s and early 1970s; however, it has been shown to give different results depending on which
mode is taken as the added one (Langdon 1976). Also, work using Monte Carlo simulation has shown
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Figure 6.3 Multimodal model structures: (a) N-way structure, (b) added-mode structure, (c) hierarchical structure

that the added mode form with better performance in the base year is not necessarily the one to perform
best in the future under certain policy changes (Ortúzar 1980a).

The third possibility, depicted in Figure 6.3c, is the hierarchical or nested structure. Here the options
which have common elements (i.e. are more similar than others or correlated) are taken together in a
primary split (i.e. public transport). After they have been ‘separated’ from the uncorrelated option, they
are subdivided in a secondary split. In fact, this was the standard practice in the 1960s and early 1970s,
but with the short-coming that the composite costs for the ‘public-transport’ mode were normally taken
as the minimum of costs of the bus and rail modes for each zone pair and that the secondary split was
achieved through a minimum-cost ‘all-or-nothing’ assignment. This ‘pragmatic’ procedure essentially
implies an infinite value for the dispersion parameter of the submodal-split function, whereas it has
normally been found that it has a value of the same order as the dispersion parameter in the primary split,
but satisfying (6.11).
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Example 6.3 A hierarchical structure model for the red bus/blue bus problem of Example 6.2 would
have the following expression:

PC = 1

1 + exp{−λ1(CB − CC)} ; PB = 1 − PC

PR/B = 1

1 + exp{−λ2(CBB − CRB)}
PB/B = 1 − PR/B

with

CB = −1

λ2
log[exp (−λ2CRB) + exp (−λ2CBB)]

where PC is the probability of choosing car, as before, (1 − PC) PR/B the probability of selecting red
bus and (1 − PC) PB/B the probability of selecting blue bus; the λs are the primary and secondary split
parameters. It is easy to see that, if CB = CC, this model correctly assigns a probability of 0.5 to the car
option and 0.25 to each of the bus modes. However, the value of the composite bus cost CB is not the
same as the cost of the red or blue buses (CRB and CBB). The former depends on the value of λ2 and for
the red bus/blue bus problem it would be:

CB = CBB − 1

λ2
log 2

Therefore the composite cost of bus will always be cheaper than the cost of the blue or red buses. The
dispersion parameter λ2 allows users to choose options that do not minimise the observed part of the
generalised cost function, because of other variables not included in the model.

Consider an O–D pair where the costs of travelling by bus (red or blue) and car are all the same and
equal to 50 generalised minutes. Assume also that λ2 is 0.9. In this case the value of the composite cost
CB is not 50 but 49.23 and the proportion choosing car will depend on the value of λ1 as shown in the
following table.

λ1 PC

0.001 0.500
0.005 0.499
0.010 0.498
0.050 0.490
0.100 0.481
0.500 0.405
0.600 0.386
0.700 0.368
0.800 0.351
0.900 0.333

It can be seen that if λ1 = λ2 then PC = 1/3, the same result as in a trinomial Logit model; this is
expected because the nested structure collapses to the simple Logit model (section 7.4). However, for
small values, say λ1 = 0.1, the hierarchical or nested structure predicts proportions choosing car (48%)
closer to the expected 50%. Is this 2% loss due to travellers with a strong colour preference or those
influenced by any change (new paint) in the supply of a service?
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6.5.4 Calibration of Binary Logit Models

Consider a model of choice between car and public transport with generalised costs of travel, Ck
ij , given

by an expression such as (5.2). As discussed in Chapter 5, the weights a attached to each element of
cost are considered given and calibration only involves finding the ‘best-fit’ values for the dispersion
parameter λ and modal penalty δ (assumed associated with the second mode).

Let us assume that we have C1
ij and C2

ij as the ‘known’ part of the generalised cost for each mode and
O–D pair. If we also have information about the proportions choosing each mode for each (i, j) pair, P∗

ijk,
we can estimate the values of λ and δ using linear regression as follows. The modelled proportions P for
each (i, j) pair, dropping the (i, j) indices for convenience, are:

P1 = 1

1 + exp {−λ(C2 + δ − C1)}

P2 = 1 − P1 = exp {−λ(C2 + δ − C1)}
1 + exp {−λ(C2 + δ − C1)}

(6.14)

Therefore, taking the ratio of both proportions yields:

P1/(1 − P1) = 1/ exp {−λ(C2 + δ − C1)} = exp {λ(C2 + δ − C1)}

and taking logarithms of both sides and rearranging, we get:

log[P1/(1 − P1)] = λ(C2 − C1) + λδ (6.15)

where we have observed data for P and C, and therefore the only unknowns are λ and δ (this is well
known as the Berkson-Theil transformation). These values could be calibrated by linear regression with
the left-hand side of (6.15) acting as the dependent variable and (C2 − C1) as the independent one; then
λ is the slope of the line and λδ is the intercept. Note that if we assume the weights a in the generalised
cost function to be unknown, we can still calibrate the model using (6.15) and multiple linear regression.
In this case the calibrated weights would include the dispersion coefficient λ. Other and often better
calibration methods are discussed in the next section.

Example 6.4 Data about aggregate mode choice between five zone pairs is presented in the first four
columns of Table 6.1; the last two columns of the table give the values needed for the left-hand side of
equation (6.15).

This information can be plotted following (6.15) as in Figure 6.4, where it can be deduced that
λ ≈ 0.72 and δ ≈ 3.15.

Table 6.1 Aggregate binary split data

Zone pair P1 (%) P2 (%) C1 C2 log [P1/(1 − P1)]

1 51.0 49.0 21.0 18.0 0.04
2 57.0 43.0 15.8 13.1 0.29
3 80.0 20.0 15.9 14.7 1.39
4 71.0 29.0 18.2 16.4 0.90
5 63.0 37.0 11.0 8.5 0.53



P1: TIX/XYZ P2: ABC

JWST054-06 JWST054-Ortuzar February 24, 2011 11:2 Printer Name: Yet to Come

218 Modelling Transport

Figure 6.4 Best-fit line for the data in Table 6.1

6.5.5 Calibration of Hierarchical Modal-split Models

This is usually performed in a heuristic or recursive fashion, starting with the submodal split and pro-
ceeding upwards to the primary split. A general discussion on the merits of this approach in comparison
with the theoretically better simultaneous estimation is postponed until Chapter 7. Within this general
approach there are several possible calibration procedures. It has been shown (see Domencich and
McFadden 1975) that maximum likelihood estimates are preferable to least squares estimates, both on
theoretical and practical grounds. This is particularly true when working with large data sets. However,
when dealing with aggregate data sources it is usually convenient to group the information into suitable
classes for analysis (i.e. cost-difference bins). More importantly, the normally available ‘factored-up’
data are, by definition, raw sampled data which have been manipulated and multiplied by some empiri-
cally derived factors. This can cause discrepancies when several data sources with different factors are
employed, but the important point at this stage is that the real data set is very small. Hartley and Ortúzar
(1980) compared various procedures, and found that maximum likelihood produced not only the most
accurate calibration results but also the more efficient ones in terms of computer time.

Let us consider a trinomial problem involving choice between, for example, car, bus and rail. Let us
also assume that the last two modes are suspected of being correlated due to their ‘public-transport’
nature. The heuristic calibration proceeds as follows. First λ2 is found for the submodal split (bus vs.
rail) as explained in Example 6.4 and its value is used to calculate the public-transport composite costs
needed for the primary split using an expression such as that for Example 6.3.

For zone pairs where there is a choice of mode (e.g. trips by both modes are possible), trips are
classified into cost- difference bins of a certain minimum size. Those trips with no choice of mode are
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excluded from the calibration. Between cost bins with trips allocated to them, there can be cost bins
without any trips; therefore, bins are aggregated into bigger bins until each bin contains some trips.
Finally, a weighted representative cost is calculated for each bin.

Then, if N is the total number of bins, nk the observed number of trips in cost-difference interval k, rk

the observed number of trips by the first mode in the interval, and

Pk = 1/[1 + exp (−Yk)]

the probability of choosing the first mode in interval k, with Yk = axk + b, xk the representative cost of
bin k, and a and b parameters to be estimated (i.e. λ = a and the modal penalty δ = b/a), the logarithm
of the likelihood function (see Chapter 8 for more details) can be written as:

L = Constant +
∑

k

[(nk − rk) log (1 − Pk) + rk log Pk ] (6.16)

The maximisation procedure makes use of the first and second derivatives of (6.16) with respect to
the parameters, which in this simple case have straightforward analytical expressions:

∂L

∂a
=

∑

k

(rk − nk Pk)xk

∂L

∂b
=

∑

k

(rk − nk Pk)

∂2 L

∂a2
= −

∑

k

nk Pk(1 − Pk)x2
k

∂2 L

∂b2
= −

∑

k

nk Pk(1 − Pk )

∂2 L

∂a∂b
= −

∑

k

nk Pk(1 − Pk)xk

Knowing the values of the derivatives, any search algorithm will find the maximum without difficulty.
Maximisation routines require starting values for the parameters, together with an indication of how far
they are from the optimum. The efficiency of calibration typically depends strongly upon the accuracy
of these estimates. One procedure for generating close first estimates is to find the equi-probability cost
(see Bates et al. 1978), where the probability of choosing either mode is 0.5.

Before closing this chapter, one must consider an alternative approach offering to consolidate in a
single model the features of two or three of the classic sub-models.

6.6 Direct Demand Models
6.6.1 Introduction

The conventional sequential methodology requires the estimation of relatively well-defined sub-models.
An alternative approach is to develop directly a model subsuming trip generation, distribution and mode
choice. This is, of course very attractive in itself as it avoids some of the pitfalls of the sequential
approach. For example, it has been claimed that gravity models suffer from the problem of having
to cope with the errors in trip-end totals and those generated by poorly estimated intra-zonal trips. A
direct demand model, as it is calibrated simultaneously for the three sub-models, would not suffer from
this drawback.

Direct demand models can be of two types: purely direct, which use a single estimated equation to
relate travel demand directly to mode, journey and person attributes; and a quasi-direct approach which
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employs a form of separation between mode split and total (O–D) travel demand. Direct demand models
are closely related to general econometric models of demand and have long been inspired by research in
that area.

6.6.2 Direct Demand Models

The earliest forms of direct demand models were of the multiplicative kind. The SARC (Kraft 1968)
model, for example, estimates demand as a multiplicative function of activity and socioeconomic vari-
ables for each zone pair and level-of-service attributes of the modes serving them:

Tijk = φ(Pi Pj )θk1 (Ii I j )θk2
∏

m

[(tm
ij )α

1
km (cm

ij )α
2
km ] (6.17)

where P is population, I income, t and c travel time and cost of travel between i and j by mode k, and φ,
θ and α parameters of the model. This complex expression may be rewritten in simpler form, defining
the following composite variables (Manheim 1979):

Lijm = (tm
ij )α

1
km (cm

ij )α
2
km

Yik = Pθk1
i I θk2

i

Zjk = Pθk1
j I θk2

j

With these changes of variables (6.17) becomes:

Tijk = φYik Zjk

∏

m

Lijm

and this transformation eases the interpretation of the model parameters. For example, φ is just a scale
parameter which depends on the purpose of the trips examined. θ k1 and θ k2 are elasticities of demand
with respect to population and income respectively; we would expect them to be of positive sign. α1

km and
α2

km are demand elasticities with respect to time and cost of travelling; the direct elasticities (i.e. when
k equals m) should be negative and the cross-elasticities of positive sign.

The model is very attractive in principle as it handles generation, distribution and modal split simul-
taneously, including attributes of competing modes and a wide range of level of service and activity
variables. Its main problem is the large number of parameters needed to cash in on these advantages.
Alternative forms, containing linear and exponential terms in addition to multiplicative ones, have been
suggested by Domencich et al. (1968).

Example 6.5 Consider the following demand function:

T12 = 10 000tα
12cβ

12qμ

12

where time t is measured in hours, the fare c in dollars and the service frequency q in trips/day. The
estimated parameter values are α = −2, β = −1 and μ = 0.8 (note that all the signs are correct according
to intuition). The operator wants to increase the fares by 20%; what changes should he make to the level
of service in order to keep the same volume of trips if all other things remain equal?

Let us define L12 = L = t−2 c−1 q0.8; we know that if L remains constant the total volume T12 will
not vary (ceteris paribus). We also know that the elasticities E (L, x) of the level of service (and hence
demand) with respect to each attribute x (time, cost and frequency) are respectively −2, −1 and 0.8.

Now, if only c varies, we have that L = k/c, where k is a constant; therefore, a 20% increase in c means
a new level of service L′ = k/1.2c or L′/L = 0.833. That is, a decrease of 16.67% in L. In order to offset
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this, the operator must introduce changes to the travel time, frequency of service or both. Now, from the
definition of elasticity (see Chapter 2) we have that:


L (c) ≈ E(L , c)L
c/c ≈ −L
c/c


L (t) ≈ E(L , t)L
t/t ≈ −2L
t/t


L (q) ≈ E(L , q)L
q/q ≈ 0.8L
q/q

Therefore if we want 
 L(c) to be equal to − 
 L(q), we require:

−L
c/c ≈ −0.8L
q/q

that is:


q/q ≈ 1.25
c/c ≈ 1.25 × 0.20 = 0.25 or 25%

If we are prepared to vary both frequency and travel time, we would require:


L (c) = −(
L (q) + 
L (t))

that is

2
t/t = 0.8
q/q − 0.20

a straight line of feasible solutions which is shown in Figure 6.5.

Figure 6.5 Feasible solutions for Example 6.5

Many different variants of direct demand models have been attempted on a heuristic basis. Its use has
been mainly in the inter-urban context with very few applications in urban areas. Usually the logarithms
of the number of trips and explanatory variables are taken to make the direct demand model log-linear
and therefore estimable using generalised linear model software like GLIM.

Direct demand models are certainly an attractive proposition, in particular in areas where the zones
are large, for example inter-urban studies. Timberlake (1988) has discussed the use of direct demand
models in developing countries and found them better than conventional approaches. For example, in
the Karthoum-Wad Medani Corridor in Sudan, the direct demand model gave a better fit than a gravity
model because of the unique traffic characteristics exhibited by Karthoum and Port Sudan in comparison
with the rest of the country. The direct demand model was able to accommodate these differences better
than the gravity model.

6.6.3 An Update on Direct Demand Modelling

Recent versions of the direct demand model brings them closer to the demand component of the clas-
sic transport model, albeit still in an interurban context and uses the choice paradigm explained in
Chapter 7 to a full extent. Data, coming typically from an intercept origin-destination survey (supple-
mented by any household data available) are used to estimate a combined frequency-mode-destination
choice model where the structure is of Nested Logit form. In particular, a disaggregate version of the
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combined distribution-modal split model of section 6.5.1 is coupled, through a composite ‘accessibility’
variable, to the choice of frequency (or trip generation). This has allowed to successfully incorporating
a measure of accessibility (i.e. related to the ease or difficulty of travelling from a given zone to the
rest of the study area) at the trip generation stage, solving the problem of inelastic demand discussed in
section 1.5 (see RAND 2004).

Example 6.6 A direct demand model for the North of Chile macro zone (i.e. 117 zones corresponding
to local authorities in a territory of some 1,800 km length housing 67% of the country’s population) was
estimated using intercept data (Iglesias et al., 2008). The model structure is shown in Figure 6.6; the
composite accessibility measure in the trip frequency choice component was the log-sum (see section
7.4) of the destination-mode choice component, and estimation yield correct coefficients (i.e. greater than
zero and less than 1.0) for this variable in all user classes. A distinction was made between home-based
and non-home based trips as well as between trips of three different class lengths: short trips (less than
150 km), medium (between 150 and 500 km) and long trips (greater than 500 km); the probability of
belonging to a length of trip class was modelled as a trinomial Logit with utilities depending on the zone
characteristics and its accessibility.

The destination-mode choice component (where eight modes were considered: four types of buses,
car, shared taxi, train and airplane) was a Nested Logit model with the following general utility form:

V ∗
Mzj

= V g,a,l
Mzj

+ log
(
S1 j + y2 S2 j + . . . + y117 S117 j

)
(6.18)

where V ∗
Mzj

stands for the utility of travelling by mode M (M = 1, . . . , 8) from origin z to destina-
tion j ( j = 1, . . . , 117). The first term on the right includes individual characteristics (size of group
g, possession of car in the household a, and possession of driving license l) and the level-of-service
variables for each destination-mode combination (measured at the zone level). The second term intro-
duces size variables S related to the destination attractiveness as a weighted sum inside a logarithm
(Daly 1982a).

Based on (6.18) the representative accessibility for a given zone (Z) and trip length (L) by user class
(g, a, l) was defined as shown in (6.19) following Williams (1977). The zones included in the summation
over j were exclusively those corresponding to the length of trip considered (i.e. the set JL) for each given

Mode 1 Mode 2 ... Mode 8

Destination 1 Destination 2 Destination 117
Destination-Mode

Choice

Frequency Choice

by User Class

Short trips … Long trips

No trips One or more
trips

Figure 6.6 Contemporary Direct Demand Model
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origin; the structural parameter ϕ has to be greater than zero and less than or equal to one (the reason for
this is discussed in section 7.4):

Accg,a,l
Z ,L = 1

ϕ
· log

⎛

⎝
∑

∀ j∈JL ; j 
=Z

e
ϕ log

(
∑

M=1,8
e

UM∗
Z j

)⎞

⎠ (6.19)

As the application was made using aggregate data, the accessibility measure for each zone and length
of trip was calculated as the weighted sum of representative accessibilities, as follows:

AccZ ,L =
9∑

g=1

2∑

a=1

2∑

l=1

[(
PG=g · PA=a · PLic=l

) · Accg,a,l
Z ,L

]
(6.20)

where PG is the probability of having a given group size (1 to 9 people), which was calculated on the
basis of the observed distribution of group sizes by time of year (normal and summer) and type of trip
(to work and other); PA is the probability of having a car in the household and PLic the probability of
having a driving license. The model was applied successfully and details may be consulted in Iglesias
et al. (2008).

Exercises
6.1 A mode choice survey has been undertaken on a corridor connecting four residential areas A, B, C

and D with three employment areas U, V and W. The corridor is served by a good rail link and a
reasonable road network. The three employment zones are in a heavily congested area and therefore
journeys by rail there are often faster than by car. The information collected during the survey is
summarised below:

By car By rail

O–D pair X1 X2 X3 X4 X1 X2 X3 Proportion by car

A–U 23 3 120 40 19 10 72 0.82
B–U 20 3 96 40 17 8 64 0.80
C–U 18 3 80 40 14 10 28 0.88
D–U 15 3 68 40 14 12 20 0.95
A–V 26 4 152 60 23 10 104 0.72
B–V 19 4 96 60 18 9 72 0.90
C–V 14 4 60 60 11 9 36 0.76
D–V 12 4 56 60 12 11 28 0.93
A–W 30 5 160 80 25 10 120 0.51
B–W 20 5 100 80 16 8 92 0.56
C–W 15 5 64 80 12 9 36 0.58
D–W 10 5 52 80 8 9 24 0.64

where the costs per trip per passenger are as follows:

X1 = in-vehicle travel time in minutes (line haul plus feeder mode, if any)
X2 = excess time (walking plus waiting) in minutes
X3 = out-of-pocket travel costs (petrol or fares), in pence
X4 = parking costs associated with a one way trip, in pence.
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(a) Calibrate a Logit modal-split model assuming that the value of travel time is 8 pence per minute
and that the value of excess time is twice as much.

(b) Estimate the impact on modal split on each O–D pair of an increase in petrol prices which
doubles the perceived cost of running a car (X3).

(c) Estimate the shift in modal split which could be obtained if no fares were charged on the
rail system.

6.2 An inter-urban mode choice study is being undertaken for people with a choice between car and rail.
The figures below were obtained as a result of a survey on five origin-destination pairs A to E:

Elements of cost by each mode

Car Rail

O–D X1 X2 X1 X2 Proportion choosing car

A 3.05 9.90 2.50 9.70 0.80
B 4.05 13.10 2.02 14.00 0.51
C 3.25 9.30 2.25 8.60 0.57
D 3.50 11.20 2.75 10.30 0.71
E 2.45 6.10 2.04 4.70 0.63

where X1 is the travel time (in hours) and X2 the out-of-pocket cost (in pounds sterling). Assume
that the ‘value of time’ coefficient is 2.00 per hour and calculate the generalised cost of travelling
by each mode.
(a) Calibrate a binary Logit modal-split model with these data including the mode specific penalty.
(b) An improved rail service is to be introduced which will reduce travel times by 0.20 of an hour

in every journey; by how much could the rail mode increase its fares without losing customers
at each O–D pair?

(c) How would you model the introduction of an express coach service between these cities?
6.3 Consider the following trip distribution/modal-split model:

V n
ij = Ai Oi B j Dj exp(−βMn

ij )

where

Mn
ij = −(1/τ n) log

∑
k

exp(−τ nCk
ij)

and n = 1 stands for persons with access to car, n = 2, persons without access to car, k = 1 stands
for car and k = 2 for public transport.

If the total number of trips between zones i and j is Vij = 1000, compute how many will use car
and how many public transport according to the model. The estimated parameter values were found
to be: τ 1 = 0.10, τ 2 = 0.05 and β = 0.04; also, for trips between i and j the modal costs were
calculated as: C1

ij = 30 and C2
ij = 40.

6.4 Consider the following modal-split model:

Pk = exp(−τCk
ij)

/ ∑

m

exp (−τCm
ij )

with generalised costs given by the following expression:

Ck
ij =

∑

p

θkp xkp

where θ are parameters weighing the model explanatory variables (time, cost, etc).
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(a) Write an expression for the elasticity of Pk with respect to xkp.
(b) Consider now a binary choice situation where the generalised costs have the following concrete

expressions:

Ccar = 0.2t tcar + 0.1ccar + 0.3etcar

Cbus = 0.2t tbus + 0.1cbus + 0.3etbus + 0.3

where tt is in-vehicle travel time (min), c is travel cost ($) and et is access time (walking and waiting,
min). Assume we know the following average data for the modes:

Variable

Mode tt c et

Car 20 50 0
Bus 30 20 5

Calculate the proportion of people choosing car if τ = 0.4.
6.5 The railway between the towns of A and B spans 800 km through mountainous terrain. The total

one-way travel time, tr, is 20 hrs and currently the fare, cr, is 600$/ton. As the service is used at low
capacity tr is a constant, independent of the traffic volume V r.

There is a lorry service competing with the railway in an approximately parallel route; its average
speed is 50 km/hr and it charges a fare of 950$/ton. There is a project to build a highway in order to
replace the present road; it is expected that most of its traffic will continue to be heavy trucks.

The level-of-service function of the new highway has been estimated as:

tt = 7 + 0.08Vt (hours)

where V t is the total flow of trucks per hour.
On the other hand the railway has estimated its demand function as follows:

(Vr/Vt) = 0.83(tr/tt)−0.8(cr/ct)−1.6

and it is expected that the total volume transported between the two towns, V r + V t, will remain
constant and equal to 200 truck loads/hr in the medium term.
(a) Estimate the current modal split (i.e. volumes transported by rail and lorry).
(b) Estimate modal split if the highway is built.
(c) What would be the modal split if:

– the railway decreases its fare to 450$/ton?
– the lorries were charged a toll of 4$/ton in order to finance the highway?
– both changes are simultaneous?
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7
Discrete Choice Models

In this chapter we provide a comprehensive introduction to discrete choice (i.e. when individuals have to
select an option from a finite set of alternatives) modelling methods. We start with some general consider-
ations and move on to explain the theoretical framework, random utility theory, in which these models are
cast. This serves us to introduce some basic terminology and to present the individual-modeller ‘duality’
which is so useful to understanding what the theory postulates. Next we introduce the two most popular
discrete choice models: Multinomial and Nested Logit, which taken as a family provides the practitioner
with a very powerful modelling tool set. We also discuss other choice models, in particular Mixed Logit
which is now recognised as the standard in the field, and also consider the benefits and special problems
involved when modelling with panel data and when one wants to incorporate latent variables. These are
two increasingly important subjects and should shortly become standard practice. Finally, we briefly look
at other paradigms which offer an alternative perspective to the classical utility-maximising approach.

The problems of model specification and estimation, both with revealed- and stated-preference data,
are considered in sufficient detail for practical analysis in Chapter 8; we provide information about
certain issues, such as validation samples, which are seldom found in texts on this subject. The problem
of aggregation, from various perspectives, and the important question of model updating and transference
(particularly for those interested in a continuous planning approach to transport), are tackled in Chapter 9.

7.1 General Considerations
Aggregate demand transport models, such as those we have discussed in the previous chapters, are either
based on observed relations for groups of travellers, or on average relations at the zone level. On the
other hand, disaggregate demand models are based on observed choices made by individual travellers
or households. It was expected that the use of this framework will enable more realistic models to
be developed.

In spite of the pioneering work of researchers such as Warner (1962) or Oi and Shuldiner (1962) who
drew attention to apparent serious deficiencies in the conventional methodologies, aggregate models
continued to be used, almost unscathed, in the majority of transport projects until the early 1980s. In fact,
only then discrete choice models started to be considered as a serious modelling option (see Williams
1981). In general, discrete choice models postulate that:

the probability of individuals choosing a given option is a function of their socioeconomic char-
acteristics and the relative attractiveness of the option.

Modelling Transport, Fourth Edition. Juan de Dios Ortúzar and Luis G. Willumsen.
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To represent the attractiveness of the alternatives the concept of utility (which is a convenient theoretical
construct defined as what the individual seeks to maximise) is used. Alternatives, per se, do not produce
utility: this is derived from their characteristics (Lancaster 1966) and those of the individual; for example,
the observable utility is usually defined as a linear combination of variables, such as:

Vcar = 0.25 − 1.2 · IVT − 2.5 · ACC − 0.3 · C/I + 1.1 · NCAR (7.1)

where each variable represents an attribute of the option or of the traveller. The relative influence of each
attribute, in terms of contributing to the overall satisfaction produced by the alternative, is given by its
coefficient. For example, a unit change on access time (ACC) in (7.1) has approximately twice the impact
of a unit change on in-vehicle travel time (IVT) and more than seven times the impact of a unit change
on the variable cost/income (C/I). The variables can also represent characteristics of the individual; for
example, we would expect that an individual belonging to a household with a large number of cars
(NCAR), would be more likely to choose the car option than another belonging to a family with just one
vehicle. The alternative-specific constant, 0.25 in equation (7.1), is normally interpreted as representing
the net influence of all unobserved, or not explicitly included, characteristics of the individual and the
option in its utility function. For example, it could include elements such as comfort and convenience
which are not easy to measure or observe.

To predict if an alternative will be chosen, according to the model, the value of its utility must be
contrasted with those of alternative options and transformed into a probability value between 0 and 1.
For this a variety of mathematical transformations exist which are typically characterised for having an
S-shaped plot, such as:

Logit P1 = exp (V1)

exp (V1) + exp (V2)

Probit P1 =
∫ ∞

−∞

∫ V1−V2+x1

−∞

exp

{
− 1

2(1 − ρ2)

[(
x1

σ1

)2

− 2ρx1x2

σ1σ2
+
(

x2

σ 2

)2
]}

2πσ1σ2

√
(1 − ρ2)

dx2 dx1

where the completely general covariance matrix of the Normal distribution associated with this latter
model has the form:

∑
=
(

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

)

that is, it allows for correlation (i.e. ρ �= 0) and heteroskedasticity (i.e. different variances and see
McCulloch 1985 for a little divertimento) among alternatives.

Discrete choice models cannot be calibrated in general using standard curve-fitting techniques, such
as least squares, because their dependent variable Pi is an un-observed probability (between 0 and 1)
and the observations are the individual choices (which are either 0 or 1); the only exceptions to this are
models for homogeneous groups of individuals, or when the behaviour of every individual is recorded
on several occasions, because observed frequencies of choice are also variables between 0 and 1.

Some useful properties of these models were summarised by Spear (1977):

1. Disaggregate demand models (DM) are based on theories of individual behaviour and do not constitute
physical analogies of any kind. Therefore, as an attempt is made to explain individual behaviour, an
important potential advantage over aggregate models is that it is more likely that DM models are
stable (or transferable) in time and space.

2. DM models are estimated using individual data and this has the following implications:
� DM models may be more efficient than aggregate models in terms of information usage; fewer data

points are required as each individual choice is used as an observation. In aggregate modelling one
observation is the average of (sometimes) hundreds of individual observations.
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� As individual data are used, all the inherent variability in the information can be utilised.
� DM models may be applied, in principle, at any aggregation level; however, although this appears

obvious, the aggregation processes are not trivial, as we will discuss in Chapter 9.
� DM models are less likely to suffer from biases due to correlation between aggregate units. A

serious problem when using aggregate information is that individual behaviour may be hidden
by unidentified characteristics associated with the zones; this is known as ecological correlation.
The example in Figure 7.1 shows that if a trip generation model was estimated using zonal data,
we would obtain that the number of trips decreases with income; however, the opposite would be
shown to hold if the data were considered at a household level. This phenomenon, which is of
course exaggerated in the figure, might occur for example if the land-use characteristics of zone B
are conducive to more trips on foot.

Figure 7.1 Example of ecological fallacy

3. Disaggregate models are probabilistic; furthermore, as they yield the probability of choosing each
alternative and do not indicate which one is selected, use must be made of basic probability concepts
such as:
� The expected number of people using a certain travel option equals the sum over each individual

of the probabilities of choosing that alternative:

Ni =
∑

n

Pin

� An independent set of decisions may be modelled separately considering each one as a conditional
choice; then the resulting probabilities can be multiplied to yield joint probabilities for the set, such
as in:

P( f, d, m, r ) = P( f ) P(d/ f ) P(m/d, f ) P(r/m, d, f )

with f = frequency; d = destination; m = mode; r = route.
4. The explanatory variables included in the model can have explicitly estimated coefficients. In principle,

the utility function allows any number and specification of the explanatory variables, as opposed to the
case of the generalised cost function in aggregate models which is generally limited and has several
fixed parameters. This has implications such as the following:
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� DM models allow a more flexible representation of the policy variables considered relevant for
the study.

� The coefficients of the explanatory variables have a direct marginal utility interpretation (i.e. they
reflect the relative importance of each attribute).

In the sections that follow and in the next two chapters we will examine in some detail several
interesting aspects of discrete choice models, such as their theoretical base, structure, specification,
functional form, estimation and aggregation. Notwithstanding, interested readers are advised that there
are at least three good books dealing exclusively with this subject (Ben-Akiva and Lerman 1985; Hensher
et al. 2005; Train 2009).

7.2 Theoretical Framework
The most common theoretical framework or paradigm for generating discrete-choice models is random
utility theory (Domencich and McFadden 1975; Williams 1977), which basically postulates that:

1. Individuals belong to a given homogeneous population Q, act rationally and possess perfect infor-
mation, i.e. they always select that option which maximises their net personal utility (the species has
even been identified as ‘Homo economicus’) subject to legal, social, physical and/or budgetary (both
in time and money terms) constraints.

2. There is a certain set A = {A1, . . . , Aj, . . . , AN} of available alternatives and a set X of vectors of
measured attributes of the individuals and their alternatives. A given individual q is endowed with a
particular set of attributes x ∈ X and in general will face a choice set A(q) ∈ A.

In what follows we will assume that the individual’s choice set is predetermined; this implies that
the effect of the constraints has already been taken care of and does not affect the process of selection
among the available alternatives. Choice-set determination will be considered, together with other
important practical issues, in Chapter 8.

3. Each option Aj ∈ A has associated a net utility Ujq for individual q. The modeller, who is an observer of
the system, does not possess complete information about all the elements considered by the individual
making a choice; therefore, the modeller assumes that Ujq can be represented by two components:
� a measurable, systematic or representative part Vjq which is a function of the measured attributes

x; and
� a random part εjq which reflects the idiosyncrasies and particular tastes of each individual, together

with any measurement or observational errors made by the modeller.
Thus, the modeller postulates that:

Ujq = Vjq + εjq (7.2)

which allows two apparent ‘irrationalities’ to be explained: that two individuals with the same
attributes and facing the same choice set may select different options, and that some individuals may
not always select what appears to be the best alternative (from the point of view of the attributes
considered by the modeller).

For the decomposition (7.2) to be correct we need certain homogeneity in the population under
study. In principle we require that all individuals share the same set of alternatives and face the same
constraints (see Williams and Ortúzar 1982a), and to achieve this we may need to segment the market.

Although we have termed V representative it carries the subscript q because it is a function of
the attributes x and this may vary from individual to individual. On the other hand, without loss of



P1: TIX/XYZ P2: ABC

JWST054-07 JWST054-Ortuzar February 24, 2011 11:5 Printer Name: Yet to Come

Discrete Choice Models 231

generality it can be assumed that the residuals ε are random variables with mean 0 and a certain
probability distribution to be specified. A popular and simple expression for V is:

Vjq =
∑

k

θk j x jkq (7.3)

where the parameters θ are assumed to be constant for all individuals in the homogeneous set (fixed-
coefficients model) but may vary across alternatives. Other possible forms, together with a discussion
on how each variable should enter in the utility function, will be presented in Chapter 8.

It is important to emphasise the existence of two points of view in the formulation of the above
problem: firstly, that of the individual who calmly weighs all the elements of interest (with no
randomness) and selects the most convenient option; secondly, that of the modeller who by observing
only some of the above elements needs the residuals ε to explain what otherwise would amount to
non-rational behaviour.

4. The individual q selects the maximum-utility alternative, that is, the individual chooses Aj if and
only if:

Ujq ≥ Uiq, ∀Ai ∈ A(q) (7.4)

that is

Vjq − Viq ≥ εiq − εjq (7.5)

As the analyst ignores the value of (εiq − εjq) it is not possible to determine with certitude if (7.5)
holds. Thus the probability of choosing Aj is given by:

Pjq = Prob{εiq ≤ εjq + (Vjq − Viq), ∀Ai ∈ A(q)} (7.6)

and as the joint distribution of the residuals ε is not known, it is not possible at this stage to derive
an analytical expression for the model. What we do know, however, is that the residuals are random
variables with a certain distribution which we can denote by f (ε)= f (ε1, . . . , εN). Let us note in
passing that the distribution of U, f (U), is the same but with different mean (i.e. V rather than 0).

Therefore we can write (7.6) more concisely as:

Pjq =
∫

RN

f (ε) dε (7.7)

where

RN =
{

εiq ≤ εjq + (Vjq − Viq), ∀Ai ∈ A(q)
Vjq + εjq ≥ 0

and different model forms may be generated depending on the distribution of the residuals ε.

An important class of random utility models is that generated by utility functions with independent
and identically distributed (IID) residuals. In this case f (ε) can be decomposed into:

f (ε1, . . . , εN ) =
∏

n

g(εn)

where g (εn) is the utility distribution associated with option An, and the general expression (7.7)
reduces to:

Pj =
∫ ∞

−∞
g(ε j )d(ε j )

∏

i �= j

∫ Vj −Vi +ε j

−∞
g(εi )dεi (7.8a)
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where we have extended the range of both integrals to −∞ (a slight inconsistency) in order to
solve them.

A two-dimensional geometric interpretation of this model, together with extensions to the more general
case of correlation and unequal variances, are presented and discussed by Ortúzar and Williams (1982).
Equation (7.8a) can also be expressed as:

Pj =
∫ ∞

−∞
g(ε j )dε j

∏

i �= j

G(ε j + Vj − Vi ) (7.8b)

with

G(x) =
∫ X

−∞
g(x) dx

and it is interesting to mention that a large amount of effort has been spent in just trying to find out
appropriate forms for g which allow (7.8b) to be solved in closed form.

Note that the IID residuals requisite means that the alternatives should be, in fact, independent.
Mixed-mode options, for example car-rail combinations, will usually violate this condition.

7.3 The Multinomial Logit Model (MNL)
This is the simplest and most popular practical discrete choice model (Domencich and McFadden
1975). It can be generated assuming that the random residuals in (7.7) are distributed IID Gumbel (also
called Weibull or, more generally, Extreme Value Type I, EV1, as we saw in section 2.5.4.2). With this
assumption the choice probabilities are:

Piq = exp (β Viq)
∑

A j εA(q)
exp (β Vjq)

(7.9)

where the utility functions usually have the linear in the parameters form (7.3) and the parameter β

(which is normalised to one in practice as it cannot be estimated separately from the θ) is related to the
common standard deviation of the EV1 variate by:

β = π/σ
√

6 (7.10)

In Chapter 9 we will use (7.10) to discuss the problem of bias in forecasts when use is made of data at
different levels of aggregation. The fact that β cannot be estimated separately from the parameters θ in
Viq is known as theoretical identification; all discrete choice models have identification problems, which
require to set certain parameters to a given value in order to estimate the model uniquely (see Walker
2002). We will come back to this important issue several times in this chapter.

7.3.1 Specification Searches

To decide which variables xk ∈ x enter the utility function and whether they are of generic type or
specific to a particular alternative, a search process is normally employed starting with a theoretically
appealing specification (Ortúzar 1982). Then variations are tested at each step to check whether they add
explanatory power to the model; we will examine methods for doing this in Chapter 8.

If for all individuals q that have available a given alternative Aj we define one of the values of x
equal to one, the coefficient θ k corresponding to that variable is interpreted as an alternative specific
constant (ASC). Although we may specify an ASC for every option, it is not possible to estimate their
N parameters individually due to the way the model works (as shown in Example 7.1). For this reason
one alternative is taken as reference (fixing to 0 the value of its parameter without loss of generality) and
the remaining (N − 1) values, obtained in the estimation process, are interpreted as relative to that of
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the reference. This is another theoretical identification issue (Walker 2002; Cherchi and Ortúzar 2008b)
associated with the MNL. The rest of the variables x may be of one of two kinds:

� generic, if they appear in the utility function of every alternative and their coefficients can be assumed
identical i.e. θ jk may be replaced by θ k;

� specific, if the assumption of equal coefficients θ k is not sustainable, a typical example occurring when
the kth variable only appears in Vj.

It must be noted that the most general case considers specific variables only; the generic ones impose
an equality of coefficients condition and this may be statistically tested as we will discuss in Chapter 8.

Example 7.1 Consider the following binary Logit model:

P1 = exp (V1)/[exp (V1) + exp (V2)] = 1/[1 + exp (V2 − V1)]

where the observable utilities are postulated as linear functions of two generic variables x1 and x2, and
two constants (with coefficients θ 3 and θ4) as follows:

V1 = θ1x11 + θ2x12 + θ3

V2 = θ1x21 + θ2x22 + θ4

As can be seen from the model expression, the relevant factor is the difference between both utilities:

V2 − V1 = θ1(x21 − x11) + θ2(x22 − x12) + (θ4 − θ3)

and this allows us to deduce the following:

� It is not possible to estimate both θ 3 and θ 4, only their difference; for this reason there is no loss of
generality if one is taken as 0 and the other estimated relative to it (this of course applies to any number
of alternatives).

� If either x1j or x2j have the same value for both options (as in the case of variables representing individual
attributes, such as income, age, sex or number of cars in the household), a generic coefficient cannot
be estimated as it would always multiply a zero value. This also applies to level-of-service variables
which happen to share a common value for two or more options (for example, public-transport fares
in a regulated market). In either case they can only appear in some (but not all) options, or need to
enter as specific variables (i.e. with different coefficients for each but one alternative).

The problem posed by individual attributes is further compounded by the fact that it is not always
easy or clear to decide in which alternative utility(ies) the variable should appear. Consider the case
of a variable such as SEX (i.e. 0 for males, 1 for females) in a mode choice study; if we believe, for
example, that males have first call on access to the car for commuting purposes, we would not enter the
variable in the utilities of both car driver and car passenger, say. However, we may have no insights on
whether to enter it or not in the utilities of other modes such as, for example, bus or metro. The problem
is that entering the variable in different ways usually yields different estimation results and choosing the
optimum may become a hard combinatorial problem, even for a small number of options and attributes.
If we lack insight and there are no theoretical grounds for preferring one form over another, the only way
out may be trial and error.

7.3.2 Universal Choice Set Specification

When individuals have different choice sets, it is useful to rewrite the model based on the univer-
sal choice set formulation introducing availability variables into the utility function (see Bierlaire
et al. 2009 for a recent application). Let Aiq be 1 if individual q has alternative Ai available and 0
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otherwise. For example, if walking is considered not available for distances longer than 3 km, we
would have:

Aiq =
{

1 if dq < 3
0 if dq ≥ 3

where dq is the distance to be travelled by individual q. It is possible to write any choice model based on
this idea of a universal choice set:

Piq {A(q)}= Prob
{
Uiq ≥ Ujq, ∀ A j ∈ A(q)

}

= Prob
{
Uiq + log Aiq ≥ Ujq + log Ajq, ∀ A j ∈ A

}

Thus, when one of the Aiq is equal to 1, the additional term does not play any role. But if Aiq = 0, the
inequality is never verified and the probability of choosing the alternative is 0, which makes sense as it is
not available. Finally, when Ajq = 0, for j �= i the right hand side of the above equation is trivially lower
than anything else.

Using this formulation, the Multinomial Logit expression becomes:

Piq {A(q)} = exp (Viq )
∑

A j ∈A(q)

exp (Vjq )
= exp (Viq + log Aiq )

∑

A j ∈A

exp (Vjq + log Ajq )
= Aiq exp (Viq )

∑

A j ∈A

Ajq exp (Vjq )

and this helps to generalise some properties that were originally applicable only to cases where all
individuals had the same choice set, as we will see below.

7.3.3 Some Properties of the MNL

The model satisfies the axiom of independence of irrelevant alternatives (IIA) which can be
stated as:

Where any two alternatives have a non-zero probability of being chosen, the ratio of one probability
over the other is unaffected by the presence or absence of any additional alternative in the choice
set (Luce and Suppes 1965).

As can be seen, in the MNL case the ratio

Pj

Pi
= exp {β(Vj − Vi )}

is indeed a constant independent of the rest of the options. Initially this was considered an advantage of
the model, as it allows us to treat quite neatly the new alternative problem (i.e. being able to forecast
the share of an alternative not present at the calibration stage, if its attributes are known); however,
nowadays this property is perceived as a potentially serious disadvantage which makes the model fail in
the presence of correlated alternatives (recall the red bus–blue bus problem of Chapter 6). We will come
back to this in section 7.4.

If there are too many alternatives, such as in the case of destination choice, it can be shown (McFadden
1978) that unbiased parameters are obtained if the model is estimated with a random sample of the
available choice set for each individual (for example, seven destination options per individual). Models
without this property may require, even if their estimation process is not complex, a large amount
of computing time for more than say 50 options. Unfortunately such a figure is not uncommon in a
destination-choice context, if one thinks in zoning systems of normal size, even if the combinatorial
problem of forming destination/mode choice options is bypassed.
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If the model is estimated with information from a sub-area, or with data from a biased sample, it can
be shown (Cosslett 1981) that if the model has a complete set of mode-specific constants, an unbiased
model may be obtained just by correcting the constants according to the following expression:

K ′
i = Ki − log(qi/Qi ) (7.11)

where qi is the market share of alternative Ai in the sample and Qi its market share in the population. All
constants must be corrected, including the reference one that is made equal to 0 during estimation.

It is possible to derive fairly simple equations for the direct and cross-elasticities of the model. For
example, the direct point elasticity, that is the percentage change in the probability of choosing Ai with
respect to a marginal change in a given attribute Xikq, is simply given by:

EPiq, Xikq = θik Xikq(1 − Piq) (7.12)

while the cross-point elasticity is also simply given by:

EPiq, X jkq = −θ jk X jkq Pjq (7.13)

that is, the percentage change in the probability of choosing Ai with respect to a marginal change in the
value of the kth attribute of alternative Aj, for individual q. Note that as this value is independent from
alternative Ai, the cross-elasticities of any option Ai with respect to the attributes Xjkq of alternative Aj

are equal. This seemingly peculiar result is also due to the IIA property, or more precisely, to the need
for IID utility functions in the model generation.

7.4 The Nested Logit Model (NL)
7.4.1 Correlation and Model Structure

In the last section we discussed the MNL model which has a very simple covariance matrix. For example,
in the trinomial case it is of the form:

∑
= σ 2

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠

This simplicity may give rise to problems in any of the following cases:

� when alternatives are not independent (i.e. there are groups of alternatives more similar than others,
such as public-transport modes vs. the private car);

� when the variances of the error terms ε are not equal, i.e. when there is heteroskedasticity (e.g. between
observations, if some individuals posses a GPS device, and are thus able to measure their times more
precisely than others; or between alternatives, when certain options have more precise attributes, say
waiting times of Metro and bus, see Munizaga et al. 2000);

� when there are taste variations among individuals (i.e. if the perception of costs varies with income
but we have not measured this variable) in which case we require random coefficient models rather
than fixed coefficient models as the MNL;

� when there are multiple responses per individual, as in the case of panel data or stated preference
observations; these introduce problems associated with dependency between observations violating
one of the assumptions underpinning the MNL model (see Chapter 8).

In these four senses more flexible models such as the Multinomial Probit (MNP) model, which can be
derived from a multivariate Normal distribution (rather than IID EV1) or the Mixed Logit (ML) model
(we will discuss both in sections 7.5 and 7.6), are completely general because they are endowed with an
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arbitrary covariance matrix. However, as we will see below, the first is not easy to solve except for cases
with up to three alternatives (see Daganzo 1979) and the second requires a more involved estimation
method but it is recognized as the current standard in the field.

Notwithstanding, there are certain situations where even if these more powerful models were available,
their full generality could be an unnecessary luxury because specific forms for the utility functions suggest
themselves. A good example are cases of bi-dimensional choices, such as the combination of destination
(D) and mode (M) choice, where alternatives are correlated but taste variations or heteroskedasticity
need not be a problem. In these cases the options at each dimension can be denoted as (D1, . . . , DD) and
(M1, . . . , MM) with their combination yielding the choice set A, whose general element DdMm may be a
specific destination-mode option to carry out a certain activity.

In this type of context it is interesting to consider functions of the following type (Williams and
Ortúzar 1982a):

U (d, m) = Ud + Udm

where, for example, Ud could correspond to that portion of utility specifically associated with the
destination and Udm to the disutility associated with the cost of travelling. If we write the expression
above following our previous notation we get:

U (d, m) = V (d, m) + ε(d, m)

where

V (d, m) = Vd + Vdm

and

ε(d, m) = εd + εdm

It can be shown that if the residuals ε are separately IID, under certain conditions the Hierarchical or
Nested Logit (NL) model (Williams 1977; Daly and Zachary 1978) is formed:

P(d, m) = exp {β(Vd + V ∗
d )} exp (λVdm)

∑
d ′ exp {β(Vd ′ + V ∗

d ′ )}
∑

m′ exp (λVdm′ )

with

V ∗
d = (1/λ) log

∑

m′
exp (λVdm′ )

This is precisely the model form used in the destination-mode choice component of contempo-
rary direct demand models as discussed in section 6.6.3. Furthermore, it can easily be shown that if
β = λ (which occurs when εd = 0) the NL collapses, as special case, to the single parameter MNL.
To understand why this is so, let us first write in full the utility expressions for the first destination in a
simple binary mode case:

U (1, 1) = V1 + V11 + ε1 + ε11

U (1, 2) = V1 + V12 + ε1 + ε12

As can be seen, the source of correlation is the residual ε1 which can be found in both
U (1, 1) and U (1, 2); therefore when εd becomes 0, there is no correlation left and the model is
indistinguishable from the MNL.

Finally, it can also be shown that for the model to be internally consistent we require that the following
condition holds (Williams 1977):

β ≤ λ
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Models that fail to satisfy this requirement have been shown to produce elasticities of the wrong size
and/or sign (Williams and Senior 1977).

7.4.2 Fundamentals of Nested Logit Modelling

In his historical review of the NL model, Ortúzar (2001) mentions several authors whose work predates
the model’s actual theoretical formulation. Wilson (1970; 1974), Manheim (1973) and Ben-Akiva (1974)
all used intuitive versions that – although based on concepts such as marginal probabilities and utility
maximisation – did not have a rigorous construction of the functional forms and a clear interpretation
of all the model parameters. Domencich and McFadden (1975) generated structured models of Nested
Logit form but had an incorrect definition of ‘composite utilities’.

Williams (1977) was the first to make an exhaustive analysis of the NL properties, especially composite
utilities (or inclusive values), showing that all previous versions had important inconsistencies with micro-
economic concepts. He also reformulated the NL and introduced structural conditions associated with its
inclusive value parameters, which are necessary for the NL’s compatibility with utility maximising theory.
With these, he formally derived the NL model as a descriptive behavioural model completely coherent
with basic micro-economic concepts. Other authors, whose seminal work completed the fundamental
theoretical development of the NL, are Daly and Zachary (1978), who worked simultaneously and totally
independent from Williams, and McFadden (1978; 1981) who generalised the work of both Williams, and
Daly and Zachary. Unfortunately, the latter has given rise to some confusion in terms of estimation and
interpretation of results which we discuss below. In what follows we will draw heavily on the definitive
study of Carrasco and Ortúzar (2002).

7.4.2.1 The Model of Williams and of Daly-Zachary

As mentioned above, Williams (1977) initially worked with a two-level model in the context of two-
dimensional situations, such as destination-mode choice, defining utility functions of the following form:

U (i, j) = U j + Ui/j (7.14)

where i denotes alternatives at a lower level nest and j the alternative at the upper level that represents
that lower level nest. In terms of the representative utility and stochastic terms, (7.14) becomes:

U (i, j) = V (i, j) + ε(i, j)

where

V (i, j) = Vj + Vi/j and ε(i, j) = ε j + εi/j

Williams’ definition of the stochastic errors may be synthesised as follows:

� The errors εj and εi/j are independent for all (i, j).
� The errors εi/j are identically and independently distributed (IID) EV1 with scale parameter λ.
� The errors εj are distributed with variance σ j

2 and such that the sum of Uj and the maximum of Ui/j is
distributed EV1 with scale parameter β. It is interesting to mention that such a distribution may not
exist (see Carrasco, 2001); also, this derivation is sufficient but many other formulations could lead to
the same model.

These assumptions have as a consequence the following relation for the error variances:

Var (ε(i, j)) = Var
(
ε j

)+ Var
(
εi/j

)
(7.15)
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which in our case, using (7.10), may be expressed as

π 2

6β2
= σ 2

j + π2

6λ2

leading to

β

λ
=
(

1 + 6σ 2
j λ

2

π 2

)− 1
2

(7.16)

The above implies the structural condition which we had anticipated:

β ≤ λ (7.17)

Now, if we define the structural parameter φ = β

λ
, condition (7.17) becomes:

φ ≤ 1 (7.18)

and when β = λ (φ = 1), the NL collapses to the MNL (7.9), as the reader can easily check; but if
β > λ (φ > 1), the hierarchical structure postulated is incompatible with the utility theoretic basis of
this formulation.

The above construction may be generalised in two directions:

– Allowing for a different scale parameter λj, associated with each nest j, as proposed by Daly and
Zachary (1978).

– Allowing for an increase in the number of levels in series and parallel (Williams 1977; Daly and
Zachary 1978; Sobel 1980).

A very popular NL specification in practice is one with just two levels of nesting and different scale
parameters λj in each nest (Figure 7.2), whose functional form is given by:

P(i, j) = exp
(
λ j Vi/j

)
∑

i ′∈ j

exp
(
λ j Vi ′/j

) ·
exp β

⎧
⎨

⎩
1

λ j
log

⎛

⎝
∑

i∈ j

exp
(
λ j Vi/j

)
⎞

⎠

⎫
⎬

⎭

m∑

j ′=1

exp β

⎧
⎨

⎩
1

λ j ′
log

⎛

⎝
∑

i∈ j ′
exp

(
λ j ′ Vi/j ′

)
⎞

⎠

⎫
⎬

⎭

(7.19)

In this case, the structural conditions of the model become:

β ≤ λ j for all j ⇔ φ j = β

λ j
≤ 1 for all j (7.20)

nests j

alternatives i

root

Figure 7.2 A general Nested Logit structure with two levels
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The above model (7.19) and conditions (7.20) allow a range of complex choice processes to be mod-
elled, such as location-mode and multi-mode contexts, which allow for different degrees of substitution
(responses to policies) within and between the nests.

7.4.2.2 The Formulation of McFadden: The GEV Family

McFadden (1981) generated the NL model as one particular case of the Generalised Extreme Value
(GEV) discrete choice model family (which is considered further in section 7.7). The members of
this family come from a non-negative function G(Y1, Y2, . . . , YM), with Y1, Y2, . . . , YM ≥ 0, which is
homogeneous of degree μ > 0, approaches to infinite as any Yi does and has m cross-partial derivatives
which are non-negative for odd m and non-positive for even m. As an aside, note that McFadden originally
considered μ = 1, but this was later generalized by Ben-Akiva and Lerman (1985).

If we consider the utility function Ui = Vi + εi for M elemental alternatives, the choice probability
may be written as:

Pi =
∫ ε=∞

ε=−∞
Fi (Vi − V1 + ε, . . . , Vi − VM + ε) dε

where F is the cumulative distribution function of the errors (ε1, . . . , εM) and Fi = ∂ F
∂εi

. Thus, defining
the extreme value multivariate distribution:

F(ε1, . . . , εM ) = exp
{−G

(
e−ε1 , . . . , e−εM

)}

Pi, the probability of choosing alternative Ai, is given by:

Pi = eVi Gi (eV1 , eV2 , . . . , eVM )

μG(eV1 , eV2 , . . . , eVM )
(7.21)

where Gi is the first derivative of G with respect to Yi = exp (Vi). Using the above, McFadden showed
that the NL probability function is obtained from the following G function:

G
(
eV1 , eV2 , . . . , eVM

) =

⎛

⎜⎝
J∑

j=1

⎛

⎝
∑

i∈ j

eV(i, j)

⎞

⎠

1
μ j

⎞

⎟⎠

μ j

(7.22)

leading to

P(i, j) =
exp

(
V(i, j)

μ j

)

∑

i∈ j

exp

(
V(i, j)

μ j

) ·
exp μ j ln

⎛

⎝
∑

i∈ j

exp

(
V(i, j)

μ j

)⎞

⎠

J∑

j ′=1

exp μ j ′ ln

⎛

⎝
∑

i∈ j ′
exp

(
V(i, j ′)

μ j ′

)⎞

⎠

(7.23)

This probability density function is well-defined (i.e. positive) on the real numbers if the parameter μj

of the G function (7.22) satisfies the following restriction (McFadden 1981):

μ j ≤ 1 ∀ j

Note that this is equivalent to Williams’ structural condition (7.20). Furthermore, functional form
(7.19) of Williams is equivalent to McFadden’s functional form (7.23) if the following relations
are established:

β = 1
1

λ j
= φ j = μ j ∀ j
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But although the conditions are numerically equivalent, they have different meanings. In Williams’
theory, the restriction stems from the definition of the error as the sum of two separable terms, one of
them EV1 distributed with lower variance than that of the total error, allowing the NL function to satisfy
the basic integrability conditions required to be consistent with utility maximisation.

On the other hand, McFadden’s condition is directly related to the restriction that the GEV-based
probability density function has to be compatible with random utility theory; thus, in his context the
definition of the error as the sum of two independent components, and the condition this imposes on
their variances, are not necessary. This aspect was mentioned – in an indirect way – by Daganzo and
Kusnic (1993), who stated that although the conditional probability may be derived with a Logit form,
it is not necessary that the conditional error distribution should be EV1.

7.4.3 The NL in Practice

As a modelling tool the NL may be usefully presented in the following fashion (Ortúzar 1980b;
Sobel 1980):

1. Its structure is characterised by grouping all subsets of correlated (or more similar) options in
hierarchies or nests. Each nest, in turn, is represented by a composite alternative which competes
with the others available to the individual (the example in Figure 7.2 considers two levels of nesting
and four nests).

2. The introduction of information from lower nests in the next higher nests is done by means of the
utilities of the composite alternatives; these are, by definition, equal to the expected maximum utility
(EMU) of the options belonging to the nest and have the following expression:

EMU j = log
∑

k

exp(Vk/φ j )

Therefore the composite utility of nest j is:

Vj = φ j · EMU j

where φj are structural parameters to be estimated.
3. The probability that individual q selects option Ai in nest j may be computed as the product of the

marginal probability of choosing the composite alternative NJ (in the higher nest) and the conditional
probability of choosing option Ai in the lower nest, given that q selected the composite alternative.

4. If there is only one nest, the internal diagnosis condition (7.17) is expressed in this new notation as:

0 < φ ≤ 1 (7.24)

and let us briefly see why it needs to hold. If φ < 0, an increase in the utility of an alternative in the
nest, which should increase the value of EMU, would actually diminish the probability of selecting
the nest; if φ = 0, such an increase would not affect the nest’s probability of being selected, as EMU
would not affect the choice between car and public transport.

On the other hand, if φ > 1 an increase in the utility of an alternative in the nest would tend to
increase not only its selection probability but also those of the rest of the options in the nest (but note
that the real reason is that β cannot be greater than λ as shown in expression 7.16). Finally, if φ = 1
which is the equivalent to β = λ, the NL model becomes mathematically equivalent to the MNL; in
such cases (i.e. when φ ≈ 1) it is more efficient to recalibrate the model as an MNL, as the latter has
fewer parameters.
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But NL models are not limited to just two hierarchical levels; in cases with more nesting levels, such
as in Figure 7.3, we need at each branch of the structure:

0 < φ1 ≤ φ2 ≤ . . . ≤ φs ≤ 1 (7.25)

where φ1 correspond to the most inclusive parameter and φs to that of the highest level. Note that there
are no relations to be expected between the structural parameters pertaining to different branches.

Figure 7.3 Nested Logit model with several nests

Limitations of the NL
� In common with the MNL it is not a random coefficients model, so it cannot cope with taste variations

among individuals without explicit market segmentation. Neither can it treat heteroskedastic options,
as the error variances of each alternative are assumed to be the same.

� It can only handle as many interdependencies among options as nests have been specified in the
structure; furthermore, alternatives in one nest cannot be correlated with alternatives in another nest
(this cross-correlation effect, which might be important to test in a mixed-mode modal choice context,
for example, can be handled by more general forms as we will see below).

� The search for the best NL structure may imply the tentative examination of many nesting patterns, as
the number of possible structures increases geometrically with the number of options (Sobel 1980).
Although a priori notions help greatly in this sense (i.e. only theoretically expected nesting patterns
should be tried), the modelling exercise might take much longer than with the simple MNL.

7.4.4 Controversies about some Properties of the NL Model

This section discusses some properties of the NL model that were the subject of some controversy in
recent literature, in order to illuminate aspects which were confusing and allow a correct use of the
model in practice.

7.4.4.1 Specifications which Address the Non Identifiability Problem

As we have mentioned, all discrete choice models are subject to identifiability problems. The NL
model (7.19) is not estimable either because it also has an additional degree of freedom; to estimate
(7.19), it is necessary to ‘fix’ one of the scale factors.

Consider, without loss of generality, the two level model (7.19) where β is the parameter at the
upper level and λj (j = 1, . . . , J) are the corresponding J parameters of the nests. In this case, J
structural coefficients may be defined as in (7.20) and the theoretical identifiability problem means

(continued)
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that although the φj parameters can all be estimated, one of the J + 1 scale factors (i.e. the J parameters
λ j plus β) associated with the variance cannot be determined (Carrasco and Ortúzar 2002).

Upper and lower normalisations
According to the above definitions two normalisations can be distinguished: the upper one, where β

is chosen as the non identifiable parameter and the lower one, where one of the λj parameters (for
example that for j = r, 1≤ r ≤ J) is selected.

Consider a typical (linear) representative utility function:

V̂i/j =
K∑

k=1

θ̂k xk
(i, j) (7.26)

where xk
(i, j) are attributes (k = 1, . . . , K) and θ̂k their corresponding estimated coefficients. Estimated

and population coefficients (if they exist) on the upper normalisation are related by:

θ̂k = βθk ∀k (7.27)

and in the case of the lower normalisation the relation is:

θ̂k = λr θk ∀k (7.28)

Equations (7.27) and (7.28) allow us to see more clearly that normalisation does not strictly
mean to ‘define’ the parameter as unity (indirectly assuming the value of the variance), but that the
‘normalised’ parameter multiplies the coefficients of the utility function, ‘mixing’ with them rather
than having a value defined a priori.

Now, the specification of the model using the upper normalisation is given by:

P(i, j) =
exp

(
1

φ j
V̂i/j

)

∑
i ′∈ j

exp

(
1

φ j ′
V̂i ′/j
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⎝
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(7.29)

and using the lower normalisation, it would be:

P(i, j) =
exp

(
φr

φ j
V̂i/j

)
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(
φr

φ j
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(7.30)

Equations (7.29) and (7.30) show that, from a practical point of view, the resulting specifica-
tions are equivalent to defining the corresponding normalising parameter as one in the NL general
functional form (7.19). However, there are two problems here as we discuss in more detail be-
low. First, the option of normalising at the lower level raises the problem of which lower level
nest to use. Second, confusion is added when the scales (the parameters λj, associated with the
EV1 distribution) are unequal as can be seen by comparing equations (7.29) and (7.30). Since
an important aspect of modelling is communicating the results to decision makers, this is a
non-trivial issue.
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Theoretical considerations
Equations (7.31) and (7.32) below describe the relation between both normalisations (Carrasco and
Ortúzar 2002):

φ̂
up
j = φ̂low

j ∀ j (7.31)

θ̂up = φ̂r θ̂
low (7.32)

where up and low denote the corresponding upper and lower normalisations. The equations show that
both specifications are equivalent and therefore compatible with utility maximising principles. Never-
theless, it is interesting to note that depending on the chosen normalisation there will be differences
between the estimated values of the coefficients. However, this dissimilarity is not relevant in cases
where the main interest is the ratio of coefficients, such as the value of time (Gaudry et al., 1989),
as the scale factors cancel out and therefore the same result, independent of the normalisation, is
obtained. Also the model elasticities are indistinguishable if the normalisations are executed properly
(Daly 2001).

However, the dissimilarity may be important if we wish to compare a given NL coefficient such as
the marginal utility of income (i.e. the coefficient of the cost variable with a minus sign in the typical
wage rate specification, see section 8.3.2) with its MNL counterpart. In this case it is only possible
to compare directly the MNL estimated coefficients θ̂ with the upper normalisation coefficients;
this is because the former are the product of the population coefficients θ and the scale parameter
associated with the errors, as we already saw, and equations (7.27)–(7.28) show that only θ̂up involves
the parameter β associated with the total variance of the EV1 distributed errors in the NL case. Those
of the lower normalisation are the product of θ and the parameter λr, which is only related to the
variance of the normalised nest.

A final aspect to consider is the possibility of comparing the NL functional forms of Williams-
Daly and Zachary and McFadden in this context; the equations above clearly show that only the
upper normalisation allows a direct comparison between the coefficients of both specifications. In
conclusion, although both normalisations are consistent with the theory there are interesting reasons
to prefer the upper normalisation:

i) The possibility of establishing a direct comparison between NL and MNL coefficients.
ii) The simplicity of having the only parameter related to total variance as reference.

iii) The simpler functional form of the probability in this case.

7.4.4.2 UMNL and NNNL Specifications

Now we discuss the controversy famously raised by Koppelman and Wen (1998a; 1998b) about two
forms of the model found in the literature: the UMNL (Utility Maximising Nested Logit) and NNNL
(Non Normalised Nested Logit) specifications (Daly 2001; Hensher and Greene 2002; Hunt 2000;
Koppelman et al. 2001).

Functional forms of the specifications
The UMNL specification is defined as McFadden’s model; thus, in the simple case of a two-level
tree structure, the NL probability function is given by:

P(i, j) =
exp

(
V̂i ′/j

φ j

)

∑

i ′∈ j

exp

(
V̂i ′/j

φ j

) ·
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φ j ′

)))

J∑

j ′=1

exp φ j ′

(
log
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(
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φ j ′

))) (7.33)

(continued)
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The NNNL specification is at the root of the pioneering simultaneous estimation method designed
by Daly (1987). In the NNNL specification the probability function is the same as above but omitting
the inverse of the structural parameter in the elemental alternatives, that is:

P(i, j) = exp
(
V̂i/j

)
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⎠
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(7.34)

This specification is not compatible with the fundamental properties of the NL if the correlation
is not the same on every nest and/or if the model has generic variables. In this latter case it is easy
to see that if a constant is added to the utilities of all options, the choice probabilities do not remain
invariant, as is required by the translational invariance property.

Contrary to what Hensher and Greene (2002) and Hunt (2000) appeared to claim, in the sense
that the identifiability problem was the source of this controversy and that the way to solve it was
normalising in a proper way, Carrasco and Ortúzar (2002) showed that the problem was not related to
the NL identifiability issue; this is easy to check if the functional form (7.34) is compared with those
in (7.29) and (7.30), where we can see the differences between both normalised functional forms and
the NNNL specification.

Comparing the two specifications
A first element of discussion in the literature was the consistency of both specifications with utility
maximising theory. It is clear that the UMNL is compatible with theory because it is a particular case
of the GEV family. On the other hand, although the NNNL may be consistent with a general idea of
utility maximisation, it is clear that it is not compatible with one of the fundamental properties within
the frameworks of either Williams or McFadden, if the utility function has generic coefficients.

However, it is interesting to note that there are some particular conditions that allow the NNNL to
be equivalent to the UMNL. These are (Carrasco and Ortúzar 2002):

i) When trees have equal structural parameters φ on each level; in the framework of Williams-Daly
and Zachary this means that all the parameters λj associated with the stochastic errors within each
nest (and their respective correlation) have the same value.

ii) When the model does not have generic coefficients in a linear specification for the utility function
of options at different levels and/or nests. This second condition is less restrictive and may be
valid in many real cases.

In addition, it is possible to modify the NNNL specification so that it becomes compatible with
utility theory in those cases where it is not equivalent to the UMNL; this involves the inclusion of
dummy nodes and links as is standard recommended practice in ALOGIT (Daly 1992), but adds
certain restrictions (see Hensher and Greene 2002; Koppelman and Wen 1998a). Also, as the number
of structural parameters grows, the more complex the NNNL modified (artificial) tree becomes.

To sum up, the UMNL specification is preferable because it does not need the above changes (which
could be complex in more complex tree structures) and its coefficients are directly comparable with
those of other models (such as the MNL), having all the advantages of the upper normalisation. One
reason that has been argued in favour of the NNNL specification is computational efficiency as it
has a simpler likelihood function (Daly 1987), but the main one is that it is used by ALOGIT which
is probably the most popular estimation package in practice. Other important practical packages are



P1: TIX/XYZ P2: ABC

JWST054-07 JWST054-Ortuzar February 24, 2011 11:5 Printer Name: Yet to Come

Discrete Choice Models 245

LIMDEP (Economic Software Inc. 1995) and Biogeme (Bierlaire 2009) but it is also possible to
estimate almost any model using GAUSS (Aptech Systems 1994) or similar packages, although this
is less practical for data banks of large size.

7.4.4.3 On the Limits of the Structural Parameters

This section considers the controversy arising from the observation by Börsch-Supan (1990b) who
suggested that under special circumstances the structural parameter φ could be larger than one,
violating the structural condition (7.24). The compatibility of the NL with the basic theoretical
conditions is an important issue which has been extensively studied on the literature. Williams and
Ortúzar (1982b) presented the necessity of these conditions as a rigorous and unambiguous argument
to reject a model, where goodness-of-fit can be a necessary condition, but not enough to validate
a model. In fact, an important property of discrete choice models (and the NL belongs to them) is
precisely the successful marriage between an explicit theory of behaviour with a micro representation,
allowing the constructive use of statistical goodness-of-fit measures for model specification and
testing. Thus, an inconsistent model would be a theoretical setback of at least 30 years.

Then, it is important to study if the results of Börsch-Supan (BS) are consistent with theory,
especially focusing on its general theoretical consequences and the interpretation in empirical cases.
These aspects were not explored by the various authors who cited the BS conditions (for example,
Herriges and Kling 1995; 1996; Koppelman and Wen 1998b), but were dealt with conclusively by
Carrasco and Ortúzar (2002).

BS proposed extension and further corrections
The consistency conditions with utility maximisation analysed by BS, derive from the work of
McFadden (1981). One of these conditions is:

(−1)I−1∂ I−1 Pi (V )

∂V1 . . . ∂Vi−1∂Vi+1 . . . ∂VI
≥ 0 ∀V ∈ RI (7.35)

where R is the set of real numbers, V = (V I, . . . ,VI) is the vector of representative utilities of I
alternatives and Pi is the probability of choosing alternative Ai. In passing, note that BS did not
consider that the sign alternates; this was corrected by Herriges and Kling (1995).

Equation (7.35) ensures that the probability density function cannot be negative and is equivalent
to 0 < φ ≤ 1 if the condition is valid for all the representative utilities V ∈ RI . BS argued that
the need for condition (7.35) to hold for all RI is overly restrictive because economic theory (and
practical experience) would suggest that only a subset of data points is used for modelling (‘relevant
subset’). This subset should include the data points used to estimate the model and to examine
potential policy changes. As a consequence of this approach it would become feasible that a NL with
structural parameters larger than one could be consistent with utility maximising theory. However, it
is nearly impossible to find a data set that allows a NL with structural parameters larger than one to
be consistent with utility maximisation, as this only happens if the relevant subset is not empty.

Herriges and Kling (1995) not only corrected the omission of signs by BS in (7.35) but presented
the necessary conditions for consistency with utility maximisation in two level NL models, as follows:

Pj ≥ τ j (7.36)

2(τ j − Pj )2 + τ j Pj ≥ τ j (7.37)

6(Pj − τ j )
3 + τ j [2(Pj − 1) − τ j ](1 − Pj ) ≥ 0 (7.38)

(continued)
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with

τ j ≡ (φ j − 1)

φJ
.

These conditions result from the differentiation of the NL functional form (7.23) using restriction
(7.35) for the first, second and third partial derivatives. Inequality (7.36) must be satisfied for nests
with two or more options, (7.37) for nests with three or more alternatives and (7.38) for nests with
four options or more. Conditions (7.36)-(7.38) would replace (7.35) when testing consistency with
utility maximisation under the framework of McFadden (1981).

Interpretation and applicability of the BS extension
First note that this framework does not prevent in any way the use of φ = 1 as a method to test if a NL
collapses to the MNL (which is curiously ignored sometimes). Further, having a structural parameter
greater than one implies a greater degree of substitution between nests than within them. However, it
may be possible that another tree (which correctly considers a greater degree of substitution within
nests) could be postulated. It also implies negative values for the covariance and correlation between
nested alternatives. However, both these interpretations seem to be more statistical than behavioural,
as Train et al. (1987) argued.

Without doubt the most important consequence of allowing the structural parameters to be larger
than one is that it denies their use as a test for establishing a hierarchical relationship between the
different nesting levels. This has consequences not only on behavioural interpretation terms, but
also in terms of the search for the best tree structure (i.e. the information provided by the structural
parameter values is quite useful to define upper and lower levels when this is not obvious). Thus, it
is important to remark that the BS framework is not possible to use if the NL model postulates the
separability on choice levels (for example, destination-mode choice), where the variance condition
(7.20) of Williams is a fundamental property to understand behaviour.

Herriges and Kling (1996) have made the only empirical investigation of the BS extension reported
in the literature. To test model consistency with utility maximising, they explored three different
procedures, progressively more restrictive. The first two failed, and the third imposed restrictions
(7.36) and (7.37) ex ante, estimating the coefficient vector from a Bayesian perspective. In practical
terms this is equivalent to estimating the NL without prior information, yielding a coefficient vector
distributed Normal with mean and covariance matrix taken from the estimation. The procedure
generated a large number of Normal distributed values but only the draws satisfying the consistency
conditions were retained. So, although by construction all parameters were consistent with theory,
some were calculated with a very low percentage of the generated values.

Important objections about the real applicability of the above procedures (and in general about
the applicability of the BS extension) were formulated by Carrasco and Ortúzar (2002). Further,
the same kind of choice context was later treated successfully using the more flexible Mixed Logit
model (Train 1998).

7.4.4.4 Two Further Issues

In this section we will consider two final, relatively minor, controversies about the NL that have also
been discussed in recent literature.

Alternative definition of model parameters
Hensher and Greene (2002) and Hunt (2000) proposed an alternative definition of the NL coefficients
which may lead to some confusion about certain properties of the model. They defined a scale
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parameter for each nest (γ j) and another at the alternative level (μj), associated with each nest, as
in Figure 7.4.

nest j (γ j associated with each nest)

alternatives i ( μj associated with each nest they belong)

Figure 7.4 NL alternative parameter definition

The most important difference between this specification and the Nested Logit of Williams (1977)
is the incorporation of parameters at the level of the elemental alternatives instead of the unique
parameter associated with the root. Thus, this alternative specification has 2J scale parameters
instead of the traditional J + 1 (with J being the number of nests).

In this alternative vision the choice probability is given by:
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(7.39)

If we redefine the variables μ as λ and γ as β above – without considering their theoretical meaning
– it is possible to get a very similar specification to that of Williams (7.19), except for the fact that
here we get different β j parameters for each nest

This specification would indirectly allow modelling heteroskedasticity between alternatives, gen-
eralising the NL of Williams-Daly and Zachary and McFadden (see Example 4 in section 7.6).
However, the specification is inconvenient in practice because it leads to some confusion when
solving the identifiability problem. In this case it would be necessary to normalise J parameters;
i.e. either define all parameters β j (upper normalisation) or all parameters λj (lower normalisation)
as non estimable. This is different from the normalisations discussed before, where to solve the
identifiability problem it was necessary to define only one parameter as non identifiable. Another
interesting point is that the alternative model’s upper normalisation is the same as that of Williams
(i.e. it is correct); but the lower normalisation leads to a NNNL specification with all the problems
explained before.

In addition, a different definition of the scale parameters also implies some issues on ‘partial degen-
erated’ structures (i.e. trees with some nests containing only one alternative). Under the Williams-Daly
and Zachary and McFadden theoretical frameworks, if an option Ak is ‘degenerated’ its corresponding
structural parameter φk is equal to one because λk is equal to β (i.e. the nest that contains the alternative
‘collapses’ to the upper level). This result is independent from the normalisation. However, this basic
theoretical interpretation is not possible if there is a parameter β j specific to each nest. If the upper

(continued)
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normalisation is used, Hunt (2000) argues that λk becomes ‘non identifiable’, but what actually occurs
is that it has collapsed to β, which is non identifiable by definition (Carrasco and Ortúzar 2002). This
confusion becomes even worse if the lower normalisation is used because the parameter φk results non-
estimable, being necessary to define its value as unity to get consistency with the theory (Hunt 2000);
however, in this case the NNNL specification is obtained which suffers the problems mentioned above.

Heteroskedasticity and correlation
Börsch-Supan (1990a) and Hensher and Louviere (1998), report results which suggest that the
specification of the NL tree structure could, in some cases, be even more strongly influenced by
heteroskedasticity (i.e. different variances between options) than by correlation. On the other hand,
Munizaga et al. (2000) report surprisingly good behaviour of the NL in the presence of heteroskedas-
ticity between alternatives (but not in the presence of heteroskedasticity between observations), show-
ing a low predictive capacity only for radical policy changes in their Monte Carlo simulation study.

Furthermore, Hensher and Louviere (1998) and Hensher (1999) propose a new method of spec-
ifying a NL tree structure (i.e. a way to define which alternative should belong to each nest) based
on the scale differences between the options. They use the Heteroskedastic Extreme Value model
(Bhat 1995) as a ‘search engine’ in order to define nestings of alternatives with similar variance. It
is interesting to note that the tree specification process in the NL does not have a rigorous procedure
(with standard steps) and traditionally it has been based on the idea of grouping alternatives that
theoretically (or intuitively) appear to be correlated (see Ortúzar 1982).

Hensher (1999) argues that a statistical rationale for nesting could be related to differential patterns
of variance between subsets of alternatives. However, this argument is theoretically suspect because
the differential patterns between subsets of options in the NL are based on the different value of
correlation rather than variances. In fact, in a two level model as (7.19) the scale parameter defining
nesting is λj (which is only related to correlation) and not β (which is associated with both correlation
and variance). Therefore, Hensher’s tree specification method should be rejected as it is based on a
property that the NL does not possess (i.e. heteroskedasticity).

Finally, if there are grounds to believe a priori that heteroskedasticity could be an important issue
in modelling on a given context, there are more general models that can handle this effect in theory
(and with even better results than the NL for simulated data, see Munizaga et al 2000), such as Mixed
Logit (Train 2009) or Multinomial Probit (Daganzo 1979), which are nowadays less problematic to
estimate and a little less problematic to interpret than in the past.

7.5 The Multinomial Probit Model
As we mentioned in section 7.4.1, in the MNP model the stochastic residuals ε of (7.2) are distributed
multivariate Normal with mean zero and an arbitrary covariance matrix, i.e. in this case the variances
may be different and the error terms may be correlated in any fashion. The problem is, of course, that
this generality does not allow us to write the model in a simple closed form as in the MNL (except for the
binary case); therefore to solve it numerically we need approximations or, more effectively, simulation.

7.5.1 The Binary Probit Model

In this case we can write the utility expressions (7.2) as:

U1(θ, Z) = V1(θ, Z) + ε1(θ, Z)

U2(θ, Z) = V2(θ, Z) + ε2(θ, Z)
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where ε (θ, Z) is distributed bivariate N(0, �) with

∑
=
(

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

)

where ρ is the correlation coefficient between U1 and U2. From (7.6), the probability of choosing option
1 is given by:

P1(θ, Z) = Prob{ε2 − ε1 ≤ V1 − V2}
but as the Normal distribution is closed to addition and subtraction (as the EV1 is closed to maximisation)
we have that ε2 − ε1 is distributed univariate N(0, σ ε), where:

σ 2
ε = σ 2

1 + σ 2
2 − 2ρσ1σ2

Dividing (ε2 − ε1) by σ ε we obtain a standard N(0, 1) variable; therefore we can write the binary
Probit choice probability concisely as:

P1(θ, Z) = �[(V1 − V2)/σε] (7.40)

where �[x] is the cumulative standard Normal distribution which has tabulated values. Although this
is indeed a simple model, it is completely general for binary choice. Note, however, that equation
(7.40) is not directly estimable as the parameters θ in the representative utilities V cannot be estimated
separately from the standard deviation σ ε . In fact, just as occurred in the MNL and NL models, there is
an identifiability problem and one would need to normalise before obtaining an estimate of the model
parameters. Bunch (1991) looks at this problem for the general MNP model, and Walker (2002) provides
a good discussion about the issue of identifiability in general.

7.5.2 Multinomial Probit and Taste Variations

As we noted in sections 7.3 and 7.4, a potentially important problem of fixed-coefficient random utility
models, such as the MNL and NL, is their inability to treat the problem of random taste variations among
individuals without explicit market segmentation. In what follows we will first show with an example
what is meant by this and then we will proceed to show how the MNP handles the problem.

Example 7.2 Consider a mode choice model with two explanatory variables, cost (c) and time (t) and
the following postulated utility function:

U = αt + βc + ε

Let us suppose, however, that the perception of costs in the population varies with income (I),
i.e. poorer individuals are more sensitive to cost changes, such that the true utility function is:

U = αt + φc/I + ε

It can easily be seen, comparing both expressions, that the model will be correct only if β can be
considered as a random variable with exactly the same distribution as φ/I in the population; in this case
then, the model contains random taste variations.

The problem of random taste variations is normally very serious, as has been clearly illustrated by
Horowitz (1981), and may be considered as a special case of one well-known specification error, the
omission of a relevant explanatory variable, which we discussed in Chapter 3.

Let us consider again the utility function (7.3) which is linear in the parameters, as discussed in
section 7.2. It’s most general case considers the parameter set θ to be a random vector distributed across
the population; in this case the residuals may be modelled as alternative specific parameters, hence the
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variables ε in (7.2) may be omitted without loss of generality and the equation can be written more
concisely as:

U j =
∑

k

θk x jk (7.41)

which is a very general linear specification as it allows for taste variations across the population. If the
vector θ is distributed multivariate Normal, the choice model resulting from (7.41) is of MNP form (see
Daganzo 1979). Various procedures for estimating this model were discussed by Sheffi et al. (1982),
Langdon (1984) and others, and we will look at this in Chapter 8.

7.5.3 Comparing Independent Probit and Logit Models

When estimating a MNP model (and it is easy to see it in the binary case) the parameters obtained are:

β P
i = θi

σε

with σ 2
ε = σ 2

1 + σ 2
2 − 2ρσ1σ2

On the other hand, we know from equation (7.10) that when estimating a MNL the parameters
obtained are:

βL
i = λθi with λ = π

σ
√

6

therefore we have that:

βL
i = θiπ

σ
√

6

Now, to compare both models we need to estimate a MNP model with a covariance matrix similar to
that of the MNL (i.e. an Independent and Identical Probit). In this case σ 2

ε = σ 2 + σ 2, which implies
that σε = σ

√
2 and thus β P

i = θi/σ
√

2. Therefore, in order to compare both sets of parameters, we
should multiply the β P

i by a factor that makes them equal to βL
i = θi/σ

√
6; and this is achieved using

the factor:

K = σπ
√

2

σ
√

6
= π√

3
(7.42)

Therefore if one wants to compare the estimated coefficients of a MNL and an IID Probit model,
those belonging to the second structure must be scaled by the factor π/

√
3. We have successfully used

this method to test the correctness of an experimental code to estimate MNP models (e.g. Munizaga
et al. 2000).

7.6 The Mixed Logit Model
This appears to be the model for the new millennium. Although its current form originated from the
parallel work of two research groups in the 90s (Ben-Akiva and Bolduc 1996; McFadden and Train
2000), the original formulation of the model, as Hedonic or Random Parameters Logit, was made much
earlier (Cardell and Reddy 1977; Cardell and Dunbar 1980).

7.6.1 Model Formulation

The Mixed Logit (ML) model can be derived under several behavioural specifications, each providing
a particular interpretation. Train (2009) correctly states that the model is defined on the basis of the
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functional form for its choice probabilities. As such, the ML label is applicable to any model the
probabilities of which can be expressed as an integral of standard Logit probabilities over a distribution
of the parameters, such as:

Piq =
∫

Liq (θ) f (θ ) dθ (7.43)

where Liq (θ) is typically an MNL probability evaluated at a set of parameters θ and their density
function, f (θ), is known as ‘mixing distribution’. If f (θ) is degenerate at fixed parameters b (i.e. it equals
one for θ = b and zero for θ �= b), the choice probability (7.43) becomes the simple MNL.

If, on the other hand, the mixing distribution is discrete (i.e. if θ takes M values labelled b1, . . . , bM with
probabilities sm that θm = bm), the ML becomes the latent class model with applications in psychology
and marketing; this is useful when there are distinct segments in the population, each with their own
choice behaviour (Train, 2009). In section 7.6.4 we will look at a class of ML models where the mixing
distribution lies somewhere between the typical continuous form, below, and the latent class model.

Now, in most ML applications f (θ) has been taken as continuous with mean b and covariance matrix �,
and modellers have attempted just to estimate these ‘population parameters’ without taking advantage of
one of the most powerful features of the model, that is, estimating the θ that enter in the Logit component
(kernel) for each individual; this can be done directly or conditional on the population parameters, b and
�, as we will discuss in Chapter 8.

7.6.2 Model Specifications

7.6.2.1 Basic Formulations

The ML model has two basic forms. The first is the error components (EC) version, the utility function
of which is characterised by an error term with two elements. One (εqjt) allows the MNL probability to
be obtained (and as such has the usual IID EV1 distribution), while the other has a distribution which
can be freely chosen by the modeller, depending on the phenomenon he needs to reproduce. In this case
the utility of option j (j = 1, . . . , J) for individual q in choice situation t (t = 1, . . . , T) is given by:

Ujqt = θ j t Xjqt + �jqtYjqt + εjqt (7.44)

where θ are fixed parameters and X are observable attributes, �jqt is a vector of random elements with
a distribution specified by the modeller, with zero mean and unknown covariance matrix, and Yjqt is a
vector of attributes unknown (in value and nature) to the modeller. Thus, without loss of generality they
can be taken as equal to one for all alternatives or for groups of them. Given this, the covariance matrix
of the model utilities is:

Cov (Ujqt) = Cov(�jqt) + (π2/6λ2) · IJ

where IJ is a J × J identity matrix. An adequate choice of Yjqt allows different error structures such as
correlation, cross-correlation, heteroskedasticity, dynamics and even auto-regressive errors to be treated
(Hensher and Greene 2003; Train 2009; Walker 2001). Indeed, it has been proven that the ML can
approximate any discrete choice model derived from a random utility maximisation model as closely as
one pleases (Dalal and Klein 1998; McFadden and Train 2000); this, in fact, led to the demise of the
MNP model as a serious candidate in this area. On the other hand, to obtain the simple MNL model Yjqt

has to be zero such that there is no correlation among alternatives.

Example 7.3 To generate a heteroskedastic version of the MNL, one simply needs to specify the
following utility function:

Uiq = θXiq + σi �iq + εiq with �iq ∼ IID N (0, 1)



P1: TIX/XYZ P2: ABC

JWST054-07 JWST054-Ortuzar February 24, 2011 11:5 Printer Name: Yet to Come

252 Modelling Transport

and as the errors � and ε are independent, it is easy to see that the covariance matrix of the utilities U
has the following form (for simplicity we are taking a trinomial case):

� =
⎡

⎣
σ 2

1 + π 2/6 λ2 0 0
0 σ 2

2 π 2/6 λ2 0
0 0 σ 2

3 + π 2/6 λ2

⎤

⎦

where λ is the scale factor associated with the EV1 errors.
To generate a heteroskedastic version of the NL model, one would need a similarly simple specification;

assume a five alternatives case, where the first two are correlated and the last two are also correlated (the
third is independent of all others):

U1q = X1q θ + σ1 η1q + ε1q U2q = X2q θ + σ1 η1q + ε2q

U3q = X3q θ + σ2 η2q + ε3q

U4q = X4q θ + σ3 η3q + ε4q U5q = X5q θ + σ3 η3q + ε5q

In this case it is again easy to see that the covariance matrix of the model utilities is given by:

� =

⎡

⎢⎢⎢⎢⎣

σ 2
1 + π 2/6 λ2 σ 2

1 0 0 0
σ 2

1 σ 2
1 + π2/6 λ2 0 0 0

0 0 σ 2
2 + π 2/6 λ2 0 0

0 0 0 σ 2
3 + π 2/6 λ2 σ 2

3

0 0 0 σ 2
3 σ 2

3 + π 2/6 λ2

⎤

⎥⎥⎥⎥⎦

and correlation is due to the presence of the common unobservable elements in the utilities of the
correlated alternatives; note that replicating the true NL, which is homoskedastic, is more involved (see
Munizaga and Alvarez-Daziano 2000).

The second, more classical, version of the ML model considers a random coefficients (RC) structure, in
which the marginal utility parameters are different for each sampled individual q, but do not vary across
choice situations; this last assumption may be relaxed if choice situations are significantly separated
along time, as taste parameters could then be presumed to alter (Hess and Rose 2009). So, in this case
we have:

Ujqt = θqXjqt + εjqt (7.45)

and the parameters vary over individuals with density f (θ). This specification yields the choice probabil-
ities (7.43) naturally. Note that the presence of the vector X in the covariance matrix does not allow the
modeller to control for it, but helps to ease an important problem of the model, its identification, which
we discuss in section 7.6.3.

The EC and RC specifications are formally equivalent as the coefficients θq can be decomposed into
their means (b) and deviations, denoted sq, such that:

Ujqt = bXjqt + sqXjqt + εjqt (7.46)

which has error components defined by Yjqt = Xjqt; conversely, we can also start from the EC specification
and get the RC specification. However, though formally equivalent, the manner in which the modeller
looks at the phenomenon under study affects the model specification. For example, if the main interest is
to represent appropriate substitution patterns through an EC specification, the emphasis will be placed on
specifying variables that can induce correlation in a parsimonious fashion, not necessarily considering
tastes variations or too many explanatory variables. In fact, Train (2009) wisely states that ‘. . . there
is a natural limit on how much one can learn about things that are not seen’, but this is sometimes
overlooked by even the most skilful econometricians who focus on the error terms at the expense of
correct specification of the observed utility component and ensuring the data are of appropriate quality.
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7.6.2.2 More Advanced Formulations

An important issue concerning the apparent dual representation of the model (i.e. EC or RC), as
noted recently by many analysts, is that the two versions of the model may give rise to confounding
effects. As most discrete choice models, the ML is based on the linear-in-parameters-with-additive-
disturbances (LPAD) structure, where individuals are assumed to compensate (trade-off) the effects
of good and bad attributes even when there are many situations where compensatory rules do not
hold (see Cantillo and Ortúzar, 2005). For example, an omitted structure (i.e. any interaction between
two variables) will be captured by the error terms, but it may be confused with random heterogeneity
for a given attribute in the RC version.

On the other hand, as the model works on the basis of differences between alternatives, it does not
matter whether an attribute is included in one alternative or in all others except that one, as long as
the relative difference between them does not change. This property, in conjunction with the compen-
satory rule, may lead to another confounding effect: between correlation and heterogeneity in tastes
and response, which can appear in estimated models and produce misleading forecasts, as discussed
recently by Cherchi and Ortúzar (2008a). In order to understand the correct underlying structure and to
test whether heterogeneity is really present, they recommend estimating alternative specifications and
comparing results, looking carefully at the absolute value of the random parameters, and the relative
values of the alternative specific constants and correlation coefficients. They also found that a sig-
nificant specific random parameter may not actually reveal variation in tastes, but correlation among
competing alternatives, cautioning that this is especially important if the model is intended as a fore-
casting tool. These findings complement the observation by Hess et al. (2005a) that the assumptions
made with regard to error structure can have significant impacts on willingness-to-pay indicators.

The RC and EC specifications can also be combined easily, allowing for the joint modelling
of random taste heterogeneity and inter-alternative correlation. This however, as mentioned above,
comes at the cost of important issues in identification, and also a heightened cost of estimation and
application when using error components for the representation of correlation. While integration over
mixture distributions is necessary in the representation of continuous random taste heterogeneity,
this is not strictly the case for inter alternative correlation. Indeed, just as, conditional on a given
value of the taste coefficients, a typical RC specification allowing for random taste heterogeneity
reduces to a MNL model, a model allowing for inter-alternative correlation in addition to random
taste heterogeneity can in this case be seen to reduce to a given GEV model (assuming that an
appropriate GEV model actually exists). As such, the correlation structure can be represented with
the help of a GEV model, while the random taste heterogeneity is accommodated through integration
over the assumed distribution of the taste coefficients. The use of the choice probability of a more
complicated GEV model instead of the MNL as the integrand in (7.43), leads to a more general type
of a GEV mixture model, of which the typical RC specification is simply the most basic form.

In a more general GEV mixture, we would simply replace the MNL choice probability inside the
integral by say a NL choice probability. Such model can be estimated using, for example, Biogeme
(Bierlaire 2009), and is useful for cases where we need to allow for correlation between, say, train
and bus in a car-train-bus mode choice context, while additionally allowing for random variations
across respondents in the time and cost sensitivities; in such cases, a NL model could deal with the
former, while a RC Mixed Logit could deal with the latter. A general GEV mixture ML can deal with
both at the same time, without the need for additional error components.

Applications of this approach include for example Chernew et al. (2001), Bhat and Guo (2004)
and Hess et al. (2005a). In such a GEV mixture model, the number of random terms, and hence the

(continued)
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number of dimensions of integration (and thus simulation) is limited to the number of random taste
coefficients, whereas, in the EC specification, one additional random term is in principle needed for
representing each separate nest.

Finally, it is interesting to mention that problems of a similar nature have been encountered when
modelling jointly state dependence (i.e. the state at a given moment depends on the previous state(s)
of the system) and preference heterogeneity. Smith (2005) concluded that one should be cautious in
interpreting random parameters if researchers are unable to model state dependence. Nevertheless,
he also stated that if a more elaborate parameterization of preference heterogeneity is used, excluding
state dependence may magnify the apparent preference heterogeneity in the model but not necessarily
generate it where none exists. To some extent this could be viewed as the converse of the problem
explored by Heckman (1981), where the emphasis was on the emergence of spurious state dependence
if heterogeneity was not modelled properly.

7.6.3 Identification Problems

A seminal reference for the ‘identification problem’ is the work of Walker (2001; 2002), who noted in
passing that even the most famous econometricians have been guilty of overlooking this issue in some
applications. Nowadays analysts are more cautious and test for this problem in usual practice, but new
evidence has appeared showing that it is multifaceted with no easy recipes available to avoid it.

The nature of the problem is that there are infinite sets of restrictions that can be imposed to identify
a given set of parameters to be estimated. For example, in the case of the MNL model the problem only
relates to the impossibility of estimating the scale parameter β (which has to be normalised), and that one
of the alternative specific constants (ASC) needs to be taken as zero (i.e. that of the reference alternative).
Note that even in this simple case there are ‘good practice’ rules to follow, i.e. choose as reference the
alternative more universally available (Ortúzar 1982).

For more complex models, such as the ML, apart from the above considerations that apply to the vector
θ, we also need to examine the identification of the unrestricted parameters of the error distribution. This
could be done by studying the Fisher information matrix (i.e. the matrix of expected values of the second
derivatives of the log-likelihood function), but this requires estimating the model, something which is
not always possible. In fact, there are two types of identification problem: the theoretical identification,
which is inherent to the model specification regardless of the data at hand, and the empirical identification
that depends on the information used to estimate the model. Although much has been written about the
first, the second has recently surfaced as a serious problem deserving more attention.

7.6.3.1 Theoretical Identification

This problem is usually associated with the presence of too many parameters, i.e. the model cannot
be estimated simply because of its implicit structure. By looking at the covariance matrix of utility
differences, Walker (2001) generalised the work of Bunch (1991) for the MNP and provided an
outstanding analysis of the three conditions (order, rank and equality) that must hold for the ML
model to be identifiable.

In particular, the order condition is a necessary condition and establishes the maximum number of
parameters that can be estimated based on the number of alternatives (J) in the choice set. In the EC
version of the model this condition states that there are at most J(J – 1)/2 – 1 parameters estimable
in the disturbance; this is equal to the number of unique elements in the covariance matrix of utility
differences (as it is symmetric), minus one to set the scale.
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The rank condition refers to the rank of the covariance matrix of utility differences. This is
a sufficient condition and establishes the actual number of parameters that can be estimated as the
number of independent equations available to do it. If this condition holds, the previous one necessarily
holds but it is trivial to apply and useful to highlight any obvious identification problems. In many
cases, these two conditions can be applied by simple visual inspection of the covariance matrix of
utility differences; Walker (2002) also notes that when restrictions are needed for the covariance
matrix terms it is desirable that these point to the MNL being a special case of the ML (i.e. if only
two variances can be estimated, the restriction on the third is that it should equal zero; furthermore,
the choice of which variance should be zero is not arbitrary – she recommends choosing that which
obtained the lowest value in an estimation run without considering the identifiability problem).

Finally, the equality condition (formerly called positive definiteness) is used to verify that the
chosen normalization, based on the identification restrictions imposed by the rank and order condi-
tions, is valid in the sense that the resulting unique solution does in fact maximise the log-likelihood.
Walker et al. (2007) note that this condition is particular to the ML model due to the special structure
of its disturbance (the sum of an IID EV1 component and another with a different distribution.

It is important to note that the theoretical identification problem is only crucial for the EC version
of the ML model, and does not exist when the RC version is specified for continuous attributes of the
competing alternatives. In the RC model the random parameters are associated with some known (by
the modeller) attributes and thus there is always some information that allows theoretically identifying
extra parameters. But whether the full covariance structure can be estimated or not, will depend on
the quality of the information as discussed below.

7.6.3.2 Empirical Identification

This problem, instead, occurs when the model is estimable in principle but the data cannot support it.
In theory, the parameters can be empirically identified if the number of observations and draws in the
simulated maximum likelihood procedure required to estimate the model (which we will discuss in
Chapter 8) are sufficiently large to provide enough information. However, in practice, researchers face
datasets with a limited number of observations and must apply a finite number of draws. Therefore,
it becomes an empirically important question to check whether a given dataset can support the model
at hand.

Ben-Akiva and Bolduc (1996) and Walker (2001), noted that an identification problem can arise
when a low number of draws is used, and they and others, such as Hensher and Greene (2003),
emphasised the necessity of verifying the stability of parameter estimates as the number of draws
increased (thereby assuring that the bias was sufficiently reduced). More recently, Munizaga and
Alvarez-Daziano (2005) have confirmed, using simulated data, that small sample sizes can lead to
erroneous conclusions about the model’s covariance structure (a warning in relation to the sample
size required to recover parameters by simulation was given nearly 25 years ago by Williams and
Ortúzar, 1982a). Chiou and Walker (2007) demonstrated that a low number of draws in the simulation
process can mask identification issues leading to biased estimation results, even when a large number
(i.e. 1000) of draws is used.

Finally, Cherchi and Ortúzar (2008b) used simulated data to analyse the extent to which the
empirical identification problem depended on the variability of the data, the degree of heterogeneity
of the taste parameters, the sample size and the number of choice tasks for each individual. They
found that identification problems appeared if a variable had low variability between alternatives;

(continued)
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they also found that models are quite unstable in the case of low variability, and – deceptively –
very often cannot be estimated unless very few draws (i.e. as low as 30) are used, clearly a problem
of identification and a procedure that results in a suspicious model. Contrariwise, if the difference
in attributes has a high standard deviation (i.e. four times the mean), the identification problem
disappears for any number of draws. Also, the identification problem does not depend on the degree
of variability inherent in the random parameters but only in the richness of the associated data.
Finally, they found that the capability of the ML to reproduce random heterogeneity increases when
more than one choice is available for each individual (as in SP or panel data, except when there are
identical repeated observations), and in that case the effect of sample size on empirical identification
reduced considerably.

7.7 Other Choice Models and Paradigms
7.7.1 Other Choice Models

As we saw in section 7.4, each alternative in a Nested Logit (NL) model is a member of only one nest.
This is a restriction that can be inappropriate as, for example, mixed modes (such as park & ride) could
be correlated both to car and to rail.

To tackle this problem various types of GEV models have been formulated with what Train (2009)
calls ‘overlapping nests’, such that a given alternative can belong to more than one nest. For example,
Vovsha (1997), Bhat (1998), and Ben-Akiva and Bierlaire (1999) have developed a Cross-Nested Logit
(CNL) model, managing to implement an original idea of Williams (1977), the Cross-Correlated Logit
model, that was solved numerically by Williams and Ortúzar (1982a) but was not used ever since.

Chu (1989) proposed the Paired Combination Logit (PCL), in which each pair of alternatives constitutes
a nest with its own correlation; thus, each alternative is a member of J−1 nests. Koppelman and Wen
(2000) examined this relatively simple but flexible structure and found that it outperformed both NL and
MNL in their application. All these models can be derived as members of the GEV family (McFadden
1981), as shown for the NL in section 7.4.2.2.

As in general, all these models can be approximated by the ML we will leave this topic here and refer
readers to Train’s excellent book for more details.

7.7.2 Choice by Elimination and Satisfaction

In Chapter 8 we discuss the problem of specification and functional form giving particular emphasis
to the linear-in-the-parameters form which has accompanied the vast majority of disaggregate demand
(normally of MNL structure) applications. Owing to a growing body of criticism directed at linear-
in-the-parameters forms, the early 1980s witnessed an interest in the specification and estimation of
non-linear formulations of varying designs. Commentary on the functional characteristics of these forms
was intertwined with statements about alternative models of the decision process considered to underpin
choice models.

One typical view was that because linear-in-the-parameters forms are associated with a compensatory
decision-making process (i.e. a change in one or more of the attributes may be compensated by changes in
the others), models cannot be appropriately specified for decision processes characterised by perception
of discontinuities which are more plausibly of a non-compensatory nature (i.e. where good aspects of an
alternative may not be allowed to compensate for bad aspects which are ranked higher in importance in
the selection procedure, simply because that alternative may be eliminated earlier in the search process;
see the discussion in Golob and Richardson 1981).
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Example 7.4 Let us consider a set of individuals, confronted by a choice, to be endowed with a set of
objectives G and a set of constraints B. A general multi-criterion problem can then be formally stated as:

Max(options)

{
F1(Z 1

1) . . . F1(Z 1
N )
}

...

Max(options)

{
Fk(Z k

1) . . . Fk(Z k
N )
}

(7.47)

...

Max(options)

{
FK (Z K

1 ) . . . FK (Z K
N )
}

subject to the vector of constraints:

f(Z) ≤ B (7.48)

in which Fk(Zk
j ) is the value of the criterion function associated with attribute Z k

j of option Aj. For
example, we might be interested in finding a mode, in a choice set of size N, which minimises travel
time and cost, maximises comfort and safety, and so on. These attributes associated with any particular
alternative might, in addition, be required to satisfy absolute constraints such as (7.48).

If a single alternative is found which simultaneously satisfies these optimality criteria (i.e. it optimises
the K functions in expression 7.47) and whose attributes are feasible in terms of (7.48), then an unam-
biguous optimal solution is obtained. In general, however, there will be conflicts between objectives (i.e.
options superior in some respects and inferior in others).

A number of important questions can be posed before a choice model based on this multi-criterion
problem may be constructed:

� What strategies might be adopted to solve the problem?
� Are there differences in the strategies adopted by different individuals in a given population?
� How can these strategies be formally represented?
� How should the aggregation over the population be conducted to produce a model to be estimated with

individual data?

The last point is especially important because choice models are derived by aggregating over the actions
of individuals within the population, and while any or all of them may indulge in a non-compensatory
decision process, it may or may not be appropriate to characterise the sum total of these decisions and
the resultant choice model in these terms (see the discussion in Williams and Ortúzar 1982a).

We will just refer here to the first of these issues, namely how an individual confronted by a hypothetical
decision context may resolve the multi-criterion problem. There is of course a wide literature dispersed
over several fields, which involves the application of decision theory to problems of this kind. We will
mention three methods, starting with the best known, simplest and most widely used approach, the
trade-off strategy which forms the basis for compensatory decision models.

7.7.2.1 Compensatory Rule

Here the preferred option is selected by optimising a single objective function O = O (F1, F2, . . . ,FK).
If the Fk functions are simply the attributes Zk, or linear transformations of them, O may be written as:

O = O

(
∑

k

θk Zk
1, . . . ,

∑

k

θk Zk
j , . . . ,

∑

k

θk Zk
N

)
(7.49)



P1: TIX/XYZ P2: ABC

JWST054-07 JWST054-Ortuzar February 24, 2011 11:5 Printer Name: Yet to Come

258 Modelling Transport

and the conventional linear trade-off problem is addressed. The parameters θ are determined from either
stated or revealed preferences of the individual decision maker. One of the characteristics of this trade-off
approach is its symmetric treatment of the objective functions.

7.7.2.2 Non-Compensatory Rules

An alternative general approach is to treat the objective functions (7.47) asymmetrically by either
ranking them or converting some or all to constraints by introducing norms or thresholds. That is, we
might require that any acceptable alternative has, for example, an associated travel cost not exceeding a
particular amount; formally the restriction is imposed that:

Z k
1, . . . , Z k

j , . . . , Z k
N ≤ Zk (7.50)

in which Zk is a maximum (or minimum when the inequality sign is reversed) satisfactory value for the
attribute. The creation of norms or thresholds restricts the range of feasible alternatives which individuals
are considered to impose on their decision process.

Choice by Elimination In this case it is assumed that individuals possess both a ranking of attributes
(e.g. cost is more important than waiting time, which in turn is more important than walking time, etc.)
and minimum acceptable values or thresholds (7.50) for each. For example, the decision process may
solve the multi-criterion problem in the following fashion: first the highest ranked attribute is considered
and all alternatives not satisfying the threshold restriction are eliminated (even though they may excel in
lesser ranked attributes); the process is repeated until only one option is left, or a group which satisfies
all the threshold constraints among which one is selected in a compensatory manner (see Tverski 1972;
Cantillo and Ortúzar 2005).

Satisficing Behaviour There are, however, a great many ways in which the above search strategy may
be organised; for example, it might be that a complex cyclic process is used by the individual whereby
the thresholds become sequentially modified until a unique alternative is found. Equally, a satisficing
mechanism might operate in which the individual might be prepared to curtail the search at any point
according to a pre-specified rule, in which case some or all of the attributes or alternatives may not be
considered. Indeed, when the notion of satisficing (Simon 1957; Eilon 1972) is applied to travel-related
decisions involving location, the decision model is closely associated with the acquisition of information
in the search process.

As Young and Richardson (1980) remarked, a search may be characterised by an elimination process
based on attributes or one based on alternatives. In the former, attributes are selected in turn and options are
processed, and maintained or rejected depending on the values of these attributes; in the latter, alternatives
are considered in turn and their bundle of attributes examined. At any stage of the process options which
do not satisfy norms or other constraints are eliminated. A more detailed consideration of decision
strategies is given by Foerster (1979) and Williams and Ortúzar (1982a). Denstadli et al. (2011) discuss
different decision strategies and go on to characterise the decision process of individuals confronted with
different types of choice tasks, by recording their verbalised thoughts while completing them.

7.7.3 Habit and Hysteresis

At the end of the 1970s there was considerable interest in the relevance and role of habit in travel choice
behaviour, particularly in cases of relocation (i.e. migration) or other phenomena granting a fresh look
at the individual’s choice set. Empirical evidence (Blase 1979) suggested that the effect of habit can be
of practical significance and the problem should be treated seriously. The interest on this issue has not
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abated as most commuter trips have a tendency to be repeated over time, thus acquiring a potentially
important inertia component (Lanzendorf 2003; Pendyala et al. 2001).

The existence of habit, or what might be considered as inertia accompanying the decision process of
an individual, is possibly the most insidious of behavioural aspects which represent divergences from
the traditional assumptions underpinning choice models, for it appears directly in the response context.
In order to examine the effects and implications of habit it is appropriate to return to the assumptions
behind the conventional cross-sectional approach.

Figure 7.5a reproduces the S-shaped curve relevant to binary choice. For a given difference in utility
(V2 − V1) there exists a certain unique probability of choice; under conditions of change (V ′

2 − V ′
1), the

probability will correspond to that observed for that utility difference in the base year, i.e. the response
is determined from the cross- sectional dispersion. An implication of this assumption is that response to
a particular policy or change will be exactly reversed if the stimulus is removed; the stimulus–response
relation is symmetric with respect to the sign and size of the stimulus.

Figure 7.5 Influence of habit in cross-sectional models: (a) Logit response curve, (b) Hysteresis curve for
habit effect

If habit exists it will affect those members of the population who are currently associated with an
option experiencing a stimulus to the relative advantage of another alternative. This introduces a basic
asymmetry into response behaviour and gives rise to the phenomenon of hysteresis (Goodwin 1977), as
pictured in Figure 7.5b. In this case the present state of the population identified in terms of the market
share of each alternative depends not only on the utility values V2 and V1, but on how these variables
attained their current value.

Formally, the state of the system P may be expressed as a path integral in the space of utility components
V; the value of the integral is path independent when habit is absent but path dependent when it is present
(see the discussion in Williams and Ortúzar 1982a). These ideas have been taken into an operational
model by Cantillo et al. (2007), which is a precursor of models for panel data that we will examine in
the following section.

7.7.4 Modelling with Panel Data

The long-term planning of transport systems, especially when decisions about substantial changes are
involved, requires special demand models. However, most demand models to date have used readily
available cross-sectional data, which do not allow for an appropriate consideration of temporal effects
as information is considered only for a single point in time. This limitation may be especially restrictive
when personal routines are habitual (such as in the cases discussed in the previous section) or when a
substantial intervention is planned for a system.
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Unfortunately, in transport this is more the norm than the exception as, on one hand, mode choice in a
stable context (particularly for non-discretionary trips to work or study) is a process that is more a habit
than a plan (Wood et al. 2002). On the other hand, changes introduced to transport systems are becoming
more common every day. Some famous examples are the electronic road pricing system in Singapore
(Menon et al. 1993), the congestion charge in London (Banister 2003), Transmilenio in Colombia (Steer
Davies Gleave 2000) and, more recently, Transantiago in Chile (Muñoz et al. 2009).

In contrast, panel data is an alternative that has significant and relevant advantages (Golob et al. 1997;
Stopher and Greaves 2004). For example, it is possible to introduce temporal effects, as panels collect
information at several successive times retaining the same individuals for the entire series of surveys.

7.7.4.1 Panel Data Models

Although panel data models have been estimated in the past using fairly typical discrete choice
functions (notable exceptions are Daganzo and Sheffi 1979; Johnson and Hensher 1982), the presence
of repeated observations makes it more appropriate to use a flexible model formulation, accounting
for correlation among observations belonging to the same individual. Thus, when more than one
observation per individual is available, we need to take into account the sequence of choices, made
by the respondent.

Revelt and Train (1998) proposed a ML framework which accommodates inter-respondent het-
erogeneity but assumes intra-respondent homogeneity in tastes (i.e. it includes the effect of repeated
choices by assuming that tastes vary across respondents, but stay constant across observations for the
same respondent); this ML panel probability, is given by the following product of ML probabilities:

Pjq =
∫

θq

T∏

t=1

⎛

⎜⎜⎜⎝
eVjqt(θq)

∑

Ai ∈At (q)

eViqt (θq )

⎞

⎟⎟⎟⎠ f
(
θq |b, �

)
dθq (7.51)

where Viqt is the observable component of the utility of option Ai for individual q at time t; At (q)
is the choice set of individual q at time t; T is the number of periods (waves) in the panel, and f (·)
is the mixing distribution, with means b and covariance matrix � (i.e. the population parameters) of
the coefficients to be estimated in V.

Hess and Rose (2009) relaxed the assumption of intra-respondent homogeneneity of tastes, propos-
ing a choice probability with the following form:

Pjq

∫

αq

T∏

t=1

⎛

⎜⎜⎜⎝

∫

γq,t

eVjqt(θq )

∑

Ai ∈At (q)

eV t
iqt (θq )

g(γq,t |�γ )dγq,t

⎞

⎟⎟⎟⎠ h(αq |�α)dαq (7.52)

where θ are now a function of αq , which varies over respondents with density h(αq|�α), and γq,t ,
which varies over all choices with density g(γ q ,t |�γ ). This model has integrals inside and outside
the product over periods; the latter accounts for inter-respondent heterogeneity as in the previous
model (Revelt and Train 1998), while the inside integral accounts for intra-respondent heterogeneity.
However, this formulation is more demanding in terms of estimation time and currently available
packages just allow using a simplified version of it (see Hess and Rose 2009). Fortunately, the need
for assuming intra-respondent heterogeneity is not that pressing, as it is reasonable to expect that in
the short to medium term respondent tastes will probably stay the same.
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On the other hand, several empirical applications have shown that the inclusion of inter-respondent
heterogeneity in the random parameters leads to very significant improvements in model fit and a
greater ability to retrieve taste heterogeneity. In fact, this is also the most common approach to deal
with stated preference data that includes multiple choices for each respondent as we discuss in section
8.7.2.7 (the approach has been implemented in the majority of estimation packages). Although the
influence of repeated observations (i.e. inter-respondent heterogeneity in tastes) can be considered
directly via the estimation of random parameters, there might be extra correlation across repeated
observations besides the effect of the random parameters. Thus, even though random parameters and
error components might induce confounding effects, they might also account for slightly different
effects. In fact, as long as both effects are significant, the pure error-panel component accounts for
correlation in the preference for alternatives, while the random parameters account for correlation in
tastes (Yáñez et al. 2010b).

7.7.4.2 Efficiency and Repeated Observations

Efficiency, in general, can be measured by the Fisher information matrix I (see Example 3.15); this
is inversely related to sample size, the attribute values associated with the estimated parameters and
the probability associated with the chosen alternative (McFadden 1974). Rose and Bliemer (2008)
analysed the effect of the number of alternatives, attributes, and attribute levels on the optimal sample
size for SC experiments in MNL models, as part of their search for the design with highest asymptotic
efficiency of the estimated parameters. They found that only the range of attribute levels could offer an
explanation for some problems of convergence encountered in their experiments. Cherchi and Ortúzar
(2008b) demonstrated that while efficiency clearly improves with sample size, data variability does
not always increase it.

In contrast, the repeated observations in a short-survey panel, for example, will increase the number
of observations but might reduce data variability, because observations that are identical do not bring
new information about attribute trade-offs. Thus, when using panel data it is important to understand
how efficiency is influenced by the repeated observations and up to what point these are actually
beneficial. This is also crucial to determine the length of a multi-day panel survey, which is something
that has not been explored much up to date. Moreover, as in panel data each individual provides more
than one observation, it is necessary to account for correlation among these and this has a different
effect depending on how the repeated observations are treated. Cherchi et al. (2009) found that the
effect of correlation is, to a large extent given by the repeated observations.

In Chapter 8 we will see that when the parameters of a discrete choice model are estimated by
maximum likelihood, the expected value of the variance of the kth estimated parameter (i.e. the kth
element of the diagonal of the Fisher information matrix) is given by:

E

[
∂2�(θ)

∂θ2
k

]
∼=

Q∑

q=1

∑

A j ∈A(q)

[
∂2
(
gjq ln Pjq(xjq, θ)

)

∂θ 2
k

]

θ=θ̂

(7.53)

where �(θ) = ln
∏

q P
cjq
jq is the log-likelihood function with respect to the parameters θ evaluated

at their estimated values, Pjq is the probability that individual q chooses alternative Aj among
the alternatives belonging to her choice set A(q), xjq are the level-of-service and socio-economic
attributes, and gjq equals one if Aj is the alternative actually chosen by individual q and zero otherwise.

Equation (7.53) shows that the efficiency of the estimated parameters depends on sample size, the
values of the attributes associated with the estimated parameters and the probability of the chosen

(continued)
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alternative. As the Logit probability also depends, among other things, on the data variability and
on the variance of the error term (through the scale factor), understanding the sensitivity of the
efficiency of the estimated parameters is a complex task. Cherchi and Ortúzar (2008b) analysed how
the efficiency of the estimated parameters varied for RP and SC data.

Looking at expressions for a single element of the Fisher information matrix, as above, is convenient
for a theoretical discussion of the efficiency issue, because they illustrate what elements influence
the matrix I. However, in practice it would be better to measure the statistical efficiency of the
expected outcomes of models as in the experimental design literature (Rose and Bliemer 2009),
by computing the negative inverse of the Fisher information matrix (i.e. the asymptotic covariance
matrix, S2) and then computing the D-error (see section 3.4.2.3); a smaller D-error yields more
efficient estimates.

Let us consider, for simplicity, a binary Logit model (i.e. with ‘fixed’ parameters). The variance
of the parameters estimated with panel data is given by:

var(θ̂) = − 1
∑

q

∑
t
�x2

jqt P̂jqt(1 − P̂jqt)
(7.54)

where � x2
jqt is the attribute difference between both alternatives in period t. However, in contrast to

the case of, for example SC data, when using information from a short survey panel the attribute
values will be identical for the same individual in the period (i.e. five days of the week). Thus, in
such cases we will have that �xjqt = �xjq∀t and the variance of the parameters will simplify to:

var(θ̂) = − 1
∑

q

∑
t
�x2

jq P̂jqt(1 − P̂jqt)

These equations show that the variance depends clearly on the number of repeated observations as
well as on the data variability and number of observations. However, the efficiency of the parameters
increases with the variability of the attributes only for scale factors over 0.5. This, which might seem
counterintuitive, is due to the effect that the scale factor has on the variability of the data, because
efficiency reduces as data variability diminishes; and is also due to the second order function of the
probability, that tends to zero as the probability of the chosen alternative approximates one.

It is important to note that a panel with identical repeated observations for each individual is a
special case. In fact, in terms of the above discussion having equal observations repeated a certain
number of times increases only marginally the variability of the attributes. In particular, if N is the
number of observations and R is the number of times these are repeated for each individual, the
variance of the attributes (�xjq) for N and RN observations is related by the following expression
(Yáñez et al. 2010b):

var(R�xjq)

var(�xjq)
= (RN − R)

(RN − 1)
(7.55)

Hence, identical repeated observations should not in theory influence the efficiency of the estimated
parameters. This result may be confirmed by computing the D-error.

The extension of this result to the ML case (which we need to properly estimate models with panel
data) is not difficult. In the ML model, the variance of the mean of the random parameters is more
complex, but the structure is basically the same (Cherchi and Ortúzar 2008b). It is still inversely
related to the square value of the attributes associated with each parameter (as in the case of the fixed
parameters model), to the number of repeated observations, and is also a function of the probabilities
(Bliemer and Rose 2010).
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Using observed data, Yáñez et al. (2010b) show that the inclusion of intra-respondent hetero-
geneity requires more observations, which means that the repeated observations can affect the
definition of model structure. Therefore, a potential benefit of considering a longer multi-day survey
in a short-survey panel context is the highest probability to capture different kinds of heterogeneity
among observations.

Complementary, results from simulated data have shown that having repeated observations in
a data panel increases the efficiency of the estimated parameters only because this increases the
sample dimensions. Therefore, based on the results from real and synthetic data, it is possible to
say that there is a trade-off between the higher probability of capturing effects (different types of
heteroskedasticity) in a longer multi-day-panel sample, and the risk of a decreased capability of
reproducing true phenomena (as this worsens in the presence of repeated observations).

Finally, a suggestion on the definition of the length of a multi-day-panel survey would be to
consider not only the number of individuals, but also the level of routine expected. This last factor
seems to be especially important in a short-survey panel context, as these panels commonly feature a
large proportion of identical observations, which are actually harmful, i.e. they reduce the capability
of reproducing the true phenomenon. Thus, even though having more observations per respondent
requires smaller sample sizes to establish the statistical significance of the parameter estimates derived
from choice data (Rose et al., 2009b), Yáñez et al. (2010b) show that this is effectively true if and
only if the level of routine is not strong.

7.7.4.3 Dealing with Temporal Effects

One of the temporal effects more often discussed in the literature is habit, leading to inertia (Goodwin
1977; Blase 1979; Williams and Ortúzar 1982a); Daganzo and Sheffi (1979) proposed a MNP
formulation to treat this phenomenon which was later implemented by Johnson and Hensher (1982)
for a two-wave panel in Australia. More recently, the discrete choice modelling field has seen
significant advances in terms of incorporating inertia, examples of that are: a model including prior
behaviour on a time-series context (Swait et al. 2004), a model including inertia on a two-wave panel
formulation (Cantillo et al. 2007), and a planning-and-action model considering inertia as an effect
of previous plans (Ben-Akiva 2009). All these studies refer to cases where there are no changes in
the transport system (i.e. a stable choice environment).

The changing choice environment defined by the Santiago Panel (Yáñez et al. 2010a), with data
before and after the introduction of Transantiago (Muñoz et al. 2009), acted like a shock to the system
and required the introduction of another temporal effect beyond inertia. Assuming that the shock
effect could reduce or even overcome the effect of inertia, Yáñez et al. (2010d) formulated a model
incorporating the effects of three forces involved in the choice process: (1) the relative values of the
modal attributes, (2) the inertia effect, and (3) the shock resulting from an abrupt policy intervention.

In their model, inertia is a function of the previous valuation of the options and its effect may vary
for each wave and among individuals due to systematic or purely random effects. Furthermore, the
effect might be positive or negative; the former representing the ‘typical’ inertia effect in the absence
of changes, the latter indicating the preference for changing that might occur after a significant
variation in the system.

On the other hand, after a shock individuals may modify their valuation process, altering their utility
function. The shock effect is a function of the difference between the utility of an option evaluated
at the current wave w, and its utility evaluated at the preceding wave (w−1); hence, the effect is
expected to be negative when the alternative worsens (making its utility lower), and positive when

(continued)
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it improves. The perception of the shock may also be different for each wave and may vary among
individuals due to systematic or random effects. In particular, the shock effect should have the highest
value immediately after the introduction of the new policy, and then its magnitude should attenuate.

According to these assumptions, let the utility associated with each option Aj at wave w =1 (i.e.
the base situation) be the sum of observable (Vjq1) and non-observable components (ζjq1). Then, the
probability of choosing option Aj ∈ A1(q) at wave w = 1 will be, as usual:

Pq

(
A1

j

) = Prob
(
(Vjq1 + ζjq1) − (Viq1 + ζiq1) ≥ 0, ∀A1

i ∈ A1(q)
)

(7.56)

where A1(q) is the choice set of individual q in wave w = 1. In subsequent waves, the option chosen
in the previous wave will be denoted by Ar; temporal effects will be also included to detect how the
choices in a given wave (w) are influenced by the choices made in a previous one (w−1).

If Ũjqw denotes the utility that individual q associates to a generic option Aj on wave w (w = 2, 3,
etc.). This utility will include inertia and shock effects, such that:

Ũjqw = Ujqw − I w
jrq + Sw

jq (7.57)

where I stands for inertia and S for shock, and there are several ways to express them. In particular,
Yáñez et al. (2010d) proposed the following general expressions:

I w
jrq = (θw

Ij + δiq · σw
Ij + θI SE · SEI ) · (Vrq(w−1) − Vjq(w−1)

)
(7.58)

Sw
jq = (θw

Sj + δSq · σw
Sj + θS SE · SES) · (Vjqw − Vjq(w−1)

)
(7.59)

where θw
Ij and θw

Sj are the population means, and σw
Ij and σw

Sj the standard deviations of the inertia and
shock parameters respectively, for option Aj on wave w; SEI and SES are socioeconomic variables,
with parameters θI SE and θS SE respectively; these allow for systematic variations of the inertia
and shock parameters, δiq, δSq are the standard factors to introduce panel correlation (note that
these could be included either as random parameters or error components), and V are the observable
components of the utility function without temporal effects.

Note that if I w
jrq is greater than zero inertia exists; while, if I w

jrq is negative, it implies that the
individual has a high disposition to change. Also, note that (7.58) assumes a zero inertia effect on
wave w for the option chosen on wave (w−1). It means: Ũrqw = Urqw + Sw

rq.
In the presence of inertia and shock, the probability to change from Ar (i.e. the option chosen in

the previous wave) to A j (i.e. the ‘candidate option’) for individual q on wave w, is given by:

Pjqw = Prob
(
Ũjqw − Ũrqw ≥ 0 and Ũjqw − Ũiqw ≥ 0, ∀Aw

i ∈ Aw(q), except r = j
)

(7.60)

while, the probability to remain with Ar is given by:

Prqw = Prob
(
Ũrqw − Ũjqw ≥ 0

)

In this formulation, and as usual in current practice, option attributes and socioeconomic charac-
teristics are associated with parameters that could be either fixed or random; on the other hand, the
non-observable component ζjqw is a random error term that can be formulated as ζjqw = υq + εjqw,
where νq is a random effect specific to the individual and εjqw is, once more, the typical random error
distributed IID EV1.

With all the above, the probability of choosing option Aj on wave w, (∀w > 1) can be written as:

Pjqw = exp
(
Vjqw − (

θw
Ij + δiq · σw

Ij + θI SE · SEI

) · (Vrq(w−1) − Vjq(w−1)

)

+ (θw
Sj + δSq · σw

Sj + θS SE · SES

) · (Vjqw − Vjq(w−1)

))

·
[
∑

i

(
exp

(
Viqw − (

θw
I i + δiq · σw

I i + θI SE · SEI

) · (Vrq(w−1) − Viq(w−1)

)

+ (θw
Si + δSq · σw

Si + θS SE · SES

) · (Viqw − Viq(w−1)

)))]−1
(7.61)
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where if j = r, then (Vrq(w−1) − Vjq(w−1)) = 0 and, as previously discussed, inertia is zero while the
shock effect would still be active. Actually, the shock effect Sw

jq is null if either the shock parameter
is itself null (θw

Sj = 0) or if the utility of option Aj does not change between consecutive waves, i.e.
Vjqw = Vjq(w−1).

Note that equation (7.61) is a general formulation that can accommodate panel correlation either
in the representative utility Vjqw (using random parameters), error term (as an error component),
or in the inertia and shock effects (again using random parameters). But for empirical estima-
tion it is not possible to consider all these panel correlation forms at the same time. In fact,
since the inertia and shock parameters multiply the expressions �VI = (

Vrq(w−1) − Vjq(w−1)

)
and

�VS = (
Vjqw − Vjq(w−1)

)
respectively, randomness cannot be added in the representative utility and

temporal effects at the same time; we will come back to these issues in Chapter 8.
As individual responses present panel correlation, given a sequence of choices Aw

j , one for each
wave, the probability that a person follows this sequence is given by:

Pq

(
A1

j ∧ A2
j ∧ . . . AW

j

) =
W∏

w=1

Pjqw (7.62)

and as inertia, shock and panel correlation are actually unknown, the probability of this sequence of
choices is of Mixed Logit form; we will look at ways to estimate this model in Chapter 8.

7.7.5 Hybrid Choice Models Incorporating Latent Variables

The inclusion of subjective elements in discrete choice models re-emerged recently as an analysis and
discussion topic, after losing some of the importance that made it a subject in the early 80s (see for example
Ortúzar and Hutt 1984; McFadden 1986). Thus, hybrid choice models have been proposed considering
not only tangible attributes of the alternatives (classic explanatory variables) as in traditional choice
models, but also more intangible elements associated with users’ perceptions and attitudes (including
happiness), expressed through latent variables (Morikawa and Sasaki 1998; Ashok et al. 2002; Abou-Zeid
and Ben-Akiva 2009).

To estimate models with both kinds of variables, two methods have been developed: the sequential
approach, on which the latent variables are constructed before entering into the discrete choice model as
a further regular variable (Ashok et al. 2002; Vredin Johansson et al. 2005; Raveau et al. 2010) and the
simultaneous approach, where both processes are done at once (Bolduc et al., 2008; Raveau et al. 2009).
It has been argued that the second approach should result in more efficient estimators of the involved
parameters (Ben-Akiva et al. 2002), but it has been used less often due to its greater complexity and
because currently available software does not allow to exploit the full capabilities of the base discrete
choice model as we will see below. We will come back to these issues in Chapter 8.

7.7.5.1 Modelling with Latent Variables

Latent variables are factors that, although they influence individual behaviour and perceptions, cannot
be quantified in practice (e.g. safety, comfort, reliability). This is because of either their intangibility,
as these variables do not have a measurement scale, or their intrinsic subjectivity (i.e. different persons
may perceive them differently). Identification of latent variables requires supplementing a standard
survey with questions that capture users’ perceptions about some aspects of the alternatives (and the

(continued)
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choice context). The answers to these questions generate perception indicators that serve to identify
the latent variables. Otherwise, these latent variables could not be measured.

To make use of latent variables (Bollen 1989) a MIMIC (Multiple Indicator Multiple Cause) model
is estimated, where the latent variables (ηilq) are explained by characteristics siqr from the users and
from the alternatives through structural equations such as (7.63); at the same time, the latent variables
explain the perception indicators (yipq) through measurement equations as (7.64):

ηilq =
∑

r

αilr · Siqr + νilq (7.63)

yipq =
∑

l

γilp · ηilq + ζipq (7.64)

where the index i refers to an alternative, q to an individual, l to a latent variable, r to an explanatory
variable and p to an indicator; αilr and γilp are parameters to be estimated, while ν ilq and ζipq are error
terms with mean zero and standard deviation to be estimated. As the ηilq terms are unknown, both
equations must be considered jointly in the parameter estimation process.

7.7.5.2 Hybrid Discrete Choice Model

When latent variables ηilq are considered, the systematic or representative utility Viq in equation
(7.2) incorporates them together with the objective attributes xikq (i.e. travel time or fare, as well as
socioeconomic characteristics of the individual), leading to a utility function such as:

Viq =
∑

k

θik · xikq +
∑

l

βil · ηilq (7.65)

where θik and βil are parameters to be estimated. However, Since the ηilq variables are unknown the
model must be estimated jointly with the MIMIC model’s structural (7.63) and measurement (7.64)
equations. Finally, to characterise individual decisions binary variables giq, that take values according
to (7.72), have to be defined:

giq =
{

1 if Uiq ≥ Ujq, ∀ j ∈ A (q)
0 in other case

(7.66)

where, as usual, A(q) is the set of available alternatives for individual q.
Note that as the latent variables are on the right-hand side (i.e. as explanatory or independent

variables) both in the utility function (7.65) and in the measurement equation (7.64) of the MIMIC
model, there will not be endogeneity for simultaneous determination even if the errors (of either
equation) are correlated (see Guevara and Ben-Akiva 2006).

In Chapter 8 we will discuss the two methods available to estimate these hybrid models in practice,
and comment on some interesting findings.

Exercises
7.1 There is interest to study the behaviour of a group of travellers in relation to two transport options A

and B, with travel times ta and tb respectively. It has been postulated that each traveller experiments
the following net utilities from each option:

Ua = αta + β I
Ub = αtb
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where α and β are known parameters and I is the traveller’s personal income.
Although there is no reliable data about the income of each traveller, it is known that the variable

I has the following distribution in the population:

If α = −0.5 and β = 2.10−4, find out the probability function of choosing option A for a given
traveller, as a function of the value of (tb − ta); sketch the function in appropriate axis.

7.2 Consider a binary Logit model for car and bus, where the following representative utility func-
tions have been estimated with a sample of 750 individuals belonging to a particular sector of an
urban area:

Vc = 3.5 − 0.25tc − 0.42ec − 0.1cc

Vb = −0.25tb − 0.42eb − 0.1cb

where t is in-vehicle travel time (min), e is access time (min) and c is travel cost ($).
Assume the following average data is known:

Variable

Mode t e c

Car 25 5 140
Bus 40 8 50

If you are informed that the number of individuals choosing each option in the sector and in the
complete area are respectively as follows:

Number of individuals choosing option i

Option Sample Population

Car 283 17 100
Bus 467 68 900

(a) Indicate what correction would be necessary to apply to the model and write its final formulation.
(b) Calculate the percent variation in the probability of choosing car if the bus fares go up by 25%.
(c) Find out what would happen if, on the contrary, the car costs increase by 100%.
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7.3 Compute the probabilities of choosing car, bus, shared taxi and underground, according to the
following Nested Logit model:

with the following utility functions:
(a) High nest

Vc = −0.03tc − 0.02cc + 1.25
Vst = −0.03tst − 0.02cst − 0.20
Vmt = 0.60EMU

(b) Mass transit nest

Vb = −0.04tb − 0.03cb + 0.5
Vu = −0.04tu − 0.03cu

and for the average variable values presented in the following table:

Mode Time (t) Cost/income (c)

Car 4.5 23.0
Shared taxi 5.5 15.0
Bus 7.5 5.5
Underground 5.5 3.6

7.4 The binary Probit model has the following expression:

P1 = � {(V1 − V2)/
√

σ 2
1 + σ 2

2 − 2ρσ1σ2}

Using this result write down the probability of choosing option one in the following binary model:

Ui = θ X i + εi

where the ε are distributed IID standard Normal, for the following cases:
(a) If the value of θ is fixed and equal to 3.
(b) If θ is distributed Normal N(3, 1) and is independent of the ε.
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8
Specification and Estimation of
Discrete Choice Models

8.1 Introduction
The previous chapter provided an overview of discrete choice modelling and an introduction to different
model forms and theoretical frameworks for individual decisions. This chapter is devoted to a discussion
of two key issues: how to fully specify a discrete or disaggregate model (DM) and how to estimate such
a model once properly specified.

The search for a suitable model specification involves selecting the structure of the model (MNL, NL,
ML, etc.), the explanatory variables to consider, the form in which they enter the utility functions (linear,
non-linear) and the identification of the individual’s choice set (alternatives perceived as available). In
broad terms the objectives of a specification search include realism, economy, theoretical consistency
and policy sensitivity. In other words, we search for a realistic model, which does not require too many
data and computer resources, does not produce counter-intuitive results and is appropriate to the decision
context in which it is to be used. Early aggregate models such as those discussed in Chapters 5 and 6
were often critically portrayed as policy insensitive, either because key variables have been completely
left out of the model or because important model components have been specified as insensitive to
certain policies (e.g. consider the problem of inelastic trip generation). Most of the features of model
specification are susceptible to analysis and experimentation (see Leamer 1978) but they are also strongly
dependent on study context and data availability.

In this chapter we start by considering how to identify the set of options available to individuals:
choice-set determination. This is a key problem as we usually estimate DM by means of the (generally)
observed individual choices between alternatives. These should be the alternatives actually considered,
consciously or unconsciously, by the individual. The omission of seemingly unimportant options on
the grounds of costs may bias results. For example, in the vast majority of aggregate studies only
binary choice between car and public transport has been considered with the consequence that the
multimodal problem could not be treated seriously; in fact, in many cases the consideration of alternative
public-transport options was relegated to the assignment stage employing multipath allocation of trips
to sub-modal network links. In the same vein, the inclusion of alternatives which are actually ignored
by certain groups (say walking more than 500 metres for high income individuals), could also bias
model estimation.

Modelling Transport, Fourth Edition. Juan de Dios Ortúzar and Luis G. Willumsen.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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Section 8.3 then considers the other elements of model specification and in particular functional
form and model structure. The criteria of economy, realism, theoretical consistency and decision-making
context play a key role in complementing the experience and intuition of the modeller during specification
searches. An additional, and often over-riding element, is the availability of specialised software. In fact,
one of the reasons behind the immense popularity of the linear-in-the-parameters Multinomial Logit
(MNL) model is that it can be easily estimated with normally available software; this was not the case,
for many years, for more general structures or functional forms which presented much greater difficulties
(Daganzo 1979; Liem and Gaudry 1987).

The increasing availability of good software to select and estimate these models has certainly alleviated
this problem. However, one issue to which we will return is that although we may be able to successfully
estimate the parameters of widely different models with a given data set, these (and their implied
elasticities) will tend to be different and we often lack the means to discriminate between them, at least
with cross-sectional data. Another important issue is that of interpretation of results. More complex/richer
models are even more dependent on data quality than their simpler counterparts, and the insights they
offer on individual behaviour often require experienced analysts to interpret them correctly.

The final specification will then depend heavily on the modeller’s experience and theoretical under-
standing, and context-specific factors such as: time and resources available for the modelling activity,
degree of correlation among alternatives, heterogeneity of preferences and required degree of accuracy
of the forecasts. It must be borne in mind that using an inadequate model, such as the MNL when the
hypotheses needed to generate it do not hold, may lead to serious errors (Williams and Ortúzar 1982a).

Section 8.4 concentrates on the statistical estimation of discrete choice models using data from
random and choice-based samples and including methods to validate models and compare different
model structures; we also consider here the estimation of hybrid choice models with latent variables.
Section 8.5 discusses two methods available to estimate the Multinomial Probit model, and section 8.6
discusses in depth the estimation of the Mixed Logit model, including its application to modelling with
panel data. The chapter concludes with considerations relevant to model estimation and forecasting with
stated preference data and the joint estimation of RP-SP models.

8.2 Choice-Set Determination
One of the first problems an analyst has to solve, given a typical revealed-preferences cross-sectional
data set, is that of deciding which alternatives are available to each individual in the sample. It has been
noted that this is one of the most difficult of all the issues to resolve, because it reflects the dilemma
the modeller has to tackle in arriving at a suitable trade-off between modelling relevance and modelling
complexity; usually however, data availability acts as a yardstick.

8.2.1 Choice-set Size

It is extremely difficult to decide on an individual’s choice set unless one asks the respondent directly;
therefore the problem is closely connected with the dilemma of whether to use reported or measured data,
as discussed in Chapter 3. Although in mode choice modelling the number of alternatives is usually small,
rendering the problem less severe, in other cases such as destination choice, the identification of options
in the choice set is a crucial matter. This is not simply because the total number of alternatives is usually
very high, as we will see below, but because we face the added problem of how to measure/represent the
attractiveness of each option. Ways of managing a large choice set include:

1. Taking into account only subsets of the options which are effectively chosen in the sample (i.e. in a
sampling framework such as the one used by Ben-Akiva 1977).
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2. Using the brute force method, which assumes that everybody has all alternatives available and hence
lets the model decide that the choice probabilities of unrealistic options are low or zero.

Both approaches have disadvantages. For example, in case 1 it is possible to miss realistic alterna-
tives which are not chosen owing to the specific sample or sampling technique; in case 2 the inclusion
of too many alternatives may affect the discriminatory capacities of the model, in the sense that
a model capable of dealing with unrealistic options may not be able to describe adequately the
choices among the realistic ones (see Ruijgrok 1979). Other methods to deal with the choice set-size
problem are:

3. The aggregation across options, such as in a destination choice model based on zonal data.
4. Assuming continuity across alternatives, such as in the work of Ben-Akiva and Watanatada (1980).

8.2.2 Choice-set Formation

Another problem in this realm is that the decision maker being modelled may well choose from a
relatively limited set; in this sense if the analyst models choices which are actually ignored by the
individual, some alternatives will be given a positive probability even if they have no chance of being
selected in practice. Moreover, consider the case of modelling the behaviour of a group of individuals who
vary a great deal in terms of their knowledge of potential destinations (owing perhaps to varying lengths
of residence in the area); because of this, model coefficients which attempt to describe the relationship
between predicted utilities and observed choices may be influenced as much by variation in choice sets
among individuals (which are not fully accounted for in the model) as by variations in actual preferences
(which are accounted for). Because changes in the nature of the destinations may affect choice set and
preferences to different degrees, this confusion may be likely to play havoc with the use of the model in
forecasting or with the possibility of transferring it over time and space.

Ways to handle this problem include:

1. The use of heuristic or deterministic choice-set generation rules which permit the exclusion of certain
alternatives (i.e. bus is not available if the nearest stop is more than some distance away) and which
may be validated using data from the sample.

2. The collection of choice-set information directly from the sample, simply by asking respondents
about their perception of available options (it has been found preferable to ask which options, out of
a previously researched list, are not available and why).

3. The use of random choice sets, whereby choice probabilities are considered to be the result of a two-
stage process: firstly, a choice-set generating process, in which the probability distribution function
over all possible choice sets is defined; and secondly, conditional on a specific choice set, a probability
of choice for each alternative is defined (see the discussions by Lerman 1984 and Richardson 1982).

Non-compensatory protocols, such as satisfaction, lexicographic behaviour and elimination by aspects,
may often be more appropriate than compensatory behaviour, as we saw in Chapter 7. In fact, many
choice processes may be seen as a mixture of compensatory and non-compensatory protocols, and this is
especially the case when the number of physically available options is large. In this context, Morikawa
(1996) developed a hybrid model that applies compensatory and non-compensatory decision rules with a
relatively large number of alternatives in a model where the decision process is divided into a choice-set
formation stage and a choice stage. Choice-set formation is modelled by a random constraints model that
has a non-compensatory nature among constraints, and the choice stage is described by a Multinomial
Logit model. This approach gave good results when applied to destination choice of vacation trips with
up to 18 alternatives.
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8.3 Specification and Functional Form
The search for the best model specification is also related to functional form. Although it may be argued
that the linear function (7.3) is probably adequate in many contexts, there are others such as destination
choice where non-linear functions are deemed more appropriate (Foerster 1981; Daly 1982a). The
problems in this case are: firstly, that in general there is no guarantee that the parameter-estimation
routine will converge to unique values and, secondly, that suitable software is not readily available.
Another specification issue related to functional form is how the explanatory variables should enter the
utility function, even if this is linear in the parameters.

Three approaches have been proposed in the literature to handle the functional form question:

� The use of stated preference in real or laboratory experiments to determine the most appropriate form
of the utility function (Lerman and Louviere 1978); we will briefly come back to this in section 8.7.

� The use of statistical transformations, such as the Box–Cox method, letting the data ‘decide’ to a
certain extent an appropriate form (Gaudry and Wills 1978).

� The constructive use of econometric theory to derive functional form (Train and McFadden 1978;
Jara-Dı́az and Farah 1987; Jara Dı́az 2007); this is perhaps the most attractive proposition as the final
functional form can be tied up to evaluation measures of user benefit.

As we will see later, it is important to note that, in general, non-linear forms imply different trade-offs
to those normally associated with concepts such as the value of time (Bruzelius 1979); also, it is easy to
imagine that model elasticities and explanatory power may vary dramatically with functional form.

8.3.1 Functional Form and Transformations

Linear-in-the-parameters expressions such as (7.3) usually contain a mixture of quantitative and qual-
itative variables (where the latter are normally specified as dummies, i.e. sex, age, income level), and
the problems are how to enter both and where to enter the latter, as we have already discussed. In other
words, it would be more appropriate to write (7.3) as:

Vjq =
∑

k

θk j fk j (xkjq) (8.1)

which is still linear in the parameters, but makes it explicit that the functional form of the x variables
is somewhat arbitrary. Usual practice consists in entering the variables in raw form (i.e. time rather
than 1/time or its logarithm) but this could have some consequence if the model response is sensitive to
functional form.

If we do not have theoretical reasons to back up a given form, it appears interesting to let the data
indicate which could be an appropriate one. A class of transformations widely used in econometrics has
been successfully adapted for use in transport modelling (see Gaudry and Wills 1978; Liem and Gaudry
1987). We will review two examples, the second one being a generalisation of the first:

8.3.1.1 Basic Box–Cox Transformation

The transformation x(τ ) of a positive variable x, given by:

x (τ ) =
{

(x τ − 1)/τ, if τ �= 0
log x, if τ = 0

(8.2)
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is continuous for all possible τ values. With this we can rewrite equation (8.1) as:

Vjq =
∑

k

θk j x
(τk )
kjq (8.3)

and it is easy to see that if τ 1 = τ 2 = . . . = τ k = 1, (8.3) reduces to the typical linear form (7.3);
furthermore, if all τ k = 0, we obtain the widely used log-linear form. Therefore both traditional forms
are only special cases of (8.3).

8.3.1.2 Box–Tukey Transformation

The basic transformation (8.2) is only defined for x > 0; a more general form, for variables that may take
negative or zero values, is given by:

(x + μ)(τ ) =
{

[(x + μ)τ − 1]/τ , if τ �= 0
log(x + μ), if τ = 0

(8.4)

where μ is just a translational constant chosen to ensure that (x + μ) > 0 for all observations.
The values of τ must satisfy certain conditions if the model is to be consistent with microeconomic

theory. In particular, it is instructive to derive what restrictions exist in the case of attributes such as
travel time (which produce disutility) or the number of cars in the household (which should increase the
probability of choosing car), to ensure decreasing marginal utilities as the theory demands. This small
challenge is left for the interested reader.

It can be shown that if an MNL is specified with functional form (8.4) and restricting all τ to be equal,
its elasticities are given by:

E PJ,xki = (δ j i − Pj )xkiθk (xki + μ)τ−1 (8.5)

with δji equal to 1 if j = i and 0 otherwise. Although it is obvious from (8.5) that the elasticities depend
on the values of τ and μ, it is not clear how large the effect might be as the values of θ also vary.

In Chapter 15 we will discuss the consequences of using Box–Cox models in the derivation of
subjective values of time (Gaudry et al. 1989).

8.3.2 Theoretical Considerations and Functional Form

Although we have made it clear that in any particular study, data limitations and resource restrictions
often play a vital role, it is important to consider the influence of theory in the construction of a demand
function. In what follows we will show how the constructive use of economic theory helps to solve the
important problem of how to incorporate a key variable, such as income, in a utility function. Throughout
we will assume a linear-in-the-parameters form and will not be concerned with model structure, but the
analysis may be generalised at a later stage.

The conventional approach to understanding the roles of income, time and cost of travel within the
discrete choice framework, is based on the work of Train and McFadden (1978); they established the
microeconomic foundations of the theory by considering the case of individuals who choose between
leisure (L) and goods consumed (G); the trade-off appears once the link between G and income (I) is
formulated: they assume that I depends on the number of hours worked (W). Thus, increasing W allows
G to increase, diminishing L. More formally the problem is stated as follows:

MaxU (G, L)
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subject to:

G + ci = wW
W + L + ti = T

}
∀Ai ∈ A (8.6)

where U is the individual utility function, w is the real wage rate (the amount the individual gets paid per
hour), ci and ti are the money and time spent per trip respectively, A is the choice set and T is a reference
period; the unknowns are G, L and W.

If U in problem (8.6) is given a fairly general form, such as Cobb–Douglas, finding its maximum
with respect to Ai ∈ A, is equivalent to finding the maximum of (−ci/w − ti) among other possibilities.
This is the origin of the widely used cost/wage rate variable in discrete-mode choice models, for which
cost/income has been used as a proxy in many applications. The possibility of adapting working hours
to attain a desired level of income plays a key role in the above derivation; thus, as W is endogenously
determined and w is given exogenously, income becomes endogenous. This formulation assumes that
the cost of travelling is negligible in relation to income, i.e. that there is no income effect.

However, for many individuals (particularly in emerging countries) both income and working hours are
fixed and there may be income effects. In such cases it can be shown that the maximum of U depends on
the value of (−ci/g − ti) among other possibilities (Jara-Dı́az and Farah 1987), where g is an expenditure
rate defined in general by:

g = I/(T − W ) (8.7)

The presence of such an income variable, reflecting purchasing power in the utility specification,
indicates that the marginal utility of income varies with income, i.e. the model allows for an income
effect. Besides, it is interesting to mention that empirical tests have shown that this new specification
consistently outperforms the conventional wage-rate specification, even for individuals with no income
effect (Jara-Dı́az and Ortúzar 1989). More complex theoretical derivations of functional form, even for
general joint models of activities (time use) and mode choice can be derived in similar fashion (see
Munizaga et al. 2006; Jara-Dı́az 2007).

8.3.3 Intrinsic Non-linearities: Destination Choice

Let us treat the singly constrained gravity model (5.14)–(5.18) we examined in Chapter 5 in a disaggregate
manner by considering each individual trip maker in zone i as making one of the Oi trips originating in
that zone. In this case the probability that a person will make the choice of travelling to zone j is simply:

Pj = Tij/Oi = D j fij/
∑

d

Dd fid (8.8)

Now if we define:

Vd = log (Dd fid) = log Dd + log fid (8.9)

the model is seen to be exactly equivalent to the Multinomial Logit model (7.9). Thus the conventional
origin-constrained gravity model may be represented by the disaggregate MNL without any loss of
generality (Daly 1982a); note that (8.9) imposes no restrictions on the specification of the separation
function fij. As we saw in Chapter 5, probably the most common function used in practice is the negative
exponential of cij, the generalised cost of travelling between zones i and j; it is interesting to mention
that when this form is substituted in (8.9) we obtain:

Vd = log Dd − βcid (8.10)
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which is in fact linear in the parameter β. The problem of non-linearity arises due to the presence of Dd

which may contain variables of the size variety that describe not the quality but the number of elementary
choices within k and are typical of cases, such as choice of destination, where aggregation of alternatives
is required (Daly 1982a). An example of this type of form was presented in Example 6.6.

8.4 Statistical Estimation
This section considers methods for the estimation of DM together with the goodness-of-fit statistics to
be used in this task. Model estimation methods need to be adapted to the sampling framework used to
generate the observations. This is necessary to improve estimation efficiency and avoid bias.

8.4.1 Estimation of Models from Random Samples

To estimate the coefficients θ k in (7.3) the maximum likelihood method that we saw in section 2.5.4 is
normally used. This method is based on the idea that although a sample could originate from several
populations, a particular sample has a higher probability of having been drawn from a certain population
than from others. Therefore the maximum likelihood estimates are the set of parameters which will
generate the observed sample most often.

Let us assume a sample of Q individuals for which we observe their choice (0 or 1) and the values of
xjkq for each available alternative, such that for example:

individual 1 selects alternative 2

individual 2 selects alternative 3

individual 3 selects alternative 2

individual 4 selects alternative 1, etc.

As the observations are independent the likelihood function is given by the product of the model
probabilities that each individual chooses the option they actually selected:

L(θ) = P21 P32 P23 P14 . . .

Defining the following dummy variable:

g jq =
{

1 if A j was chosen by q
0 otherwise

(8.11)

the above expression may be written more generally as:

L(θ) =
Q∏

q=1

∏

A j ∈A(q)

(Pjq)g jq (8.12)

To maximise this function we proceed as usual, differentiating L(θ) partially with respect to the
parameters θ and equating the derivative to 0. As in other cases we normally maximise l(θ), the natural
logarithm of L(θ), which is more manageable and yields the same optima θ∗.

Therefore, the function we seek to maximise is (Ortúzar 1982):

l(θ) = log L(θ) =
Q∑

q=1

∑

A j ∈A(q)

gjq log Pjq (8.13)
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When l(θ) is maximised, a set of estimated parameters θ∗ is obtained which is asymptotically
distributed N(θ, S2) where:

S2 = −
(

E

(
∂2l(θ)

∂ θ2

))−1

(8.14)

Also LR = −2·l(θ) is asymptotically distributed χ2 with Q degrees of freedom (see Ben-Akiva and
Lerman 1985). All this indicates that even though θ∗ may be biased in small samples, the bias is small
for large enough samples (normally, samples of 500 to 1000 observations are more than adequate).

Now, although we have an explicit expression for the covariance matrix S2, determining the parameters
θ∗ involves an iterative process. In the case of linear-in-the-parameters MNL models the function is well
behaved, so the process converges quickly and always to a unique maximum; this explains why software
to estimate this model is so easily available. Unfortunately this is not the case for other discrete choice
models the estimation processes of which are more involved; therefore in what follows we will mainly
refer to this simpler model.

Substituting the MNL expression (7.9) in (8.13), it can be shown that if the variable set includes an
alternative specific constant for option Aj we have:

∑

q

g jq =
∑

q

Pjq

and this allows us to deduce that as alternative specific constants tend to capture the effect of variables
not considered in the modelling, they ensure that the model always reproduces the aggregate market
shares of each alternative. Therefore it is not appropriate to compare, as a goodness-of-fit indicator, the
sum of the probabilities of choosing one option with the total number of observations that selected it,
because this condition will be satisfied automatically by a MNL model with a full set of constants. As it
is also not appropriate to compare the model probabilities with the gjq values (which are either 0 or 1),
a goodness-of-fit measure such as R2 in ordinary least squares, which is based on estimated residuals,
cannot be defined.

Example 8.1 Consider a simple binary-choice case with a sample of just three observations (as proposed
by Lerman 1984); let us also assume that there is only one attribute x, such that:

P1q = 1/{1 + exp[θ (x2q − x1q )]}; P2q = 1 − P1q

and also that we observed the following choices and values:

Observation (q) Choice x1q x2q

1 1 5 3
2 1 1 2
3 2 3 4

In this case for any given value of θ , the log-likelihood function for the sample is given by:

l(θ ) = log(P11) + log(P12) + log(P23)

and replacing the values we obtain:

l(θ ) = 10θ − log(e5θ + e3θ ) − log(eθ + e2θ ) − log(e3θ + e4θ )
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Figure 8.1 shows the results of plotting l (θ ) for different values of θ . The optimum, θ
∗ = 0.756, allows

us to predict the following probabilities:

Observation (q) P1q P2q

1 0.82 0.18
2 0.32 0.68
3 0.32 0.68

Therefore, if we adopt a criterion in which individuals are assigned to that option which has maximum
utility, this would result in an incorrect prediction for the second observation.

Figure 8.1 Variation of (l) θ with θ

We mentioned that the maximum likelihood parameters θ∗ are asymptotically distributed Normal with
covariance matrix S2. In general the well-understood properties of the maximum likelihood method for
well-behaved likelihood functions allow, as in multiple regression, a number of statistical tests which are
of major importance:

8.4.1.1 The t-test for Significance of any Component θ∗
k of θ∗

Equation (8.14) implies that θ ∗
k has an estimated variance s2

kk , where S2 = {s2
kk}, which is calculated

during estimation. Thus if its mean θ k = 0,

t = θ∗
k /skk (8.15)

has a standard Normal distribution N(0,1). For this reason it is possible to test whether θ∗
k is significantly

different from zero (it is not exactly a t-test as we are taking advantage of a large-sample approximation
and t is tested with the Normal distribution). Sufficiently large values of t (typically bigger than 1.96 for
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95% confidence levels) lead to the rejection of the null hypothesis θ k = 0 and hence to accepting that the
kth attribute has a significant effect.

The variable selection process followed during the specification searches of discrete choice models
normally considers both formal statistical tests, such as the above one, and more informal (but even more
important) tests such as examining the sign of the estimated coefficient to judge whether it conforms
to a priori notions or theory. In this sense it is worth noting that rejection of a variable with a proper
sign crucially depends on its importance; for example, let us note that the set of available explanatory
variables can be usefully divided into two classes:

� highly relevant or policy variables, which have either a solid theoretical backing and/or which are
crucial to model forecasting;

� other explanatory variables, which are either not crucial for policy evaluation (for example gender), or
for which there are no theoretical reasons to justify or reject their inclusion.

Table 8.1 depicts the cases that might occur when considering the possible interactions in the above
framework, and the solutions recommended by current practice. Consider first the case of rejecting a
variable of type Other with correct sign; this may depend on its significance level (i.e. it may only be
significant at the 85% level) and usual practice is to leave it out if it is not significant at the 80% level.

Table 8.1 Variable selection cases

Variable

Policy Other

Significant Include Include
Correct sign

Not significant Include May reject

Significant Big problem Reject
Wrong sign

Not significant Problem Reject

Current practice also recommends including a relevant (i.e. Policy type) variable with a correct sign
even if it fails any significance test. The reason is that the estimated coefficient is the best approximation
available for its real value; the lack of significance may just be caused by lack of enough data.

Variables of the Other class with a wrong sign are always rejected; however, as variables of the Policy
type must be included at almost any cost, current practice dictates in their case model re-estimation,
fixing their value to an acceptable one obtained in a study elsewhere. This will be an easy task if the
variable is also non-significant, but might be very difficult otherwise as the fixed value will tend to
produce important changes in the rest of the model coefficients.

Let us consider the role of socio-economic variables like gender, age, profession and occupation in
discrete choice models. The usual way of introducing these variables was as additive constants, to one
or more of the utilities of the alternatives (but not to all, unless they have specific coefficients), based on
the modeller’s experience and common sense, as in:

V1q = αt1q + βc1q + γ f1q + . . . +
∑

l

slq

V2q = αt2q + βc2q + γ f2q + . . .

(8.16)

where, for example, t is time, c is cost, f is frequency and the dummy variables slq represent socio-
economic characteristics of the individuals q. In this case the socio-economic data serve to improve the
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explanation of choice but do not provide any bonus in terms of using the model to estimate subjective
values or willingness to pay, i.e. the ratio of the parameters of time and cost (Gaudry et al. 1989). It is
also normally found that very few of these Other type variables provide enough explanation to be kept
in the models.

An alternative and much better procedure is to parameterise the coefficients of each attribute in the
model using socio-economic variables; in this case (8.16) changes to:

Viq =
(

α0 +
∑

l

αl slq

)
tiq +

(
β0 +

∑

l

βl slq

)
ciq +

(
γ0 +

∑

l

γl slq

)
fiq (i = 1, 2) (8.17)

Now, dummy variables slq refer to the socio-economic characteristic l (i.e. gender) of individual q.
This is both a simple and interesting manner of incorporating socio- economic variables, while at the
same time helping in computing value functions which vary for each individual. Fowkes and Wardman
(1988) proposed this method as a way of segmenting by individual tastes. Equation (8.17) states that
given the characteristics of the individual, different coefficients will be obtained for a given attribute; note
that the same socio-economic variable can appear in the expression corresponding to each coefficient.
And note how this formulation does not imply that tastes are randomly distributed in the population; on
the contrary, it assumes that the taste parameters (α, β and χ ) depend on the individual characteristics in
a deterministic manner; it has been popularised as systematic taste variations (Rizzi and Ortúzar 2003).
This parameterisation allows for the incorporation of taste heterogeneity in an economical way, using
computer programs widely available, rather than having to rely on a more complex function such as the
Mixed Logit model.

Example 8.2 Table 8.2 presents two models. The first uses the method explained in equation (8.16)
and the second uses the new method of equation (8.17). The sample size was 1631 stated preference
observations (Rizzi and Ortúzar 2003) about route choice in the presence of the following attributes:
accident risk, toll charge and travel time.

The socio-economic (SE) variables considered were sex (one for males), age (three dummies, with
value one if the person’s age was in the range considered) and night/day (one if the person travelled by
day) in the case of the accident risk variable; and high income (one if the respondent’s income was high)
in the case of the toll variable. These binary variables were entered in the utility function of the safest
route in the first model, but were assumed to interact with the base coefficients of either risk or toll in
the case of model 2.

Looking at the results, it is obvious that the more flexible parameterisation of model 2 is superior to
the traditional way of incorporating SE variables. Note how the results suggest that women value safety
more than men, as do people with progressively higher age; on the other hand, if the trip takes place
at night, the value of safety also should increase according to model 2. Finally, it is worth noting that
the marginal utility of income (i.e. the toll coefficient with the opposite sign) correctly decreases for
high-income individuals.

8.4.1.2 The Likelihood Ratio Test

A number of important model properties may be expressed as linear restrictions on a more general linear
in the parameters model. Some important examples are:

� Are attributes generic? As mentioned in section 7.3, there are two main types of explanatory variables,
generic and specific; the former have the same weight or meaning in all alternatives, whereas the latter
have a different, specific, meaning in each of the choice options and therefore can take on a zero value
for certain elements of the choice set.
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Table 8.2 Alternative ways of entering socio-economic variables

Variables (t-ratios) Model 1 Model 2

Risk of death −2.41E + 05 −2.18E + 05
(−5.6) (−3.4)

Sex −0.4233 1.29E + 05
(−3.3) (2.9)

Age1 (30–49) 0.4605 −1.76E + 05
(3.5) (−3.5)

Age2 (50–65) 1.02 −3.75E + 05
(5.8) (−6.0)

Age3 (> 65) 1.48 −5.49E+05
(2.8) (−3.0)

Day/night 0.2097 −8.45E+04
(2.5) (−3.1)

Travel time (h) −3.318 −3.738
(−13.9) (−14.0)

Toll charge (US$) −0.702 −0.826
(−9.9) (−10.8)

High income – 4.13E−04
(3.4)

ρ2 (c) 0.1545 0.1703

� Sample homogeneity. It is possible to test whether or not the same model coefficients are appropriate
for two subpopulations (say living north and south of a river). For this a general model using different
coefficients for the two populations is formulated and equality of coefficients may be tested as a set of
linear restrictions.

Example 8.3 Let us assume a model with three alternatives, car, bus and rail, and the following choice
influencing variables: travel time (TT) and out-of-pocket cost (OPC). Then a general form of the model
would be:

Vcar = θ1 TTcar + θ2 OPCcar

Vbus = θ3 TTbus + θ4 OPCbus

Vrail = θ5 TTrail + θ6 OPCrail

However, it might be hypothesised that costs (but not times, say) should be generic. This can be
expressed by writing the hypothesis as two linear equations in the parameters:

θ2 − θ4 = 0
θ2 − θ6 = 0

In general it is possible to express the possibility of having generic attributes as linear restrictions on
a more general model. For extensive use of this type of test, refer to Dehghani and Talvitie (1980). Some
programs, for example Biogeme (Bierlaire 2009), present as a standard output a covariance/correlation
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analysis of pairs of estimated parameters θ i and θ j, sorted according to a t-test value constructed
as follows:

t∗ = θi − θ j√
(σ 2

i + σ 2
j + 2ρσi σ j

where σ are their standard errors and ρ the correlation coefficient between both estimates; if this test is
accepted (i.e. when the value of t

∗
is less than a critical value, say 1.96 for the typical 95% level) the two

parameters are not significantly different and are, thus, candidates for being treated as generic (if they
refer to the same attribute in two alternatives).

Because of the properties of the maximum likelihood method, it is very easy to test any such hypotheses,
expressed as linear restrictions, by means of the well-known likelihood ratio test (LR). To perform the
test the estimation program is first run for the more general case to produce estimates θ∗ and the log-
likelihood at convergence l

∗
(θ). It is then run again to attain estimates θ∗

r of θ and the new log-likelihood
at maximum l

∗
(θr) for the restricted case. Then if the restricted model under consideration is a correct

specification, the LR statistic,

−2{l∗(θr) − l∗(θ)}
is asymptotically distributed χ2 with r degrees of freedom, where r is the number of linear restrictions;
rejection of the null hypothesis implies that the restricted model is erroneous. It is important to note
that to carry out this test we require one model to be a restricted or nested version of the other. Train
(1977) offers examples of use of this test to study questions of non-linearity, non-generic attributes and
heterogeneity. Horowitz (1982) has discussed the power and properties of the test in great detail and
should be consulted for further reference.

8.4.1.3 The Overall Test of Fit

A special case of likelihood ratio test is to verify whether the estimated model is superior to a model
where all the components of θ are equal to zero. This model is known as the equally likely (EL) model
and satisfies:

Pjq = 1/Nq

with Nq the choice set size of individual q. The test is not helpful in general because we know that a model
with alternative-specific constants (ASC) will reproduce the data better than a purely random function.
For this reason a more rigorous test of this class is to verify whether all variables, except the ASC, are 0.
This better reference or null model is the market share (MS) model, where all the explanatory variables
are 0 but the model has a full set of ASC; in this case we get:

Pjq = MS j

where MSj is the market share of option Aj.
Let us first look at the test for the EL model because it is simpler than that for the MS model. Consider

a model with k parameters and with, as usual, a log-likelihood value at convergence of l
∗
(θ), and denote

by l
∗
(0) the log-likelihood value of the associated EL model; then under the null hypothesis θ = 0 we

have that the LR statistic:

−2{l∗(0) − l∗(θ)}
is distributed χ2 with k degrees of freedom; therefore we can choose a significance level (say 95%)
and check whether LR is less than or equal to the critical value of χ 2 (k, 95%), in which case the null
hypothesis would be accepted.
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However, we already hinted that the test is weak because as it is always rejected it only means that the
parameters θ explain the data better than a model with no significant explanatory power. Actually the
best feature of this test is its low cost as l

∗
(0) does not require a special program run since it is usually

computed as the initial log-likelihood value by most search algorithms.
To carry out the test with the market share model we must compute l

∗
(C) it’s log-likelihood value at

convergence; if there are (k − c) parameters which are not specific constants, the appropriate value of
LR is compared with χ2 (k − c, 95%) in this case. In general an extra run of the estimation routine is
required to calculate l

∗
(C) except for models where all individuals face the same choice set, in which

case it has the following closed form equation:

l∗(C) =
∑

j

Q j log (Q j/Q) (8.18)

where Qj is the number of individuals choosing option Aj.
Figure 8.2 shows the notional relation between the values of the log-likelihood function, for the set of

parameters that maximise it, l
∗
(θ), for the two previous models, l

∗
(0) and l

∗
(C) respectively, and for a

fully saturated (perfect) model with an obvious value l(∗ ) = 0.

Figure 8.2 Notional relation between log-likelihood values

8.4.1.4 The ρ2 Index

Although it is not possible to build an index such as R2 in this case, it is always interesting to have an
index which varies between 0 (no fit) and 1 (perfect fit) in order to compare alternative models. An index
that satisfies some of the above characteristics was initially defined as:

ρ2 = 1 − l∗(θ)

l∗(0)
(8.19)

However, although its meaning is clear in the limits (0 and 1) it does not have an intuitive interpre-
tation for intermediate values as in the case of R2; in fact, values around 0.4 are usually considered
excellent fits.

Because a ρ2 index may in principle be computed relative to any null hypothesis, it is important to
choose an appropriate one. For example, it can be shown that the minimum values of ρ2 in (8.19), in
models with specific constants, vary with the proportion of individuals choosing each alternative. Taking
a simple binary case, Table 8.3 shows the minimum values of ρ2 for different proportions choosing
option 1 (Tardiff 1976). It can be seen that ρ2 is only appropriate when both options are chosen in the
same proportion.

These values mean, for example, that a model estimated with a 0.9/0.1 sample yielding a ρ2 value
of 0.55, would be undoubtedly much weaker than a model yielding a value of 0.25 from a sample with
an equal split. Fortunately, Tardiff (1976) proposed a simple adjustment that allows us to solve this
difficulty; it consists of calculating the index with respect to the market share model:

ρ̄2 = 1 − l∗(θ)

l∗(C)
(8.20)

This corrected ρ2 lies between 0 and 1, is comparable across different samples and is related to the
χ 2 distribution.
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Table 8.3 Minimum ρ2 for various relative frequencies

Sample proportion selecting
the first alternative Minimum value of ρ2

0.50 0.00
0.60 0.03
0.70 0.12
0.80 0.28
0.90 0.53
0.95 0.71

Ben-Akiva and Lerman (1985) propose another correction to the ρ2 index; this is usually referred as
adjusted ρ2 and it is defined as:

ρ2
adj = 1 − l∗(θ) − K

l∗(0)

which takes into account the number of parameters estimated. However, it is still based on the likelihood
of the equally-likely model so it maintains the main problems of the original ρ2.

8.4.1.5 The Percentage Right or First Preference Recovery (FPR) Measure

This is an aggregate measure that simply computes the proportion of individuals effectively choosing
the option with the highest modelled utility. FPR is easy to understand and can readily by compared with
the chance recovery (CR) given by the equally likely model:

CR =
∑

q

(1/Nq )/Q

Note that if all individuals have a choice set of equal size N, then CR = 1/N. FPR can also be compared
with the market share recovery (MSR) predicted by the best null model (Hauser 1978):

MSR =
∑

Aj

(MS j )2

Disadvantages of the index are exemplified by the fact that although an FPR of 55% may be good in
general, it is certainly not so in a binary market; also an FPR of 90% is normally good in the binary
case, but not if one of the options has a market share of 95%. Another problem with the index, worth
noting in the sense of not being an unambiguous indicator of model reliability, is that too high a value of
FPR should lead to model rejection as well as a too low value; to understand this point it is necessary to
define the expected value of FPR for a specific model as:

ER =
∑

q

Pq (8.21)

where Pq is the calculated (maximum) probability associated with the best option for individual q. Also,
because FPR is an independent binomial random event for individual q, occurring with probability 1/Nq

in the CR case and Pq in the ER case, their variances are given respectively by:

Var (CR) = (1/Nq )(1 − 1/Nq ) (8.22)
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and

Var(ER) = Pq (1 − Pq ) (8.23)

Thus, a computed value of FPR for a given model can be compared with CR and ER; if the three
measures are relatively close (given their estimated variances) the model is reasonable but uninformative;
if FPR and ER are similar and larger than CR, the model is reasonable and informative; finally, if FPR
and ER are not similar, the model does not explain the variation in the data and should be rejected
whether FPR is larger or smaller than ER (see Gunn and Bates 1982).

8.4.1.6 Working with Validation Samples

As we already mentioned in Chapter 5, the performance of any model should be judged against data
other than that being used to specify and estimate it and, ideally, taken at another point in time (perhaps
after the introduction of a policy in order to assess the model response properties). This is true for any
model. We will define a subsample of the data, or preferably, another sample not used during estimation,
as a validation sample.

We will first briefly describe a procedure to estimate the minimum size of such a validation sample
(ideally to be subtracted from the total sample available for the study) conditional on allowing us to
detect a difference between the performance of two or more models, when there is a true difference
between them. The method, which is based on the FPR concept, was devised by Hugh Gunn and first
applied by Ortúzar (1983).

Model 2
Not FPR FPR

Not FPR n11 n12

Model 1 FPR n21 n22

Consider the 2 × 2 table layout shown above, where nij is the number of individuals assigned to cell
(i, j). For all individuals in a validation sample, choice probabilities and FPR are calculated for each of
two models under investigation and the cells of the table are filled appropriately (e.g. assigning to cell
(1,1) if not FPR in both models, and so on). We are interested in the null hypothesis that the probabilities
with which individuals fall into cells (1,2) and (2,1) are equal, for in that case the implication on simple
FPR is that the two models are equivalent; on this null hypothesis the following statistic M is distributed
χ 2 with one degree of freedom (see Foerster 1979):

M = (n12 − n21)2

n12 + n21
(8.24)

Thus, a test of the equivalence of the two models in terms of FPR is simply given by computing M
and comparing the result with χ2 (1, 95%); if M is less than the appropriate critical value of χ 2 (3.84 for
the usual 95% confidence level) we cannot reject the null hypothesis and we conclude that the models
are equivalent on these terms.

Given this procedure we can select whichever level of confidence seems appropriate for the assertion
that the two models under comparison differ in respect of the expected number of FPR. This gives us
control over the fraction of times that we will incorrectly assert a difference between similar models.
As usual, the aim of choosing a particular sample size is to ensure a corresponding control over the
proportion of times we will make the other type of error, namely incorrectly concluding that there is no
difference between different models.

Now, to calculate the probability of an error of the second type we need to decide what the minimum
difference we should like to detect is; with this we can calculate the sample size needed to reduce
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the chance of errors of the second kind to an acceptable level for models which differ by exactly this
minimum amount, or more.

Example 8.4 Consider the case of two models such that, on average, model 2 produces 10 extra FPR per
100 individuals modelled as compared to model 1. Note that here it does not matter whether this arises
as a result of model 1 having 20% FPR and model 2 having 30% FPR, or the first 80% and the second
90%; in other words, both models can be inadequate.

In this simple case n21 is zero and M simply becomes n12. If we are ensuring 95% confidence that any
difference we establish could not have arisen by chance from equivalent models, we will compare n12

with the χ 2 value for one degree of freedom (3.84); for any given sample size n, the probability that r
individuals will be assigned to cell (1, 2) is simply the binomial probability

( n
r

)
pr (1 − p)(n−r ) where p

denotes the probability of an individual chosen at random being assigned to cell (1, 2) i.e. the minimum
difference we wish to detect.

Given n and taking p = 0.05 as usual, we can calculate the probabilities of 0, 1, 2, and 3 individuals
being assigned and sum these to give the total probability of accepting the null hypothesis (i.e. committing
an error of the second kind). Table 8.4 gives the resulting probabilities for different sample sizes.

Table 8.4 Probability of an error of the second kind
for given sample size and models as defined

Minimum difference 5% Prob
Sample size (error II)

50 0.75
100 0.26
150 0.05
200 0.01
250 0.00

It is clear that the required validation sample size needs to be relatively large given that typical
estimation data sets have only a few hundred observations. Also recall that Table 8.4 is for the simple
case of one model being better than or equal to the other in each observation; the method of course may
easily be extended to cases where both the (1, 2) and (2, 1) cells have non-zero probability.

An especially helpful feature of validation samples is that provided their size is adequate the issue
of ranking non-nested models (see section 8.4.3) is easily resolved, as likelihood ratio tests can be
performed on the sample regardless of any difference in model structure parameters. This is because the
condition of one model being a generalisation of the other is only required for tests with the same data
used for estimation (Gunn and Bates 1982; Ortúzar 1983).

Example 8.5 Let us assume that we are interested in an option with low market share at present and that
we have two model specifications (models A and B) for a six-alternative choice situation. The two models
have similar FPR but one always predicts that option badly and the others a bit better, compared with
the second model that gives reasonable predictions for all options. In this case we can use a validation
sample and estimate, for each individual in it, the choice probabilities for each option by the two models;
the alternative actually chosen is, as usual, an observed piece of information. In order to investigate the
consistency of the predictions with the data, we can compare them with proportions calculated from
the sample.
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Table 8.5 presents the values Nij and Oij (where i indicates a probability band and j an option).
Nij is the number of observations to which the model assigned a probability in band i to alternative
Aj; Oij is the observed number of choices of option Aj to which the model assigned a probability in
that band.

Table 8.5 Modelled choices by probability band

Predicted
probability band (i) 0–0.1 0.1–0.2 0.2–0.3 . . . 0.9–1.0

Alternative (j) N1j O1j N2j O2j N3j O3i . . . . . . N10j O10j

Model A
1 0 0 8 0 11 0 . . . . . . 0 0
2 40 0 0 0 0 0 . . . . . . 0 0
3 94 0 0 0 0 0 . . . . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 55 6 11 3 58 14 . . . . . . 0 0

Total 6 6 24 . . . . . . 0

Model B
1 9 0 5 0 0 0 0 0
2 36 0 4 0 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 43 3 44 7 18 8 0 0

Total 6 11 13 . . . . . . 15

Table 8.6 builds on the previous table and presents the values Eij and Oij, where Eij is given by:

Eij = Nij × p̄i

which corresponds to the expected value of the number of individuals choosing option Aj with probability
in the band i, associated with a mean probability p̄i . For example, in the case highlighted in the table
we have that E36 = 58 × 0.25 = 14.5, as 0.25 is the mean value of probability band 3 (i.e. between
0.2 and 0.3).

To compare the values in Table 8.6 it is possible to apply a χ2 test defined as follows (Gunn and
Bates 1982):

χ2
cell =

∑

ij

(Oij − Eij)2

Eij
with ij − 1 degrees of freedom

It is possible in principle to apply the test to each cell in the matrix if Eij > 5, as the test is not
valid otherwise. For this reason, and given the limited size of validation samples, it may be necessary
to aggregate cells but unfortunately there are no clear-cut methods to do it. The reader may check that
different aggregation strategies lead to different results.
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Table 8.6 Expected proportions by probability band

Predicted
probability band (i) 0–0.1 0.1–0.2 0.2–0.3 . . . 0.9–1.0

Alternative (j) E1j O1j E2j O2j E3j O3j . . . . . . E10j O10j

Model A
1 0 0 1.2 0 2.75 0 . . . . . . 0 0
2 2 0 0 0 0 0 . . . . . . 0 0
3 4.7 0 0 0 0 0 . . . . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 2.75 6 1.65 3 14.5 14 . . . . . . 0 0

Total 9.45 6 4.05 6 29 24 . . . . . . 0 0

Model B
1 0.45 0 0.75 0 0 0 0 0
2 1.8 0 0.6 0 0 0 0 0
3 4.05 0 1.65 0 0.5 0 . . . . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 2.15 3 6.6 7 4.5 8 . . . . . . 0 0

Total 9.5 6 11.7 11 7.5 13 . . . . . . 15.2 15

A less informative case, but one that it is usually possible to carry out, is to compare expected and
observed totals for each column in Table 8.6, Ei = ∑

j Eij and Oi = ∑
j Oij respectively, using the index:

χ2
FPR =

m∑

i=1

(Oi − Ei )2

Ei
(8.25)

where m is the number of columns with Ei > 5. In this case the appropriate number of degrees of freedom
is m − 1, and χ 2

FPR may be compared with the critical value χ 2
0,95;m−1. If χ 2

FPR < χ2
0,95;m−1 then the null

hypothesis that the model is consistent with the data is accepted. If, according to the previous test, two or
more models are acceptable then it is possible to discriminate between them using the direct likelihood
ratio test (Gunn and Bates 1982; Ortúzar 1983):

LA

LB
=

∏
i

p̄Oi
i (model A)

∏
i

p̄Oi
i (model B)

(8.26)

If we applied this test to the data of Table 8.6, we would get:

LA

LB
= (0.05)6 × (0.15)6 × (0.25)24 × . . . × (0.95)0

(0.05)6 × (0.15)11 × (0.25)13 × . . . × (0.95)15
= 0.0455

and we would say that the data are approximately 22 times (that is 1/0.0455) more probable under model
B that under model A. This means that we would prefer the second model although both yield predictions
which are consistent with the data.
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8.4.2 Estimation of Models from Choice-based Samples

As mentioned in Chapter 3, estimating a model from a choice-based sample may be of great interest
because the data-collection costs are often considerably lower than those for typical random or stratified
samples. The problem of finding a tractable estimation procedure possessing desirable statistical prop-
erties is not an easy one, and the state of practice has been provided by the excellent papers of Coslett
(1981) and Manski and McFadden (1981).

It has been found in general that maximum likelihood estimators specific to choice-based sampling
are impractical, except in very restricted circumstances, due to computational intractability. However, if
it can be assumed that the analyst knows the fraction of the decision-making population selecting each
alternative, then a tractable method can be introduced. The approach modifies the familiar maximum
likelihood estimator of random sampling by weighting the contribution of each observation to the log-
likelihood by the ratio Qi/Si, where the numerator is the fraction of the population selecting option Ai

and the denominator the analogous fraction for the choice-based sample.
Manski and Lerman (1977) have shown that the un-weighted random-sample maximum likelihood

estimator is generally inconsistent when applied to choice-based samples and in most choice models
this inconsistency affects all parameter estimates. However, as we saw in section 7.3.2, for simple MNL
models with a full set of alternative-specific constants the inconsistency is fully confined to the estimates
of these dummy variables. In this case, the estimates obtained without weighting are more efficient than
the estimates obtained with the weighted sample. Therefore, it is good practice to estimate the parameters
of the MNL model without weighting the sample, and to correct the constants afterwards. Bierlaire et al.
(2008) show that this property does not apply to Generalised Extreme Value models (including Nested
Logit and Cross-Nested Logit models). They propose a simple estimator for these models that does not
require the weighting of the sample nor knowledge of the actual market shares.

8.4.3 Estimation of Hybrid Choice Models with Latent Variables

As mentioned in section 7.7.5, two approaches have been proposed to estimate hybrid choice models;
they differ in how the available information is used.

8.4.3.1 Sequential Estimation

In sequential estimation the problem is treated in two stages. First, the MIMIC model (Bollen 1989)
discussed in section 7.7.5.1 is solved to obtain parameter estimators for the equations relating the latent
variables to the explanatory variables and the perception indicators. Then, using these parameters
in equation (7.63), expected values for the latent variables of each individual and alternative are
obtained. In turn, these expected latent variable values are added to the set of typical variables of the
discrete choice model, as in equation (7.65), and their parameters estimated together with those of
the traditional variables in a second stage.

Although this method has the disadvantage of not using all the available information jointly, its
application is clear and simple, which is why it is the most used method in practice (Ashok et al.
2002; Vredin Johansson et al. 2005; Raveau et al. 2010). Furthermore, giving currently available
software, this method allows estimating more flexible hybrid models than the simultaneous approach
(see Yáñez et al. 2009). Nevertheless, it is argued that a potentially serious problem of the approach
is that it may result in biased estimators for the parameters involved (Bollen 1989); similarly, it has
been noted that the method tends to underestimate the parameters’ standard deviations, resulting
in estimators with a statistical significance higher than their real contribution to the model. This
notwithstanding, the problem can be solved by means of a statistical correction to the parameters’
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variances (Murphy and Topel 1985), but it is not an easy process. It is interesting to mention though,
that using both real and simulated data Raveau et al. (2010) estimated parameters which were totally
consistent in both cases, but were able to estimate substantially more flexible models than in the case
of simultaneous estimation due to current software limitations.

8.4.3.2 Simultaneous Estimation

In this approach the joint estimation is done by maximising the likelihood of the probability of
replicating the individual choices based on the representative utility proposed by the modeller; that
is, Prob (giq|Viq), where giq is equal to one if individual q chooses option Ai. Now, recall equation
(7.65) for the hybrid discrete choice model:

Viq =
∑

k

θik · xikq +
∑

l

βil · ηilq

where as usual, x are level-of-service attributes, η are the latent variables, to be estimated jointly with
the structural (7.63) and measurement (7.64) equations, and θ and β are parameters to be estimated.

From (7.65), the conditional probability above can be expressed in terms of the variables and
parameters of the discrete choice model. However, as the latent variables are not observed it is
necessary to integrate over their whole variation range, conditioning them by their explanatory
variables. Thus, the choice probability is given by (8.27), where h(·) is the probability density
function of the latent variables:

Prob
(
giq

∣∣ xikq , siqr , θik, βil , αilr

) =
∫

ηilq

Prob
(
giq

∣∣ xikq , ηilq , θik, βil

) · h
(
ηilq | siqr , αilr

) · dηilq

(8.27)

and s and α are the socio-economic variables (and their parameters) explaining the latent variables
in structural equation (7.63). However, to estimate the model it is necessary also to introduce the
information provided by the perception indicators y in the measurement equation (7.64), since oth-
erwise the model would not be identifiable. The indicators are not explanatory variables of the
model; instead, they are endogenous to the latent variables. This implies that the choice proba-
bility used during estimation is given by (8.28), where f (·) is the probability density function of
the indicators.

Prob
(
giq , yipq

∣∣ xikq, siqr , θik, βil , αilr , γi pq

)

=
∫

ηilq

Prob
(
giq

∣∣ xikq, ηilq , θik, βil

) · f
(
yipq | ηilq , γi pq

) · h
(
ηilq | siqr , αilr

) · dηilq
(8.28)

Once the functional form of the discrete choice model is defined, the simulated maximum likelihood
method can be used for estimation (Bolduc and Alvarez-Daziano 2009; Bolduc and Giroux 2005);
we will examine the method in depth in section 8.5.2, but as we will see there are difficult practical
problems in this case due to the particular form of the estimation problem (see Hess and Rose 2009).

Example 8.6 A recent urban mode choice study considered ten transport modes, both pure and
combined, for journey to work trips: car-driver, car-passenger, shared taxi, bus, underground, com-
binations of the previous four with underground and shared taxi/bus. For each available mode,

(continued)
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information was precisely measured about walking, waiting and in-vehicle time, trip cost, and num-
ber of transfers made. Regarding users’ information, socioeconomic variables such as age, education
level and income, were obtained. Respondents were also asked to evaluate different characteristics
of the modes, generating perception indicators to allow us including latent variables in the model.

Three latent variables were considered: accessibility/comfort, reliability and safety; the effects of
each were captured through seven perception indicators based on the evaluation of several aspects
of the pure modes: (i) safety regarding accidents, (ii) safety regarding theft, (iii) ease of access,
(iv) comfort during the trip, (v) availability of suitable information, (vi) possibility of calculat-
ing the travel time prior to the trip, and (vii) possibility of calculating the waiting time prior to
the trip.

Four explanatory variables were finally included in the MIMIC model: education level, age, sex,
and monthly income. The MIMIC model’s structural relations were studied using factor analysis
to guarantee their correct specification. Figure 8.3 illustrates the results of this process (Raveau
et al. 2010).

Safety

Accessibility
Comfort

Safety - Accidents

Suitable Information

Safety - Theft

Ease of Access 

Comfort

Calculate Travel Time 

Cal cul at e ai W t Ti me 

ediM um Income 

High School

High Income 

Sex 

Age 

Technical Studies 

College 
Reliability

Figure 8.3 Latent variables model relationships

The representative utility function included the number of transfers during the trip as well as the
different time variables obtained from the survey; in the case of travel time, systematic taste variations
according to the respondent’s sex were found (the variable Sex, takes the value one for males).
Travel cost was standardized by the individual’s wage rate. This was the best specification obtained
among several formulations studied. The model also included a complete set of alternative specific
constants (ASC).

The hybrid model was estimated both sequentially and simultaneously. Table 8.7 presents the
results together with those of an equivalent MNL model without latent variables (the ASC are
not reported, interested readers are referred to Raveau et al. 2010). The simultaneously estimated
parameters where obtained using an experimental hybrid choice model estimation software (Bolduc
and Giroux 2005).

The signs of all estimated parameters are consistent with microeconomic theory. When using the
simultaneous method, all variables are statistically significant at least at the 90% confidence level,
but not all variables are statistically significant in the sequential hybrid model or in the model without
latent variables; the waiting time variable is especially problematic.
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Table 8.7 Hybrid choice model estimation results

Without Latent Hybrid Model Hybrid Model
Parameter Variables Sequential Simultaneous

Cost/wage rate −0.027 (−8.13) −0.028 (−6.46) −0.032 (−7.32)
Travel time −0.033 (−4.82) −0.007 (−4.25) −0.006 (−4.67)
Sex interaction with time 0.030 (2.98) −0.001 (−2.91) −0.001 (−3.01)
Waiting time −0.009 (−0.53) −0.013 (−0.58) −0.015 (−1.69)
Walking time −0.016 (−1.80) −0.019 (−1.69) −0.022 (−2.89)
No. of transfers −1.110 (−8.20) −1.060 (−7.85) −1.102 (−8.21)
Accessibility-comfort − 0.590 (4.23) 0.622 (3.79)
Reliability − 0.339 (2.91) 0.441 (2.70)
Safety − 0.582 (2.01) 0.613 (1.87)
Log-likelihood −105,567.06 −55,578.85 −47,883.43

Both hybrid models show that men are slightly more sensitive to travel time than women, but
the model without latent variables shows precisely the opposite effect and the large difference (in
magnitude) of the marginal utility of travel time for women is certainly suspect. The ASC obtained for
the model without latent variables were more significant than those obtained for the hybrid models.
This is an expected result since the model without latent variables has fewer explanatory variables, and
so the constants must explain (as far as possible) the missing information according to the individual
choice patterns. Finally, it is important to mention the clear superiority (in terms of log-likelihood) of
the simultaneous model over the sequential model. In addition, the sequential model is significantly
better than the model without latent variables (i.e. a gain of 50,000 in log-likelihood for just three
degrees of freedom).

The example above serves to illustrate another view of endogeneity in latent variable modelling
(recalled the comment made in section 7.7.5.2). The ‘true’ model in the population has attributes,
such as safety and comfort, that are not measurable in practice, are probably relevant in decision
making, and are correlated with the observed variables (possibly mainly with cost). This makes the
observed variables correlated with the error term, i.e. they are endogenous, and hence their estimates
should not be consistent in a model without latent variables.

If these unobserved variables were identically and independently distributed (IID) among modes
and attributes (even with different means by mode), there would be no problem as the endogeneity
could be resolved using ASC. But if the unobserved variables are not IID among modes and individ-
uals, a solution is precisely to treat them as latent variables. And, as they cannot be observed, they
need to be measured indirectly by means of additional questions or ‘indicators’. In fact, as the latent
variables actually serve to correct the endogeneity problem caused by omitted variables, this could
explain the very large increase in fit shown in the example above.

8.4.4 Comparison of Non-nested Models

The likelihood ratio test outlined in section 8.4.1.2 requires testing a model against a parametric gen-
eralisation of itself, that is, it requires the model to be nested. Models with utility functions having
significantly different functional forms, or models based on different behavioural paradigms, cannot be
compared by this test.

It is easy to conceive of situations in which it would be useful to test a given model against another
which is not a parametric generalisation of itself. The following example, provided by Horowitz (1982),
is very illustrative.
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Example 8.7 Consider one model with a representative utility function specified as:

V = θ1x1 + θ2x2

and another with a representative utility function given by:

W = θ3x3x4

and assume we want to test both models to determine which explains the data best. Clearly, there is no
value of θ 3 that causes V and W to coincide for all values of θ1 and θ 2 and the attributes x. If both models
belong to the same general family, however, it is possible to construct a hybrid function; for example, in
our case we could form a model with a measured utility Z containing both V and W as special cases:

Z = θ1x1 + θ2x2 + θ3x3x4

and using a log-likelihood ratio tests both models could be compared against the hybrid; the first one
would correspond to the hypothesis θ 3 = 0 and the second to the hypotheses θ 1 = θ 2 = 0.

Horowitz (1982) discusses several other tests at length, including cases where the competing models
do not belong to the same general family. But recall that in the presence of a validation sample the issue
may be particularly easily resolved, as discussed by Gunn and Bates (1982).

8.5 Estimating the Multinomial Probit Model
Flexible choice models, such as Multinomial Probit (MNP) and Mixed Logit (ML) do not have a
closed form, so their choice probabilities are characterised by a multiple integral that is not easy to
solve efficiently.

8.5.1 Numerical Integration

The choice probability for a general random utility model may be expressed as follows:

Pi (θ, x) =
∫ ui

u1=−∞

∫ ui

u2=−∞
· · ·

∫ ∞

−∞
· · ·

∫ ui

u J =−∞
f (u) du J . . . du1 (8.29)

where f (u) is the joint distribution function of the option utilities. For example, in the case of the MNP
model we have:

f (u) = MVN(V, �) = [
(2π )J |�|]−1/2

exp

{
−1

2
(u − V)�−1(u − V)T

}
(8.30)

To integrate numerically, the region of integration must first be divided into a series of elements of
differential size. Then the area under the curve is approximated, for each element, as the equivalent mean
rectangle (given the element and its height); finally, the value of the integral is the sum of these areas.
Although the difficulty of the problem increases geometrically with the dimensionality of the integral,
in the majority of cases this dimensionality may be reduced for the MNP because:

(i) If a change of variables is made, expressing all elements of the integral as the difference between
the utility of the alternative under consideration and the others, this yields a vector û of just J − 1
components (that are also distributed Normal) given by:

ûk = uk − ui

. . . (assume we are evaluating Pi )

û J−1 = u J − ui
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Then the probability of choosing Ai will be:

Pi (û, �̂) = Prob{ûk < 0, ∀Ak ∈ A}
and the integral reduces to:

∫ 0

û1=−∞
· · ·

∫ 0

û J−1=−∞
(2π J−1|�̂|)−1/2 exp

{
−1

2
(û − V̂)�̂

−1
(û − V̂)T

}

with V̂ and �̂ the vector of means and the covariance matrix of the new variables.
(ii) Make a Choleski decomposition (see section 2.5.4.1), which in practical terms also reduces the inte-

gral dimensionality by one, because it allows us to separate the integrals and the first, corresponding
to Ai, is equal to one.

Numerical integration is the most accurate method to solve these problems, but it is only feasible
at a reasonable cost for problems with a maximum of four alternatives. It may also have problems of
(computer) approximation if one or more choice probabilities are close to zero. For these reasons it is
generally used only as a standard of comparison for the other methods.

8.5.2 Simulated Maximum Likelihood

8.5.2.1 The Basic Approach

Lerman and Manski (1981) originally proposed the evaluation of the MNP choice probability Pi (V, �)
by generating a number of draws U, from MVN (V, �), counting a success when Ui was the highest
value. For a sufficiently large number of draws, the proportion of successes approximates the choice
probability (see Figure 8.4). Thus, the method was theoretically simple but unfortunately had several
problems in practice:

(i) If the number of successes is equal to zero (an event that could occur in certain circumstances),
the log-likelihood tends to infinity and the method collapses. To solve this problem, Lerman and
Manski (1981) suggested replacing the ratio of the number of successes over the total number of

b

f(x)

0 a

f(x) dx
a

0∫

Figure 8.4 Solving an integral through Monte Carlo simulation



P1: TIX/XYZ P2: ABC

JWST054-08 JWST054-Ortuzar February 24, 2011 16:9 Printer Name: Yet to Come

294 Modelling Transport

draws (i.e. the estimate of the choice probability) by the quantity (Ni + 1)/(N + J) where Ni is the
number of successes, N the sample size (number of draws) and J the number of options. However,
this introduces bias (as the correct estimator of Pi is obviously Ni/N). The bias is small in large
problems but it could be considerable in more practical problems.

(ii) The relative error associated with this simulation method is inversely proportional to the square root
of the number of successes. This implies that many draws have to be made and it was computationally
too demanding for real-life problems in the past.

However, at the beginning of the 1990s this approach found renewed favour through a series of
advances in the simulation of multivariate processes in discrete choice models (Börsch-Supan and
Hajivassiliou 1993). There is also an alternative approach (McFadden 1989; Pakes and Pollard 1989)
which avoids evaluating the multiple integral by replacing the choice probability in the moments equation
by an unbiased simulator. This simulated moments method may be considered a precursor of the Mixed
Logit or error components model, the estimation of which we will review in section 8.6.

8.5.3 Advanced Techniques

Using advanced integration techniques based on Monte Carlo simulation developed by several au-
thors, Börsch-Supan and Hajivassiliou (1993) proposed the GHK simulator. This has the essential
property of producing unbiased simulated probabilities that lie strictly between zero and one, and
that are also continuous and differentiable functions of the model parameters. Furthermore, the com-
putational effort increases only linearly with the dimensionality of the integral and is independent of
the true probabilities. The simulator is based on recursively decreasing the problem dimension, and
for this it has to generate repetitions of a truncated uni-dimensional Normal distribution.

For the MNP model, the method started with the model reduced in one dimension after subtracting
the utility of the chosen option from the remaining utilities for each observation (i.e. U1 − Uc where
c is the chosen option); as we already mentioned, this transformed utility is also Normal distributed.
In mathematical terms the transformation simply consists of pre-multiplying the vector of utilities
by a matrix A, which is equal to minus the identity matrix and incorporating a column of ones in
the position corresponding to the chosen option. Then the resulting vector can be freed of the row
corresponding to the chosen alternative because it only contains zeros.

In this way, the transformed systematic utility is given by V∗ = AV, and the error term distributes
Normal with zero mean and covariance matrix given by M = A�A′. In turn, M can be decomposed
by applying the Choleski decomposition to produce a lower triangular matrix L and a superior matrix
L′, such that LL′ = M. The GHK simulator was developed to simulate the probability that a Normal
random variable lies within limits a and b:

u ∼ N
(
θ · x,

∑)
subject to a ≤ AU ≤ b

Instead of simulating for these variables, the process is performed for:

e ∼ N(0, I) subject to a∗ ≡ a − Aθx ≤ Le ≤ b∗ ≡ b − Aθx

and, thanks to the triangular structure of L, the restrictions are recursive:

e1 ∼ N(0, I) subject to a∗
1 ≤ l11e1 ≤ b∗

1 ⇔ a∗
1/ l11 ≤ e1 ≤ b∗

1/ l11

e2 ∼ N(0, I) subject to a∗
2 ≤ l21e1 + l22e2 ≤ b∗

2 ⇔ (a∗
2 − l21e1)/ l22 ≤ e2 ≤ (b∗

2 − l21e1)/ l22

etc.
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In this form the ei values can be generated sequentially with a univariate truncated simulator. Finally,
the random vector of interest, u

∗
, can be defined as:

u∗ = θx + A−1Le

This vector has a covariance matrix given by A−1 LL′A−1′ = A−1A�A′A−1′ = � and is subject,
by construction, to the condition a ≤ Au

∗ ≤ b. Börsch-Supan and Hajivassiliou (1993) show that
although the generation of draws of u

∗
is biased, the contribution of each observation to the likelihood

function (i.e. the probability that Au is between a and b) is simulated correctly by the probability that
a

∗ ≤ Le ≤ b
∗
.

To speed the process and reduce the variance of the choice probabilities that are eventually
calculated, it is possible to use antithetic draws (see the discussion by Train 2009). If we consider
that Piq can be approximated as the average of the probabilities (P0

iq and P1
iq ) corresponding to two

sets of repetitions of random variables, then it can be seen that:

Var (Piq) = Var

(
P0

iq + P1
iq

2

)
= 1

4
Var

(
P0

iq

) + 1

4
Var

(
P1

iq

) + 1

2
Cov

(
P0

iq , P1
iq

)

Thus, if both sets are independent then the covariance is zero, but if they are negatively correlated
then the covariance will be less than zero. This suggests the ideal situation of generating a series
of random numbers to calculate probabilities and then, as an antithetic, to use the same series but
with the opposite sign to generate the new set of probabilities. Not only does this achieve savings in
random number generation, but it also computes choice probabilities with a smaller variance.

In the case of the MNP, where we are interested in evaluating the probability that the utility of
the chosen option is higher than those of the remaining options in the choice set of each individual,
the lower limit a

∗
is equal to zero and the upper limit b

∗
is infinity. The likelihood function is, as

usual, the product of the probabilities of choosing the chosen option for each individual. Experimental
programs to estimate the MNP model using the GHK simulator have been written in GAUSS (Aptech
Systems 1994), and have been validated using simulated data (e.g. Munizaga et al. 2000).

The optimisation problem to solve in this case is not necessarily convex, so convergence to a
unique optimum is not guaranteed. For example, among the routines offered in GAUSS, the Newton-
Raphson method was the more robust in convergence terms (although somewhat slow) and the
fastest method was the Berndt-Hall-Hall-Hausman algorithm (Berndt et al. 1974), although it did not
always converge.

A practical issue of interest is that it is highly convenient to start by considering a very simple
model, where only the parameters of the representative utility function are estimated (even starting
with initial values taken from an MNL), and then re-estimate the model liberating the covariance
matrix parameters one by one. This is not a sequential estimation, because at the last iteration the
complete model is estimated, but a useful strategy to obtain the best initial point for what is in general
a very complex optimisation problem (among other things, the log-likelihood surface is relatively
flat and full of local optima).

8.6 Estimating the Mixed Logit Model
In section 7.6 we presented the Mixed Logit (ML) model and made reference to its two specifications,
as error components (EC) model (7.47) and as random coefficients (RC) model (7.48). However, we
also saw that both were formally equivalent (7.49) and the manner in which the modeller looks at the
phenomenon under study will decide which form is more appropriate in any given case. Interestingly,
there are also two general methods for estimating the model, the classical approach (using simulated
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maximum likelihood) and the Bayesian approach. Also, recall that there are two sets of parameters that
in principle can be estimated, the population parameters (i.e. the vector of means and the covariance
matrix associated with the mixing distribution), and the individual parameters which have a distribution
over the population conditional on the former.

First we present the classical approach, incorporating the latest developments in the field of estimation
via simulated maximum likelihood methods (Bhat 2001; Train 2009), including the framework by
which population distribution parameters combined with information from individual choices can lead
to consistent estimates of individual marginal utilities (Revelt and Train 2000). Secondly, we present the
hierarchical Bayes estimation procedure, which has seen remarkable development over the last decade
(Allenby and Rossi 1999; Sawtooth Software 1999; Huber and Train 2001; Andrews et al 2002; Sillano
and Ortúzar 2005; Godoy and Ortúzar 2008).

8.6.1 Classical Estimation

By classical estimation we refer to the maximum likelihood procedure commonly used to estimate
flexible discrete choice models (Train 2009).

8.6.1.1 Estimation of Population Parameters

Consider the most general case, of having available a sequence of T choices per individual (i.e. as in
stated choice or panel data), denoted by cq = (c1q,. . ., cTq), where ctq = i if Uiqt > Ujqt ∀ Aj �= Ai. In
a typical ML model, the conditional probability of observing an individual q stating a sequence cq of
choices, given fixed values for the model parameters θ̄q , is given by a product of Logit functions:

�(cq |θq ) =
T∏

t=1

exp(λ · θ̄q · xiqt)
J∑

j=1

exp(λ · θ̄q · xjqt)

(8.31)

where λ is the MNL’s scale factor that has to be normalised as usual.
Now since θq is unknown, the unconditional probability of choice is given by the integration of (8.31)

weighted by the density distribution of θq over the population:

Pq (cq ) =
∫

�(cq |θq ) f (θq |b,�) dθq (8.32)

where f (·) is the multivariate distribution of θq over the sampled population. If covariance terms are not
specified, � is a diagonal matrix. Note that the majority of applications use diagonal matrices as results
seem not to be affected strongly by this assumption (Sillano and Ortúzar 2005).

The log-likelihood function in b and � is:

l(b,�) =
Q∑

q=1

log Pq (cq ) (8.33)

but as the probabilities Pq do not have a closed form they are approximated through simulation (SPq),
where draws are taken from the mixing distribution f (·) weighted by the Logit probability, and then
averaged up (McFadden and Train 2000):

SPq

(
cqt | f (•|b,�)

) = 1

R

∑

r

⎛

⎜⎜⎜⎝
∏

t

exp (θr
q · xiqt)∑

A j ∈A(q)

exp (θr
q · xjqt)

⎞

⎟⎟⎟⎠ (8.34)
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The issue of how many draws R and how should they be generated to improve the efficiency of the
simulation is discussed below (Bhat 2003; Hess et al. 2006). The simulated log-likelihood function is
given by:

sl(b,�) =
Q∑

q=1

log SPq (cq ) (8.35)

Under regularity conditions this estimator is consistent and asymptotically Normal; furthermore,
when the number of repetitions grows more rapidly than the square root of the number of observations,
the estimator is asymptotically equivalent to the maximum likelihood estimator (Hajivassiliou and Ruud
1994). Other useful properties of the estimator are being twice differentiable (which helps in the numerical
search of the optimum) and being strictly positive, so the log-likelihood function is always defined. Note
that the same procedure would be followed if the ML had another Logit kernel, say a NL function or any
more general and appropriate GEV model, instead of the MNL.

Different forms of ‘smart’ drawing techniques (i.e. Halton or other low discrepancy sequences,
antithetic draws, quasi-random sampling, etc.) can be used to reduce the simulation variance and to
improve the efficiency of the estimation (Hajivasiliou and Ruud 1994, Bhat 2003; Hensher and Greene
2003); we will refer briefly to this issue in section 8.6.4. Train (1998) presents a good example of the use
of this model and offers an experimental estimation code, written in GAUSS, which can be downloaded
from his web page. Another piece of free software available for estimating the ML is Biogeme (Bierlaire
2009), which offers many capabilities and allows the estimation of several other discrete choice models.
Finally, new releases of the leading packages ALOGIT and LIMDEP include modules to estimate ML
models, and these are several times faster than the more experimental codes available, definitely making
the model a practical proposition.

8.6.1.2 Estimating Individual Parameters

Numerical procedures are used to find the maximum likelihood estimators for b and � above.
These parameters define a frequency distribution for the θq over the population. To obtain actual
point estimates for each θq a second procedure, described originally by Revelt and Train (2000), is
required as follows.

The conditional density h(θq |cq, b, �) of any θq given a sequence of Tq choices cq and the
population parameters b and �, may be expressed by Bayes’ rule as:

h(θq |cq , b, �) = Pq (cq |θq ) f (θq |b, �)

Pn(cq |b,�)
(8.36)

The conditional expectations of θq result from integrating over its domain. This integral can be
approximated by simulation, averaging weighted draws θr

q from the population density function
f (θq |b, �). The simulated expectations SE of the individual parameters are then given by:

SE(θq |cq , b,�) =

R∑

r=1

θr
nPq (cq |θr

n)

R∑

r=1

Pq (cq |θr
n)

(8.37)

Revelt and Train (2000) also proposed, but did not apply, an alternative simulation method
to condition individual level choices. Consider the expression for h(θq |cq , b, �) in (8.36). The

(continued)
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denominator is a constant value since it does not involve θq , so a proportionality relation can be
established as:

h(θq | cq , b, �) ∝ Pq (cq |θq ) f (θq |b,�) (8.38)

Draws from the posterior h(θq |cq , b,�) can then be obtained using the Metropolis-Hastings al-
gorithm (Chib and Greenberg 1995), with successive iterations improving the fit of the θq to the
observed individual choices. During this process the prior f (θq |b, �), i.e. the parameter distribution
obtained by maximum likelihood, remains fixed; it provides information about the population distri-
bution of θq . After a sufficient number of burn-out iterations to ensure that a steady state has been
reached (typically a few thousands, Kass et al. 1998; Godoy and Ortúzar 2008), only one every m of
the sampled values generated is stored to avoid potential correlation among them; m is a result of the
analysis of convergence (Raftery and Lewis 1992).

From these values a sampling distribution for h(θq |cq , b, �) can be built, and inferences about the
mean and standard deviation values can be obtained (Godoy and Ortúzar 2008). Sillano and Ortúzar
(2005) favoured this latter procedure for implementation purposes and used WinBUGS (Spiegelhalter
et al. 2001), a software package that can also be freely downloaded from the web.

Thus, the outcome of the estimation process is two sets of parameters: b and �, the popula-
tion parameters obtained by simulated maximum likelihood and θq , the individual parameters for
q = 1, . . . , Q, estimated via conditioning the observed individual choices on the estimated popula-
tion parameters. It is surprising that the large majority of applications of ML models stop short of
reaching the full capability of the model, by not going to this second stage.

8.6.2 Bayesian Estimation

Use of the Bayesian statistic paradigm for estimating the ML model gained much interest at the
beginning of the century (Train 2001; Huber and Train 2001; Sawtooth Software 1999; Sillano
and Ortúzar 2005) but has surprisingly lost appeal in recent years, together with the possibility of
estimating individual rather than just population parameters. In fact, the ability to estimate individual
part-worths appeared initially as its main appeal, but the estimation procedure has subsequently shown
further advantages (Godoy and Ortúzar 2008). The Bayesian approach considers the parameters as
stochastic variables so applying Bayes’ rule of conditional probability, a posterior distribution for θq

conditional on observed data and prior beliefs about these parameters can be estimated; let us denote
this distribution by π (b,�|cq ).

Now, let ψ (b,�) represent the analyst’s prior knowledge about the distribution of b and �;
typically a Normal distribution is used for the means b and an Inverted Wishart distribution for the
variances in � (Allenby 1997). Then, consider a likelihood function for the observed sequence of
choices conditional on fixed values of b and �. By Bayes’ rule, the posterior distribution for θq , b
and � must be proportional to:

Q∏

q=1

�(cq |θq ) f (θq |b, �) ψ(b,�) (8.39)

Although it is possible to draw directly from π (b,�|cq ) with the Metropolis-Hastings (MH)
algorithm, this would be computationally very slow. Indeed, it would be necessary to calculate (8.39)
at every iteration of the MH algorithm but the choice probability inside is an integral without a
closed form resolution and must be approximated through simulation; thus, an iteration of the MH
algorithm would require simulation for each individual q. That could be time consuming and affect
the properties of the resulting estimator.
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Drawing from π (b,�|cq ) becomes fast and simple if each θq is considered to be a parameter
along with b and �, and Gibbs sampling is used for the three sets of parameters for each individual.
The posterior distribution in this case is:

π (b,�|cq ) ∝
Q∏

q=1

�(cq |θq ) f (θq |b, �) ψ(b,�) (8.40)

The sequential procedure simulates each set of parameters from the following conditional posterior
distributions:

� The conditional posterior for b is π (b|�, θq ∀q) and this distributes N (θ̄,�|Q) where
θ̄ = ∑

q
θq/Q.

� The conditional posterior for � is π (�|b,θq ∀q) and this distributes inverted Wishart

I W
(

K + Q, K ·J+Q·S̄
K+Q

)
where S̄ = ∑

q

(
θq − b

) (
θq − b

)T
/Q.

� The conditional posterior for θq is given by π (b,�|cq ) ∝
Q∏

q=1
�(cq |θq ) f (θq |b,�).

Then, rth iteration of the Gibbs sampler consists on the following steps: (1) Draw br from

N (θ̄
r−1

,�|Q); (2) Draw �r from IW
(

K + Q, K ·J+Q·S̄r−1

K+Q

)
; (3) For each individual q draw θr

q

using one iteration of the MH algorithm, starting from the draw at the previous iteration and using
the Normal density f (θq |b,�). These three steps are repeated many times. The resulting values
converge to draws from the joint posterior of b, � and θq ∀q . Once the converged draws from the
posterior are obtained, the mean and standard deviation of the draws can be calculated to obtain
estimates and standard errors of the parameters.

Train (2001) discusses how the posterior means from the Bayesian estimation can be analysed
from a classical perspective. This is thanks to the Bernstein-von Mises theorem which states that,
asymptotically, the posterior distribution of a Bayesian estimator converges to a Normal distribution
which is the same as the asymptotic distribution of the maximum likelihood estimator (e.g. the
standard deviation of the posterior distribution of the Bayesian estimator can be taken as the classical
standard error of a maximum likelihood estimator). This means that classical statistical analysis (for
example the construction of t-statistics to analyse the significance of an estimated parameter) can be
performed on Bayesian estimators without compromising the interpretation of the results.

Bayesian estimation has certain advantages over the classical approach:

� No numerical maximisation routines are necessary; rather, draws from the posterior distribution
are taken until convergence is achieved.

� As the number of attributes considered in the utility expression grows, the number of elements in
the covariance matrix � rises exponentially increasing computation time in the classical approach.
However, the Bayesian method can handle a full covariance matrix almost as easily as a restricted
one, with computation time rising just as the number of parameters.

� Identification issues are related with the lack of orthogonality in the effects of the random variables
and not with the number of independent equations representing these. This means that an identifi-
cation problem may rise when the effect of a certain variable in the structural utility formulation is
confused with the effect of another variable, but not because of insufficient sample points.

(continued)
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The Bayesian estimation procedure is available as an experimental code on Ken Train’s website,
and can be also implemented in WinBUGS. This package incorporates Gibbs sampling protocols
and the Metropolis-Hastings sampling algorithm but lacks a convergence analysis that has to be
performed separately (Godoy and Ortúzar 2008 provide useful advice on how to do this properly).

Example 8.8 Stated preference data on residential location choice considered the following attributes:
travel time to work (by the parents), travel time to study (by the children), rent or mortgage of the flat, and
a variable related to atmospheric pollution in the zone (days of alert, see Ortúzar and Rodrı́guez 2002).
Seventy-five families were asked to express their location preferences for a flat of otherwise exactly the
same characteristics, finally yielding 648 usable responses (i.e. some observations were discarded in the
data cleaning process). MNL and ML models were estimated with this data, and Table 8.8 shows the
results for the classical estimation of population parameters in the ML (Sillano and Ortúzar 2005).

Table 8.8 Model results for location choice analysis

Attributes Parameters (t-test)

MNL ML1

Travel time to work Mean −0.00417 (−10.6) −0.009924 (−7.9)
Std. Dev. 0.005734 (4.5)

Travel time to study Mean −0.00250 (−7.8) −0.005769 (−8.2)
Std. Dev. 0.002656 (2.7)

Days of alert (environment) Mean −0.27370 (−11.0) −0.478625 (−6.8)
Std. Dev. 0.405665 (4.7)

Rent/Mortgage Mean −0.02641 (−12.5) −0.057396 (−7.0)
Std. Dev. 0.047482 (6.2)

Inertia Mean 0.89690 (5.9) 1.053245 (5.5)
Log-likelihood −849.6 −747.0

In model ML1, the nine choices from each household were considered, correctly, as repeated choice
observations and it was assumed that the parameters distributed IID Normal; the Inertia variable (a
dummy which took the value one if the household ranked their current location first) received a non
significant standard deviation, and for that reason the model was re-estimated with Inertia as a fixed
parameter for all individuals.

A number of issues are important from this table. First, although the MNL model would be judged
adequate by any seasoned analyst, there is a notable increase in log-likelihood (more than a hundred
points) for the addition of only four parameters in ML1; a large part of this increase is due to the
proper consideration of repeated observations in ML1 (further evidence to this fact has already been
discussed above).

Second, note the substantial increase in parameter values from the MNL model to ML1; this (expected)
result is due to the ‘lurking’ scale factor λ corresponding to the IID EV1 error in both models, and it
is illustrative to discuss it. The MNL parameters do not vary among individuals (when it is clear from
ML1 that this should be the case); so as the MNL EV1 error is picking up this, its variance is high and,
correspondingly, the MNL scale factor is small. Conversely, the ML EV1 error only has to pick up other,
remaining, sources of error so its variance is low, and its scale factor large.

Third, the estimated standard deviations are not only significant but relatively large in magnitude (in
comparison to the mean parameter estimates). So, the portion of the population for which the model
would assign an incorrect parameter sign can be estimated as the cumulative mass function of the
frequency distribution of the parameter evaluated at zero (i.e. for supposedly negative parameters, the
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area under the frequency curve between zero and positive infinity). In this case, ML1 would account for
4% of the population having positive Time-to-work parameters, 1% of the population having positive
Time-to-study parameters, 12% of the population having positive Days-of-alert parameters, and 11% of
the population having positive Rent parameters. This problem may be overcome in various ways, for
example, using a log-normal distribution (effectively constraining the parameters to be negative), but
this has a series of undesirable properties as we will discuss in more depth below.

Sillano and Ortúzar (2005) went on to estimate individual parameters (see for example Figure 8.5, for
Time-to-work and Days-of-alert) finding that the above expected proportions were overestimated (e.g.
none in the first case and only three out of 75 households in the second); furthermore, the individual
parameters for the offending households were not significantly different from zero; hence they could be
considered as null values for those households, and the sign assumptions could be maintained.

A final issue relating to Example 8.8 is that while the distribution in Figure 8.5a looks acceptably
like a Normal distribution (given the small sample size), that in Figure 8.5b certainly does not. This
means that a certain amount of error must be expected when analysing a discrete set of values using a
continuous distribution.
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8.6.3 Choice of a Mixing Distribution

The most popular distribution in ML applications has been the Normal, but some analysts have claimed
that the fact it is unbounded imposes unacceptable conditions on the signs of the estimated parameters.
This a debatable issue, as precisely because it is unbounded it may help reveal ‘outliers’ or observations
which are plainly wrong (in some sense, for example badly coded, or not consistent with the compensatory
choice paradigm, see Sælensminde 1999). Furthermore, as we just saw in the example above, even if a
proportion of individuals would appear to receive a wrong sign given the estimated population parameters,
when we move to the stage of estimating individual parameters the number of cases in this condition
might turn to be (i) very low and (ii) their parameters are not significantly different from zero.

An extensive literature exists on this subject but the question is still open. Recent advances are the
work of Train and Sonnier (2005) on bounded distributions of correlated part-worths; that of Dong
and Koppelman (2004) and Hess et al. (2007), on continuous vs. discrete mixing distributions, and
Fosgerau and Bierlaire (2007) on semi-nonparametric (SNP) tests. Fosgearu and Hess (2010) make a
useful comparison of different approaches.

8.6.3.1 Alternative Mixing Distributions

Mixing distributions can be split into two main groups (Hess et al. 2005b): those with fixed bounds,
such as the Lognormal, Gamma and Rayleigh, and those with bounds that are estimated during
model fitting, such as the Uniform, Triangular and, more recently, the Johnson Sβ , which has many
interesting properties (Train and Sonnier 2005). In ML model estimation, it is important to choose
the correct distribution to reproduce the heterogeneity underlying population preferences.

In real cases almost all attributes have associated a parameter which is logically bounded, either
because it can be only positive or negative, or because it cannot be unboundedly large. Train and
Sonnier (2005) formulate ML models with partworths that are transformations of normally distributed
(latent) terms, where the transformation induces bounds. The Johnson Sβ distribution has several
advantages in this sense; its density can be shaped like a Lognormal with an upper bound and thinner
tails below the bound, but it is more flexible as it can also be shaped like a plateau with a fairly flat
area between drop-offs on each side, and can even be bi-modal.

When a lower bound other than zero is specified, the distribution is useful for attributes that some
people like and others dislike but for which there is a limit on how much the person values having
or avoiding it. Even more interesting, the bounds of the Johnson Sβ distribution can be estimated
as parameters, rather than specified by the modeller. However, this last property requires a more
complex model estimation process and identification becomes an issue (as the difference between
upper and lower bounds is closely related to the variance of the latent Normal term). For these reasons
and in some cases also depending if it is practical or theoretical work, some analysts prefer to use
simpler and more robust forms such as the Triangular or Rayleigh distributions (Hensher 2006).

Finally, a number of applications have also looked at incorporating deterministic heterogeneity
components into the distribution of the random terms, either in the mean or the standard deviation,
hence allowing the modeller to relate the variation of random coefficients to individual-specific
observed attributes i.e. akin to what we called systematic taste variations in equation (8.17). As
an example, in a standard framework we would possibly use θ ∼ N(b, �), but here we would
additionally specify b ∼ f(s) and � ∼ g(s), making the parameters of the distribution a function of
socio-demographic variables s. This can be useful either in a random coefficients as well as error
components context; a recent example of such an approach is given by Greene et al. (2006).
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8.6.3.2 Discrete Mixtures and Latent Class Modelling

Dong and Koppelman (2004) represented heterogeneity with a discrete distribution with a finite
number of supports; in this case f (θ) is replaced by a mass-point distribution with weight at mass
point m given by πm. Then, by replacing the integration in (8.32) with a sum over a finite number of
mass points M, the ML model can be expressed as:

Piq =
M∑

m=1

exp(θm
i xiq )

∑

A j ∈A(q)

exp(θm
j x jq )

· πm (8.41)

so, it is a weighted average of Logit probabilities computed at each possible value of θ (the weights
are the probabilities of θ to be at each value θm), and can be estimated by maximum likelihood without
simulation. Using simulated data they found that model (8.41) was inferior to the conventional ML
whether the true distribution was continuous or discrete; furthermore, they found that the model
estimates could be misleading if the true distribution was, in fact, continuous; however, their model
allowed the identification of heterogeneity which was not discovered by the continuous version of
the ML.

Hess et al. (2007) generalised this approach by letting the MNL probability be any more general
GEV function; they divided the set θ into two parts, one, θ̄, containing deterministic parameters
and another, θ̂, with K random parameters with a discrete distribution; within this set, θ̂k has mk

mass points, θ̂
n

k , n = 1, . . . , mk , each of them associated with a probability πn
k , where the following

conditions must be imposed:

0 ≤ πn
k ≤ 1, k = 1, . . . , K ; n = 1, . . . , mk and

mk∑

n=1

π n
k = 1, k = 1, . . . , K (8.42)

They discuss several extensions that offer more modelling flexibility, but note that some may lead
to parameter over-specification, impairing estimation. They also note that the non-concavity of the
log-likelihood function in this case does not allow the identification of a global maximum, even for
discrete mixtures of the simple MNL model; thus, they advise the performance of several estimations
from various starting points and recommend, as good practice, the use of staring values different
from 0 or 1 for the πn

k parameters.
If the class allocations are linked to socio-demographic variables, we obtain a latent class (LC)

model (see for example Hess et al. 2009). In an LC model the heterogeneity in tastes across respon-
dents is accommodated by making use of separate classes with different values for the vector of taste
coefficients θ. Specifically, in an LC model with M classes, we would have M instances of the vector
θ, say θ1 to θM, with a possibility of some of the elements in θ staying constant across some of
the classes.

An LC model uses a probabilistic class allocation model, where respondent q belongs to class m
with probability πq,m and where 0 ≤ π q,m ≤ 1, for all m and �m π q,m = 1. LC models are generally
specified with an underlying MNL model, but can easily be adapted for more general underlying
structures such as Nested Logit (NL) or Cross-Nested Logit (CNL).

Let Piq(θm) give the probability of respondent q choosing alternative Ai conditional on her falling
into class m. The unconditional (on m) choice probability for alternative Ai and respondent q is then
given by:

Pq (Ai |θ1, . . . ,θM ) =
M∑

m=1

πq,m Piq(θm) (8.43)

(continued)
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i.e. the weighted sum of choice probabilities across the M classes, with the class allocation probabil-
ities being used as weights. Unlike with the ML model, no simulation is required in the estimation
of LC models.

This specification can easily be extended to a situation with multiple choices per respondent,
where, when making the same assumption of intra-respondent homogeneity as in the Revelt and
Train (1998) work for continuous ML, we obtain:

Pq (Ai |θ1, . . . , θM ) =
M∑

m=1

πq,m

⎛

⎝
Tq∏

t=1

Piqt(θm)

⎞

⎠ (8.44)

In the most basic version of an LC model, the class allocation probabilities are constant across
respondents such that π q,m = πm for all q. The resulting model then corresponds to a discrete mixture
analogue to the ML model, as discussed above.

The real flexibility, however, arises when the class allocation probabilities are not constant across
respondents but a class allocation model is used to link these probabilities to characteristics of the
respondents. Typically, these characteristics would take the form of socio-demographic variables
such as income, age and employment status. With sq giving the concerned vector of characteristics
for respondent q, and with the class allocation model taking on a MNL form, the probability of
respondent q falling into class m would be given by:

πq,m = exp (δm + g(βm, sq ))
∑M

l=1
exp (δl + g(βl , sq ))

(8.45)

where δm is a class-specific constant, βm a vector of parameters to be estimated and g(·) gives the
functional form of the utility function for the class allocation model.

Here a major difference arises between class allocation models and choice models. In a choice
model, the attributes vary across alternatives while the estimated coefficients (with a few exceptions)
stay constant across alternatives. In a class allocation model, the attributes normally stay constant
across classes while the parameters vary across classes. This allows the model to allocate respondents
to different classes depending on their socio-demographic characteristics. For example, a situation
where high income and low income respondents are allocated differently to two classes could be
represented with a positive income coefficient for the first class and a negative income coefficient for
the second class. Finally, we can mention that it is possible to combine latent class and ML structures,
leading to latent class models with some continuous elements, as for example done by Walker and
Li (2007).

To end this part, we note the work of Fosgerau and Bierlaire (2007) who propose the use of semi-
nonparametric (SNP) techniques to test if a given mixing distribution is appropriate. The SNP models
offer the advantage, over conventional ML, that the structure does not need to be specified a priori.
In particular, they introduce parametric assumptions like the specification of some relationship to be
a linear combination of independent variables while perhaps the errors remain nonparametric. SNP
models are not based on local approximations; instead, they use series to approximate functions such
as densities. The number of SNP terms must be chosen in advance; increasing this number makes
the model more general but increases the demand on the data. Fosgearu and Bierlaire (2007) found
that two or three terms give a large degree of flexibility, which may be sufficient for most purposes,
while one SNP term is not always sufficient to reject a false null hypothesis.
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8.6.4 Random and Quasi Random Numbers

The multidimensional integral (8.31) has to be solved via simulated maximum likelihood, and this
can be very time consuming in real large-scale model estimation. As a consequence, several methods
have been devised to help in this task including the use of cheaper (in time) quasi Monte Carlo
approaches, based on the generation of low discrepancy or quasi-random sequences (see Niederreiter
1992) as they allow more accurate integration approximations than classical Monte Carlo samplings
(Train 2009).

Figure 8.6a shows the uneven coverage of the space of integration by the typical pseudo-random
numbers generated automatically by computers (300 points in two dimensions). Figure 8.6b shows
the much better coverage of Halton numbers, one of the early sequences used by researchers, in
this case.
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Figure 8.6 Pseudo-random and Halton coverage in two dimensions

(continued)
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In fact, it has been reported that only 125 Halton numbers can provide the equivalent coverage of 1000
pseudo-random numbers (see Train 2009). Now, although Halton sequences ruled for a while, it was
soon shown that their coverage of the integration domain rapidly deteriorated for higher integration
dimensions (Silva 2002); for example, Figure 8.7a shows the Halton sequence pattern for an example
with several dimensions and this should be compared with the Sobol sequence pattern for the same
number of dimensions (Figure 8.7b).
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Figure 8.7 Halton and Sobol coverage in many dimensions

This fostered a search for new sequences, including work on scrambled and shuffled Halton se-
quences (Bhat 2003), Sobol sequences (shown to be superior to the former by Silva 2002) and, more
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recently, Modified Latin Hypercube sampling (Hess et al., 2006), which appears to be the preferred
method today.

A related but different approach has been taken by Bastin et al. (2006) who capitalise on the
desirable aspects of pure Monte Carlo techniques while significantly improving their efficiency.
They proposed a new algorithm for stochastic programming based on ‘trust-region’ techniques (a
well-known method in nonlinear non concave optimisation, which proved reliable and efficient for
both constrained and unconstrained problems). They also allowed for an adaptive variation of the
number of draws used in successive iterations, yielding an algorithm with comparable execution time
to existing methods for similar results.

Numerical experimentation suggests that the choice of optimisation framework is of crucial im-
portance; also, that the strategy of using a variable number of draws in the estimation of choice
probabilities gives significant gains in optimisation time (compared with the usual approach of using
fixed draws), and additional information on the closeness between the Monte Carlo approximation
and the true function, while not suffering of non-uniform coverage in high integration dimensions.
However, the field is still young in this sense and many research directions remain wide open.

8.6.5 Estimation of Panel Data Models

As we saw in Chapter 7, panel data offer major advantages over cross-sectional data; in particular,
having repeated observations from the same individual generally allows for more accurate mea-
surement of changes in individual mobility. Furthermore, as we commented in section 7.7.4.1, the
inclusion of intra-respondent heterogeneity, which is only possible if there are multiple observations
per individual, leads to significant improvements in model fit.

Given the potential of panel data structures the challenge is to make the most of such potential
capturing as many effects as possible. In this sense, the most general formulation for panel data model
estimation is that proposed by Hess and Rose (2009) in equation (7.55); this considers not only inter-
respondent heterogeneity as in the more classical specification (7.54), but also intra-respondent
heterogeneity of tastes. Hess and Train (2010) consider various alternatives to estimate models
under this complex formulation, and note that even with state-of-the art computers and optimization
techniques the full generality afforded by the formulation may lead to very long estimation times.

Surprisingly, even this general panel formulation (that considers two dimensions of heterogeneity)
accommodates heterogeneity only via the estimation of random parameters. Thus, random param-
eters θq account also for correlation in tastes. However, as we commented in section 7.7.4.1, there
might be extra correlation across multiple observations besides the effect of the random parameters.
For example, the inclusion of pure panel component errors may also account for correlation in the
preferences for alternatives, as proven by recent work by Yáñez et al. (2010b). They analysed the
impact of panel sample size and repeated observations on both the model capability to reproduce
the true phenomenon and the probability to capture different kinds of heterogeneity among obser-
vations. They found that their best model accommodated inter-respondent heterogeneity through
random parameters and intra-respondent heterogeneity through pure-error components.

For practical purposes, another important issue regarding panel correlation has to do with model
estimation using available software. The usual way to incorporate panel correlation under the pure
error-components approach consists of adding an error component to (J − 1) of the available
alternatives; otherwise, for identifiability reasons the model cannot be estimated (Walker 2001).
However, this methodology may lead to biased results as it requires choosing, arbitrarily, a single

(continued)
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reference alternative for the error-component (i.e. one not having a pure panel error-component) in
all cases. The reason is that this is equivalent to assuming that this reference alternative has the same
alternative specific constant (ASC) for all observations, while the remaining ones have different ASC
values among observations. Moreover, even using the best recommended normalisation (i.e. selecting
as error-component reference alternative that option obtaining the minimum variance in a model run
without considering identifiability, see section 7.6.3.1), this approach leads to a heteroskesdastic
Nested Logit model, as it correlates the (J − 1) alternatives including error components.

One way to avoid this problem is to modify this traditional estimation method by randomly
selecting the error-component reference alternative for each individual (or each observation in the
case of allowing for intra-respondent heterogeneity).

For this we need first to choose randomly and exogenously (i.e. before model estimation) an
error-component reference alternative for each individual (or for each observation in the case of
needing to accommodate intra-respondent heterogeneity). Then, we need to create J binary variables
that take the value one only for the error-component reference alternative in either case of respondent
heterogeneity. Finally, the pure error-component term is included in the utility function of each
alternative multiplied by the corresponding binary variable.

Example 8.9 Consider the following utility function:

Uiqd = αi +
∑

j

Xd
iqk · θiqk + ζiqd

where the error component has the form ζiqd = υqd + εiqd. Here εiqd is a random term distributed IID
EV1, as usual, and υqd is a random effect which may be specific to the individual (i.e. just υq ), in
which case we assume panel correlation as inter-respondent heterogeneity. But we could also make it
variable among observations (υqd), in which case we would assume intra-respondent heterogeneity.

As the θ vector has means θik and standard deviations σiqk the utility function can be rewritten as:

Uiqd = (
αi + υqd

) +
∑

k

(
θik + σiqk

)
Xd

iqk + εiqd

where Xd
iqk is the kth level-of-service attribute of option Ai for individual q on day d. This equation

shows that both random coefficients and error components are separable. Indeed, the random coeffi-
cients allow tastes to vary across respondents in the sample, but stay constant across observations for
the same respondent (Revelt and Train 1998). On the other hand, the ‘pure’ error components (which
also capture heterogeneity) affect the values of the alternative specific constants (ASC). Thus, the
error component υqd has the power to increase/decrease the relative weight of the ASC in relation to
the explanatory variables in the utility function.

Now, confounding effects are implicit in the ML structure as we saw in section 7.6.2 and should
not strictly depend on whether they do or do not account for random tastes. On the contrary, Cherchi
and Ortúzar (2008b) have shown that decomposing randomness in as many components as possible
helps to reveal the confounding effects.

8.7 Modelling with Stated-Preference Data
In Chapter 3 we discussed the experimental design and the data collection process of stated choice data
in some detail; we made scant reference to traditional conjoint analysis (rank and rating data) and left
contingent valuation for Chapter 15. In section 8.3 we noted that stated preference experiments could be
instrumental in helping to decide the most appropriate functional form to model a given choice situation.
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In this section we will first briefly review how this can be done and then we will proceed to discuss what
changes are introduced to discrete choice modelling estimation by the use of stated-preference data.

8.7.1 Identifying Functional Form

The travel-demand model estimation literature is heavily oriented towards the problem of estimating a set
of model parameters given a functional specification; only occasionally are alternative model structures
tested. The favoured functional forms are those which can be deduced from (economic) first principles
and also satisfy the condition of being easily estimable; for this reason the vast majority of studies has
considered linear (in the parameters) utility functions. A notable exception to this rule is the increasing
use of transformations to search for functional form but, as we saw in section 8.3, in these cases the
computational problem of model estimation is greatly increased; in fact, estimation methods have only
been developed for the simpler MNL model in this case.

In contrast, the literature in the area of psychological measurement procedures that use laboratory
or interview data, has been deeply concerned with questions of functional form for a long time (see
Louviere 1988a). In these studies subjects are asked to make judgements about hypothetical alternatives;
for example, in a mode choice context they may be asked to select the preferred alternative from a
hypothetical set, or to rank the options, or to associate a level of utility to each of them.

Because an individual can be asked to make a fairly large number of judgements in a single interview,
the experiment designer can explore, for example, the effects on response of changes to one variable
while keeping all the others constant. This allows a much more detailed assessment of functional form,
since the analyst can almost trace the shape of response with respect to each variable. A very interesting
finding of such studies is that for any particular decision, functional forms tend to be fairly stable across
the population even though the values of their parameters can vary widely (see Meyer et al. 1978).

Let us assume that travel behaviour is influenced by a set of independent factors which may be
quantitative or qualitative in nature. Following Lerman and Louviere (1978), let us denote the set of G
quantitative factors for option Ai by Di = {Dig} and the set of H qualitative factors by Ei = {Ejh}. The
total number of factors is K = G + H, and the entire attribute vector Xi = {Xki} is simply Di and Ei.

Let us also assume that each factor has associated with it a certain value (which may be obtained by
some or other measurement process) and that the utility of this quantity as perceived by the individual is
uki = fki (Xki), where f is a perception function.

Consider now an experimental context where we observe the response to a combination of (D1i, . . .,
DGi; E1i, . . ., EHi) on a psychological measurement scale. If we assume that this response measure is
connected to the utility Ui of option Ai by some algebraic combination rule, we can write:

Ui = pi (u1i , . . . , uK i ) (8.46)

Finally if we postulate that the vector of responses U = {Ui} is connected to non-experimental (i.e.
observed) behaviour B by another algebraic function, we can write:

B = w(U) (8.47)

and by substituting, we get:

B = w{p[ f (D, E)]} (8.48)

As this is too general a formulation for modelling purposes, in practical applications one must make
explicit assumptions about the functions f, p and w, and deduce their consequences.

Now, for the purposes of developing an appropriate functional form, the critical component of this
approach is the specification of equation (8.46). Alternative forms, such as multiplicative or linear cases,
may be tested and selected by means of analysis of variance; however, in order to successfully apply
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it two conditions must be satisfied: first, the pattern of statistical significance of the utility responses
to various combinations of the independent variables must be of a specific nature in order to permit
diagnosis or testing of model form; second, corresponding graphical evidence must support the diagnosis
or test.

Example 8.10 Consider a residential location model where individuals are assumed to trade off the total
cost of travel (including travel times) with house price, independently of one another, i.e. it is assumed
that they combine the effects of the two variables linearly. This hypothesis may be tested directly by an
analysis of variance. Suppressing the option index i for simplicity, we can write:

Umn = U 1
m + U 2

n + εmn

where U k
l are utility values assigned to the lth level of the kth attribute in a factorial design, Umn stands

for the overall utility assigned by individuals to combinations of levels of both attributes, and εmn is a
random term with zero mean.

A test for independence of the two effects corresponds to a test of the significance of the interaction
effect U 1

m U 2
n . As Lerman and Louviere (1978) point out, in an analysis of variance this is a global test

for any and all interactions between both variables; thus if the interaction effect is not significant, the
hypothesis of linear form cannot be rejected. If the interaction is significant, on the other hand, it implies
that a simple linear combination is not appropriate.

This test should be accompanied by a graphical plot of the interaction. If the linear hypothesis (no
interaction) is correct, the data should plot as a series of parallel lines when plotted against either utility
value. It can be shown that this is true regardless of the form assumed for the marginal relationships
(8.46); it can also be shown that this is true for any multi-linear utility model and for any forms less
restrictive than simple addition or multiplication.

8.7.2 Stated Preference Data and Discrete Choice Modelling

There are two particular features of SP data that lend the approach to different analysis methods, vis à
vis other sources of disaggregate data: first, the fact that each respondent may contribute with more than
one observation and, second, the different forms in which preferences can be expressed. In Chapter 3
we mentioned in passing that traditional conjoint analysis considers two types of responses: ratings and
rankings, but that the field has been clearly dominated by stated choice (SC) data. In the first type of
response, the subject is asked to rate each option using a number between 1 and 5 or 10. The result of this
exercise may be interpreted as the strength of the individual preference for each alternative. Therefore,
normal algebraic operations can be carried out on them, for example extracting a ratio or subtracting one
from another. However, this is now believed to be a weak element in SP work as there is no evidence
to support the assertion that individual preferences can be elicited and translated into cardinal scales of
this kind.

Simpler, and more reliable, tasks are to ask individuals to rank alternatives in order of preference
or, much simpler, to make several choices between hypothetical alternatives. In the case of ranking
experiments the individual is asked to rank a set of N alternatives in order of preference. If ri denotes the
alternative ranked in the ith position, the response implies that:

U (r1) ≥ U (r2) ≥ . . . ≥ U (rN ) (8.49)

In the case of stated choice exercises the individual is only asked to choose his preferred option from
the alternatives (two or more) in the choice set; therefore in this case the response corresponds with the
usual discrete choice RP approach, except for the fact that both alternatives and choices are hypothetical.
Note, however, that his type of exercise can be extended and enriched by allowing respondents to express
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their degree of confidence in the stated choice. To this end, the respondent is offered a semantic scale,
the most typical having five points (1: Definitively prefer first option; 2: Probably prefer first option;
3: Indifferent; 4: Probably prefer second option; 5: Definitively prefer second option). This exercise is
sometimes also called rating in the transport literature although it is actually a generalization of a choice
experiment (see for example Ortúzar and Garrido 1994a; b). This generalisation offers advantages and
disadvantages: on the one hand it permits a richer range of modelling techniques to be applied to the
data; on the other hand, it may weaken the specificity of the choice and that of the response, increasing
the difference between experiment and behaviour.

Taking advantage of the special features of SP data there are four broad groups of techniques
for analysis:

(i) Naive or graphical methods.
(ii) Least square fitting, including linear regression.

(iii) Non-metric scaling.
(iv) Logit and Probit analysis.

These methods can be used to provide different levels of analysis of SP experiments. In general, all
seek to establish the weights attached to each attribute in an (indirect) utility function estimated for each
alternative. These weights are sometimes referred to as ‘preference weights’, ‘part utilities’ ‘part-worths’
or simply ‘coefficients’ associated with each attribute. Once these have been estimated they can be used
for various purposes:

(a) To determine the relative importance of the attributes included in the experiment.
(b) An extension of this is the estimate of the rate at which one attribute is traded-off with another (a

typical example is the estimation of ‘values-of-time’ when both time and cost attributes have been
included in the experiment); it is also possible to estimate the value of more qualitative attributes
like reliability, security levels, and so on; we will come back to this in section 15.4.

(c) To specify utility functions for forecasting models, including questions of model structure.

The nature of SP data and the objective of the analysis will be determining factors in the choice of
model estimation techniques.

8.7.2.1 Naive Methods

The naive or graphical methods utilise a simple approach based on the fact that in many designs each
level of each attribute appears the same number of times. Therefore, some indication of the relative
utility of that attribute-level pair can be obtained by computing the mean average rank, rating or choice
score for each option in which it was included and comparing that with similar mean averages for other
levels and attributes. In effect, just plotting these means on a graph often gives useful indications about
the relative importance of the various attributes included in the experiment. This model does not make
use of any statistical theory and therefore fails to give us an indication of the statistical significance of
the results.

Example 8.11 Consider an SP exercise comparing three alternative modes of transport, a traditional
diesel bus (DB), a modern mini bus (MB) and an electric light rail vehicle (LRT). The attributes included
in the SP experiments are in-vehicle travel time, the headway, the fare, and, of course, the vehicle type.
The following table shows the different levels to be tested for each attribute:
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Level 1 Level 2 Level 3

Travel Time (min) 25 15 35
Fare (£) 1.30 1.00 1.50
Headway (min) 5 10 20
Vehicle type DB LRT MB

A fractional factorial design is used, and respondents are asked to rate, or score, the alternatives
(10 is the highest or best service). The results are as follows:

Travel time Fare Headway Vehicle type Score

25 1.30 5 DB 8
25 1.00 10 MB 9
25 1.50 20 LRT 4
15 1.30 10 LRT 10
15 1.00 20 DB 7
15 1.50 5 MB 8
35 1.30 20 MB 4
35 1.00 5 LRT 4
35 1.50 10 DB 1

It is now possible to calculate a ‘naive’ value for each attribute by calculating the average score for
that level and attribute and comparing it with the difference in values. For instance, in the case of travel
time the following table can be constructed:

Travel Time Level Value (min) Difference in values Average rating Difference in rating Rating per minute

1 25 – 21/3 – –
2 15 −10 (2 − 1) 25/3 4/3 (2−1) −4/30
3 35 20 (3 − 2) 9/3 −16/3 (3 − 2) −16/60

and in the case of fares:

Fare Level Value (£) Difference in value Average rating Differences in rating Rating per £

1 1.3 – 22/3 – –
2 1.00 −0.3 (2 − 1) 20/3 −2/3 2.22
3 1.50 0.5 (3 − 2) 13/3 −7/3 −14.3

From this we can estimate the subjective value of time (SVT) as follows: SVT is equal to
(−5/20)/(−14/3) = 0.054, that is the ratio of ratings per minute over ratings per £. The reader can
calculate the values of headway and vehicle type in the same way. Two interesting reflections can follow
this very simple example: the values of time or other attributes do depend on the ‘difference’ being
considered, for instance moving from 15 to 25 minutes does not produce the same SVT as moving from
25 to 35 minutes. The second comment is that we have estimated the values of these coefficients using the
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scores produced by a single respondent; that is, because each interview generates several observations
in many cases we can estimate individual rather than sample based models.

The naive method is seldom used in practice, except as a quick way of estimating indicators like the
value of time to provide an initial, ‘in the field’ validation of an experiment. However, this example has
served to illustrate some of the ideas behind SP data analysis.

8.7.2.2 Discrete Choice Modelling with Rating Data

The objective of the rating data analyst is to find a quantitative relation between the set of attributes and
the response expressed in the semantic scale. For this they need first to associate a numerical value Rm

to each sentence m (m = 1, . . ., M) of the scale and postulate a linear model such as:

θ0 + θ1 X1 + θ2 X2 + . . . + θK Xk = r j (8.50)

where θ 0 is a constant, Xk is typically the difference between the kth attributes of two competing options
in the situation considered; θk is the coefficient of Xk and rj represents a transformation of the response of
individual j (i.e. it defines a unique correspondence between the semantic scale and the numerical scale
Rm). Thus, when the questionnaire is completed the analyst obtains the chosen values of the dependent
variable Rm and knowing the attribute values Xk they can perform a multiple regression analysis to
estimate the values of θ k.

Ordinary least squares or weighted and generalised least squares have been used to this end. One of
the advantages of using these techniques is the ability to obtain goodness-of-fit indicators and measures
of the significance of the model parameters. The main problem with this approach is that there are
innumerable numerical scales that could be associated with the response scale. It may occur therefore,
that the results of the analysis (estimated coefficients, their ratios and model goodness of fit) will depend
on the definition of Rm; this hints at the importance of choosing the scale correctly. This issue will be
discussed in greater detail when considering the analysis of extended choice data.

8.7.2.3 Discrete Choice Modelling with Rank Data

Rank data is arguably simpler and more reliable than rating data. Individuals are expected to be able to
say that they prefer A to C and C to B with greater confidence and consistency than they can have in
assigning scores to each alternative. There are several ways of exploiting rank data.

Monotonic Analysis of Variance or MONANOVA (Kruskal 1965) has been used for many years as
a method for non-metric scaling. MONANOVA is a decomposition technique specifically developed to
analyse rank order data. The method estimates part utilities iteratively thus estimating ‘utility values’
corresponding to each alternative. The first of these part utility estimates is generated using the naive
method just discussed. These utilities permit the modelling of a ranking of alternatives; a ‘stress’ measure
is used to indicate how much the modelled ranking differs from the ranking actually elicited from each
individual. MONANOVA then seeks to improve the estimates of the ‘part utilities’ in order to reduce the
stress (or badness-of-fit) indicator. MONANOVA, as in the naive method, is also capable of generating
one model for each individual. Despite its uses, the approach lacks a robust statistical grounding and
fails to provide global goodness-of-fit and measures of significance indicators; it also restricts the type of
utility function that can be specified and it is less well suited to the development of forecasting models.

A more interesting form of analysing rank data is to convert them into implicit choices. In the case
above the rank ACB would be converted into the choices A better than C, C better than B and A also
better than B. The data thus transformed can now be analysed using Logit or Probit discrete choice
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modelling software. For the MNL model this can be done using the following theorem (Luce and
Suppes 1965).

Prob(r1, r2, r3, . . .) = Prob(r1/C)Prob(r2, r3, . . .)

where Prob(r1, r2, r3, . . .) is the probability of observing that the ranking indicates that r1 is preferred to
r2 and so on, and Prob(r1/C) is the probability of r1 being chosen from the choice set C = {r1, r2, r3, . . .}.

If the theorem is applied recursively, an expression for the probability of the ranking in terms of N - 1
probabilities of choice is obtained:

Prob(r1, r2, r3, . . .) = Prob(r1/C) Prob(r2/C − {r1}) . . .

where, for instance, C − {r1} indicates the choice set excluding alternative r1. Using this theory, Chapman
and Staelin (1982) proposed that the content of a ranking of choices (8.49) can be exploded into N − 1
statistically independent choices as:

(U1 ≥ Un, n = 1, 2, . . . , N )(U2 ≥ Un, n = 2, 3, . . . , N ) . . . (UN−1 ≥ UN ) (8.51)

and these data can be estimated simply by a MNL routine. However, care must be taken with the following
potential problems.

1. As the ranking considers hypothetical options it is likely that the information will contain some noise.
This may be particularly serious in the case of less attractive alternatives which are often treated with
less care by respondents and bunched together at the bottom of the ranking. This type of behaviour
is not consistent with the independence of irrelevant alternatives axiom of the Logit model, so its
occurrence must be statistically tested.

2. The rankings must be constructed in decreasing order of preference (i.e. from the best to the worse
alternative) by each respondent; failure to do this might generate noisy data which can invalidate the
modelling results.

As ranking a set of N options is a difficult task, i.e. it requires 1
2 (N 2 + N ) − 1 comparisons, respondents

are typically asked to divide the set (normally 9 to 12 options). First into three subsets (i.e. the better,
medium and worse options), then to rank the options in each subset, and finally to exchange, say, the
last of the first set with the first of the second, if appropriate. This algorithm has been found to ease
considerably respondent burden in practice (Galilea and Ortúzar 2005; Ortúzar and Rodrı́guez 2002).

Problems with this approach have been reported by Ben-Akiva et al. (1992). They found that the
response data from different depths of the ranking (i.e. not exploding the full rank) were not equally
reliable in the sense of producing statistically significantly different utility estimates. However, this may
depend on how carefully designed and conducted the SP experiment is, as Ortúzar and Palma (1992)
found that models for the full depth of the ranking consistently produced better results.

To treat this problem in a less ad hoc manner, Bradley and Daly (1994) proposed separating the data
into N − 1 different groups (n), each corresponding to a level of depth in the ranking (i.e. the first
contains the individual preferences when all alternatives are available, and so on). Once the groups are
identified, a joint estimation is performed considering different scale factors for each one (i.e. consistent
with different variances for the error terms of their utilities). For this, one group has to be defined as
reference and the scale factors (μn) associated with the rest of the groups represent the ratio between the
variance of the error term corresponding to the reference group and that associated with the group under
consideration (see the discussion in section 8.7.2.7). Thus, if the error variance associated with group n
is the same as that corresponding to the reference group, the scale factor of group n will be equal to one.

Bradley and Daly (1994) arbitrarily defined group one as reference and reached the following
important conclusions:
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� The magnitude of the scale factors diminished with ranking depth (i.e. the error variance was higher
in the case of the less preferred options).

� A likelihood ratio test confirmed that the model with scale factors was superior to the simple
Logit model.

� The t-ratios of the explanatory variables fell to about one-third of their values in the simple Logit
model (see the discussion in section 8.7.2.6).

� The subjective values of the various attributes in their experimental design changed by as much as
50% when scale factors were considered.

Ortúzar and Rodrı́guez (2002) tested this approach, finding that results changed significantly in their
case depending on which level of ranking depth was selected as reference; however, in all cases the model
with scale factors was statistically superior to the simple MNL model. They considered a group-based
ranking experiment designed to study the willingness to pay for reductions in atmospheric pollution in a
residential location context. The attributes were travel time to work, travel time to study, number of days
of environmental alert in the area, and value of the house rent.

Two important findings were that if the fourth depth level (rather than the first, say) was chosen as
reference, not only the t-ratios changed (the attribute values and log-likelihood at convergence remained
constant) but also the number of significantly different scale factors. In fact, they finally reached the
conclusion that the preferred modelling technique was one with only two scale factors: if the first three
options are taken as reference, there was one large scale factor for the second set of four options, and
a smaller one (i.e. closer to one) for the last three options. This is consistent with the way in which the
options were ranked by the individuals and suggests that households were clearer about extreme options
rather than middle-of-the-road options.

8.7.2.4 Modelling with Stated Choice Data

In this case we are able to use the whole range of analysis tools available for RP discrete choice modelling;
for example, this includes Nested Logit because we are not restricted to only two options nor do we
require the IIA property to hold (as in rank orderings) in order to exploit the data fully and also Mixed
Logit, which is now the preferred option. We will come back to this issue in more depth below.

An interesting difference between RP and SC data is that the latter, by design, lacks some sources of
error. In particular, there is no measurement error since all attribute values are presented to respondents
(although there may be some perception problems). However, we have already discussed other features
of SC surveys that weaken the behavioural value of the data: lack of realism in the decision context and
artificiality of the alternatives.

Apart from specification error, which clearly does still apply, there is another potentially serious source
of error related to the response itself. Although practical results are generally encouraging, in terms of
suggesting that most respondents do understand what it is expected of them, there is no guarantee that
they are able to complete an SC experiment with complete accuracy. In fact, a good review by Bates
(1988a) discusses the following types of potential error applying to all types of SP data:

� Respondent fatigue, which obviously increases with the complexity of the experimental design (see
the discussion in Chapter 3).

� Policy response bias, which might occur if the respondent is interested in affecting the outcome of
the analysis.

� Self-selectivity bias, when respondents either inadvertently or on purpose, cast their existing behaviour
in a better light.
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The outcome of all this is that we may have measurement error in the dependent variable, i.e. instead
of getting a true estimate of the utility U, we are obtaining some pseudo utility Ü which can be linked to
our general formulation (7.2) by:

Ui = Vi + ∈i = Ü i +τi (8.52)

Assuming homoskedastic τ i (although it is quite possible that their variance varies across experiments
either due to fatigue or learning), the estimation of the parameters of V presents no problems as (8.52)
can be rewritten as:

Ü i = Vi + (εi − τi ) (8.53)

and the normal estimation methodology may be employed. The problem comes in forecasting, because
in that case we are interested in making estimates of U, and what we would get from applying this model
are estimates of Ü provided the same distribution of errors apply in the design year. In other words:

. . . we are making estimates of relative preferences as expressed in a Stated Preference experiment
rather than of what would occur in the market (Bates, 1988a).

The only way to get round this problem is to apportion the error between εi and τ i, using both SC
and RP data to estimate the models, and this is somewhat similar to the problem of using aggregate data
in model estimation which we discuss in Chapter 9. Bates (1988a) notes that an understanding of the
magnitude of τ i is of crucial importance to the use of SC in forecasting. Only if it is insignificant in
relation to εi, could the estimated model be used directly to give forecasts. This calls for special care in
the design of the SC experiments to reduce respondent fatigue, enhance realism, prevent policy-response
bias and minimise self-selectivity bias. However the problem remains normally serious and so current
practice recommends mixed estimation with RP data whenever possible (see Bradley and Daly 1997).

8.7.2.5 Model Estimation with Generalised Choice Data

In the case of generalised or extended choice surveys the respondent is allowed to express degrees
of confidence in her choices. If conventional Logit modelling is used two models can be estimated,
one including only the ‘definitely choose’ responses and another including also the ‘probably choose’
responses and the results compared for goodness-of-fit and parameter significance. But note that in either
case we would lose the responses marked ‘indifferent’ and if the choice tasks have been designed to
make respondents really think, there might be many in this class and such data loss would be unfortunate.

Alternatively, one can research more closely what is the best transformation of the semantic scale into
a numerical one, in the sense of producing the best possible models. Several practitioners have used the
following symmetric scale: R1 = 2.197, R2 = 0.847, R3 = 0.000, R4 = −0.847, R5 = −2.197, which
corresponds to the Berkson-Theil transformation of the following choice probabilities: 0.1, 0.3, 0.5, 0.7,
0.9 (see for example the review in Bates and Roberts 1983) and became almost standard practice among
transport practitioners in the 1990s. However, this is not necessarily the most ‘appropriate’ scale for any
given study and it is important to investigate if scale selection may have a significant effect on the results
of the analysis.

Example 8.12 A group of staff and students participated in a generalised SC experiment comparing
two options in the following context: a morning trip from home to the university (about 10 km away),
involving choice between bus and light rail (an option which does not exist today). For simplicity the
experimental design considered only four attributes:
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� Travel Cost (varying at three levels).
� Travel Time (varying at two levels).
� Walking Distance (varying at three levels).
� Waiting Time, estimated as half of the public transport headway (varying at two levels).

Thus we had a 32 22 factorial design and since we were looking for main effects only, we just re-
quired nine options in the simple orthogonal case. The following table shows the attribute differences
(instead of their absolute values) between the two options; the design (in terms of the options of-
fered) was based on combinations of such differences. This implicitly assumes the resulting model
will be generic (e.g. same coefficient for in-vehicle time for each mode) helping to reduce the size of
the design.

Attribute Level Difference

Bus attribute minus LRT Attribute Low Medium High

Travel cost (Ch$) −10 60 80
In-vehicle time (min) 15 25 na
Walking distance (blocks) −7 −3 0
Headway (min) −3 2 na

Consider now the four probability scales defined in the following table:

Scale 1 Scale 2 Scale 3 Scale 4

R1 0.100 0.010 0.300 0.200
R2 0.300 0.400 0.450 0.400
R3 0.500 0.500 0.500 0.500
R4 0.700 0.600 0.850 0.880
R5 0.900 0.990 0.950 0.970

The next table presents SVT (i.e. coefficient ratios of the parameters of time and cost) derived from
models estimated after applying the Berkson–Theil transformation to the four probability scales:

Value of Time Scale 1 Scale 2 Scale 3 Scale 4

In-vehicle travel 4.01 1.73 3.98 4.11
Waiting 20.68 18.67 23.89 23.24
Walking 23.68 21.63 24.91 24.74
R2 0.48 0.44 0.46 0.45

As can be seen, scale selection does indeed influence the modelling results. The SVT values do not
only differ but belong to models with different goodness of fit to the data. Furthermore, the differences
do not seem to depend on whether the scale is symmetrical or not; that is, although one could expect a
symmetric scale (like scales 1 and 2) to produce more reasonable results, the fitted models and estimated
SVT values reject this notion (Ortúzar and Garrido 1994a).
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One way of avoiding the problem described above would be to consider an approach not requiring the
analyst to specify the numerical scale a priori in order to estimate the model. McKelvey and Zavoina
(1975) developed an approach with this feature, called ‘Ordinal Probit’ which can be easily used but
requires specialised software.

Another possibility would be to estimate the response scale during the model fitting process by
effectively considering each value of the scale as an additional variable. In this case a coordinate search
method may be used, starting with the typical symmetric scale 1 in Example 8.12. The procedure consists
simply of changing in turn each point of the scale (say Ri) by a small amount and estimating a linear
regression model with the new values. The search continues until R2 is maximised and the value of
Ri is fixed. The procedure is repeated for each point of the scale (save for R3 which is always kept as
0.5) in an iterative routine until a best fit is found in each case (that with the highest R2). This process
is repeated again to check for differences. Ortúzar and Garrido (1994a) found that the search never
involved more than two iterations before convergence (for four different samples), but they could not
prove, mathematically, that a global optimal solution is guaranteed. Indeed, the method was used later
by Bianchi et al. (1998) who found that the method did not converge for their pricing study data.

Example 8.13 The following table shows the original symmetric scale and the scales found after
performing the above ‘optimal scale linear regression approach’ on two samples for the rating experiment
of Example 8.12.

Scale Initial Students Staff

R1 0.1 0.284 0.228
R2 0.3 0.286 0.278
R3 0.5 0.500 0.500
R4 0.7 0.714 0.722
R5 0.9 0.900 0.842

The results suggest the possibility of testing whether the original number of points in the semantic
scale is appropriate. If only one value was used for the first two points of the scale in the optimal scale
models (which appear strikingly close) it would be interesting to see what consequences this apparent
loss of information brings about. On the plus side a four-point scale would have one parameter fewer
to be estimated. The next table shows the optimal values of the new scale obtained when R1 and R2 are
replaced by a single point R1

′
. In these scales, as in the previous ones, the probability value of R3 was

fixed to 0.5 as it corresponds to the point of indifference between both modes.

Scale Students Staff

R1
′

0.277 0.121
R3 0.500 0.500
R4 0.716 0.776
R5 0.899 0.922

As can be seen, the scale values in both samples are further apart than in the previous table which
suggests that no other point fusion would be necessary. Also, all values appear reasonable in relative
terms, i.e. they correspond to increasing probability values from R1

′
to R5.
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8.7.2.6 Interactions in SC Modelling

Next we consider a potential although seldom achieved advantage of the SC approach: the possibility
of estimating models with non-linear utility functions. The reason for not doing this in practice has
been typically one of convenience. SC experiments allowing the incorporation of interactions (and not
just main effects) were more complex to design and analyse, and required data that was more difficult
to collect.

In discrete choice modelling many potential forms of the utility function can be transformed (e.g. even
as a last resort using series approximations) into additive linear forms of the type:

V = θ1 X1 + θ2 X2 + θ3 X 2
1 + θ4 X1 X2 + θ5 X1 X 3

2 + θ6 X1 X2 X3

where Xi are attributes and θ i are coefficients to be estimated. This function contains linear terms (θ1 X1

and θ2 X2), non-linear terms (θ3 X 2
1), interactions with linear effects (θ 4 X1 X2 and θ 6 X1 X2 X3) and

general interactions (θ5 X1 X 3
2). The main effects can be defined as the response to passing to the next

level of the variable when the rest of the attributes remain constant (all other things being equal); it
is normally postulated that these are the main determinants of changes in choice. In fact, according to
Louviere (1988b):

� The main effects explain 80% or more of the data variance.
� Two-term interactions rarely explain more than 2% or 3% of the variance.
� Three-term interactions explain even smaller proportions of the data variance, normally of the order

of 0.5% to 1% and rarely over 2% or 3%.
� Higher-order effects explain a minuscule proportion of the data variance.

For these reasons, only main effects are normally considered in practice. On the other hand, there
seems to be a consensus that interactions between more than two variables as well as interactions
incorporating non-linear effects should be insignificant. Therefore, only two-term interactions are in a
kind of limbo and require more attention. Note that if interactions are actually insignificant, a model
incorporating only main effects will allow us to obtain precise measurements of individual preferences.
However, if the interactions are significant and are not included in the utility specification, their effects
will be erroneously attributed to the simple variables. This notwithstanding, as we shall see below, it
may happen that when certain interactions are included, their effects dominate that of certain individual
variables to the extent that the latter may be left out of the regression (i.e. the variable may end up with
a non-significant coefficient or with a counterintuitive sign).

The cost of allowing for interactions in the experimental design is that it becomes more complex (i.e.
it requires respondents to evaluate a higher number of hypothetical situations). A good solution in such
cases is to use block designs as we saw in section 3.4.2.3. The assumption is that consistent models will
be obtained when the total number of responses is considered. To ensure compatible answers the size of
each subsample should guarantee that its socio-economic characteristics are representative.

Example 8.14 A generalised SC experiment using a five-point semantic scale was designed to study
choice between car-alone and car-pool for campus students (Ortúzar et al. 2000c). After extensive
piloting, the following attributes were selected:

� Daily travel time: this was always higher for car-pool as the student providing the car on the day
needed to collect the members of the group in the morning and take them back home in the afternoon.

� Weekly travel cost: associated with fuel consumption and estimated on the basis of information about
travel distance and type of car (in some cases this value included a parking charge); this was always
smaller for car-pool as drivers did not need to use their cars every day of the week in this case.
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� Waiting time: associated with sharing the trip with a group in the case of car-pool; waiting occurs
because the proposed car-pool system implies the complete group arriving at and leaving the cam-
pus at the same time, and not all exit hours coincide; note that this time may be used in other
activities, because both its duration and day of occurrence are known in advance, given the fixed
university schedules.

The attribute levels were defined on the basis of differences between travelling by car and by car-pool.
Two levels were used in the case of travel time (i.e. 10 and 20 min more than in the case of car-pool);
four levels in the case of travel cost (i.e. three-quarters and half the cost of the car in the case of car-pool,
and 25% and 40% more than that cost if a parking charge was included), and three levels for waiting
time. In this last case the levels were determined based on the possibility that the group members would
not coincide in their lectures. So, waiting times of zero, 30 min (i.e. one member needed to do a small
errand) and 90 min (i.e. the extent of a complete lecture module) were considered.

With this, 16 hypothetical situations are needed to estimate main effects only and 24 if two-term
interactions are included in a simple orthogonal design. Given these numbers, block designs should be
used in both cases (see Caussade et al. 2005). In fact, we tested using 16 options directly but found
that this confused or bored respondents, leading to too many inconsistencies, confirming the findings of
Carson et al. (1994).

To model we first looked at the expected signs of the interaction terms (given the special characteristics
of the competing options), concluding that their most appropriate definition was as follows:

� T∗C represents interaction between the ratios of travel time and cost by both modes; positive coefficient:

T∗C = Travel timecar Costcp

Travel timecp Costcar

� W∗T represents interaction between the car-pool waiting time and the ratio of travel time by both
modes: negative coefficient:

W∗T = Waiting timecp Travel timecp

Travel timecar

� W∗C represents interaction between the car-pool waiting time and the ratio of travel cost by both
modes: negative coefficient:

W∗C = Waiting timecp Costcp

Costcar

Table 8.9 shows the results of two Ordinal Probit specifications, the ‘best model’ (estimated) and the
‘preferred model’. The Inertia dummy takes the value of one if the respondent was a current car-pool
user and g is the expenditure rate, i.e. the ratio between income and free time; see for example Jara-Dı́az
and Ortúzar (1989). As can be seen only the variables Sex (dummy which takes the value of one for
males) and Waiting time are not significant at the 95% level in the first model; however, if the latter is
removed (because its effect is considered by the strong interaction terms) the model improves.

In order to verify the relative importance of the interactions in the utility function, the product of
the average value of each normalised variable and its coefficient was calculated. This revealed that the
interactions were undoubtedly important, especially T∗C. This procedure was confirmed by calculating
the elasticity of the probability of choosing car for various changes in the attribute values (Ortúzar
et al. 2000c).
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Table 8.9 Ordinal Probit model considering interactions

Attributes (t-ratios) Best model Preferred model

Car-specific constant 1.65418 1.68808
(9.89) (10.17)

Travel time (min) −0.00311 −0.00343
(−4.57) (−5.30)

Waiting time (min) −0.00363 –
(−1.53)

Cost/g (min) −0.06729 −0.06930
(−7.54) (−7.83)

Sex 0.11021 0.11372
(1.92) (1.98)

Car-pool inertia −0.40907 −0.41113
(−6.57) (−6.61)

T∗C 0.70067 0.73763
(9.67) (10.73)

W∗T −0.00629 −0.01038
(−2.11) (−8.04)

W∗C −0.00124 −0.00157
(−3.23) (−4.92)

R2 0.543 0.541
Sample size 1640 1640

8.7.2.7 The Problem of Repeated Observations

One of the most important attractions of the SC approach is the generation of multiple observations
by each individual. However, almost every application in the last millennium considered the responses
by a given individual not only independent of those given by the rest of the sample members, but also
independent of each other. Although this problem received a little more attention at the end of the 1990s,
it is only in recent years that it has been handled correctly using Mixed Logit models.

In the 90s it was generally assumed that these observations were independent, leading to the concept
of pseudo-individuals. Clearly, this hypothesis cannot be valid and for many years it was hoped (and
believed) that the problem was bounded to obtaining upward biased values of the t-ratios associated
with the estimated parameters. In this way the solution consisted of proposing correction factors for the
resulting t-ratios.

By the end of the 1990s more interesting approaches have been proposed and partially tested. For
example, Cirillo et al. (2000) proposed the use of re-sampling techniques, such as bootstrap and jackknife
(Shao and Tu 1995), finding that the jackknife-estimated parameters did not vary much with respect to
those estimated assuming independence and that the t-ratios diminished, as expected (the bootstrap results
were similar but had more noise, particularly for low-re-sampling strategies). Ortúzar et al. (2000c) also
tested these methods (with all their variations in re-sampling) for four different samples, finding that
the parameter values remained practically identical to those estimated with the traditional approach in
all cases. However, the standard errors varied inconsistently (i.e. they correctly increased in three cases
but decreased in the other). They extensively checked the samples for either outliers or peculiarities
in the originally estimated values and found nothing special. Thus, they were forced to conclude that
the applicability of these techniques in solving the problem of repeated observations must be put under
further scrutiny.
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Outwerslot and Rietveld (1996), and independently Abdel-Aty et al. (1997), suggested decomposing
the total error ε in a random utility model into two mutually exclusive parts: an individual-specific effect
that distributes independently among individuals, and an observation-specific effect which distributes
independent among individuals and observations (i.e. very much in line with the error components
specification of the Mixed Logit model). Inevitably the standard approach led to a multiple integral
which was hard to evaluate. To avoid this problem, Outwerslot and Rietveld (1996) used a minimum
distance method proposed by Chamberlain (1984), which considers dividing the sample into T randomly
selected independent subsamples containing only one observation per person (T is the number of repeated
observations per individual). The coefficients of the models estimated for each subsample were then used
in a rather complex algorithm to obtain the final model parameters and their variances.

Contrary to expectations, Outwerslot and Rietveld (1996) found that the parameters of their Probit
model were different to those of the classic method (although less than 27%) but the t-ratios remained
practically invariant. Ortúzar et al. (2000c) also tested this method, finding that most parameter values
decreased, and in some cases considerably, but sometimes they also increased. With respect to the t-ratios
they found that in general they decreased as expected, but not always and particularly in the case of the
specific constants.

Yen et al. (1998) developed a method to treat this problem using a generalised dynamic version of
the Ordinal Probit model, which allows one to incorporate a measure of the correlation between the
responses of a given individual. As comparative issues were not their main concern, Yen et al. (1998) did
not report whether there were differences between their estimations and those obtained with a standard
application of Ordinal Probit.

Current practice accepts that estimation can be handled without problems by a Mixed Logit model,
such as (8.32). We will look at the way to do it in the richer case involving joint estimation with RP data
in the next section.

8.7.3 Model Estimation with Mixed SC and RP Data

Consider the MNL model (7.9) and the inverse relation that its scale parameter β has with the single
standard deviation σ of the Gumbel residuals ε. This relation explains why it is not correct to postulate
the same error distribution for estimation and forecasting as mentioned above; the near and extreme right
hand side expressions in (8.52) should yield different values for β. This produces ‘scale’ differences on
the parameters and if such equality is improperly assumed we might finish by estimating pseudo utilities
instead of ‘true’ utilities. To avoid this problem it is necessary to adjust the SC data to actual behaviour,
exploiting the advantages of the RP data in this sense, and estimating the parameters θ jointly.

In econometrics the estimation of models with different data sources is called ‘mixed estimation’.
Often these data are divided into two sets: primary and secondary data. The primary data provide direct
information about the main modelling parameters. The secondary data provide additional (indirect)
information about the parameters. For example, in discrete choice modelling the primary data could be
information coming from a survey at the disaggregate level, and the secondary one could be data coming
from an aggregate survey. In our case RP data constitute the primary set, since these data capture the
actual behaviour of the individuals, and SC data constitute the secondary set.

8.7.3.1 Estimation without Considering Correlation among Repeated Observations

Although we know that this is not correct nowadays, it is still informative to learn how this important
task was first undertaken. Ben-Akiva and Morikawa (1990) developed a framework which postulates
that the difference between the errors in the RP and SC domains may be represented as a function
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of the variances of the errors ε and η associated with each data set respectively. This can be written
as follows:

σ 2
ε = μ2σ 2

η (8.54)

where μ is an unknown scale coefficient. This leads to the following utility functions for a certain
alternative Ai:

U RP
i = θxRP

i + αyRP
i + εi

μU SC
i = μ

(
θxSC

i + φzSC
i + ηi

) (8.55)

where α, φ and θ are sets of parameters to be estimated; xRP and xSC are attributes (of both alternatives
and individuals) at the RP and SC levels respectively. yRP and zSC are attributes which only belong to the
RP or SC sets respectively (notice that vector x is common to both types of data).

The consideration of the utility functions (8.55) allows homogenising the type of error, as multiplying
the SC utility by μ makes the associated stochastic error (ηi) to have the same variance as the corre-
sponding RP error (from 8.54). Thus, assuming that both stochastic errors have IID EV1 distributions
with zero mean but with a different variance, the choice probabilities at each domain would be given by
(Morikawa et al. 1992):

PRP
i = exp

(
θxRP

i + αyRP
i

)
∑

j
exp

(
θxRP

j + αyRP
j

)

PSC
i = exp μ

(
θxSC

i + φzSC
i

)
∑

j
exp μ

(
θxSC

j + φzSC
j

)

(8.56)

From these exressions it is possible to postulate a joint likelihood function which should be maximised
to yield the parameter estimates. The reader might have noted that equations (8.56) have incorporated
some assumptions:

(i) the scale parameter of the RP model has been normalised;
(ii) the sale parameter of the SC model should be identical to μ.

In fact, the real assumptions are different but when the joint model is estimated arrive at the same result.
Yáñez et al. (2010c) provide a good discussion on this issue in their analysis of mixed RP-SC models
in forecasting.

Choosing the Attributes with the Same Parameter in Both Domains Deciding which attributes
should belong to set x is not straightforward. In principle, though, the only candidates are those attributes
that being measured in practice (i.e. travel time, cost, waiting time) also appear in the SC tasks. If all
‘common’ attributes are taken as members of x we speak of the full data enrichment approach; if only
some common attributes end up belonging to x we have the partial data enrichment approach. To decide
this matter, Louviere et al. (2000) recommend the following procedure:

� First, estimate (separately) the two models associated with equation (8.55), under the assumption that
the errors distribute IID EV1 (obviously without including the unknown scale factor μ in the second
case); this will yield two sets of parameters, θRP and θSC, for all the attributes which are common to
both domains.

� As we know, these two sets of parameter estimates cannot be equal, in principle, as they contain the
unknown scale parameters β associated with the MNL model in each domain; however, the idea is to
find out if they are different over and above this scale problem, in which case they should not be joined
under set x.
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� From equation (8.54), and recalling the inverse relation between the scale parameter of the MNL and
the variance of its IID EV1 error (7.10), the reader can readily deduce that if both parameters were
equal (apart from scale), their relationship should be: θSC = μθRP.

� Based on this relation, if we plot the estimated parameters in the two domains we should expect them
falling inside the elliptical region shown in Figure 8.8; and values outside it (as those shown in stars)
would not be available for set x.

θ RP

θ SC
II

IVIII

Tan α = µ

Figure 8.8 Plotting the parameters from both domains

� However, note that even if some parameters fall outside the range the attributes involved could still
be considered part of x; this would be the case if one of the estimates is not significantly different
from zero, as in that case fixing its value to be equal to its counterpart in the other domain would
bring no problems. In fact, as we will see below, this can be tested using a LR test (as we saw in
section 8.4.1.2).

The joint likelihood function incorporating the two models in equation (8.56) simultaneously is a highly
non-linear function, because μ is multiplying not only the attributes but also the SC parameters. Two
approaches were devised during the 1990s to solve this problem, the simultaneous estimation method
(Bradley and Daly 1997) and various forms of sequential estimation method (Ben-Akiva and Morikawa
1990; Swait et al. 1994). We will only mention the former here as it was the most popular in practice
until very recently.

The simultaneous estimation method consists of constructing an artificial tree with twice as many
alternatives as there are in reality. Half of these are labelled RP alternatives, the other half are SC
alternatives. The utility functions are URP and USC (as in 8.55). As indicated in Figure 8.9, the RP
alternatives are placed just below the root of the tree; however, the SC alternatives are each placed in a
single-alternative nest; we will see now why this is so important. Observe that in this case, for an RP
observation the SC alternatives are unavailable and the choice is modelled as in a standard MNL or NL
model. For an SC observation, the RP alternatives are also unavailable and the choice is modelled by a
Nested (tree) Logit structure. For this reason the method came to be known as the ‘nested logit trick’
(Louviere et al. 2000).
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Figure 8.9 Artificial tree structure for joint RP and SC estimation

For the SC observations, the mean utility of each of the dummy composite alternatives is computed
as usual (see Daly 1987):

V COMP = μ log
∑

eV SC
(8.57)

where the sum is taken over all of the alternatives in the nest corresponding to the composite alternative
(i.e. in this case only one) and

V SC = U SC − η = θ · xSC + φ · zSC (8.58)

is simply the measured part of the SC utility. Then, because each nest contains only one alternative in
this specification,

V COMP = μ V SC = μ θ · xSC + μ φ · zSC (8.59)

which is exactly the form required as long as the value of μ is constrained to be the same for each of
the dummy alternatives. Since the dummy composite alternatives are placed just below the root of the
tree, as are the RP alternatives, a standard estimation procedure will ensure that μ is estimated to obtain
uniform variance at this level. It is important to note that this artificial construction does not require the
usual consistency assumptions for NL models (i.e. that μ should not exceed one), because the individuals
are not modelled as choosing from the whole choice set. However, as noted before, the value of μ may
be taken as providing an indication of which data set is more accurate.

Partial or Fuller Data Enrichment To test whether a given common attribute to both data sets can
form part of set x, it is possible to use a likelihood ratio test. Let l

∗
(θRP, α) be the log-likelihood at

convergence for the model with RP data only, l
∗
(θSC, φ) the same for the model with only SC data, and

l
∗
(θ, α, φ, μ) the log-likelihood at convergence of the joint RP/SC model. If the k common parameters

are equal, then:

LR = −2
{
l∗ (

θRP,α
) + l∗ (

θSC, φ
) − l∗ (θ, α, φ, μ)

}

distributes χ2 with k degrees of freedom. If LR is greater than the critical value of χ 2
k for the required

confidence level, the test is rejected and one (or more) attribute should be taken out of the set x and be
specified with a different parameter in both domains for the joint estimation, and the test is repeated.
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8.7.3.2 Joint Estimation Considering Correlation between Repeated Observations

The Mixed Logit (ML) model offers much in terms of the appropriate mixing of revealed and stated
preference data. The traditional approach above, employing an artificial NL structure (e.g. ‘the nested
logit trick’), suffered from at least two important deficiencies; first, the stated choices of the same
individual were considered independent and second, the stated choices of individuals who also responded
to the RP survey (generally only part of the sample is in this category), were unrelated to their RP choices.

Bhat and Castelar (2002) were probably the first to formulate and apply a unified Mixed Logit
framework for joint RP/SC model estimation that could accommodate a flexible competition pattern
across alternatives, scale differences in the RP and SC choice contexts, heterogeneity across individuals,
state dependence of the stated choices on the revealed choices, and heterogeneity across individuals in the
state dependence effects. Their likelihood function has two levels of integration because they postulate an
EC formulation that generates inter-alternative correlation operating at the choice level, and also random
coefficients that accommodate taste variations across individuals and operates at the individual level.
Using real data, they found – among other things – that heterogeneity and state dependence effects were
tempered when included simultaneously, indicating confounding of true and spurious state dependence.
They also found that the better specified model significantly outperformed more restrictive structures.

Train and Wilson (2008) improved on the above by postulating a ML model that explicitly incorporates
the fact that SC experiments are usually constructed on the basis of RP choices. Thus, they address an
important issue that could be a source of inconsistency in estimation. For example, Bhat and Castelar
(2002) included a state dependence variable in the form of a dummy for the choice in the RP setting
that enters the SC model; however, they did not account for the fact that this variable is correlated
with unobserved factors insofar as any unobserved factors from the RP setting carry over into the SC
setting. This is equivalent to entering a lagged dependent variable in time series data and estimating by
ordinary least squares; i.e. it is fine only if the unobserved factors are not correlated over time. Train and
Wilson (2008) develop an appropriate method to use when the lagged dependent variable is included and
unobserved factors are correlated over time. Thus, it is a discrete-choice-model analogue of the method
of estimating regression with lagged dependent variables and serially correlated errors. Following this
analogy, note that allowing for random coefficients and different variance of the error term does not
change the fact that entering a lagged dependent variable (or variables created from it) is inconsistent
when errors are serially correlated.

8.7.3.3 Forecasting with Joint RP-SC Models

A key issue in forecasting with joint RP-SC models is how to treat the alternative specific constants
(ASC). Cherchi and Ortúzar (2006) provide an in-depth discussion of the problem for the following
three cases:

� when the RP and SC alternatives are exactly the same;
� when the SC data include new alternatives (i.e. not present in the base year), and
� when the SC design implies substantial changes, such that alternatives sharing the same label (e.g.

normal train and a substantially improved fast train service) could represent new options.

They concluded that the first case is trivial as the ASC corresponding to the RP domain should be
used without rescaling but, of course, adjusted to match the market shares of the base year. In the
second case, if the analyst truly believes that the SC data reproduce correctly the market shares of the
population in forecasting, then the ASC (both for the existing and for the new alternatives) should
be adjusted to match the market shares in the SC data. Conversely, if the market shares to match
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are unknown then the analyst must rely on estimation results, i.e. as long as the usual theoretical
restrictions of the model are satisfied, it might be useful to draw further considerations on the ASC
specification from the model that provides the best statistical fit. Finally, if the SC design implies
substantial changes, such that alternatives sharing the same label could represent new options, and
there is uncertainty as to the extent they are actually different, then best fit and analyst’s judgement,
seem to be the only guide.

On the other hand, regardless of the way the ASC are specified (i.e. generic or specific), depending
on the results for each specific context the application of a mixed RP/SC model in forecasting implies
some limitations on the scenarios to be tested. In particular:

� If ASC which are specific to RP and SC are estimated, forecasts can only be made for scenarios
involving structural characteristics not inferior to those described in the SC design, and in that case
rescaled SC-ASC should be used.

� If specific ASC for both domains are estimated and a scenario not involving structural changes is
considered, the RP-ASC should be used.

� Finally, if constrained generic ASC are estimated for both domains, scenarios involving structural
changes (for those alternatives with constrained RP/SP ASC) should not be tested, unless we obtain
ASC with a fairly close value from estimation.

Cherchi and Ortúzar (2011) considered the problem of forecasting with a joint RP-SC Mixed Logit
model allowing for random taste heterogeneity. They note that although a basic assumption when
pooling RP and SC data is that they share the same underlying behaviour, often the partial preference
homogeneity approach (i.e. the parameters are not constrained to be equal in both data sets) gives
better results because some attributes can only be measured/estimated properly in one set, or because
differences in the nature of attributes produce different, and highly significant, estimated parameters
in both sets.

Note that the differences between RP and SC results might be implicit in the need for using SC
data in the first place; indeed, they may represent exactly what we look for when using SC data.
Consider the case when we want to forecast the effects of structural changes (i.e. departs from the
current real market) and utilities are not linear in the attributes. The effect of the partial enrichment
approach will be more evident when one attempts to consider the various components of individual
heterogeneity, because to estimate complex behaviour we need datasets that are both fairly rich and
fairly large; unfortunately, this is often not the case for RP data.

However, the partial preference homogeneity approach implies problems in forecasting, as the
model used for prediction is not the same as the estimated one; thus, it is crucial to carefully check if
the estimated model parameters fulfil the microeconomic conditions on the marginal utilities for any
scenario to be tested (see the discussion in Chechi and Ortúzar 2010).

Yáñez et al. (2010c) extended the analysis of partial preference homogeneity to the correlation
structure among alternatives, i.e. how to deal with the problem of finding different correlation
structures revealed in the RP and SC data sets. They also discuss the problem of the normalisation in
the joint RP/SC model (i.e. defining an appropriate scale) and its effect in estimation and forecasting.
They consider several cases from the most simple, when alternatives are independent in both the
RP and SC datasets, to the most complicated one when the two datasets present different inter-
alternative correlation structures. They show that from a theoretical point of view both the lower and
upper normalisations of the Nested Logit model (see section 7.4.4) are equivalent in this case, but
their practical convenience is limited to the simple case of independent alternatives in both datasets;

(continued)
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furthermore, they confirm the results of Carrasco and Ortúzar (2002) that the upper normalisation is
more intuitive. Moreover, although any inter-alternative correlation structure between the alternatives
in the RP and SC domains can in principle be estimated, they recommend using a generic one for
the existing alternatives in both data sets, if possible; otherwise, the model might not be consistent in
prediction. Furthermore, assuming different structural parameters in the RP and SC data sets means
that the unobserved components of the utilities (that make some alternatives to be perceived as more
similar than others), are not the same in both cases. This can be justified when the systematic utilities
are specified differently, but it should not occur when alternatives have the same specification.

Finally, in terms of model use in forecasting Yañez et al. (2010c) provide the following
recommendations:

� If the joint RP-SC model structure assumes the same structural parameters for both data environ-
ments, their estimated values can be used directly in forecasting.

� If the joint RP-SC model structure assumes the same structural parameters for both environments
except for alternatives present only in the SC case (i.e. usually new alternatives), the whole
correlated (or uncorrelated) structure of the SC-alternatives needs to be moved into the RP domain
to make forecasts, but the structural parameter does not need to be scaled because it was already
estimated scaled by the RP scale parameter, and it is associated with the EMU term.

� If the joint RP-SC model structure allows for different structural parameters in both environments
(the most general and most complicated case), the general advice is to use the structure estimated
with each data set (RP or SC); however, to be consistent, the structural parameters should be
associated with utilities measured in the same environment. This means that if we have more faith
in the SC data, we should move both the SC structural parameters and the utilities associated with
the alternatives in the nest to the RP environment.

Example 8.15 Consider the introduction of a new high speed rail (HSR) interurban line to compete
with car, bus and airplane. Further, given the competitiveness among different services, the following
groups of alternatives were identified: three bus alternatives (conventional bus, executive bus, sleeper
bus), three plane alternatives (to represent different pairs of airports available at the two main cities
affected by the new service), and two HSR alternatives (conventional and executive).

A RP-SC survey was conducted with the final aim of forecasting the demand for the new
mode. After estimating separate models for each data set, different inter-alternative correlation
structures for the RP and SC data were found. In particular, the SC data presented a clear and
strong correlation between the two HSR services and between the three bus alternatives; while the
inter-alternative correlation among plane alternatives in both cases and between the RP bus alterna-
tives was not significant.

Following the discussion about model consistency for prediction purposes above (Yáñez et al.
2010c), the correlation structure in both environments should be constrained to establish a unique
and consistent structure. This offers three possibilities: (i) all alternatives are considered independent
(model ‘MNL’); (ii) all alternatives are considered independent except the two new ones in the SC
environment (model ‘MNL-NL Rail’); (iii) the bus alternatives are considered correlated with the
same structural parameter in both data sets, and the two HSR alternatives are correlated in the SC
case (model ‘NL’).

To evaluate the effect of establishing different inter-alternative correlation patterns on demand
predictions, we can calculate the variation in aggregate market shares for various simple policies:
Table 8.10 shows that all models predict a decrease in the market shares of the existing modes
following a reduction in the HSR fares. However, there are important differences in the magnitude
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of the changes (the policy impacts are evidently greater for the MNL model). Indeed, for a 50%
reduction in HSR fares, if we erroneously assume the MNL the estimated percent change in the
aggregate HSR share (�Pj) is 50% larger than if both HSR alternatives are assumed to be correlated.
However, the differences between the results for the two nested models are not large.

Table 8.10 Forecast Effects of Including Inter-alternative Correlation

Model Attribute HSR Fare Airplane Fare Bus Fare
% change −50 −25 −10 −50 −25 −10 −50 −25 −10

MNL Car −0.460 −0.230 −0.090 −0.390 −0.180 −0.060 −0.077 −0.039 −0.016
Airplane −0.410 −0.210 −0.080 1.050 0.460 0.170 −0.048 −0.024 −0.009

Bus −0.490 −0.230 −0.080 −0.400 −0.160 −0.050 0.157 0.078 0.031
HSR 0.630 0.310 0.120 −0.360 −0.170 −0.060 −0.057 −0.028 −0.011

MNL-NL Rail Car −0.103 −0.051 −0.020 −0.139 −0.066 −0.026 −0.007 −0.003 −0.001
Airplane −0.081 −0.040 −0.016 0.200 0.093 0.036 −0.002 −0.001 −0.001

Bus −0.214 −0.108 −0.042 −0.215 −0.088 −0.031 0.048 0.024 0.010
HSR 0.139 0.070 0.027 −0.138 −0.066 −0.026 −0.005 −0.003 −0.001

NL Car −0.100 −0.050 −0.020 −0.140 −0.060 −0.030 −0.007 −0.003 −0.001
Airplane −0.080 −0.040 −0.010 0.190 0.090 0.030 −0.003 −0.001 −0.001

Bus −0.200 −0.100 −0.040 −0.210 −0.090 −0.030 0.050 0.025 0.010
HSR 0.130 0.070 0.030 −0.140 −0.070 −0.030 −0.006 −0.003 −0.001

Based on this example, we could say that the models that simply follow the correlation structure
detected for the RP data, without considering what the SC data might reveal in this sense, may over
estimate the potential market shares of new alternatives. Thus, and as a conclusion, SC data may not
only help to improve the specification of representative utility in estimation, but also to define the
most appropriate correlation structure of a forecasting model.

Exercises
8.1 Consider the following mode choice model:

V1 = θ1t1 + θ3c1 + θ4 Nc + θ7

V2 = θ1t2 + θ2e2 + θ5c2 + θ8

V3 = θ1t3 + θ2e3 + θ6c3

where tk is in-vehicle travel time, ek is access time, ck is cost divided by income and Nc is the number
of cars in the household.
(a) Indicate which variables are generic, which are specific and what is the real meaning of θ 7

and θ8.
(b) Discuss the implications of having obtained the following values during model estimation:

θ1 = −0.115 θ2 = −0.207 θ3 = −0.301
θ4 = 1.730 θ5 = 0.476 θ6 = −0.301
θ7 = −1.250 θ8 = 2.513

8.2 During specification searches you obtained the set of mode choice models for car (1), bus (2) and
underground (3), shown in the table below; the units of time and cost/income are minutes, sex is
a dummy variable which takes the value of 1 for males and 0 for females; EMU is the expected
maximum utility of the transit nest (bus-underground).
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Coefficient (t-ratio)

Variable (option entered) MNL-1 MNL-2 HL-1 HL-2

Car time (1) −0.112 – −0.114 –
(−6.10) (−6.00)

Transit time (2,3) 0.006 – −0.001 –
(1.25) (−0.94)

Travel time (1–3) – −0.071 – −0.083
(−3.34) (−3.60)

Cost/income (1–3) −0.031 −0.040 −0.035 −0.033
(−2.56) (−3.52) (−2.83) (−3.10)

No. of cars (1) 1.671 1.823 1.764 1.965
(4.21) (4.80) (4.12) (5.14)

Sex (2,3) −0.752 −0.776 −0.739 −0.701
(−1.87) (−1.98) (−2.01) (−1.83)

EMU – – 0.875 0.800
(5.12) (13.4)

ρ2 0.412 0.284 0.376 0.315

(a) Indicate which model you prefer explaining very clearly why.
(b) The sample you used for estimation comprised 1000 individuals having all alternatives avail-

able. If 250 choose car, 600 choose bus and the rest underground, compute l
∗
(0), the log-

likelihood value for the equally likely model, and l
∗
(C), the log-likelihood for the constants

only model.

8.3 You were asked to estimate a Multinomial Logit (MNL) model and an Independent Probit (IP) model
with the same data set; imagine (as it is not possible to estimate σ in practice) that you obtained the
values shown in the following table:

Parameters MNL IP

θ1 1.285 1.698
θ2 −0.026 −0.034
θ3 −0.123 −0.162
σ 2 Not applicable 2.870

Indicate whether these results appear to be consistent; if your answer is affirmative explain which
the cause of the differences is. If your answer is negative, explain why.

8.4 While conducting an SP survey you asked three individuals to rank the three options whose attributes
are given below:

Option Travel time (min) Fare ($)

1. High speed train 30 10
2. Express train 40 8
3. Luxury Coach 60 5
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After completing the survey you obtained the following results:

Individual Ranking

1 1, 2, 3
2 2, 3, 1
3 2, 1, 3

You are interested in estimating a MNL model with linear in the parameters utility function
given by:

Vi = θ1ti + θ2ci

If you are told that θ 1 = −0.03, find a maximum likelihood estimate for θ 2. Discuss your results.
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9
Model Aggregation and
Transferability

9.1 Introduction
The planning and evaluation of transport improvements requires models both to deliver forecasts and to
examine their sensitivity with respect to changes in the values of key variables under the control of the
analyst. The forecasts themselves normally need to be aggregate, i.e. to represent the behaviour of an
entire population or market segment.

In many practical studies the models used have been of the classical aggregate four-stage form despite
many (and often justified) criticisms about their inflexibility, inaccuracy and cost. One important reason
for this persistence, apart from their familiarity (e.g. they have been considered accepted practice for
many years) is that they offer a tool for the complete modelling process, from data collection through to
the provision of forecasts of flows on links. This has not often been the case with disaggregate model
approaches, perhaps because the data necessary to make aggregate forecasts with them is not readily
available (see the discussion by Daly and Ortúzar 1990).

In an econometric interpretation of demand models, the aggregation over unobservable factors (either
attributes or personal characteristics) results in a probabilistic decision model and the aggregation over
the distribution of observables results in the conventional aggregate or macro relations (Williams and
Ortúzar 1982b). Cast in these terms, the difficulty of the aggregation problem depends on how the
components of the system are described within the frame of reference employed by the modeller; it is
this framework which will determine the degree of variability to be accounted for in a causal relation.
To give an example, if the framework used by the analyst is that provided by the entropy-maximising
approach we saw in Chapter 5, the explanation of the statistical dispersion in a given data set will be
very different to that provided by another modeller using a random utility approach, even if they both
finish with identical model functions; this equifinality issue is discussed by Williams (1981).

In the case of disaggregate random utility models the aggregation problem is how to obtain from
data at the level of the individual, aggregate measures such as market shares of different modes, flows
on links, and so on. This can be achieved in one of two ways, by having the process of aggregating
individual data either before or after model estimation, as shown in Figure 9.1.

In the first case we have variations of the classical aggregate approach, which can be easily criticised
for being inefficient in the use of the data, not accounting for their full variability and for risking statistical
distortion such as the ecological fallacy discussed in section 7.1. The second approach answers most of

Modelling Transport, Fourth Edition. Juan de Dios Ortúzar and Luis G. Willumsen.
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333



P1: TIX/XYZ P2: ABC

JWST054-09 JWST054-Ortuzar February 24, 2011 11:19 Printer Name: Yet to Come

334 Modelling Transport

Figure 9.1 Alternative aggregation strategies

the above criticisms; the question that remains is how exactly to perform the aggregation operation over
the micro relations.

Daly and Ortúzar (1990) have studied the problem of aggregation of exogenous data in some depth.
They concluded that in the case of models representing the behaviour of more than one individual (as is the
case with the classical aggregate model) some degree of aggregation of the exogenous data is inevitable
and the issue becomes one of to what extent greater accuracy (i.e. smaller zones) is desirable. However,
when the model represents the behaviour of a single individual it is conceivable that exogenous data can
be obtained and used separately for each traveller; therefore the issue is whether it is preferable on cost or
other grounds to use less accurate data; their findings support the notion that the cost/accuracy trade-off
is heavily dependent on context. For example, it is clear that for mode choice modelling and short-term
forecasting the use of highly disaggregate data is desirable; however, the plot thickens considerably for
other choice contexts and longer-term forecasting. The next two sections will consider aggregation bias
and forecasting methods in greater detail.

9.2 Aggregation Bias and Forecasting
Let us consider, for simplicity, the Multinomial Logit (MNL) model (7.9) we derived in section 7.3 and
the inverse relation (7.10) that its parameter β has with the single standard deviation σ of the residuals ε.
If we also consider the typical linear form (7.3) for the measurable utilities V it is easy to see that it is not
possible to estimate β separately from the parameters θ; in fact the calibration process will yield estimates

θ̂ = β θ (9.1)

which correspond to the marginal utilities θ deflated by σ .
We are interested in examining the effect of the manner in which the attributes x (or at least some of

them) are calculated, measured or codified, on the estimated demand functions. As usual we will assume
that the MNL model (7.9) is well specified (i.e. there are no taste variations or correlation problems).
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Let us assume now that we replace one of the attributes, for example x1, by an aggregate estimate
z1, where:

x1i = z1i + τ1 (9.2)

where the τ i are distributed (0, σ τ ); then replacing (7.3) and (9.2) in (7.2) we get (note that we had
dropped the individual index q for simplicity):

Ui = θ1z1i +
∑

k

θk xki + δi (9.3)

where the error term δi = θ1τ 1 + εi has variance (θ 2
1 σ 2

τ + σ 2). Thus, if we re-estimated the model in
this case the coefficient estimates would not be

θ̂k = π
√

6 · θk

σ
(9.4)

as before, where but

ˆ̂θ k = π
√

6 · θk√
(θ2

1 σ 2
τ + σ 2)

(9.5)

that is to say, ˆ̂θ k ≤ θ̂k , ∀ k. This is normally known as aggregation bias and has led to the recommendation
that use of average zonal variables for estimating disaggregate demand models should be avoided
whenever possible (see for example Horowitz 1981). The previous analysis may be extended to examine
the consequences of this bias in forecasting, as in the following example taken from Gunn (1985a).

Example 9.1 Consider a choice situation modelled by an MNL model such as (7.9) and assume that
attribute x1j is doubled, ceteris paribus, for each option. It is clear that neither θ nor σ are affected
by this; so if the model was re-estimated with a new data bank containing a consistent choice set, we
would obtain exactly the same values θ̂k from the original context again, and so these would predict
satisfactorily in the new context.

Consider now what would happen if after doubling x1j, each of these values was replaced by its
aggregate estimate z1j (for example, the zonal average). In this case we would obtain equation (9.3)
again, but the variance of δi would now be (θ2

1 4σ 2
τ + σ 2); in other words, if the model was re-estimated

with the new data it would yield coefficients with expected values given by

ˆ̂θ
′
k = π

√
6 · θk√

(θ2
1 4σ 2

τ + σ 2)
(9.6)

that is ˆ̂θ k > ˆ̂θ
′
k and the ˆ̂

θ would produce greater than normal predictions in these conditions. Alternatively,
attribute reduction policies would imply under-predictions of the model calibrated with aggregate data
(see Ortúzar and Ivelic 1987).

9.3 Confidence Intervals for Predictions
As we saw in Chapter 8, the maximum likelihood estimated parameters θ̂ of a discrete choice
model are asymptotically distributed N(θ, S2), where θ are the population parameters and S2 their
covariance matrix given by (8.14), that is:

S2 = −
(

E

(
∂2l(θ)

∂ θ2

))−1

(continued)
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i.e. the negative inverse of the Fisher information matrix I. From this knowledge, it is straightforward
to compute confidence intervals for the estimated parameters, on the basis of the well-known property
that quadratic forms distribute χ2 with degrees of freedom equal to the number of variables in the
vector of interest (see 2.5.4.1).

Applying this to our estimated parameters we obtain the following quadratic form:

Q F(θ̂, θ) = (θ̂ − θ) · I · (θ̂ − θ)T

that distributes asymptotically χ2 with K degrees of freedom (K is the number of estimated
parameters).

Therefore, if we can apply the asymptotic assumption a confidence region at the 95% level for the
set of estimated parameters is given by the values of θ that satisfy (9.7):

Q F(θ̂, θ) ≤ χ2
K ,95% (9.7)

However, converting the above region into a confidence region for the estimated probabilities is
not easy, as the relation between parameters and probabilities is not linear.

It is interesting to mention that the immense majority of discrete choice model applications have
failed to produce confidence intervals for the estimated probabilities, although two methods for doing
it have been available for many years (Horowitz 1980):

� Approximate the choice probabilities by a first order Taylor series expansion; in practice this is
equivalent to assume that the relation between probabilities and parameters is linear (which is,
of course, untrue). This is a fairly usual approach in mathematical statistics because it is easy to
implement and inexpensive in computational terms.

� Solve a non-linear programming problem; although this is a bit more complex and expensive is
subject to less errors than the previous method.

9.3.1 Linear Approximation

If P̂ is the estimated and P is the true value of the choice probabilities, the Taylor series approximation
is given by:

P̂ = P + (θ̂ − θ)
∂P
∂θ

+ � (9.8)

where the expected value of P̂ is equal to P and � is a residual term.
Now as the parameters θ distribute asymptotically Normal, P̂ also distributes asymptotically

Normal as (9.8) is a linear transformation. Thus P̂ ∼ N(P, W), where:

W =
(

∂P
∂θ

)
S2

(
∂P
∂θ

)T

and the numerical value of S2 can be estimated substituting θ̂ by θ in the derivatives. This approach
is actually called the Delta Method in statistics (see Greene 2003) and it has been used in practice
for some time.

Given the above, if Zα/2 denotes the percentile (1 – α/2) of the standard Normal distribution, then
if the asymptotic assumption can be assumed to hold a confidence region of 100(1 – α) for P would
be given by:

P̂ − Zα/2|W|1/2 ≤ P ≤ P̂ + Zα/2|W|1/2 (9.9)
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The main problem of this quick and simple method is that it can lead to erroneous results in the
case of non-linear functions and when the asymptotic assumptions do not hold (Horowitz, 1980).

Example 9.2 Consider the following simple single-parameter Logit model:

P1(x) = 1

1 + exp (θx)

where x is an independent variable and P1(x) the probability of choosing the first option. Assume
that the maximum likelihood estimate of θ was θ̂ = 3 and that its sample variance was equal to 1.
Then, if x = 0.01 (i.e. a case where non-linearity is not of great concern), the reader can check that
equation (9.9) yields the following confidence interval at the 95% level:

0.4876 ≤ P ≤ 0.4974

However, if x = 1 (i.e. a situation where non-linearity should bite) we would get:

−0.041 ≤ P ≤ 0.136

an interval which is clearly erroneous as it allows for negative values of P.
Daly and de Jong (2006) have given a better interpretation of the method, based on the idea that at the

maximum likelihood values of the parameters, the measure is no less exact than the original estimates;
this notion can be applied to estimate the confidence intervals of various important measures, such
as user benefits, and it is easy to use to estimate the errors of predicted market shares in the MNL
model. However, Daly and de Jong caution that when the model is no longer MNL and/or the sample
being expanded is large, with complicated calculations for the weights attached to each observation
in the aggregation procedure, the amount of calculations involved can be prohibitive and a sampling
approach can be necessary, as discussed by de Jong et al., 2007).

9.3.2 Non Linear Programming

The simplest way to formulate this method is as follows. Let Pi(θ) be the probability of choosing
alternative Ai ∈ A, where the total number of alternatives in the choice set is J; the decision variables
take fixed values x and the parameters are, as usual, θ. Consider that bi(α) and Bi(α) are the results
of the following non-linear problems:

bi (α) = Min Pi (θ ), i = 1, . . . , J

Bi (α) = Max Pi (θ ), i = 1, . . . , J

subject to H (θ̂, θ) ≤ χ 2
K ,(1−α)

where the maximisation and minimisations operations are done for different values of θ. In this case,
the following inequalities define a rectangular confidence region for Pi at the 100(1 − α) level:

bi (α) ≤ Pi ≤ Bi (α) i = 1, . . . , J (9.10)

This method tends to produce larger confidence regions than the previous one and it is also harder
to implement; but it has the advantage of yielding always reasonable (in the sense of not inconsistent)
confidence intervals.
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9.4 Aggregation Methods
While a disaggregate model allows us to estimate individual choice probabilities, we are normally more
interested in the prediction of aggregate travel behaviour. If the choice model was linear the aggregation
process would be trivial, amounting only to replacing the average of the explanatory variables for
the group in the disaggregate model equation; see for example the aggregation of household-based
trip generation models in Chapter 4. However, if the model is non-linear, this method, called naive
aggregation, will generally produce bias as shown in Figure 9.2. The correct aggregate probability for
a group of two individuals A and B is (PA + PB)/2; the naive method yields a probability PC given by:
P [(VA + VB)/2]. As can be seen, if the model was linear both values would coincide.

Figure 9.2 Bias of the naive aggregation method

Discrete choice models such as those we have discussed can be represented in general by:

Pjq = f j (xq )

where Pjq is the probability that individual q selects option Aj, xq is the set of variables influencing their
decision, and fj is the choice function for Aj (for example, the MNL).

For a population of Q individuals the aggregate proportion choosing Aj, according to the model, is the
expected value (or enumeration) of the probabilities of each individual in the population:

Pjq = 1

Q

∑

q

f j (xq ) (9.11)

Unfortunately this method would require an impossibly large data set. However, if we accept that the
sample used to estimate the model is a good representative of the population, we can use a modified
version of (9.11) and refer to sample enumeration as in (9.12):

MS j =
QS∑

q=1

wq f j (xq ) (9.12)

where MSj is the predicted market share of alternative Aj in the population, QS is the sample size and wq

the expansion factor corresponding to observation q in the sample.
This is a good practical method for moderate size choice sets and is excellent for mode choice models

in short-term predictions. However, the method is not so useful in the long term because it does not
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allow us to address overall contexts which are very different to that of the base year (it assumes that the
distribution of the attributes will not differ from that of the sample in the future); it is also unable to
produce aggregate zone-to-zone flows necessary for the estimation of demand at the link level.

Example 9.3 Consider the model of Example 9.2, with the same estimated parameter (i.e. θ̂ = 3)
but with a variance equal to 4.0; assume also that the sample was composed of five individuals with
the following values of x:

Individual x
1 0.89
2 0.75
3 −0.25
4 0.80
5 −0.40

In this case, and assuming that the expansion factors were all equal to 100, the reader can check
that applying (9.12) the market share of the first alternative would be approximately equal to 169 (i.e.
out of 500). To estimate the precision of this estimate we could apply the Delta Method mentioned in
the previous section. For the case of market shares estimated from a simple MNL model, Daly and
de Jong (1996) show that the appropriate expression is:

Var(MS j ) = MS′
j · S2 · MS′

j
T (9.13)

where MSj
′

is the vector of first derivatives of the estimated market share with respect to the
parameters; thus, its kth element is given by:

ms′
jk =

∑

q

wq · ∂ Pjq/∂θk

In the case of our example, the equations above simplify substantially as we only have one
parameter. Thus, S2 is equal to the scalar 4.0 and considering the expression of our binary Logit
model, we have that for alternative A1 we would get:

ms′
1 = 100∗ ∑

q

∂ P1q/∂θ = 100∗ ∑

q

P1q (1 − P1q ) xq

The reader can easily check that ms ′
1 = 5.398 in this case, and so the estimated variance for the

market shares of the first alternative equals 58.27. Thus, a 95% confidence interval for the market
share would be approximately equal to:

169 − 1.96 ·
√

58.27 ≤ MS1 ≤ 169 + 1.96 ·
√

58.27 → 154 ≤ MS1 ≤ 184

The reader can also check that if the same calculation was done for the second alternative, the
confidence interval would be 316 ≤ MS1 ≤ 346, and so in this case there would be a perfect match
(which, in general, may not be the case).

To cope with the problem of having a sample that is only good for the relatively short term,
the artificial sample enumeration approach may be used (see Daly and Gunn 1986; Daly 1998).
An artificial sample is one in which personal characteristics (believed to be representative of the
population of the study area) of members of existing households are matched with characteristics of

(continued)
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a number of locations also believed to be typical of the area. Thus, the marginal distributions of both
personal and location characteristics are by construction typical of the study area; the approximation
made is that the joint distribution of these characteristics can be represented by the product of the
two marginal distributions.

Given suitable networks, zoning systems and planning data, the marginal distributions of locations
can be those of actual locations in the study area (details of their accessibility to available destinations
are needed); if the locations are distributed over the whole of the study area, we can be reasonably
confident of overall representativeness in large samples (see Gunn 1985b).

For personal characteristics the following steps are needed to achieve realism:

1. Actual households’ members are drawn at random from a large nationally representative data set
(e.g. a census).

2. For each zone of the study area, different expansion factors are found for each of these households
such that the expanded sample corresponds as closely as possible to known or forecast aggregate
totals (i.e. of variables such as numbers of workers, numbers of individuals by sex and age
grouping, etc.).

3. The expansion factors, or more commonly the number of households in each group, are chosen
such that the overall distribution of households in terms of a given stratification (say size, number
of workers and age of head of household) is not too different from the overall national average
(note that when classifying data in this form there are several impossible strata, e.g. households
of size 1 with more than 1 worker). Daly (1998) compares the two most used methods to do
this, iterative proportional fitting (what we called Furness method in section 5.2.3), which has
been extensively applied in practice (see the discussion by Beckman et al. 1995) and quadratic
optimisation, as in (9.14), which was judged an improvement over the previous one. Daly (1998)
also provides details about the steps to follow in the construction and use of the prototypical
example and several successful examples about its application:

S(Ni ) =
∑

k

Wk

[∑

i

(Xik Ni − Yk)2

]
+

∑

i

(Ni − Ri )2 (9.14)

Here Ni is the required number of households in stratum i; Wk is a weight chosen to increase or
decrease the importance of the fit to the kth variable (e.g. number of workers, number of males
between 18 and 65, etc.); Xik is the average value of variable k for household stratum i; Yk is
the average (observed) value of variable k for (each zone of) the study area; and Ri the number
of households in stratum i in the base-year sample. Various other constraints can be put on the
process, as discussed by Gunn (1985b).

The artificial sample replicates the population of each zone of the study area; thus aggregate
forecasts can simply be obtained by applying the enumeration method to these data. The interested
reader can find more on the creation of synthetic samples, although not exactly for the same purposes
as discussed here, in the work of Guo and Bhat (2007) and Ye et al. (2009). We also discuss the
generation of synthetic samples in a little more detail in section 14.5.

Another practical method is known as the classification approach, which consists in approximating
(9.11) by a finite number of relatively homogeneous classes, as in:

Pjq =
∑

c

f j (Xc) Qc/Q (9.15)
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where Xc is the mean of the variable set vector for subgroup c and Qc/Q the proportion of individuals in
the subgroup.

The accuracy of the method depends on the number of classes c and their selection criteria (in the limit
it equals the naive method, when the number of subgroups c = 1, and the enumeration method, when
c = Q). Interesting but not often practical methods to define the classes have been reported (McFadden
and Reid 1975) but the approach is recommended for cases where sample enumeration is not appropriate
(Koppelman 1976).

An obvious method to define classes is to use as market segmenting variables those that present the
greatest variance or those which limit in some way the available choice set of each individual. Thus in
the mode choice case good variables are the number of cars per household and family income.

9.5 Model Updating or Transferance
9.5.1 Introduction

During the 1980s a substantial body of literature emerged with empirical evidence about the stability
(or, in most cases, lack of it) of parameters of disaggregate travel demand models, across space, cultures
and time (see for example Gunn et al. 1985; Koppelman and Wilmott 1982; Koppelman et al. 1985a, b).
The reasons were simple: firstly, evidence of stable values of estimated parameters could provide a direct
indication of model validity; secondly, a model that is not stable over time is likely to produce inaccurate
predictions; finally, and not less importantly, transferable models should allow for more cost-effective
analyses of transport plans and policies.

Because it is unrealistic to expect an operational model in the social sciences to be perfectly specified,
it is quite obvious that any estimated model is in principle context dependent. For this reason, it is not
very useful to look for perfect model stability and to consider model transferability in terms of equality
of parameter values in different contexts (although many studies initially took this view; see Galbraith
and Hensher 1982; Ortúzar 1986).

A more appropriate view considers model transfer as a practical approach to the problem of estimating
a model for a study area with little resources or a small available sample. In this sense the model-transfer
approach is based on the idea that estimated parameters from a previous study may provide useful
information for estimating the same model in a new area, even when their true parameter values are not
expected to remain the same. Now, as transferred models cannot be expected to be perfectly applicable
in a new context, updating procedures to modify their parameters are needed so that they represent
behaviour in the application context more accurately. Depending on the information available in the new
environment, different updating procedures may be applied (see Ben-Akiva and Bolduc 1987).

9.5.2 Methods to Evaluate Model Transferability

If we define transferability as the usefulness of a transferred model, information or theory in a new context,
we can attempt to measure it by comparing the model parameters and, more interestingly, its performance
in the two contexts. For this we will assume that we have estimated the parameters independently in
the two contexts; we will also assume that we would like to measure the errors involved in using the
first model in the second context. The following tests and measures were used in such analyses in many
practical studies (Galbraith and Hensher 1982; Koppelman and Wilmott 1982; Ortúzar et al. 1986).

9.5.2.1 Test of Model Parameter for Equality

To evaluate the absolute difference between coefficients of a given model estimated in two different
contexts, the t

∗
-statistics have been used; if (9.16) holds, the null hypothesis that this difference is zero



P1: TIX/XYZ P2: ABC

JWST054-09 JWST054-Ortuzar February 24, 2011 11:19 Printer Name: Yet to Come

342 Modelling Transport

cannot be rejected at the 95% level:

t∗ = θi − θ j√
(θi/ti )2 + (θ j/t j )2

< 1.96 (9.16)

where θ k denotes coefficients, tk their t-ratios, i stands for the original context and j for the new context;
note that this is the same test we saw in Example 8.3, but here there is no possible correlation among
the parameters as they belong to two different contexts. Galbraith and Hensher (1982) recommended the
application of this test only to parameters with low standard error (high t-ratio); otherwise, the t

∗
-statistic

may reject the alternative hypothesis (i.e. the parameters are different) even if they exhibit substantial
differences. However, note that this statistics suffers from the scale problem, as it cannot be possible to
assume that the variances of the error components in both contexts will be the same; thus, one cannot be
sure if differences are real or just a scaling problem. We will consider more appropriate methods below.

9.5.2.2 Disaggregate Transferability Measures

These are based on the ability of a transferred model to describe individual observed choices in the new
context and rely on measures of log-likelihood as those that were depicted in Figure 8.2. In addition
we need to define l∗

j (θi ) as the log of the likelihood that the observed data in the application context j
were generated by the transferred model estimated in context i; note that we need to denote the measures
previously used in Chapter 8 as l∗

j (θ j ), l∗
j (C) and l∗

j (0) respectively. Figure 9.3 shows the expected relation
among these values.

Figure 9.3 Expected relation between log-likelihood values

A natural measure of the transferability of a model estimated in context i for the application in
context j, is the difference in log-likelihood (i.e. likelihood ratio) between this model and one originally
estimated in context j: −{l∗

j (θi ) − l∗
j (θ j )}. This measure has been used to build two specific indices of

transferability:

1. Transferability test statistics (TTS), defined by Atherton and Ben-Akiva (1976) as twice the difference
in log-likelihood identified above:

TTS = −2{l∗
j (θi ) − l∗

j (θ j )} (9.17)

This statistic is distributed χ2 with degrees of freedom equal to the number of model parameters, under
the assumption that the parameter vector of the transferred model is fixed. The test is not symmetric;
therefore it is both possible and reasonable to accept transferability in one direction, between a pair
of contexts, but reject it in the other direction.

2. Transfer index (TI), which describes the degree to which the log-likelihood of the transferred model
exceeds a null or reference model (such as the market shares model), relative to the improvement pro-
vided by a model developed in the new context. It was defined by Koppelman and Wilmott (1982) as:

TI j (θi ) = l∗
j (θi ) − l∗

j (C)

l∗
j (θ j ) − l∗

j (C)
(9.18)
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TI has an upper bound of one (which is obtained when the transferred model is as accurate as the
local one), but does not have a lower bound; negative values imply only that the transferred model
is worse than the local reference model.

The two measures defined above are interrelated by their dependence on the difference in log-
likelihood between transferred and local models. However, they offer different perspectives on
model transferability: TI provides a relative measure and TTS a statistical test measure (Koppelman
and Wilmott 1982).

9.5.3 Updating with Disaggregate Data

The most general presentation of the MNL model (7.9) with linear utility functions V given by (7.3),
considers not only the explicit inclusion of relation (7.10) – as we saw in section 9.2 – but also the
explicit inclusion of a set of location parameters wi as in:

Piq = exp [(wi + θXiq)/σ ]
∑

j
exp [(w j + θXjq)/σ ]

(9.19)

where the location parameters represent the mode of the distribution of errors for each alternative, the
scale parameter σ is the standard deviation of the distribution of the error term, and the parameters
θ the attribute weightings employed by the individual in evaluating alternatives (note that strictly
speaking, we are missing the constant π/

√
6 in 9.19).

In his analysis of model mis-specification, Tardiff (1979) shows that the omission of explanatory
variables should have the following effects:

� shift the mean of the error distribution, represented in the model by wi, and increase its variance
reflected by σ ;

� bias the estimates of the parameters associated with the included variables.

When comparing models which are incompletely specified, in different contexts, it is expected that
the differences in the mean values of the error distribution will be relatively large, the differences in the
error standard deviation will be smaller, and the differences in the parameter estimates the smallest.
Thus, efforts to improve model transfer to a specific application environment should emphasise
adjustment of constants first, parameter scale second and relative values of the parameter last; this
has been confirmed by several practical studies using both aggregate and disaggregate data (Gur 1982;
Dehghani and Talvitie 1983; Koppelman et al. 1985b; Gunn and Pol 1986).

The parameters in equation (9.19) are of course not uniquely identifiable and therefore cannot
all be estimated; as we have seen, in the case of the alternative specific constants one is arbitrarily
(and with no loss of generality) set to 0. Also, it is not possible to estimate σ but only the ratios w/σ
and θ/σ ; defining these ratios by μ = w/σ and φ = θ/σ , we obtain the more familiar version of the
MNL model as:

Piq = exp (μi + φXiq)
∑

Aj∈A(q)
exp (μ j + φXjq)

(9.20)

where one of the μi must be constrained to zero.

(continued)
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9.5.3.1 Updating the Constants

Parameter estimates for a choice model are obtained by maximising a log-likelihood expression such
as (8.13), where embedded in the probability function Piq are expressions for the representative utility
of each option formulated as:

Viq = μi + φXiq (9.21)

Let us denote as φT a set of parameters estimated in one context to be transferred to a new
application context; in this case the transferred portion of the utility function can be defined as
(Koppelman et al. 1985b):

Z A
iq = φ TXA

iq (9.22)

where XA
iq is a vector of attributes of alternative Ai for individual q in the application context (A).

The updating of alternative specific constants is accomplished by modifying the utility function in
equation (9.21) for the application context to:

V A
iq = μA

i + Z A
iq (9.23)

where V A
iq is the representative utility of option Ai in the application context and μA

i its updated
alternative specific constant. To estimate the updated value of the constants it is necessary to maximise
the log-likelihood function:

l(μA) =
∑

q

∑

Aj∈A(q)

gjq log Pjq(ZA
q , μA) (9.24)

whereas before, gjq is defined by:

gjq =
{

1 if A j was chosen by q
0 otherwise

9.5.3.2 Updating of Constants and Scale

The methodology just outlined can be trivially extended to adjust the scale of the transferred param-
eters as well as the constants. The coefficient of Z A

iq in equation (9.23) was restricted to one in the
preceding approach; to update the parameter scale, that restriction is relaxed yielding the following
representative utility (Koppelman et al. 1985b):

V A
iq = μA

i + λA Z A
iq (9.25)

where λA is the scaling parameter for the application context relative to the estimation, or original,
context. In this case the log-likelihood function to be maximised is as (9.24) but including the extra
parameter λA. Note that this adjusts the scale of the explanatory variables but does not affect their
relative importance. Practical applications of this method have been reported by Gunn et al. (1985)
and a discussion of further refinements to this problem can be found in Ben-Akiva and Bolduc (1987).

9.5.4 Updating with Aggregate Data

Consider the same problem as before with the exception that no disaggregate data are available in
the application context; however, assume we possess data on observed market shares P∗

jq, and also
average values for the explanatory variables X̄ jz, for certain groups Z (say residents of a given zone)
in both contexts.
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Consider a naive aggregation in the original context, where the measured utility of option Aj for a
given group z is given by:

V̄ jz = μ j + φ X̄jz (9.26)

Updating both alternative constants and scale in this case, requires first to compute non-constant
utility for the application context as:

Z̄
A
jz = φ T X̄A

jz (9.27)

then postulate an expression for the representative utility of group z in the application context as:

V̄
A
jz = μA

j + τ A Z̄
A
jz (9.28)

where μA and τA are chosen so as to maximise the following log-likelihood function (Koppelman
et al. 1985a):

l(μA, τ A) =
∑

z

Wz

∑

j

Pjz
∗ log Pjz(Z̄

A
jz , μ

A, τ A) (9.29)

with Wz a weight, usually the number of observations, which indicates the relative importance of the
group in the data set. Other (more suspect) methods to update the constants only have been proposed
by Dehghani and Talvitie (1983) and Gur (1982).

The aggregation issue in the presentation above is not trivial as it is well known that the naive
method may introduce severe bias. In this sense it is interesting to mention that the methodology just
discussed is wholly consistent with the aggregation approach implicit in most aggregate transport
studies (recall Figure 9.1 and the discussion in Chapter 5). There, disaggregate model parameters
have been traditionally used as fixed coefficients of generalised cost functions, and later scale and
bias parameters have been fitted using aggregate data (Williams and Ortúzar 1982b).

It is also of interest to note that a more elaborate version of this approach has also been used in
practice; for example, in the Greater Santiago Strategic Transport Study (ESTRAUS 1989) disaggre-
gate mode choice parameters were firstly estimated with a mixture of data for 1983 to 1986 (Ortúzar
and Ivelic 1988); these were used to build generalised cost functions the scale and bias parameters
of which were then calibrated using 1977 network and survey data (the only O-D and network
data available at the time). Finally, the resulting aggregate distribution and modal-split models were
validated using volume counts and other aggregate information for 1986.

An interesting alternative, if available, is the use of purposely designed synthetic samples in an
enumeration approach such as we discussed in section 9.4 (Gunn et al. 1982). An important advantage
of this method is that no major adjustments need to be made to the disaggregate models if the artificial
sample provides unbiased information to the model system.

Exercises
9.1 A group of 800 heads of household with different income levels and located in various parts of an

urban area, are confronted with choice between two transport services A and B, for travelling to the
central business district. The first, which is more oriented to the population segment with higher
income, has a cost Ca and the second a cost Cb.

It has been estimated that the utilities of each alternative are given by the following linear functions:

Ua = −0.30Ca + 3.23I
Ub = −0.30Cb

where I is family income (1000$/week).
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Estimate the number of households that would choose service A using the following information:

Family income
(100$/week)

Number of
households Ca ($) Cb ($)

Between 1 and 2 450 150 120
Between 2 and 3 250 175 145
Between 3 and 4 100 160 130

9.2 Consider the urban corridor depicted in the figure

which has the following characteristics:
– Underground and highway run parallel to each other.
– There are underground stations at each zone.
– The households in the corridor have different income levels, different car ownership and different

access to the underground, as shown in Table 9.1.

We are interested in the trips between zone 1 and the centre of town. We are informed that a binary
Logit model has been estimated yielding the following representative utilities:

Vc = −2.0 + 9 × 10−5 I + 2.84CO − 0.03tc − 0.68ec/d − 50.0cc/I
Vu = −0.03tu − 0.68eu/d − 50.0cu/I

where t is in-vehicle travel time (min), e is access time (min), c is cost ($), d is distance (km), I is
income ($/month) and CO is the number of cars divided by the number of licences in the household.

Underground trips are divided according to access into U (DA), underground with direct access
(i.e. on foot), and U (CA), underground with car access. The levels of service by individuals travelling
between zone 1 and the centre are summarised in Table 9.2.

Table 9.1 Distribution of households with trips between zone 1 and the centre

Income

CO Access 5000 10000 15000 Total

U (DA) 0 0 350 350
1.0 U (CA) 0 50 150 200

Total 0 50 500 550
U (DA) 150 100 0 250

0.5 U (CA) 200 0 0 200
Total 350 100 0 450
U (DA) 150 100 350 600

Total U (CA) 200 50 150 400
Total 350 150 500 1000
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Table 9.2 Levels of service

tc ec cc tu eu cu d

U (DA) 11.3 5 122.5 14 8 50 14.5
U (CA) 14.2 5 131.3 22 15 75 16.3

Find out, using an appropriate method, the aggregate probability (i.e. for the whole population)
of choosing underground.

9.3 Consider a binary Logit model for car and bus with the following representative utility functions:

Vc = 1.35 − 0.03tc − 0.15cc

Vb = −0.03tb − 0.15cb

where t is total travel time (min) and c is travel cost divided by income (min). Assume the data in
Table 9.3 is known about individuals from zone A travelling to work at zone C:
(a) Find out the aggregate proportion choosing car by the naive aggregation method and by the

sample enumeration method. Compute the naive aggregation error in this case.
(b) Find now the aggregate proportion using car by the classification method (using income as

stratification variable). Plot your results and those of the naive aggregation method; discuss
your graph.

(c) Compare all your results and discuss them critically.

Table 9.3 Individual data

Individual Chosen option Income level tc (min) tb (min) cc (min) cb (min)

1 Car High 47.5 83.2 14.8 7.0
2 Car High 30.2 45.0 10.4 5.0
3 Car High 22.2 30.4 12.6 4.0
4 Bus High 45.0 50.6 8.2 5.0
5 Bus Low 15.3 20.5 50.0 17.0
6 Car Low 34.8 50.2 55.0 35.0
7 Bus Low 65.5 100.5 200.3 53.5
8 Bus Low 12.0 14.0 44.6 17.0

9.4 You are interested in transferring the model of Exercise 9.3 to a new context, where you have taken
a small sample of five individuals whose characteristics are presented in the following table:

Individual Chosen Option tc (min) tb (min) cc (min) cb (min)

1 Car 37.5 70.2 16.8 10.0
2 Car 20.2 30.0 16.4 8.0
3 Car 12.0 15.4 18.6 7.0
4 Bus 35.0 35.6 14.2 8.0
5 Bus 5.3 6.5 56.0 20.0

Assuming there are no mode specific constants, estimate the value of τ , the transfer scale parameter,
using the data above. Discuss your result.
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10
Assignment

10.1 Basic Concepts
10.1.1 Introduction

The last six chapters have dealt in detail with the key models currently in use to represent the demand
for travel in a study area. This chapter will deal with the assignment of vehicles and people to road and
public transport networks following a rather intuitive approach in order to introduce some of the basic
relevant ideas. The next chapter will adopt a more formal approach concentrating on equilibrium both at
the network and system levels. The network system, and in the case of public transport the characteristics
of the services offered such as frequency and capacity, represent the main elements of the supply side in
transport. These are more or less fixed in the short run. Over a longer period, transport authorities and
operators will change fares, frequencies and vehicle types; road network managers will improve existing
(and build new) roads, constrain parking, and introduce tolls and congestion charges. Although these are
real representations of supply changes to increased demand, we do not have good models to forecast this
type of longer term changes in supply. Our network models fall short of that: they are only cost-models:
how transport costs will change with different levels of demand. The task of specifying a better longer
term supply system falls to decision makers, planners and analysts.

In conventional economic thinking the actual exchanges of goods and services take place as a result
of combining their demand with their supply. The equilibrium point resulting from this combination
defines the price at which the goods will be exchanged and their respective flows (quantities exchanged)
in the market. The equilibrium point is found when the marginal cost of producing and selling the goods
equals the marginal revenue obtained from selling them. Economic theory admits that this equilibrium
may never actually happen in practice as the system of prices and production levels is under permanent
adjustment to cope with changes in purchasing power, tastes, technology and production techniques.
However, the concept of equilibrium is still valuable in understanding the movement of the economy
and to forecast its future states.

It is useful to consider the transport system within that context. The (short term) supply side, or more
correctly the cost model, is made up of a transport network S(L, C) represented by links L (and their
associated nodes) and their costs C. The costs are a function of a number of attributes associated with the
links, e.g. distance, free-flow speed, capacity and a speed–flow relationship, and, in the case of public
transport, on route and service attributes like fares, frequencies and running times. The demand side
is made up of an indication of the number of trips by O–D pair and mode that would be made for a
given level of service, i.e. that assumed in their estimation. One of the main elements defining levels of
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service is, in this context, travel time, but often monetary costs (fares, fuel) and features like comfort
for the public may be relevant too. If the actual level of service offered by the transport network turns
out to be lower than estimated, then a reduction in the demand and perhaps a shift to other destinations,
modes and/or times of day would be expected. The speed–flow (or generalised cost–flow) relationship
is important as it relates the use of the network to the level of service it can offer.

The public-transport network must be defined in similar terms to the private network. However,
it should contain additional specification of the services offered in terms of their routes, capacities,
frequency, fares and ideally, though seldom in practice, their quality, reliability and regularity.

In the case of a transport system one can see equilibrium taking place at several levels. The simplest
one is equilibrium in the road network where travellers from a fixed trip matrix seek routes to minimise
their travel costs (times). This results in their trying alternative routes, exploring new ones and perhaps
settling into a relatively stable pattern after much trial and error. This allocation of trips to routes yields a
pattern of path and link flows which could be said to be in equilibrium when travellers can no longer find
better routes to their destinations: they are already travelling on the best routes available. This is the road
network equilibrium. A similar, but perhaps less dramatic, phenomenon takes place in public-transport
networks where passengers may seek routes (i.e. combinations of services) to reduce their generalised
journey costs as affected by overcrowding, waiting and walking times, and in-vehicle times.

There are, however, other (higher) levels of interaction. As car congestion increases, buses operating
on the same roads will have their journey times increased as well. This may induce some public-transport
users (and bus operators) to change their routes to avoid these delays. These choices interact with those
of car drivers as the new arrangements may provide additional capacity in some links and therefore new
equilibrium points. These are multimode network equilibrium problems and are discussed in Chapter 11.

At an even higher level, the resulting flow pattern may affect choices of mode, destination and time
of day for travel. Each of these shifts in demand will induce in turn changes in the corresponding
equilibrium points. In modelling terms, the new flow pattern produces levels of service for routes and
modes which may or may not be consistent with those assumed in estimating the (presumed) fixed trip
matrix. This requires re-estimating the matrix and therefore feeding back the new levels of service into
the estimation process to obtain a new one. The process may need to be repeated in a systematic way
until the trip matrices (and therefore trip time, destination and mode) are obtained with values for travel
costs which are consistent with the flows estimated for each network. This higher level we shall call
system equilibrium as opposed to network equilibrium.

The rest of the chapter is organised as follows. We consider first the problem of assigning a fixed trip
matrix to a road network. In order to treat this problem we consider typical characteristics of speed– or
cost–flow curves. The assignment problem is split into a route choice model and the loading of the trip
matrix onto the identified routes. Different conditions require different loading methods. Stochastic meth-
ods allow for variability in drivers’ perception of route costs; these methods are discussed in section 10.4.
The most interesting deterministic assignment methods try to include consistently the effect of conges-
tion on route choice. This chapter considers only pragmatic methods under the general title of congested
assignment in section 10.5; we leave a more rigorous treatment of equilibrium assignment for Chapter
11. Section 10.6 considers the problems and approaches required to model public-transport assignment.

10.1.2 Definitions and Notation

Some further notation will be introduced as required but the basic elements used in this chapter are:

Tijr is the number of trips between i and j via route r,

Va is the flow on link a in vehicles per hour (vph), or passenger car units (pcu) per hour,
where typically a bus is equivalent to between 2 and 3 pcu and trucks between 3 and 4 pcu,
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C(Va) is the cost-flow relationship for link a,

c(Va) is the actual cost for a particular level of flow Va; the cost when Va = 0 is referred to
as free-flow cost,

cijr is the cost of travelling from i to j via route r,

δa
ijr =

{
1 if link a is on path (or route) r from i to j
0 otherwise

A superscript n will be used to indicate a particular iteration in iterative methods. A superscript ∗ will
be used to indicate an optimum value, e.g. c∗

ij is the minimum cost of travelling between i and j.
In many cases it is important to recognise that there are different road users and they may display

different behaviour on the same link. Therefore, we further introduce an additional index (usually u)
for user class. It is possible to have different user classes for each vehicle type (car, bus, truck) and for
different types of drivers as a function of their journey purpose, willingness to pay (income) tolls and
parking, and other personal characteristics relevant to the study.

10.1.3 Speed–Flow and Cost–Flow Curves

A familiar relationship in traffic engineering is that relating the speed on a link to its flow. This concept
was originally developed for long links in motorways, tunnels or trunk roads. A speed–flow relationship
is usually presented as in Figure 10.1; as flow increases, speed tends to decrease after an initial period of
little change; when flow approaches capacity the rate of reduction in speed increases. Maximum flow is
obtained at capacity and when attempts are made to force traffic volumes beyond this value an unstable
region with low flows and low speeds is reached.

For practical reasons, in traffic assignment this type of relationship is handled in terms of travel time
per unit distance versus flow, or more generally, as a cost–flow relationship, as also shown in Figure
10.1. Traffic assignment methods taking into account congestion effects need a set of suitable functions
relating link attributes (capacity, free flow speed) and flow on the network with the resulting speeds or
costs. This can be written in general terms as:

Ca = Ca({V}) (10.1)

Figure 10.1 Typical speed–flow and cost–flow relationship for a long link
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that is the cost on a link a is a function of all the flows V in the network, i.e. not just the flow on the
link itself. This general formulation is relevant in urban areas where there is a good deal of interaction
between flows on different links and their corresponding delays, for example at priority junctions or
roundabouts. However, this can be simplified if one considers long links, that is, links where most of the
travel time takes place on the link rather than at the end junctions. In this case the function is said to be
separable and we can write:

Ca = Ca(Va) (10.2)

that is, the cost on the link depends just on its flow and the link characteristics. This assumption simplifies
the estimation of these functions and the development and use of suitable trip assignment techniques.
It must be recognised, however, that it becomes much less realistic as one works with denser and more
congested urban areas.

A number of general functional forms have been proposed to embody the general relationship in
equation (10.2). The fact that our main concern in this section is traffic assignment permits us to
concentrate on a smaller set of these functions, in particular those with good mathematical properties.
The following are desirable properties from the point of view of traffic assignment:

� Realism; the modelled travel times should be realistic enough.
� The function should be non-decreasing and monotone; increasing flow should not reduce travel time.

This is not only reasonable but also desirable, as we shall see below.
� The function should be continuous and differentiable.
� The function should allow the existence of an overload region, i.e. it should not generate infinite travel

time, even when flow is equal or greater than capacity. This may happen as part of an iterative process
when more traffic is assigned to a link than its capacity; a high positive value for travel time should be
produced but infinity will generate overflow in computer programs, an undesirable occurrence. More-
over, short-term overload can certainly happen in practice without generating anything approaching
infinite delay! The dotted line in the cost–flow curve in Figure 10.1 simulates this.

� For practical reasons the cost–flow relationship should be easy to transfer from one context to another;
the use of engineering parameters like free-flow speed, capacity, and number of junctions per kilometre
is therefore desirable.

One would expect the cost–flow relationship to be an increasing function with flow, except perhaps at
very low flow levels when travel times may remain constant despite small increases in traffic volume. The
total operating cost on a link will then be given by VaCa(Va); it is interesting to consider the corresponding
marginal cost, that is, the contribution to total cost made by the marginal addition of one vehicle to
the stream:

Cma = ∂ [VaCa(Va)]

∂Va
= Ca(Va) + Va

∂ Ca(Va)

∂Va
(10.3)

On the right-hand side we have two terms, the first one corresponding to the average cost on the link
and the second to the contribution to delay to other traffic made by the marginal vehicle. This is an
external effect and corresponds to the additional costs incurred by other users of the link when a new car
is added to it. As the cost–flow curve is an increasing one this contribution is always greater than zero. It
is also clear that in economic terms the average and marginal costs will only be the same in the flat part
of the cost–flow curve, if any.

A number of authors have suggested functional forms for cost–flow relationships. These usually
rely on the assumption that one is trying to model steady-state conditions and some kind of average
behaviour. Branston (1976) has produced a good review of the practical problems encountered when
trying to calibrate these cost–flow functions:
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� There are problems with the length of the observation period in particular in congested areas and
where an upstream junction acts as bottleneck; the exact location of flow and delay measuring areas
plays a critical role in determining the quality of the results obtained.

� The assumption that delays depend only on flow on the link itself is unrealistic in most dense urban
networks and this is particularly critical in trying to estimate cost–flow functions.

Branston (1976) also reviews cost–flow curves proposed by other authors. Some of the most used are
the following:

1. Smock (1962) for the Detroit Study:

t = t0 exp (V/Qs) (10.4)

where t is travel time per unit distance (min/km), t0 is travel time per unit distance under free flow
conditions, and Qs is the steady-state capacity of the link.

2. Overgaard (1967) generalised (10.4) as follows:

t = t0α
β(V/Q) (10.5)

where Q is the capacity of the link, and α and β are parameters for calibration.
3. The Bureau of Public Roads (1964) in the USA proposed what is probably the most commonly used

function of this type:

t = t0

[
1 + α (V/Q)β

]
(10.6)

4. The Department of Transport in the UK has produced a large number of cost–flow curves for a variety
of link types in urban, sub-urban and inter-urban roads. Some have a general form which considers
first the speed–flow s(V) curve:

s(V ) =

⎧
⎪⎪⎨

⎪⎪⎩

S0 V < F1 (10.7a)

S0 − S0 − S1

F2 − F1
(V − F1) F1 ≤ V ≤ F2 (10.7b)

S1/[1 + (S1/8d)(V/F2 − 1)] V > F2 (10.7c)

where
S0 is the free flow speed,
S1 is the speed at capacity flow F2 (or Q),
F1 is the maximum flow at which free-flow conditions prevail, and
d is the distance or length of the link.

Then the time-flow T(V) relationship becomes:

T (V ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d/S0 V < F1 (10.8a)

d/S(V ) = d

S0 + SS01 F1 − SS01V
F1 ≤ V ≤ F2 (10.8b)

d/S1 + (V/F2 − 1)/8 V > F2 (10.8c)

with SS01 given by:

SS01 = S0 − S1

F1 − F2
(10.9)

Typical values for these coefficients (Department of Transport 1985) are given in Table 10.1. In some
cases a cut-off point in speed reductions is assumed; for example the speed may be assumed to remain
at F2 for V > F2.
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Table 10.1 Typical speed–flow curve coefficients in the UK

S0 S1 F1 F2

Type km/h km/h pcu/h/lane pcu/h/lane

Single 2 lane, rural 63 55 400 1400
Dual 2 lane, rural 79 70 1600 2400
Single 2 lane, urban, outer area 45 25 500 1000

5. Akçelik function. All the functions mentioned above tend to underestimate delays at junctions as
they concentrate on the links characteristics. Moreover, they also tend to underestimate delays when
demand is close or above the capacity of the link. They are less appropriate in urban conditions where
junctions play a more important role in determining travel times than the speed mid-link. Akçelik
(1991) has suggested a better curve, based on earlier work by Davidson, which tackles these problems
much better. When considering conditions close or above saturation the length of the modelling period
matters considerably as it influences the length of the ‘overflow’ curve which in turn drives delay.
Akçelik’s function applies to v/c ratios above and below 1:

t = t0 + {0.25T }
[

(x − 1) +
√

(x − 1)2 + 8JA

Q j T
x

]
(10.10)

where:
T is the flow modelling period (typically one hour),
Qj is the capacity at the junction; if the saturation flow is Qs then Qj = Qsg/cy,
g is the length of the green period at the junction and cy is the cycle length in the same units,
x is the degree of saturation = V/Qj,
JA is a delay parameter.

In principle there is no upper limit on the value of x that could be input above since this equation
is designed to approximate the delays due to queuing when demand exceeds capacity. The equation
explicitly takes into account the delays caused by queuing and can be applied to any facility type. The
assumptions are that there is no queue at the start of the analysis period, and there is no peaking of
demand within the analysis period (T).

The delay parameter JA is a function of the number of delay-causing elements in the section of road
and the variability of the demand. Akçelik suggests lower values of JA for freeways and coordinated
signal systems. Higher values would apply to secondary roads and isolated intersections.

The value of JA can be computed if the difference in the rate of travel (hours per km) between capacity
and free flow conditions on the facility is known. Substituting x = 1 in the above equation and solving
for JA yields:

JA = 2Q j

T
(tc − t0)2 (10.11)

where tc is the rate of travel at capacity (hours per km).
All the above speed or cost–flow curves produce information about travel time on a link. However,

it is recognised that most users might wish to minimise a combination of link attributes including time
and distance. Conventional practice recommends the use of a simplified version of the generalised cost
concept, namely a linear weighted combination of time and distance:

Ca = α(travel time)a + β(link distance)a (10.12)
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This cost could be measured in generalised time or generalised money units. It is also possible to
include an out-of-pocket expenditure element, for example a toll to be applied on a given link.

The calibration of cost–flow relationships is time consuming and requires a good deal of high-quality
data: observations of travel times on links under different flow levels. For this reason, this is rarely
attempted and many countries have developed their own functions. See also the limitations of link-based
cost–flow functions in urban areas as discussed in section 11.3.

Suh et al. (1990) have put forward an innovative approach to estimate cost–flow curves based on
traffic counts; they use a bi-level optimisation method that, in essence, seeks to establish the parameters
for the cost–flow curves minimising a measure of difference between assigned and observed flows. The
value of this approach is limited by the errors in the assignment process as discussed, again, in section
11.3: e.g. errors in the network, trip matrix, in the assumption of perfect information and that all users
perceive link costs in the same way. Thus the estimated cost–flow curves incorporate these errors and
are, therefore, difficult to transfer to other areas or even schemes.

10.2 Traffic Assignment Methods
10.2.1 Introduction

During the classic traffic assignment stage a set of rules or principles is used to load a fixed trip matrix
onto the network and thus produce a set of links flows. This is not, however, the only relevant output
from the assignment stage; this has several objectives which are useful to consider in detail. Not all of
them receive the same emphasis in all situations nor can all be achieved with the same level of accuracy.
The main objectives are:

1. Primary:
� to obtain good aggregate network measures, e.g. total motorway flows, total revenue by bus service;
� to estimate zone-to-zone travel costs (times) for a given level of demand;
� to obtain reasonable link flows and to identify heavily congested links.

2. Secondary:
� to estimate the routes used between each O–D pair;
� to analyse which O–D pairs use a particular link or route;
� to obtain turning movements for the design of future junctions.

In general terms we shall attain the primary objectives more accurately than the secondary ones. Even
within objectives we are likely to be more accurate with those earlier in the list. This is essentially
because our models are more likely to estimate aggregate than disaggregate values correctly.

The basic inputs required for assignment models are:

� A trip matrix expressing estimated demand. This will normally be a peak-hour matrix in urban
congested areas, and perhaps other matrices for other peak and off-peak periods. A 24-hour matrix
is sometimes used for assignment of uncongested networks. The conversion of 24-hour matrices into
single hours is seldom satisfactory in terms of congestion, as these matrices are symmetric and single-
hour trips seldom are. The matrices themselves may be available in terms of person trips; therefore,
they should be converted into vehicle trips as capacity and speed–flow relationships are described in
these terms.

� A network, namely links and their properties, including speed–flow curves.
� Principles or route selection rules thought to be relevant to the problem in question.
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The traffic assignment methods involve a set of rules on how to identify desirable routes (fastest, lowest
generalised cost) to connect origin to destination and then a systematic way of allocating O-D trips
to these routes so that certain features of reality are achieved. In the next sections we will discuss
these methods from a practical viewpoint identifying its strengths and weaknesses. In Chapter 11 we
will adopt a more rigorous approach setting up the assignment task as an optimisation problem and
discussing solution algorithms in a more systematic way.

10.2.2 Route Choice

The basic premise in assignment is the assumption of a rational traveller, i.e. one choosing the route
which offers the least perceived (and anticipated) individual costs. A number of factors are thought to
influence the choice of route when driving between two points; these include journey time, distance,
monetary cost (fuel and others), congestion and queues, type of manoeuvres required, type of road
(motorway, trunk road, secondary road), scenery, signposting, road works, reliability of travel time and
habit. The production of a generalised cost expression incorporating all these elements is a difficult task.
Furthermore, it is not practical to try to model all of them in a traffic assignment model, and therefore
approximations are inevitable.

The most common approximation is to consider only two factors in route choice: time and monetary
cost; further, monetary cost is often deemed proportional to travel distance. The majority of traffic assign-
ment programs allow the user to allocate weights to travel time and distance in order to represent drivers’
perceptions of these two factors. The weighted sum of these two values then becomes a generalised cost
used to estimate route choice. There is evidence to suggest that, at least for urban car traffic, time is the
dominant factor in route choice. Outram and Thompson (1978) compared drivers’ stated objectives with
their actual performance in route choice. They found that the proportion of drivers being successful in
achieving their objectives was relatively low. They also found that the combination of time and distance
gave the best explanation of route choice. However, even if we allow the combination of time and distance
in a generalised cost function, we can only explain something of the order of 60 to 80% of the routes
actually observed in practice. As the marginal contribution of other factors in untangling route choice is
very small, the unexplained part must be attributed to factors like differences in perception, imperfect
information on route costs or simply errors.

The fact that different drivers often choose different routes when travelling between the same two
points may be ascribed to three different types of reasons:

1. Differences in individual perceptions of what constitutes the ‘best route’; some may wish to minimise
time, others fuel consumption and many a combination of both and this introduces a variety in
route choices.

2. The level of knowledge of alternative routes varies and this introduces apparent irrationality (from
the point of view of the observer) in the choices.

3. Congestion effects affecting shorter routes first and making their generalised costs comparable to
initially less attractive routes.

We normally handle the first issue through multiple user classes, the second through ‘stochastic effects’
and the third one via congested assignment and equilibrium.

Example 10.1 Consider an idealised town with a low-capacity through route (1000 vehicles per hour)
and a high-capacity bypass, as in Figure 10.2. The bypass is a longer but faster route with a capacity
of 3000 vph. Assume that during the morning peak 3500 drivers approach the town and that everyone
would like to use the shortest route, i.e. via the town centre. It is clear that it would not be possible



P1: TIX/XYZ P2: ABC

JWST054-10 JWST054-Ortuzar February 24, 2011 11:22 Printer Name: Yet to Come

Assignment 357

Figure 10.2 Town served by a bypass and a town centre route

for all of them to do so as the route would become too congested even before its ultimate capacity is
reached. Many would opt then for second choice to avoid long queues and delays. Presumably drivers
would experiment with the two routes until they find a more or less stable arrangement when none can
improve their time by switching to the other route. This is a typical case of Wardrop’s equilibrium, which
is discussed in greater detail below. Diversion across routes in this case is due to capacity restraint.

However, not all 3500 drivers will think alike; some would always prefer the bypass because of its
uninterrupted flow conditions or its scenery, where as others would value other features of the town-centre
route. These differences in objectives can be modelled using multiple user classes. The differences in
perceptions and knowledge would also lead to a spread of routes and such effect is customarily referred
to as the stochastic element in route choice.

Particular types of models are more suited to representing one or more of the above influences. A
possible classification of traffic assignment methods is given in Table 10.2. The details and characteristics
of each method are discussed below.

Each assignment method has several steps which must be treated in turn. Their basic functions are:

� To identify a set of routes which might be considered attractive to drivers; these routes are stored in a
particular data structure called a tree and therefore this task is often called the tree-building stage.

� To assign suitable proportions of the trip matrix to these routes or trees; this results in flows on the
links in the network.

� To search for convergence; many techniques follow an iterative pattern of successive approximations
to an ideal solution, e.g. Wardrop’s equilibrium; convergence to this solution must be monitored to
decide when to stop the iterative process.

Table 10.2 Classification scheme for traffic assignment

Stochastic effects included?

No Yes

Single user class No capacity restraint All-or-nothing Pure stochastic: Dial’s, Burrell’s
With capacity restraint Wardrop’s equilibrium Stochastic user equilibrium SUE

Multiple user classes No capacity restraint All-or-nothing with multiple
user classes

Multiple user classes stochastic:
Dial’s, Burrell’s

With capacity restraint Wardrop’s equilibrium with
multiple user classes

Stochastic user equilibrium with
multiple user classes
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10.2.3 Tree Building

Tree building is an important stage in any assignment method for two related reasons. First, it is performed
many times in most algorithms, at least once per iteration. Second, a good tree-building algorithm can
save a great deal of computer time and costs. By a good algorithm we mean an efficient one which is
also well programmed in a suitable language. Van Vliet (1978) has produced a good discussion of the
most widely used algorithms for tree building and this section is based on his paper.

There are two basic algorithms in general use for finding the shortest (cheapest) paths in road networks,
one due to Moore (1957) and one due to Dijkstra (1959). The two will be discussed using a more
convenient node-oriented notation: the length (cost) of a link between A and B in the network is denoted
by dA, B. The path or route is defined by a series of connected nodes, A-C-D-H, etc., whilst the length of
the path is the arithmetic sum of the corresponding link lengths in the path. Let dA denote the minimum
distance from the origin of the tree S to the node or centroid A; PA is the predecessor or backnode of A
so that the link (PA, A) is part of the shortest path from S to A.

The procedure for building a minimum path tree from S to all other nodes may be described
as follows:

Initialisation Set all dA = ∞ (a suitable large number depending on computer and compiler) except
dS which is set equal to 0; set up a loose-end table L to contain nodes already reached by the algorithm
but not fully explored as predecessors for further nodes. They are the tip of the tree as branches grow to
reach all nodes. Initialise all entries Li in L to zero, and all PA to a suitable default value.

Procedure Starting with the origin S as the ‘current’ node = A:

1. Examine each link (A, B) from the current node A in turn and, if dA + dA,B < dB then set a new value
for dB = dA + dA, B, make PB = A and add B to L;

2. Remove A from L, if the loose-end table is empty, stop; otherwise,
3. Select another node from the loose-end table and return to step 1 with it as the current node.

Three comments should be made at this stage. First, routes are in general not allowed to use centroids;
therefore in step 1, B would not be added to L if it was a centroid. Second, the essential difference
between Moore’s and Dijkstra’s algorithms lies in the procedure for selecting a node from L. Moore
selects the top entry, that is the oldest entry in the table; Dijkstra selects the node nearest to the origin,
i.e. the node Li such that dLi is a minimum. This requires some additional calculations (including sorting
of nodes) but ensures that each link is examined once and only once. It is well known that Dijkstra’s
algorithm is superior to Moore’s, in particular for larger networks; it is however, more difficult to program.
Finally, trees are often stored in the computer in one of two forms: as a set of ordered backnodes in
which A is the backnode of B if link (A, B) forms part of the tree; or as a set of backlinks with a
similar definition.

Van Vliet (1977) also identified a lesser known algorithm which performs very well even in large
networks: D’Esopo’s algorithm, as described and tested by Pape (1974). D’Esopo’s uses a ‘two-ended’
loose-end table so that node B is entered at one or other end depending on its ‘status’. If B had not
been previously reached by the tree then it is entered at the bottom of L; if it is currently on the table
no entry is made; but, if it has already been entered to L, examined and removed from the table then it
is entered at the top. A simple array can be used to record the status with three potential values (+1, 0
or −1) representing each case for each node. As shown by Van Vliet (1977), D’Esopo’s algorithm can
reduce CPU times by 50% relative to Moore’s. Furthermore, its performance is very close and often
better compared with that of the best implementations of Dijkstra’s; it has the added advantage of being
much simpler to program.
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Trees have two important additional uses in transport planning. They are often employed to extract
cost information in a network. For example, the total travel time between two zones can be obtained by
following the sequence of links in the tree connecting them and accumulating their travel times. This
operation is often referred to as ‘skimming’ a tree. Trees built for, say, travel time can be skimmed for
other attributes, for example generalised cost, distance, number of nodes, etc. Trees can also be used to
produce information on which O–D pairs are likely to use a particular link. This facility, often called a
‘selected link analysis’, permits the identification of who is likely to be affected by a network change.
Moreover, it can also be used to cordon a trip matrix for a smaller study area; in this case the selected
links are used to identify entry and exit points to the small study area and the trees to combine the original
zones into single external ones for the new sub-area.

10.3 All-or-nothing Assignment
The simplest route choice and assignment method is ‘all-or-nothing’ assignment. This method assumes
that there are no congestion effects, that all drivers consider the same attributes for route choice and
that they perceive and weigh them in the same way. The absence of congestion effects means that link
costs are fixed; the assumption that all drivers perceive the same costs means that every driver from i to
j must choose the same route. Therefore, all drivers are assigned to one route between i and j and no
driver is assigned to other, less attractive, routes. These assumptions are probably reasonable in sparse
and uncongested networks where there are few alternative routes and they are very different in cost.

The assignment algorithm itself is the procedure that loads the matrix T to the shortest path trees and
produces the flows VA,B on links (between nodes A and B). All load algorithms start with an initialisation
stage, in this case making all VA,B = 0 and then apply one of two basic variations: pair-by-pair methods
and once-through approaches.

Pair-by-pair This is probably the simplest but not necessarily the most efficient method. In this case
we start from an origin and take each destination in turn. First, we initialise all VA,B = 0. Then for each
pair (i, j):

1. Set B to the destination j;
2. If (A, B) is the backlink of B then increment VA,B by Tij, i.e. make VA,B = VA,B + Tij;
3. Set B to A;
4. If A = i terminate (i.e. process the next (i, j) pair), otherwise return to step 2.

Once-through This is sometimes called a ‘cascade’ method as it loads accumulated flow from nodes
to links following the minimum cost trees from an origin i. Let VA be the cumulative flow at node A:

1. Set all VA = 0 except for the destinations j for which Vj = Tij.
2. Set B equal to the most distant node from i.
3. Increment VA by VB where A is the backnode of B, i.e. make VA = VA + VB.
4. Increment VA,B by VB, i.e. make VA,B = VA,B + VB.
5. Set B equal to the next most distant node; if B = i then the origin has been reached, begin processing

the next origin, otherwise proceed with step 3.

In this form VB represents the total number of trips from i passing through node B en route to
destinations further away from i. By selecting nodes in reverse order of distance, each node is processed
once only. This algorithm requires the trees to be stored in terms of backnodes ordered by distance from
the origin.
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Example 10.2 Consider the simple network in Figure 10.3 and its associated trip matrix: A-C = 400,
A-D = 200, B-C = 300 and B-D = 100. Section (a) shows the travel costs (times) on each link; section
(b) the corresponding trees based on these costs together with the contributions to the total flow after
assignment; these are shown in section (c).

Figure 10.3 A simple network, its trees and flows from loading a trip matrix

All-or-nothing assignment is generally of limited interest to the planner; it may be used to represent
some sort of ‘desire line’, i.e. what drivers would like to do in the absence of congestion. However, its
main usefulness is as a basic building block for other types of assignment techniques, e.g. equilibrium
and stochastic methods.
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10.4 Stochastic Methods
Stochastic methods of traffic assignment emphasise the variability in drivers’ perceptions of costs and the
composite measure they seek to minimise (distance, travel time, generalised costs). Stochastic methods
need to consider second-best routes (in terms of engineering or modelled costs); this generates additional
problems as the number of alternative second-best routes between each O–D pair may be extremely large.
Several methods have been proposed to incorporate these aspects but only two have relatively widespread
acceptance: simulation-based and proportion-based methods. The first uses ideas from stochastic (Monte
Carlo) simulation to introduce variability in perceived costs. The proportion-based methods, on the other
hand, allocate flows to alternative routes from proportions calculated using logit-like expressions.

10.4.1 Simulation-Based Methods

A number of techniques use Monte Carlo simulation to represent the variability in drivers’ perceptions
of link costs; in particular, the method developed by Burrell (1968) has been widely used for many years.
These techniques usually rely on the following assumptions:

� For each link in a network one should distinguish objective or engineering costs as measured/estimated
by an observer (modeller) and subjective costs as perceived by each driver. It is further assumed that
there is a distribution of perceived costs for each link with the engineering costs as the mean, as shown
in Figure 10.4.

Figure 10.4 Distribution of perceived costs on a link

The various implementations of these ideas differ in their assumptions about the shape of these distri-
butions: while Burrell’s assumes a uniform distribution, other models hypothesise a Normal distribution.
In either case one also needs to assume or calibrate a standard deviation or range for the distribution of
perceived costs.

� The distributions of perceived costs are assumed to be independent.
� Drivers are assumed to choose the route that minimises their perceived route costs, which are obtained

as the sum of the individual link costs.

A general description of these algorithms would be as follows. First, select a distribution (and spread
parameter, σ ) for the perceived costs on each link; then, split the population travelling along each O–D
pair into N segments, each assumed to perceive the same costs.
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1. Make n = 0.
2. Make n = n + 1.
3. For each i − j pair:

� Compute perceived costs for each link by sampling from the corresponding distributions of costs
by means of random numbers.

� Build the minimum perceived cost path from i to j and assign Tij/N trips to it accumulating the
resulting flows on the network.

4. If n = N stop, otherwise go to step 2.

In practice many short-cuts are taken to reduce computation times, for example:

� Generate new sets of random costs per origin and not per O–D pair.
� Use N equal to just 3 or 5 and generate one set of random costs for each matrix and not for each O–D

pair or origin.
� Use small values for N, even 1 in some circumstances.

This type of approach uses simulation in order to reduce the number of second-best routes to be
considered. If a wider range of routes is thought necessary, one can increase the value of N and/or the
spread parameter in the distribution of link costs. Burrell’s approach has the advantage of generating
cheap routes more often than more expensive ones: if a route is expensive it is much less likely to appear
as the cheapest as a result of the stochastic variations in link costs. Although the uniform distribution is
efficient in computer time, it is not very realistic. A better function, but more expensive in terms of CPU
time, is the Normal distribution with variance proportional to the mean engineering costs.

As in all Monte Carlo methods, the final results are dependent on the series of random numbers used
in the simulation. Increasing the value of N reduces this problem. There are, however, more serious
difficulties with this approach:

� The link perceived costs are not independent, as drivers usually have preferences, for example, for
motorway links or to avoid priority junctions or minor roads. The assumption of independence in
perceived costs may lead to unrealistic switching between parallel routes connected by minor roads.

� No explicit allowance is made for congestion effects.

In compensation, these methods often produce a reasonable spread of trips, are relatively simple to
program and do not require the choice or estimation of speed–flow relationships (which may turn out to
be a problem in some cases).

10.4.2 Proportional Stochastic Methods

Virtually all these methods are based on a loading algorithm which splits trips arriving at a node between
all possible exit nodes, as opposed to the all-or-nothing method which assigns all trips to a single exit
node. Very often the implementation of these methods reverses the problem so that the division of trips
at a node is actually based upon where the trips are coming from rather than where they are going to.
Consider node B in Figure 10.5; there are a number of possible entry points denoted by A1, A2, A3, A4

and A5 for trips from I to J.
The ‘splitting factors’ fi are defined by:

fi = 0 if dAi ≥ dB

0 < fi ≤ 1 if dAi < dBi
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Figure 10.5 A node (B) and links feeding trips into it

where dAi represents the minimum cost of travel from the origin i to node Ai. The first condition requires
that fi should be zero if an entry node Ai is further from the origin than B, therefore ensuring that trips
are allocated to routes which take them efficiently away from the origin. The trips TB that pass through
B are divided according to the equation:

F(Ai , B) = TB fi∑
i

fi
(10.13)

The assignment procedure is now equivalent to the cascade method for all-or-nothing assignment.
Implementations of these ideas differ mainly in the way in which they define the splitting function fi.
The single-path method due to Dial (1971) requires that:

fi = exp(−�δdi ) (10.14)

where δdi is the extra cost incurred in travelling from the origin to node B via node Ai rather than via
the minimum cost route. In this way, if Ai is in the minimum-cost route, δdi is equal to zero and fi =
1. Nodes that lie on more expensive routes have δdi > 0 and their fi values are less than 1. In this way
shorter routes are favoured over more expensive ones.

Dial originally described a double-pass algorithm which effectively uses a logit-type formulation to
split trips from i to j among alternative routes r:

Tijr = Tij exp(−�Cijr)∑
r

exp(−�Cijr)
(10.15)

The parameter � can be used to control the spread of trips among routes.
The algorithm involves a forward and a backward pass:

1. The forward pass: take each node A in ascending order of dA and define a weight for each exit link
(A, B) such that:

w(A, B) = WA exp (− � δd(A, B)) if dA < dB or zero otherwise; WA is the accumulated weight at
A defined as:

WA =
∑

A′
w(A′,A) and WI = 1 [A′ is a predecessor of A]

2. The backward pass: identical to the single-pass algorithm with the exception that the weights w(A, B)

are used to work out the split of trips rather than the splitting factors fi.

Example 10.3 A practical problem with Dial’s assignment is that it assumes that all routes are equally
likely candidates and for this reason it is biased against trunk routes as opposed to secondary links.
Consider the problem of a town served by a bypass and a town-centre route with three small variations
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as illustrated in Figure 10.6. Assume also that there are 4000 trips from A to B and that all routes have
approximately the same cost.

Figure 10.6 Town served by a bypass and three city-centre routes

In this case Dial’s algorithm would split the 4000 trips as follows: 1000 via the bypass and 1000
via each of the town-centre routes. However, most users would regard this problem as one with only
two alternatives: bypass or town centre. Recall the discussion about the independence of irrelevant
alternatives property of the logit model in Chapter 5. Dial’s runs into trouble when it considers every
possible route even if some permutations or combinations of links may differ just in a few percentage
points of their total cost. In behavioural terms Dial ignores the correlation between similar routes. In
practice, Dial tends to allocate more traffic to dense sections of the network with short links, compared
with sparser parts of the network with relatively longer links. In fact, coding strategies for networks can
affect the allocation of flows.

10.4.3 Emerging Approaches

Research is still active seeking to integrate stochastic assignment methods closer with developments in
discrete choice. The problem is generally split into three components: (a) how to identify a feasible,
efficient and distinct set of routes that would be considered by drivers when making their choices, (b)
how to estimate the parameters of route choice models, and (c) how to integrate more efficiently the
choice mechanism into an equilibrium assignment framework.

An excellent paper by Prato (2009) reviews current approaches to accomplish these three tasks. The
methods discussed remain mostly in the research realm but take advantage of the advances in discrete
choice discussed in Chapters 7 to 9. One of the key problems is the difficulty associated with collecting
good data, in particular for revealed preferences/choices. The provision of GPS units in an experimental
setting may help to alleviate this constraint.

Let us assume that trip makers limit their choices among a certain number (K) of minimum cost paths
avoiding extremely costly alternatives. For both estimation and prediction purposes, we need to caution
against the possibility of generating routes that are either too circuitous or very similar, as both types
would be unattractive to drivers or not really perceived as different. A number of techniques have been
developed to avoid these problems and generate acyclic and heterogeneous paths, but they still have to
face two further problems. First, all drivers travelling between the same O-D pair will share the same
generated choice set (and one would expect differences among them resulting from personal constraints
and preferences). Second, the measures of route attractiveness are basically subjective relying on the
experience of the researcher that controls their inclusion.

An alternative choice set generation approach is based on doing repeated shortest path searches in the
network using random extraction of link generalised costs and individual preferences from probability
distributions. The various methods here (all of a heuristic nature) produce solutions that are stochastic
and where O-D pairs are processed simultaneously (Prato 2009). Moreover, stochastic path generation
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is generally a case of importance sampling because the selection probability of a route depends on the
properties of the route itself, such as length or travel time.

The original version of this approach is Burrell’s method which we discussed earlier. Generalisations
include the use of different probability distribution functions to sample from and different sequences
for that sampling. A more interesting enhancement, the double stochastic approach, allows travellers to
perceive path costs with error recognising that different drivers have different preferences. Accordingly,
the generation function has a random term for the generalised cost function and a random term for the
traveller taste heterogeneity. Bovy and Fiorenzo-Catalano (2007) propose a trip utility function as the ba-
sis for a doubly stochastic generation function. Relevant routes are created through optimal path searches
in the network by stochastically varying network attributes and attribute preferences. Variation in link
impedances reflects differences in the knowledge and perception of link attributes among travellers.
Variation in the parameter values reflects differences among travellers in their utility function.

Constrained enumeration methods rely on the behavioural assumption that drivers choose routes
according to rules other than the minimum cost path. Prato and Bekhor (2006) propose a branch and
bound algorithm where the branching rule requires the definition of thresholds. A directional threshold
excludes from consideration links that take the driver significantly away from the destination and closer
to the origin of the trip. A temporal threshold rejects paths that travellers would consider unrealistic
because of excessive travel time. Other thresholds discard routes that include large detours or have
overlapping paths that travellers would not consider as separate alternatives.

The application of an assignment technique to these identified routes presents another problem. The
sets of alternative routes generated with the described path generation techniques are usually quite large
since all relevant routes are possibly included and some irrelevant routes are probably created. Intuitively,
the number of alternatives in the choice set plays a role in the estimation of discrete choice models within
the route choice context.

Accordingly, route choice models should exhibit robustness in utility parameter estimates with respect
to choice set size. For estimation purposes, this model requirement would allow the definition of choice
sets with a reasonable number of attractive alternatives in order to obtain reliable model estimates. Dense
urban networks with many (say a 100) alternatives show a high degree of similarity among alternative
routes. For this reason, most of the literature focuses on the correlation between alternatives, which alters
choice probabilities of overlapping routes. This problem has been discussed at length in Chapters 7 and
8; we only present here some of the relevant implications for assignment.

Cascetta et al. (1996) propose a modification of the MNL model, in which a commonality factor
measures the degree of similarity of each route with other routes in the choice set C. The expression
of the probability Pk of choosing route k within the choice set C reflects the simple logit structure of
the model:

Pk = exp(Vk + βC F CFk)∑
l∈C

exp(Vl + βCFCFl)
(10.16)

where Vk and Vl are the utility functions of routes k and l, respectively, CFk and CFl are the commonality
factors, and βCF is a parameter to be estimated.

Ben-Akiva and Bierlaire (1999) propose the Path-Size Logit (PSL) model for an application of discrete
choice theory for aggregate alternatives, already used in other transport contexts such as destination
choice. In the PSL model, the expression of the probability of choosing route k within the alternative
paths is:

Pk = exp(Vk + βP S P Sk)∑
l∈C

exp(Vl + βP S Psl )
(10.17)
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Despite its similarity with (10.16) the interpretation is different and there are different expressions
proposed for the path size. The CF factor reduces the attractiveness of a path because it shares elements
of others, where the PS index identifies what proportion of a path is unique.

Generalised Extreme Value (GEV) models allow similarities within the stochastic part of the utility
function and relate the network topology to the specific coefficients that characterise their tree structure.
A small number of models using this approach have been suggested to handle probabilistic assignment;
for example a Cross Nested Logit (Prashker and Bekhor 2000) or a Generalised Nested Logit (Bekhor
and Prashker 2001). However, they have significant computational demands and use complex nested
structures making them more difficult to implement.

One of the most attractive treatments of this problem uses the Mixed Logit (ML) model discussed
in Chapter 7. Here the unobserved factors can be decomposed into a part that contains correlation
and heteroscedasticity, and another part that is IID extreme value. The most straightforward derivation
assumes that the probability for an individual n of choosing route k has the same form of the standard
MNL, but it is conditional on the distribution of the coefficients βn where f(β) is the mixing distribution
of β over the population. The unconditional probability is computed by simulation:

Pnk = 1

D

D∑

d=1

exp(β ′
d Xnk )∑

l∈Cd

exp(β ′
d Xnl )

(10.18)

where βd indicates a draw d from the distribution of β and D is the number of draws.
Another adaptation to route choice of the ML model assumes that the covariance of path utilities is

proportional to the length by which paths overlap (Bekhor et al. 2002). Extending from the derivation
of the ML model with factor analytic approach, the probability of choosing route k given a vector δ of
standard Normal variables is given by:

Pk = �(k |δ ) = exp(μ(β Xk + Fk T δ))∑
l∈Cn

exp(μ(β Xl + Fl T δ))
(10.19)

where β(1×B) is the column vector of parameters, Xk is the k-th row of the matrix of explanatory variables
X(J×B), Fk is the k-th row of the factor loadings matrix F(J×M) (J paths and M network elements), T(M×M)

is a diagonal matrix of covariance parameters σm, δ(M×1) is a vector of standard Normal variables. Bekhor
et al. (2002) assume that the link-specific factors are IID Normal and that the variance is proportional to
the link length; the F matrix corresponds to the link-path incidence matrix and the T matrix corresponds
to the link-factor variance matrix. Accordingly, the covariance parameter σ shared by each link is
estimated. Other variations on this theme have been proposed but they are computationally demanding
and there are difficulties in obtaining significant estimates for the parameters.

In summary, currently emerging route choice models offer advantages and disadvantages. From a
computational perspective MNL modifications, such as PSL (10.17), are not challenging, but GEV
models are more demanding because of the estimation of structural coefficients within complex model
structures. ML models introduce additional complexity because of the need to simulate choice proba-
bilities and the absence of an equivalent mathematical formulation of the Stochastic User Equilibrium
problem. From a behavioural perspective GEV and ML models depend on theoretical formulations of
the correlation structure among alternative routes. GEV models seem preferable because of the supe-
rior theoretical foundation with respect to the MNL-modifications and relatively lighter computational
demands compared to ML models.
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10.5 Congested Assignment
10.5.1 Wardrop’s equilibrium

If one ignores stochastic effects and concentrates on capacity restraint as a generator of a spread of trips
on a network, one should consider a different set of models. For a start, capacity restraint models have to
make use of functions relating flow to the cost (time) of travel on a link. These models usually attempt,
with different degrees of success, to approximate to the equilibrium conditions as formally enunciated
by Wardrop (1952) as a ‘criterion’:

The journey times on all routes actually used are equal, and less than those which would be
experienced by a single vehicle on any unused route.

This was later on expressed more formally as:

Under equilibrium conditions traffic arranges itself in congested networks in such a way that no
individual trip maker can reduce his path costs by switching routes.

If all trip makers perceive costs in the same way and seek the same objective (single user class, no
stochastic effects):

Under equilibrium conditions traffic arranges itself in congested networks such that all used
routes between an O–D pair have equal and minimum costs while all unused routes have greater
or equal costs.

This is usually referred to as Wardrop’s first principle, or simply Wardrop’s equilibrium. It is easy to
see that if these conditions did not hold, at least some drivers would be able to reduce their costs by
switching to other routes.

Example 10.4 Consider again the case of a bypass and a single town-centre route of Figure 10.2. Assume
now that the absolute capacity restriction for each route is replaced with two corresponding time–flow
relationships as illustrated in Figure 10.7.

Figure 10.7 Time–flow relationships for Figure 10.2
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The flows on the two routes will satisfy Wardrop’s equilibrium when the corresponding ‘costs’ are
identical. In this case it is relatively simple to write two equations for travel time versus flow and equate
them to find the equilibrium solution, for example:

tb = 15 + 0.005Vb (10.20a)

tt = 10 + 0.02Vt (10.20b)

where tb and tt are travel ‘costs’ (time in minutes) via the bypass and the town-centre routes respectively,
and Vb and V t are their corresponding flows.

By equating tb to tt it is possible to find, in this simple case, the direct solution to Wardrop’s equilibrium
as a function of the total flow Vb + V t = V:

15 + 0.005Vb = 10 + 0.02 (V − Vb)

that is:

Vb = 0.8 V − 200 (10.21)

Expression (10.21) has meaning only for non-negative flows, i.e. for V greater than or equal to
200/0.8 = 250. For V < 250, Ct < Cb, Vb = 0 and V t = V , i.e. all traffic chooses the town-centre route.
For situations where V > 250 the two routes will be used; for example, the reader can verify that for
V = 2000 the equilibrium flows are Vb = 1400 and V t = 600 and the ‘costs’ by each route are 22 min.

The same idea would apply to flows on networks where the costs of travel by each of the routes
used between two points are the same under Wardrop’s equilibrium. The problem is, of course, that in
anything but the simplest cases it is not possible to solve the equilibrium flows algebraically; rather an
algorithmic solution method is required.

Several techniques have been proposed as reasonable approximations to Wardrop’s equilibrium:
some of them are simple heuristic approaches and the most interesting ones follow a more rigorous
mathematical programming framework. In order to compare these algorithms against each other the
following properties are of interest:

� Is the solution stable?
� Does it converge to the correct solution (Wardrop’s equilibrium)?
� Is it efficient in terms of computational requirements?

The indicator δ, defined in the following equation, is often used to measure how close a solution is to
Wardrop’s equilibrium:

δ =

∑
ijr

Tijr(Cijr − C∗
ij)

∑
ij

TijC∗
ij

(10.22)

where Cijr − C∗
ij is the excess cost of travel over a particular route relative to the minimum cost of travel

for that (i, j) pair. These costs are calculated after the last iteration has been performed and total flows
obtained for each link. Therefore δ is a measure of the total cost of excess travel via less than optimal
routes, with denominator introduced so that the measure is recorded in relative rather than absolute terms.

Wardrop (1952) proposed an alternative way of assigning traffic onto a network and this is usually
referred to as his second principle:

Under social equilibrium conditions traffic should be arranged in congested networks in such a
way that the average (or total) travel cost is minimised.
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This is a design principle, in contrast with his first principle which endeavours to model the behaviour
of individual drivers trying to minimise their own trip costs. The second principle is oriented towards
transport planners and engineers trying to manage traffic to minimise travel costs and therefore achieve
an optimum social equilibrium. In general the flows resulting from the two principles are not the same
but one can only expect, in practice, traffic to arrange it following an approximation to Wardrop’s first
principle, i.e. selfish or users’ equilibrium. It is interesting to note that the basic objective of congestion
charging and road pricing is to get closer to Wardrop’s second principle. Indeed, most methodologies for
pricing congestion start by assessing what tolls should be charged on each link to achieve this equilibrium.

10.5.2 Hard and Soft Speed-Change Methods

Some of the first heuristic methods still maintained the idea of assigning all trips per O–D pair to a single
route (all-or-nothing assignment), but acknowledged the fact that speeds, and therefore travel times,
responded to flow levels. The simplest of these methods involves just recalculating link travel times after
an all-or-nothing assignment so that they are consistent with the current flow levels. A new all-or-nothing
assignment is then performed with the new costs and trees. It is easy to see that in general this is a poor
approach as the chosen routes will oscillate and the flow pattern will, in general, never converge. In the
case of the town-centre bypass problem of Example 10.4 with, say, V > 250, the flows would oscillate
between all via the town centre in one iteration and all via the bypass in the next one. This phenomenon
will be repeated in larger networks although in some cases it may be more difficult to identify.

In an attempt to dampen such route and flow oscillations it has been proposed to use an average
speed of two or more all-or-nothing assignments to perform the next iteration. This if often called a
soft speed change as opposed to the hard speed change of the original method. However, this may only
provide an apparent improvement as the main weakness of these two approaches is that they still assign
all traffic to a single route for each O–D pair, therefore contradicting Wardrop’s principle. Taking again
the case of Example 10.4, it can easily be seen that the soft speed-change method will still load all
traffic alternatively via one route and then the other in the next iteration. Both methods produce unstable
solutions, are inherently non-convergent and the use of soft speed changes will only attempt to disguise
this fact in larger networks.

10.5.3 Incremental Assignment

This is a more interesting and realistic approach. In this case the modeller divides the total trip matrix
T into a number of fractional matrices by applying a set of proportional factors pn such that 	n pn = 1.
The fractional matrices are then loaded, incrementally, onto successive trees, each calculated using link
costs from the last accumulated flows. Typical values for pn are: 0.4, 0.3, 0.2 and 0.1. The algorithm can
be written as follows:

1. Select an initial set of current link costs, usually free-flow travel times. Initialise all flows Va = 0;
select a set of fractions pn of the trip matrix T such that 	n pn = 1; make n = 0.

2. Build the set of minimum cost trees (one for each origin) using the current costs; make n = n + 1.
3. Load Tn = pn T all-or-nothing to these trees, obtaining a set of auxiliary flows Fa; accumulate flows

on each link:

V n
a = V n−1

a + Fa

4. Calculate a new set of current link costs based on the flows V n
a ; if not all fractions of T have been

assigned proceed to step 2; otherwise stop.
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This algorithm does not necessarily converge to Wardrop’s equilibrium solution even if the number of
fractions p is large and the size of the increments (pn T) is small. Incremental loading techniques suffer
from the limitation that once a flow has been assigned to a link it is not removed and loaded onto another
one; therefore, if one of the initial iterations assigns too much flow on a link for Wardrop’s equilibrium
conditions to be met (for example, because the link is short but has very low capacity), then the algorithm
will not converge to the correct solution.

However, incremental loading has two advantages:

� it is very easy to program;
� its results may be interpreted as the build-up of congestion for the peak period.

Example 10.5 Consider again the problem of the two routes, town centre and bypass, of Example 10.4.
We split the demand of 2000 trips into four increments of 0.4, 0.3, 0.2 and 0.1 of this demand, i.e. 800,
600, 400 and 200 trips. At each increment we calculate the new travel costs using equations (10.16). The
following table summarises the results of this algorithm:

N Increment Flow town Cost town Flow bypass Cost bypass

0 0 0 10 0 15
1 800 800 26 0 15
2 600 800 26 600 18
3 400 800 26 1000 20
4 200 800 26 1200 21

It can be seen that the algorithm does not converge, in this case, to the correct equilibrium solution. This
is because once the wrong flow (800) has been loaded onto the town-centre route, this method cannot
reduce it; therefore the flow and cost via the town centre remain overestimated. As a matter of interest,
the value of the δ indicator for the solution above is:

δ = [800 (26 − 21) + 1200 (21 − 21)] /(2000 × 21) = 0.095

The reader can verify that using smaller increments would produce closer solutions to true equilibrium.
Note that if one starts with an increment of 0.3 times the total demand, the solution is true equilibrium;
however, this is just a chance occurrence in this case.

10.5.4 Method of Successive Averages

Iterative algorithms were developed, at least partially, to overcome the problem of allocating too much
traffic to low-capacity links. In an iterative assignment algorithm the ‘current’ flow on a link is calculated
as a linear combination of the current flow on the previous iteration and an auxiliary flow resulting
from an all-or-nothing assignment in the present iteration. The algorithm can be described by the
following steps:

1. Select a suitable initial set of current link costs, usually free-flow travel times. Initialise all flows
Va = 0; make n = 0.

2. Build the set of minimum cost trees with the current costs; make n = n + 1.
3. Load the whole of the matrix T all-or-nothing to these trees obtaining a set of auxiliary flows Fa.
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4. Calculate the current flows as:

V n
a = (1 − φ)V n−1

a + φFa

with 0 ≤ φ ≤ 1 (10.23)

5. Calculate a new set of current link costs based on the flows V n
a . If the flows (or current link costs)

have not changed significantly in two consecutive iterations, stop; otherwise proceed to step 2.
Alternatively, the indicator δ in (10.22) could be used to decide whether to stop or not. Another, less
good but quite common, criterion for stopping is simply to fix the maximum number of iterations; δ

should be calculated in this case as well to know how close the solution is to Wardrop’s equilibrium.

Iterative assignment algorithms differ in the method used to give a value to φ. A simple rule is to make
it constant, for example φ = 0.5. A much better approach due to Smock (1962), is to make φ = 1/n.
The reader may verify that equal weight is given to each auxiliary flow Fa in this case; for this reason,
the algorithm is also known as the method of successive averages (MSA). It has been shown (see, for
example, Sheffi 1985) that making φ = 1/n produces a solution convergent to Wardrop’s equilibrium,
albeit not a very efficient one. As we shall see in Chapter 11, the Frank–Wolfe algorithm estimates
optimal values for φ in order to guarantee and speed up convergence.

Example 10.6 Consider the same bypass versus town-centre problem of Example 10.5 and use φ = 1/n.
The following table summarises the steps in the MSA algorithm.

Iteration φ Flow town Cost town Flow bypass Cost bypass

1 F 2000 0
Vn 1 2000 50 0 15

2 F 0 2000
Vn 1/2 1000 30 1000 20

3 F 0 2000
Vn 1/3 667 23.3 1333 21.7

4 F 0 2000
Vn 1/4 500 20 1500 22.5

5 F 2000 0
Vn 1/5 800 26 1200 21

6 F 0 2000
Vn 1/6 667 23.3 1333 21.7

7 F 0 2000
Vn 1/7 572 21.4 1428 22.1

8 F 2000 0
Vn 1/8 750 25 1250 21.25

9 F 0 2000
Vn 1/9 667 23.3 1333 21.7

10 F 0 2000
Vn 0.1 600 22 1400 22

It can be seen that it takes a number of iterations to approximate to the right solution. Of course, the
value of δ after iteration 10 is zero in this case. However, the reader will note that the algorithm was
close to the correct equilibrium solutions in iterations 3, 6 and 9 but only reached it in iteration 10. This
is due to the rigid nature of the rule to calculate φ. For more realistic networks the number of iterations
needed to reach satisfactory convergence may be very high.
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Another lesson from this simple example is that fixing the maximum number of iterations is not a good
approach from the point of view of evaluation. Link and total costs can vary considerably in successive
iterations and this may affect the feasibility of a scheme.

10.5.5 Braess’s Paradox

The basic ideas about Wardrop’s first and second principles are often illustrated using Braess’s Paradox;
although strictly speaking not a paradox it is nearly as famous as the ‘blue bus/red bus’ conundrum. The
paradox was first proposed by Dietrich Braess in 1968 but it is mostly known through its translation into
English in Braess et al. (2005). It demonstrates that under certain conditions adding capacity to a road
network when drivers seek to minimise their own costs can actually make everybody worse off.

Consider the simple network depicted in Figure 10.8.

F

C

BA

D

2+0.02V

2+0.02V

25+0.002V

25+0.002V

1+0.001V

Figure 10.8 A simple network to illustrate Braess’s Paradox

The linear relationship associated with each link represents the travel time-flow formulation in minutes.
Solid arrows indicate existing links and the dotted arrow a planned link. Assume first that there are 1000
cars wishing to travel between A and B and none from F. The logical route choice under these conditions
is for 500 cars to use the ACB route and the other 500 the ADB route. Both costs are the same:
2 + 10 + 25 + 1 = 38 min. Consider now what happens when a new, high capacity link, is built between
C and D. Under these conditions all drivers would choose to start on the AC path as under the most
loaded conditions it would cost 2 + 20 + 1 + 1 = 24 min to reach D when it takes at least 25 min if
the AD route is used. At C, and for the same reasons, every rational driver would take the CD route as
it would take at most 1 + 1 + 2 + 20 = 24 min to reach B, one minute less than the most optimistic
conditions for the CB route.

The total cost from A to B for each driver would then be 2 + 20 + 1 + 1 + 2 + 20 = 46 min. In effect, 8
min longer than before the link CD was built. If all drivers could agree not to use the CD link they would
all be better off. However, if starting from the original position (500 on each route) one driver chooses
to use link CD he would be better off as from C it would only take 1 + 0.001 + 2 + 10.02 = 13.021
to reach B, much less than the 25 + 1 that the CB route offers.

So, the ACDB path represents a selfish equilibrium condition (Wardrop’s First Principle) but this is
such that everybody is worse off than before the new link was built. If, by any chance, there are 1000
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vehicles travelling from F to D the travel time on that link would be at least 2 min. Now the choices
open to our original drivers are a bit less clear. Starting from A and assuming the worst conditions (all
drivers choose the ACD route) the cost of reaching D is practically the same via the new link or the old
AD route (25 min). This would suggest that the original equilibrium could be restored and everybody
benefit from 38 min journeys. However, if one driver at C chooses the new link he would benefit again
with 2 + 0.001 + 2 + 10.02 = 24.021 min to reach B instead of the expected 25 + 1 for the direct
route. This suggest that either drivers will find each day quite different conditions on their routes due
to uncoordinated experimentation, with some days resulting in very poor choices, or that the new stable
conditions will revert to all drivers using the centre route and spending now 47 min each day to reach B, a
new equilibrium condition. Introducing a toll on link CD could make things better. What is the minimum
toll that will produce the best selfish and social (Wardrop’s Second Principle) equilibrium conditions?
Of course, to avoid charging drivers from F unnecessarily, the toll should be imposed only to vehicles
taking the ACD turning at the top.

If the conditions that lead to Braess’s paradox happen in practice as well as in textbooks, it would be
interesting to identify the perverse links (perhaps built because it was feasible rather than desirable) and
to either toll them or close them to vehicular traffic. Steinberg and Zangwill (1983) developed necessary
and sufficient conditions for Braess’ paradox to occur when a new route or link is added. They concluded
that these conditions were not unusual and that they were likely to occur in practice. Youn et al. (2008)
studied the cities of New York, Boston and London, established routes where these conditions were
likely to be present and pointed out roads that could be closed to traffic to reduce travel times.

10.6 Public-Transport Assignment
10.6.1 Introduction

In this section the problems associated with route choice and assignment for passengers using public-
transport networks will be discussed. These problems are, in many ways, more difficult than those
encountered by private-transport assignment; computer requirements tend to be heavier and even
the best methods require important simplifying assumptions. Recent years have seen significant im-
provements in transit assignment techniques leading to better public-transport service provision and
operational efficiency.

We shall discuss first the issues that make public-transport assignment different from private vehicle
route choice; then, we will outline some of the approaches that have been implemented to tackle them
in practice.

10.6.2 Issues in Public-Transport Assignment

10.6.2.1 Supply

The network of public-transport services is different from that of private cars. It includes, as links,
sections of the bus or rail services running between two stops or stations. The concept of link capacity
is now related to the capacity of each unit (bus, train) and its corresponding frequency. The travel time
has an in-vehicle component as well as components for waiting at stops and walking to and from them.
Many of the public-transport sections will use road links, e.g. most buses and some light rail-transit
(LRT) services with street running. There will be other public-transport sections or services which will
use completely different links, e.g. busways, segregated rail track, etc. The nature of these links generally
produces a more complex network, an example of which is given in Figure 10.9.



P1: TIX/XYZ P2: ABC

JWST054-10 JWST054-Ortuzar February 24, 2011 11:22 Printer Name: Yet to Come

374 Modelling Transport

Figure 10.9 An example of a public-transport network

10.6.2.2 Passengers

In public-transport route choice we are dealing with the movement of passengers and not of vehicles.
Passengers can walk to a stop, interchange between two services and even drive part of the way to
board a public-transport service later. This calls for the need to provide and specify walk and transfer
links between different services, different public-transport modes (bus, rail) and between public-and
private-transport facilities (e.g. ‘Park & Ride’).

10.6.2.3 Monetary Costs

In private car networks it is usually assumed that the monetary cost is directly associated to fuel
consumption, which in turn is directly proportional to travel distance. These are both approximations but
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they are usually accepted as drivers do not perceive these costs in such a direct way as a passenger buying
a ticket when starting a bus journey. Modern payment systems based on smart cards or mobile phones
allow more complex fare structures and these have been introduced in many public-transport operations:
fares variable with distance, flat fares (independent of distance travelled), zonal fares (for one or more
specific geographic zones), combination and transfer tickets (valid for two or more services), time limit
fares (e.g. valid for any number of boardings in an hour), daily, weekly and other season tickets for a fixed
service or covering one or more zones and modes. This wide range of fares places difficult requirements
on route choice and assignment models, as monetary costs do not depend directly on distance but in
general on the location of the origin and destination, and on the route chosen.

10.6.2.4 The Definition of Generalised Costs

In the case of public-transport assignment the generalised cost of travelling may be defined as follows:

Cij = a1tv
ij + a2tw

ij + a3t t
ij + a4tn

ij + a1δ
n + a5 Fij (10.24)

where

tv
ij is in-vehicle travel time between i and j,

tw
ij is walking time to and from stops (stations),

t t
ij is waiting time at stops,

t n
ij is interchange time,
δn is an intrinsic ‘penalty’ or resistance to interchange, measured in time units (typically around 5
generalised min),
Fij is fare charged to travel between i and j, and
a1 to a5 are coefficients associated to the elements of generalised cost above.

Usually either a1 or a5 is equal to 1.0 in order to measure generalised costs in time or monetary units
respectively. Again, it is usual to find that a2, a3 and a4 are taken to be two to three times the value of a1

as passengers dislike a minute spent walking or waiting more than if spent travelling in-vehicle.
In modelling terms, the software should be able to handle these variables and produce good estimates

of each of the component times (in-vehicle, walking, waiting, transfer) if they are not provided externally.
In-vehicle travel time depends on the speed attainable and the number and duration of stops en route;
walking time, which depends on proximity to the best stop, is in some cases approximated by an average
value for a whole zone; interchange time depends on station/stop configuration and separation; waiting
time depends essentially on the frequency of the service and its reliability. A general formulation for
waiting time is:

tw = (h2 + σ 2)

2h
(10.25)

where h is the expected headway of the service and σ its standard deviation (the less regular a service,
the greater the expected waiting time). This formulation assumes that passengers arrive at random at the
stop and that no passenger fails to board the next bus because of lack of space in it. This ‘bus congestion’
problem is difficult to solve but algorithms incapable of handling it will tend to produce unrealistic
loadings in terms of actual service capacity, see De Cea and Fernández (1989). If the service is perfectly
regular, i.e. σ = 0, then the expected waiting time is half of the headway. It is known, however, that if the
frequency of the service is low, passengers will try to arrive just a few minutes before the next departure,
thus setting an upper limit to the expected waiting time of perhaps 5 to 10 minutes; how close to the
timetabled departure are passengers aiming to come will depend, of course, on the reliability of the service.
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10.6.2.5 The Common Lines Problem

This is probably one of the most difficult and typical problems of public-transport assignment. The
problem arises when for at least some O–D pairs there are sections in a path which have more than one
parallel service offered and passengers can choose the one suiting them better. This choice is often not
trivial for passengers (‘I wish I had known that an express service was going to come three minutes
after the slow one I have taken!’), nor simple from a modelling point of view. We are used to the idea
that a driver chooses a single path from a choice set of all possible paths. In the case of public-transport
passengers, they may choose a set of paths and let the vehicle that arrives first determine which of the
paths they will actually use. The choice is therefore more complex and calls for a more detailed treatment.

A full review of the most suitable algorithms for public-transport assignment is outside the scope
of this book. Instead, we shall discuss the main approaches to modelling route choice first and then
assignment; not surprisingly, these different approaches result from the treatment they give to some of
the issues above, in particular to the parallel or common lines problem, and to the choice of all-or-nothing,
stochastic or capacity restraint-assignment methods.

10.6.2.6 Frequency or Schedule Based Route Choice

When the frequency of a public transport service is reasonably high, say every 10 min for an urban
context and 15 or 20 min for the inter-urban case, travellers will, in general, not use or memorise a
timetable (if it exists) but just turn up at the stop for a short waiting time. In these cases, it may be
quite appropriate to use the frequency of the services as sufficient descriptor to estimate waiting times.
However, this approach would be less appropriate for larger headways where trip makers are more likely
to plan their access to arrive just a few minutes before the bus/train is due, according to their schedule
(timetable). This can be taken into account by capping the waiting time to a maximum of, say, 10 min
depending on context. However, this also fails to take full account of two situations. The first one is the
provision in practice of irregular frequencies, for example a timetabled service at 5, 15, 20, 35, 45 and
50 minutes past the hour. The second one is the opportunity to provide well coordinated services even
under low frequency schedules; for example, timing a half-hourly bus service to a rail station to arrive
there 5 min before the train departs for a main destination.

10.6.3 Modelling Public-Transport Route Choice

It is worthwhile defining some terms such as route, line and section in a bit more detail before embarking
on a discussion of the route choice problem in the presence of common lines.

A public-transport (or transit) line, or simply a line, is a fleet of vehicles that run between two
points (terminals) on a network. They generally have the same characteristics of size, capacity, speed,
etc. Vehicles stop at each node in their path to allow passengers to alight and board. Therefore, each
transit line is defined by the vehicle characteristics, the sequence of nodes it serves and its frequency
(or timetable).

A line section is any portion of a public-transport line between two, not necessarily consecutive, nodes.
A public-transport route is any path a user can follow on the transit network in order to travel between

two nodes. The portion of a route between two consecutive transfer nodes is called a route section, and
each route section has associated a set of attractive or common lines.

Consider now the simple case of an origin A and destination J connected by three transit services:
lines 1, 2 and 3 as in Figure 10.10; they follow different routes and offer travel times of 20, 17 and 18
minutes to reach the desired destination. The frequency of each line is six services/hour; this means an
expected waiting time of 5 min assuming perfectly regular services and random arrival of travellers. A
traveller will then face three alternative segments in his journey (either from origin to destination or as
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Line 1

Line 2

Line 3

A J

20 mins

17 mins

18 mins

Figure 10.10 A basic section of public transport services showing travel times

a stage of a trip with one or more transfers): Line 1 with an expected travel time of 25 min (20 plus 5),
Lines 2 and 3 with 22 and 23 min respectively.

A naive ‘all-or-nothing’ route choice will assign all travellers to Line 2 to minimise travel time. On
the other hand, a more realistic approach would be to allocate the probability of boarding proportional
to its frequency given that travellers are faced with actually 18 useful services per hour. Now the average
waiting time is 3 min and 20 seconds (18/60) and the average travel time is 18 min and 20 seconds.
The total expected travel time is 21 min 40 seconds. This approach produces a smaller expected travel
time than the naive one if the travel times are similar (as they are when the lines follow the same sequence
of nodes) but a large difference in travel times will result in a larger expected value: check with travel
times of 17, 20 and 30 min.

Note that one can also build the network recognising that waiting (and walking) times are valued as
about twice in-vehicle times (IVT) producing slightly different results above in terms of generalised
times. In a longer route over a transit network we would also add transfer penalties and additional
waiting times for some routes; moreover, in many cases additional fares would be charged with each
transfer and this can also be added to the computation of generalised cost per link. Boarding penalties
are often used to represent these effects.

Transit assignment methods can then be divided into:

� Naive all-or-nothing approaches that would only be acceptable for sparse and long distance
travel networks.

� Multi-path approaches, for example the allocation of trips to paths proportional to the perceived service
frequencies as outlined above.

� Equilibrium assignment methods with or without a stochastic element in them; these focus on conges-
tion effects on public transport systems.

The all-or-nothing approach, despite its simplicity, may be very useful in refining a transit net-
work, often a more subtle task than debugging a road network, a task that benefits from many
good databases.

There are many versions of multipath approaches implemented in current software, some better than
others at handling the issues discussed above. An interesting approach is one that allows travellers to
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adopt, as they do in many cases, a flexible strategy to reach their final destination. A strategy is a set of
rules that allows the traveller to reach his destination.

Example 10.7 Consider the public-transport network of Figure 10.11; a simple strategy could be:

Figure 10.11 A simple public-transport network with transfers

� Take line 2 to stop H; transfer to line 3 and then exit at stop J;
A more complex one may take the form:

� Wait up to 3 min for a line 5 vehicle or up to 4 min for a line 2 vehicle; otherwise take line 1; if line
5 is taken and you see a line 4 vehicle at stop F then board it and alight at J; if no line 4 vehicle at F
continue to J; if line 2 vehicle was taken then transfer at H to line 4 if about to depart, otherwise wait
for line 3 to reach J; etc.

In general terms a good flexible strategy will produce shorter expected travel times than the choice
of the single path that minimises travel time; the choice of this single minimum path has been for many
years the conventional approach to the problem.

In contrast, a more realistic flexible strategy allows the passenger to take advantage of the variability of
waiting times and the opportunistic choice of a good, but low-frequency, service. This is well illustrated
in Spiess and Florian (1989).

One can then define, for each node, the set of attractive lines that would be part of a good strat-
egy to reach a given destination j. Given a strategy, an actual trip is then carried out according to a
mechanism like:

1. Set i to origin node;
2. Board the first arriving vehicle from the set of attractive lines at i;
3. Alight at a predetermined node;
4. If not yet at destination, set i to the current node and return to step 2; otherwise the trip is completed.

Note that although this mechanism has a well-defined destination node, the origin is not part of the
strategy. A strategy is the set of rules that enables travellers to reach their destination starting from any
node in the network. This treatment is helped by the following additional notation:

Sjk = set of line sections connecting directly nodes j and k;
L+

j = set of outgoing (ingoing if − instead of + is used) line sections from node j;
vs = flow on line section s;
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ts = in-vehicle travel time on line section s;
fs = frequency associated to line section s;
gj = number of trips going to destination node j;

Vjk = total flow on route section jk.

We can now identify the set of attractive routes emanating from node j using the dummy variable Xs

which takes the value 1 if the line section s, belonging to the set of sections from j to k, is attractive, and
zero otherwise. Then, for a given pair of nodes jk the associated values Xs (s ∈ Sjk) define the optimum
or attractive set of lines towards k.

The total waiting time for users travelling from j to k can be written as:

wjk = Vjk∑
s∈S j k

fs Xs
(10.26)

The problem of finding an optimum strategy for travelling from all origins to a destination can now
be written as:

Minimise
∑

s

vs ts +
∑

jk

wjk (10.27)

subject to:
∑

s∈L+
j

vs + g j =
∑

s∈L−
j

Vs (10.28)

vs = Xs fs Vjk∑
s∈Si j

fs Xs
= Xs fswjk (10.29)

The first term of the objective function (10.27) represents the in-vehicle travel time while the second
is the total waiting time. This objective function is linear in the variables vs and wjk and the main
problem seems to be generated by the non-linear constraints (10.29). Spiess (1983) has shown that these
constraints can be relaxed as follows:

vs ≤ fswjk (10.30)

We can further introduce constraints (10.29) into the objective function:

Minimise
∑

jk

Vjk

{∑
s

ts Xs fs + 1

}

∑
s∈Sij

fs Xs
(10.31)

subject to (10.28). This is a (0,1) hyperbolic programming problem.
Two different approaches can be followed here. The one proposed by Spiess and Florian (1989) is

based on the linear programming version of this problem, whilst that proposed by De Cea and Fernández
(1989) uses the hyperbolic programming (non-linear) formulation. If there are no congestion or capacity
problems, the tasks above can be simplified as the set of optimal strategies will not depend on the
actual flows. The Florian–Spiess algorithm has been implemented in EMME/2 (Babin et al. 1982) and
the De Cea–Fernández algorithm in ESTRAUS (De Cea et al. 2005). Some tests show that the De
Cea–Fernández approach is about 2.5 times faster than the Florian–Spiess method and nearly 50 times
faster than the best conventional approach. This improvement in performance, which is crucial to model
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realistic size problems, is achieved at the cost of additional memory requirements, not a significant
requirement today.

10.6.4 Assignment of Transit Trips

Once the best set of line segments to join origin and destination have been identified, one needs to consider
the assignment of trips to them. Most programs seek to obtain a reasonable and realistic spread of trips
among feasible routes. Conventional approaches, not dealing with the common lines problem explicitly,
adopted a number of measures to generate this wider spread of trips. For example: to distinguish explicitly
the different access points (bus stops, stations) for each zone and to build trees from each of them (and
not just from the centroids) to all destinations. In this way several alternative routes are identified, one
via each different access point. Passengers can then be assigned to these routes using a multinomial logit
function of the costs of joining origin and destination via each path.

Spiess and Florian (1989) perform the assignment stage following the identified optimal strategies.
This is achieved by assigning to each link the proportion of the volume accumulated to the upstream
node that corresponds to the frequency served by the link. De Cea and Fernández (1989) follow a similar
approach but in two stages:

1. First, once the set of common lines for all (i, j) pairs have been identified a new network is built on
the basis of nodes and route sections. Note that route sections contain only the lines that minimise the
total expected travel time for the section; they have an associated travel time (tr) and a frequency (fr)
corresponding to the sum of the attractive frequencies (those in the common lines). With these two
elements it is possible to obtain a composite cost of travelling along this route section and therefore
an efficient private-transport tree-building algorithm can be used to find the best paths. Loading onto
these trees results in a set of route section flows vr.

2. Second, we can decompose the route section flows into their line section components:

vs = fsvr

fr
(10.32)

The treatment so far has not discussed the problems associated with special fare systems. If the fare
system is proportional to the distance travelled, this is not a major problem as it is normally possible to
convert it to time units and add them to the travel time on each link. However, this type of fare structure
is hardly common. A flat fare system could also be accommodated but the treatment of more complex
schemes (from a modelling point of view) may pose additional problems for algorithm design.

In most practical cases it will not be possible to model the whole complexity of fare systems and some
approximate shortcuts will have to be taken in accordance with the most common type of ticket used.
For example, in the case of a zonal fare system assignment may be performed on the basis of time alone
and the fare cost added at the end. This may still ignore the importance of special pass holders but is
probably good enough for places like London.

Finally, we must stress that public-transport assignment suffers, in general, from similar weaknesses
to those identified for road networks. Furthermore, it is fair to say that congested assignment is less well
developed for transit networks. There are two effects in play here: first, the limited capacity of the units
(buses, trains) may prevent some travellers from implementing their optimal strategies, thus increasing
their travel times; second, there is interaction between public transport and private cars sharing the same
road network–increased traffic on one mode will affect travel times on the other as well. We will consider
some approaches to deal with these issues in the next chapter.
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10.7 Limitations of the Classic Methods
In previous sections we have described the most important classic methods for traffic assignment. Before
considering more detailed and to some extent advanced methods, it is worthwhile reviewing what are
seen as the main limitations of these approaches. These deficiencies may come from different sources.

10.7.1 Limitations in the Node-link Model of the Road Network

These include the fact that not all real road links are considered in the network (incomplete networks),
‘end effects’ due to the aggregation of trip ends into zones represented by single centroids, banned and
penalised turning movements not specified in the network, and the fact that intra-zonal trips are not
fully treated.

The main problem with incomplete networks arises in heavily congested areas where some of the
medium- and long-distance trips will use minor roads as ‘rat runs’; a new road scheme may relieve
congestion and attract some of these rat-run trips, which will seem to be ‘generated journeys’ when
they are not. Even when great care is taken in connecting the network to zone centroids, end effects are
inevitable. These will make estimated link volumes less reliable in the vicinity of centroid connectors,
probably overestimating the flows.

It is possible to expand simple nodes to represent all turning movements at a junction and then penalise
or remove those links representing banned manoeuvres. An example of a fully expanded junction is given
in Figure 10.12; any particularly difficult manoeuvre, e.g. an opposed turn, can then be penalised by
associating a longer delay to it. Good software provides efficient ways of automatically expanding
junction representations and banning or penalising movements; alternatively, this must be done by hand
in the network-building stage itself. In either case, it is likely that some turning movements will not be
properly treated.

Figure 10.12 Representation of a junction as a simple node (a) and expanded showing all turning movements (b)

The treatment of intra-zonal movements is also a source of problems: some of them could make use
of main links in the road network but they will not appear in the network model. It is difficult to devise
a good method to account for them in assignment.

All of these problems are more difficult to handle when the zones are large and the network represen-
tation sparse. As usual, greater resolution in network and zonal definition will increase realism but at the
cost of data collection, processing and interpretation.
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10.7.2 Errors in Defining Average Perceived Costs

We do not have enough evidence about how these are likely to change with time, journey purpose, length
of journey, income, predictability and the environment. Moreover, when we wish to forecast components
of cost, for example fuel consumption, we rely on simplifying assumptions which may give rise to
additional errors.

10.7.3 Not all Trip Makers Perceive Costs in the Same Way

Our stochastic methods are an approximation to this phenomenon but even they must limit the number of
randomisations for reasons of economy. Another possibility is to consider several different user classes,
each with its own set of perceived costs.

It is possible to express the deterministic equilibrium assignment problem with multiple user classes,
each with its own set of parameters defining perceived link costs; see for example the work of Leurent
(1998). Convergence to a unique solution is achieved under analogous conditions to those required for
the single-user problem. Moreover, the problem and the solution can also be extended to elastic demand
modelling (combined mode choice and assignment, for example). Most modern software packages offer
this type of facility.

The modelling of multiple user classes (each with different willingness to pay for a better service) is
often quite critical in demand studies for private sector facilities and services like high-speed rail links or
toll roads. In the context of toll roads, some users may have high willingness to pay for services because
their costs are covered by their employers; others may be very price-sensitive because of personal income
or cash constraints. These different user classes can be well represented in these cases, although good
stated preference/revealed preference studies will be required to determine the correct parameters for
each model.

10.7.4 The Assumption of Perfect Information about Costs in all Parts of the Network

Although this is common to all models it is essentially overoptimistic, at least until the widespread use
of road transport informatics makes more realistic modelling a possibility. Drivers have only partial
information about traffic conditions on the same route last time they used it and on problems in other
parts of the network depending on their own experience, disposition to explore new routes and the use
of traffic information services. Moreover, there is evidence that many drivers are heavily influenced by
road signs in their choice of route and that sometimes signed routes are not the cheapest (Wootton et al.
1981). Current methods ignore these effects. The future influence of variable message signs and more
advanced route guidance technology over part of the vehicle fleet, is likely to place new requirements
for traffic assignment methods (see several articles in this field in Papageorgiou, 1991).

10.7.5 Day-to-day Variations in Demand

These probably prevent true equilibrium ever being reached in practice. In that sense Wardrop’s equilib-
rium represents ‘average’ behaviour if all travellers think alike and have perfect information. Its solution,
however, has enough desirable properties of stability and interpretation to warrant its use in practice;
however, it is still only an approximation to the traffic conditions on any one day.

In the same vein, there are time variations in demand and flow within each day. This makes 24-hour
models very poor in terms of traffic assignment, and therefore travel times and costs. The use of peak
and off-peak periods for modelling and assignment is essential in congested urban areas but even then
we know that the build-up of congestion produces important changes in travel time in very short time



P1: TIX/XYZ P2: ABC

JWST054-10 JWST054-Ortuzar February 24, 2011 11:22 Printer Name: Yet to Come

Assignment 383

frames. Moreover, a 10-minute delay in departure for the same journey may produce a much greater delay
on arrival at the destination because of increased congestion in the network. The costs on links change
dynamically in response to traffic: some drivers understand this well and plan their journeys accordingly;
others lack the necessary experience. In reality, the route choice problem has strong time-dependent
elements but practical dynamic assignment techniques are as yet in their first steps.

10.7.6 Imperfect Estimation of Changes in Travel Time with Changes
in the Estimated Flow on Links

This is partly due to the nature of the cost–flow relationships used. As stated in section 10.1.3, it is
normally assumed that the travel time on a link depends only on the flow on the link itself. At least in
urban areas, the delay on a link depends in general on flow on other links too, for example at a priority
junction, thus creating interaction effects. This assumption will be discussed later as it requires better
delay models than those assumed in conventional cost–flow relationships.

10.7.7 The Dynamic Nature of Traffic

Most classic assignment methods assume the existence of a trip matrix that is valid over a modelling
period, say one hour in the peak. Traffic is then assigned to the network under the assumption of steady
state conditions over that period. In practice, however, traffic behaviour is dynamic and ‘steady state’ is
only a useful simplification. Consider, for example, a road that provide access to a town centre and that
most drivers will like to reach it around 9:00 AM. Figure 10.13 represents an idealised diagram of traffic
along this road starting from a place 60 minutes away from the town centre.
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Figure 10.13 Simplified traffic volumes on a link

As can be seen, traffic at each time is different from the average conditions assumed in any classic
assignment model. In a real network, with more entry and exit points, real traffic is more like a series
of ‘surges’ or ‘waves’ that interact at junctions and at bottlenecks generating a different set of optimal
routes depending on the time of the day and how far ahead the user is able to estimate delays on
alternative routes.

Figure 10.13 is somewhat of an oversimplification for illustration purposes. In reality the waves
will be fatter and as more traffic joins the main road to a town centre the volumes will increase
faster than suggested in the figure. The same phenomenon takes place in public transport systems. The
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most congested section in an underground will be closer to the most desirable destination. One of the
consequences of this is that great care must be taken when allocating trips to a particular time interval
(say 8 to 9 AM peak): a different result will be achieved in assignment if trips are allocated according to
the time they start, the time they arrive to a destination or an average of the two. When public transport
congestion is an issue it is advisable to allocate trips according to the time of arrival to their destination
as this is where the most severe congestion usually takes place.

Moreover, a different set of conditions will be generated if there is a bottleneck limiting capacity
to some 4000 cars/hour at a distance of 30 min from the town centre. In this case the time-profile
of traffic will look more like that in Figure 10.14. In this case, not all traffic will be able to get
through the bottleneck in one go; queues will build up that will be cleared once demand falls below the
4000 cars/hour limit.
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Figure 10.14 Simplified Traffic volumes on a link with a capacity bottleneck

The assumption, prevalent in most classic assignment models, that the whole matrix will clear the
network in the time interval modelled is likely to underestimate delays, even with very good volume-
delay formulations. Ideally, a good traffic assignment model should be able to handle these dynamic
queues and pass on demand to the next time interval with a better estimation of total delay.

10.7.8 Input Errors

The accuracy of an assignment model depends also on the accuracy of other elements in the transport
model, in particular that of the trip matrix to be loaded. This matrix will inevitably contain many errors
and discrepancies, whether this is a synthetic one obtained from a gravity model or a carefully observed
one using extensive surveys. Errors in the conversions from passengers to vehicle trip matrices also limit
the accuracy of traffic assignment. This conversion is usually assumed to be a uniform (and constant
over time) occupancy rate for each type of vehicle and perhaps journey purpose. Simple observations
will show that this is only an average with significant variations over regions.

To some extent most of these difficulties can be overcome, at least partially, with appropriate tools but
at a cost in data collection, analysis and running time; however, in some cases it may be more difficult
to interpret results. Moreover, sometimes these improvements may not provide the reassurance that we
have finally reached true equilibrium conditions so that results do not depend on some arbitrary decision
on the number of iterations or a similar measure. We will discuss a more rigorous approach in the
next chapter.
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10.8 Practical Considerations
The assignment sub-model is critical in the implementation of the whole transport modelling package.
However, in contrast with the other three sub-models there is no standard calibration procedure to make
sure the assignment stage reproduces observations as closely as possible. The most likely candidate for
external validation of the model is the use of traffic or cordon counts. The following procedure seems
applicable to all kind of assignment packages, including public-transport and equilibrium methods as
discussed in the next chapter.

Goodness of fit for assignment Assignment is critical in that is relatively simple to cast doubts about
the quality of a model because it does not reproduce a particular observation, perhaps flows on a link
well known to the decision maker. There are a number of ways to present the quality of an assignment
run for a particular time period. Most of them are based on comparing modelled with observed flows,
either at link level or on one or more screen-lines. It is good practice to start by plotting observed versus
modelled link flows and fitting the best straight line to them (Figure 10.15).
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Figure 10.15 Observed versus modelled link flows and best fit straight line

One would also show the corresponding R2 (the closer to 1 the better) and the slope and intercept. The
closer the slope to 1 the better (here it is good at 0.97) and the closer the intercept to zero the better. The
cloud of points and the parameters above will help identify any bias in the results.
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Transport authorities in different countries adopt different indicators and thresholds to judge the overall
fitness of an assignment model. These often take the form of measures of differences between observed
and modelled flows; for example the Root Mean Squared Error (RMSE) in absolute or percentage terms.
A difficult issue is always how to account for variations in flows in a network when some of them are very
large (say on a motorway) and some offer lower flows, for example on local links. The GEH ‘statistic’
gets its name from Geoffrey E. Havers (who proposed it in the 1970s while working as a transport planner
in London); it has been suggested to overcome this difficulty. Although its mathematical form is similar
to a chi-squared test, is not a true statistical test. Rather, it is an empirical formula that has proven useful
for a variety of traffic analysis purposes.

The GEH measure is defined as:

GEH =
√

(Oi − Ei )
2

0.5 · (Oi + Ei )
(10.33)

where Oi are observed values and Ei modelled or estimated values for one variable i.
This may be seen as the square root of the product of the absolute difference (O-E) and the relative

difference (O−E)/0.5 (O+E). The reason for using this statistic is the inability of both the absolute
difference and the relative difference to cope with a wide range of flows. For example, an absolute dif-
ference of 100 pcu/hour may be considered a big difference if the flows are of the order of 100 pcu/hour
but completely unimportant for flows of the order of several thousand vehicles an hour. Equally, a 10%
error in 100 pcu/hour may not be important whereas a 10% error in, say, 6000 pcu/hour might mean the
difference between building an extra lane or not.

Generally speaking the GEH statistic will be less sensitive to these problems as a modeller would
probably feel that an error of 20 in 100 would be roughly as bad as an error of 90 in 2000, and both
would have a GEH of around 2.

Note that this indicator is not a-dimensional. This means that the recommendation below applies only
to hourly traffic flows. If peak period (often 3 hours) or daily flows are used we will exaggerate the
acceptability of the results. Equally, the pass criteria below should not be used for other purposes like,
for example, total screen-line or cordon flows, for the same reason.

For traffic modelling work in the ‘baseline’ scenario, a GEH of less than 5.0 is considered a good
match between the modelled and observed hourly volumes (flows of longer or shorter durations should
be converted to hourly equivalents to use these thresholds). Guidance on what is required for a good
model validation varies among countries. In general terms between 60% and 85% of the volumes in a
traffic model should have a GEH less than 5.0. GEH in the range of 5.0 to 10.0 may warrant investigation.
If the GEH is greater than 10.0, there is a high probability that there is a problem with the travel demand
model, the data or both. In the case of screen-lines GEH values greater than 4.0 would indicate poor fit.

However, if the range of flows one is interested in is, say below 500 (an hour/day or whatever), these
thresholds would be too generous and a more demanding one should be sought. Figure 10.16 illustrates
how the GEH value changes for different variations in flows (5, 10, 20 and 30%) and at different flow
levels (50 to 4000 vehicles/hour).

Another indicator that must be checked is the model ability to reproduce the travel times observed
during the travel time surveys. The best way of presenting these are to plot observed and modelled
cumulative times along the routes travelled during the survey.

Check and Double-check the Network This is the most important source of error in traffic assignment.
There are numerous potential errors in coding a network: the omission of links and nodes previously
thought irrelevant, miscoding of distances, use of wrong directions, missing turning-movement penalties,
specification of incorrect capacities and time-flow curves, etc. Good software packages will flag many
of these errors on input; the use of graphic displays of the network and even better, graphic editing of
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Figure 10.16 GEH indicator values for different flow levels and percentage variations

networks is very important. It is easy to underestimate the time taken to input and check a network for a
particular study. Any facility likely to speed up and increase the accuracy of the process is worth many
professional days.

An additional method for checking a network consists in loading a unit trip matrix (i.e. with a single
trip per cell) and then checking modelled flows. This will facilitate the identification of unused links
(perhaps because they were coded with too slow speeds, or too long distances) and also heavily used
ones; these serve as pointers for coding errors. The printing, or even better plotting, of minimum path
trees is also a useful aid for network checking. Odd shortest routes and unreachable nodes will also help
to identify sources of problems.

Improve the connection of centroids to the network if some routes look too strange. Keep in mind,
however, that under congested conditions other routes will become attractive and be used. In the case
of detailed (microsimulation) assignment models there will be additional sources of problems as more
local data are needed. The same applies to public-transport assignment where the connection to bus stops
or stations is critical for good route choice representations; the same is true of interchange facilities,
frequencies and speeds. The basic rule is: before going to the next step in model fitting make sure all
the observable (measurable) data are correctly represented in the network. Check connectivity first, then
link attributes and then detailed data like saturation flows, signal timings, and so on.

Fit the Generalised Cost Function Assign weights to time, distance and any other variables included
in it (link status, scenic quality, etc.). Use the GEH measure to assess goodness of fit. This can be applied
to cordon counts or to groups of traffic counts on parts of the network thought to be most critical, say
primary and secondary roads. The value of the statistic for the whole network also provides an indication
of overall fit.

Usually a good starting point is to assume that time alone explains route choice: use this assumption,
run a complete assignment and then calculate the statistics above. Then begin increasing the weight
attached to distance (or other factors) and recalculate the statistics so that the choice of parameters that
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produces the best fit can be made. One must resist the temptation of improving the fit at one step by
trivial alteration of link speeds or turning penalties at this stage, as this reduces the value of the model
for forecasting purposes. True errors discovered at this stage must, of course, be corrected; the model
should then be re-run for other generalised cost coefficients as well.

Note that the statistic proposed above gives greater weight to a given absolute difference at low
flow levels that at high ones. If this is undesirable, collect it for different flow ranges. The percentage
of over and under-estimations of flows can give some indication of bias which, if present, should be
investigated more thoroughly. Note too, that if the link capacities were well identified and coded and there
is considerable congestion, then equilibrium assignment will tend to produce a good fit with observed
flows, even to the extent of masking a few errors in other sub-models.

There may be evidence suggesting that different weights should be applied to different user classes,
for example, that heavy lorries are more sensitive to distance and gradient than cars. In that case, the
classes should be assigned separately onto the network using their best coefficients in each case.

In the case of public-transport assignment the relative weights of walking, waiting and in-vehicle time
are part of this calibration process. Interchange penalties play a similar role and provide an additional
element for making the model more realistic. Passenger counts at interchanges and stops should be
considered separately for the calibration of these weights. An approach similar to that of Suh et al.
(1990) may well prove advantageous in fitting generalised cost functions once all other errors have been
reduced to a minimum. Alvarez (1995) has studied analytical optimisation methods to achieve the best
fit with good results.
Fine-tune the Assignment Model This involves finding the best dispersion parameters for stochastic
assignment models. Particular care should be exercised at this stage, as depending on the implementation
these parameters may have different interpretation and even dimensions. The documentation of the
programs should be examined in detail to guide us in this task.

Detailed urban assignment models like those described in the next chapter offer additional opportunities
for fine-tuning. These make them powerful but may also inadvertently hide more fundamental errors in
coding. Examples of this type are the fine-tuning of gap acceptance parameters at some junctions, the
representation of opposed turning movements at traffic signals, and so on. Particular care should be taken
to make sure these modifications correspond to actual traffic engineering conditions on the ground and
not to fudge factors included simply to improve the fit of the model.

It must be recognised that no assignment model will ever reproduce the observations exactly. There
will be always variability in the traffic counts themselves, errors in the trip matrices used and a proportion
of the actual route choice behaviour which will remain unexplained. What matters, however, is that the
resulting costs are as accurate as possible and that the model rests on a sound basis to compare alternative
tactical or strategic schemes as required.

Exercises
10.1 The road network represented in Figure 10.17 links two residential areas A and B with two major

shopping centres L and M. Travel times between nodes are depicted in minutes and all links are
two-way. Assume first that the costs on these links do not depend on traffic levels.
(a) Use a systematic procedure to find the quickest routes between origins A and B and destinations

L and M; calculate the corresponding travel times.
(b) During a Saturday morning peak hour the numbers of vehicle movements from A and B to L

and M are as follows:

A − L = 600 A − M = 400
B − L = 300 B − M = 400

Estimate the traffic flow on each link during this period.
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Figure 10.17 Simple network for Exercise 10.1

(c) Consider now that travel time on each link increases by 0.02 of a minute for each vehicle/hour
of flow. Use an incremental loading technique to obtain a capacity-restrained set of flows.
Calculate final travel times for each O–D pair.

(d) Use an iterative loading procedure to obtain flows and costs under the conditions (c) above.
10.2 A study area contains two residential zones A and B and three workplace zones J, K and L. The

zones are connected by a road network as shown in Figure 10.18, which also depicts travel costs in
either direction; these are independent of the traffic flows.

Figure 10.18 Simple network for Exercise 10.2

(a) Use a systematic procedure to find the cheapest routes from nodes A and B to destinations J, K
and L and obtain the matrix of travel costs C.

(b) The total number of trips originating and terminating in each zone during the morning peak are
given by:

Origin Trips Destination Trips

A 1000 J 700
B 2000 K 1000

L 1300

Run an origin-constrained gravity model in which the deterrence function is proportional to
exp (−0.1 Cij) and obtain a trip matrix. Use this matrix to calculate flows on all the links of
the network.

(c) Run a doubly constrained gravity model with the same type of deterrence function and obtain
a new trip matrix and link flows. Compare your results of (b) and (c).
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10.3 Consider the simple network in Figure 10.19 where there are 100 vehicles per hour travelling from
A to X and 500 from B to X. The travel time versus flow relationships are depicted in the figure in
minutes and the flow q in vehicles per hour.

Figure 10.19 Simple network for Exercise 10.3

(a) Use an incremental loading technique with fractions 40, 30, 20 and 10% of the total demand
to obtain an approximation to equilibrium assignment.

(b) Use an iterative loading procedure to achieve the same objective. How many iterations do you
need to achieve a good degree of convergence.
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11
Equilibrium and Dynamic
Assignment

11.1 Introduction
In Chapter 10 we introduced assignment techniques for both private vehicles and public transport. We
identified three main reasons for the spread of routes between each O–D pair that can be observed
in practice. The first one is the different objectives of drivers: time or cost minimisers for example.
The second was imperfect perceptions of drivers about travel and link costs. The third reason resides
in congestion effects, and we used Wardrop’s principles as a general framework to discuss this issue.
Wardrop’s first principle states that under congested conditions drivers will choose routes until no one can
reduce their costs by switching to another path; if all drivers perceive costs in the same way, this produces
equilibrium conditions where all the routes used between two points have the same and minimum cost
and all those not used have equal or greater cost.

Congested assignment techniques as discussed in the previous chapter try to approximate to this type
of equilibrium. We saw that these heuristic methods often failed to achieve true Wardrop’s equilibrium;
therefore the problem deserves a better treatment. In section 11.2 we will cast equilibrium assignment in
a more rigorous mathematical programming framework. This section is restricted to problems where the
delay on a link depends only on flows on the link itself; however, extensions to stochastic user equilibrium
and to social equilibrium will also be discussed there. Section 11.3 extends the treatment of equilibrium
to mode choice and distribution modelling; the objective here is to make sure that the travel times implied
in the costs used to run these models are consistent with those generated during assignment. The naive
iteration or feedback of the last three sub-models is known not to lead naturally to equilibrium conditions
as it is somewhat akin to hard speed-change methods for congested assignment. Improved methods and
practical considerations are included in this section. Section 11.4 extends equilibrium assignment to
problems where the delay on a link depends on the flow on the link itself and on other flows. This more
general formulation is more appropriate to urban areas where the delay at, say a roundabout approach
depends on circulating flows in the junction too. Section 11.5 considers the most appropriate way of
handling some of the dynamic aspects of traffic assignment including micro-simulation techniques.
Finally section 11.6 looks into the issue of departure time modelling and extends previous formulations
to cover this important behavioural response.

Modelling Transport, Fourth Edition. Juan de Dios Ortúzar and Luis G. Willumsen.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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11.2 Equilibrium
In this section methods specifically designed to achieve traffic assignment solutions satisfying Wardrop’s
first principle are discussed. We shall follow a combination of intuitive and analytical arguments but
we shall not pursue the latter beyond what is necessary to understand and use equilibrium assignment
techniques; readers interested in the more theoretical aspects of equilibrium assignment are directed to
the excellent book by Sheffi (1985) or the more recent text by Bell and Iida (1997).

In what follows we seek first to establish a more formal formulation of the assignment problem, often
using mathematical programming, and then we explore its properties and the solution methods that can be
used to solve it; this often involves some kind of iterative method and the issue of degree of convergence
to the right solution is therefore important. Finally, we look at some practical issues and extensions to
the problems we have considered.

11.2.1 A Mathematical Programming Approach

Consider first some of the properties of Wardrop’s selfish equilibrium, in particular that all routes used
(for an O–D pair) should have the same (minimum) travel cost, and that all unused routes should have
greater (or at most equal) costs. This can be written as:

cijr

{= c∗
ij T ∗

ijr > 0
≥ c∗

ij T ∗
ijr = 0

where {T ∗
ijr} is a set of path flows which satisfies Wardrop’s first principle and all the costs have been

calculated after the {T ∗
ijr} have been loaded. In this case the flows on links result from:

Va =
∑

ijr

Tijr δ
a
ijr (11.1)

where δa
ijr is 1 if path r between i and j uses link a and zero otherwise. The cost along a path can be

calculated as:

Cijr =
∑

a

δ
a
ijr ca(V ∗

a ) (11.2)

Although Wardrop presented his principles in 1952 it was not until four years later that Beckman et al.
(1956) proposed a rigorous framework to express them as a mathematical program; it took several more
years before suitable algorithms for practical implementations were proposed and tested.

The mathematical programming approach expresses the problem of generating a Wardrop assignment
as one of minimising an objective function subject to constraints representing properties of the flows.
The problem can be written as:

Minimise Z{Tijr} =
∑

a

∫ Va

o
Ca(υ)dυ (11.3)

subject to
∑

r

Tijr = Tij (11.4)

and

Tijr ≥ 0 (11.5)

The objective function corresponds to the sum of the areas under the cost–flow curves for all links
in the network. Why this is a sensible objective to minimise in order to obtain Wardrop’s equilibrium,
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is something we will attempt to show below; but first we must consider the general properties of this
mathematical programme.

The two constraints (11.4) and (11.5) have been introduced to make sure we work only on the space
of solutions of interest, i.e. non-negative path flows Tijr making up the trip matrix. The role of the second
constraint (non-negative trips) is important but not essential as this level of discussion of the problem.
The interested reader is referred to Sheffi’s book or to some of the classic papers on the topic like
Fernández and Friesz (1983) and Florian and Spiess (1982).

It can be shown that the objective function Z is convex as its first and second derivatives are
non-negative:

∂ Z

∂Tijr
= ∂

∂Tijr

∑

a

∫ Va

0
Ca(υ) dυ

=
∑

a

d

dVa

(∫ Va

0
Ca(υ) dυ

)
∂Va

∂Tijr

but from (11.1)

∂Va

∂Tijr
= δ

a
ijr

Now, as Va only depends on Tijr if the path goes through that link,

d

dVa

∫ Va

0
Ca(υ) dυ = Ca(Va)

therefore,

∂ Z

∂Tijr
=

∑

a

Ca(Va) δ
a
ijr = cijr (11.6)

and the second derivative of Z with respect to the path flows is:

∂2 Z

∂T 2
ijr

= ∂

∂Tijr

∑

a

Ca(Va) δ
a
ijr

=
∑

a

dCa(Va)

dVa

∂Va

∂Tijr
δ

a
ijr

=
∑

a

dCa(Va)

dVa
δ

a
ijr δ

a
ijr (11.7)

This expression is greater than or equal to zero only if the derivative of the cost–flow relationship is
positive or zero. This is a general requirement for convergence of Wardrop’s equilibrium to a unique
solution. The meaning of this condition is that the cost–flow curve should not have sections where costs
decrease when flows increase.

As the problem identified in (11.3)–(11.5) is a constrained optimisation problem, its solution may be
found using a Lagrangian method. The Lagrangian can be written as:

L({Tijr, φij}) = Z ({Tijr}) +
∑

ij

φij[Tij −
∑

r

Tijr] (11.8)

where the φij are the Lagrange multipliers corresponding to constraints (11.4).
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Taking the first derivative of (11.8) with respect to φ ij one obtains, of course, the corresponding
constraints. Taking the derivative with respect to Tijr and equating it to zero (for optimisation), one has:

∂L

∂Tijr
= ∂ Z

∂Tijr
− φij = cijr − φij

Here we have two possibilities with respect to the value of T ∗
ijr at the optimum. If T ∗

ijr = 0 then

∂L

∂Tijr
≥ 0 as the function is convex

If T ∗
ijr ≥ 0 then

∂L

∂Tijr
= 0

This can be translated into the following conditions at the optimum:

φ∗
ij ≤ cijr for all ijr where T ∗

ijr = 0

φ∗
ij = cijr for all ijr where T ∗

ijr > 0

In other words, the φ∗
ij must be equal to the costs along the routes with positive Tijr and must be less

than (or equal) to the costs along the other routes (i.e. where Tijr = 0). Therefore, φ∗
ij is equal to the

minimum cost of travelling from i to j: φ∗
ij = c∗

ij.
In this way, the set of T ∗

ijr which minimises (11.7) has the following properties:

cijr ≥ c∗
ij for all T ∗

ijr = 0

cijr = c∗
ij for all T ∗

ijr > 0

Therefore, the solution satisfies Wardrop’s first principle.

Example 11.1 Consider again the town-centre/bypass problem of Example 10.4. Figure 11.1 shows the
cost–flow relationships and the shaded area is the objective function that we want to minimise. Of course
one way to minimise this area is to have no flow Vb = Vt = 0, but this solution is not only trivial but of
little interest. What we want is the solution that satisfies the total demand (2000 vehicles), and this is
shown in Figure 11.2, where the two cost–flow functions are now displayed with the X-axis running in
opposite directions and separated by the total flow that must be split between the two routes.

Figure 11.1 Two cost–flow relationships for bypass-town centre problem



P1: TIX/XYZ P2: ABC

JWST054-11 JWST054-Ortuzar February 24, 2011 11:48 Printer Name: Yet to Come

Equilibrium and Dynamic Assignment 395

Figure 11.2 Equilibrium in simple network

It can easily be seen in Figure 11.2a that the sum of areas under the cost–flow curves is minimised
for Cb = Ct; any departure from this point will simply add a new section to the area, as illustrated
in Figure 11.2b. As can be seen, the equilibrium solution involves a flow via the town centre of 600
vehicles and 1400 via the bypass. It is worth noting that the cost via each route is 22 minutes and the
total expenditure in the network is then 44 000 vehicle-minutes.

In this treatment of equilibrium assignment we have omitted a number of issues; for example, that of
uniqueness of the solution. It can be shown that only the link costs c∗

a , inter-zonal costs c∗
ij and link flows

V ∗
a are unique in the optimum. The path flows T ∗

ijr, however, are in general not unique at all. What this
means is that there may be several combinations of paths and trips using them which result in the same
link flows and costs; as all used routes (for an O–D pair) have the same minimum cost, the total inter-zonal
costs are the same. This can be easily seen if one thinks of several external zones of origin feeding trips
into junction A and then exiting to different destinations at junction B in Figure 10.2; although these trips
can be distributed in many ways between town-centre and bypass routes under equilibrium conditions,
the link flows and costs will remain the same.
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11.2.2 Social Equilibrium

Most of what has been discussed so far applies to Wardrop’s first principle or user equilibrium (UE)
problems. Wardrop’s second principle specifies that drivers should be persuaded to choose routes in such
a way that total (or average) costs are minimised. This is the social optimum solution and is a prescription
for design rather than a model of driver’s behaviour.

It is easy to see that Wardrop’s second principle can be embodied in a mathematical programme of
the form:

Minimise S{Tijr} =
∑

a

Vaca(υ) (11.9)

subject to (11.4) and (11.5).
This objective function can also be expressed in the following form:

Minimise S{Tijr} =
∑

a

∫ Va

o
Cma(υ) dυ (11.10)

where Cma is the marginal cost of travelling along link a.
This problem can be solved with a simple adaptation to most solution algorithms for the selfish user

equilibrium problem. In the case of Frank-Wolfe, the adaptation consists of replacing the objective
function used in the estimation of the parameter φ in step 4 by (11.10). It is easy to see that the solution
to this problem makes all the marginal costs of all the routes used between two points to be equal and
minimum.

The solutions to the two problems do not coincide; in other words, the user equilibrium solution
generates higher total costs than the social equilibrium solution. The difference lies in the external
effects due to congestion. Users perceive only their own personal costs and do not discern the additional
delay incurred by other drivers due to extra vehicle on the road. One can envisage electronic road pricing
as a possible method to make drivers perceive marginal rather than average costs.

Example 11.2 We take again our town-centre/bypass problem but now seek the flow pattern that
minimises total expenditure (or what is equivalent in the case of a fixed trip matrix like this one,
minimise average travel costs). The total expenditures are:

Eb = Vb(15 + 0.005 Vb) via the bypass, and
Et = Vt(10 + 0.02Vt) via the town centre

The respective marginal costs are

∂ Eb

∂Vb
= 15 + 0.01Vb

∂ Et

∂Vt
= 10 + 0.04Vt

Equating the two and taking advantage of the fact that Vb + V t = 2000, one can solve and find that
for social equilibrium conditions:

Town centre Bypass Total

Flow 500 1 500 2 000
Marginal cost 30 30
Average cost 20 22.5
Expenditure 10 000 33 750 43 750
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Note that the total network expenditure is now 250 vehicle-minutes less than the user equilibrium
solution found in Example 11.1. Of course, one cannot expect drivers to choose the bypass in these
numbers as at least some could reduce their travel costs by choosing the town-centre route. In order to
achieve this social optimum one would need to increase user costs by 2.5 minutes via the town-centre,
for example by charging the equivalent as a town-centre toll. This would represent simply a transfer from
private to social consumption resulting in a saving in the use of resources (time, fuel).

11.2.3 Solution Methods

We have described a mathematical programme and shown its relevance in solving the traffic assignment
equilibrium problem. The mathematical programme is non-linear and it can be solved by a number of
methods. Although understanding the theory of equilibrium assignment requires some mathematical
background, the actual application of the principles and solution algorithms is much less demanding.

A key consideration when looking into solution algorithms is how quickly and well they converge
to the correct solution of Wardrop’s equilibrium. It is important to select a good convergence criterion
to ensure that the solution reached is stable and suitable for project or strategy evaluation. Without
this guarantee, small and localised changes in some links may be reflected all over the network and an
arbitrary stop in the iterations may result in unreliable results.

Rose et al. (1988) researched a variety of convergence criteria and looked into their usefulness to
ascertain proximity to the correct solution. They recommend the Relative Gap (RG) as the most reliable
measure of convergence:

RG =
∑

a
V ∗

a ca−
∑

a
V AON

a ca

∑
a

V ∗
a ca

(11.11)

where ca is the cost (time) at the current flow on link a; V AON
a is the all-or-nothing flow on link a and V ∗

a

is the current flow on link a.
The relative gap is an estimate of the distance between the current solution and the optimal equilibrium

solution. This is because the all-or-nothing solution can be seen as a lower bound for the traffic assignment
problem. At true equilibrium the relative gap would be zero. As true equilibrium may be too onerous
to achieve a number of tests have been proposed to determine how close is ‘close enough’. This would
depend on the relative size of the user benefits that are being estimated. The general guideline is to make
sure that user benefits, in terms of percentage time savings, are at least 10 times the relative gap (in %).
Boyce et al. (2004) investigated this issue in some practical cases and recommended that the relative gap
should be at most 0.1% (0.0001) for satisfactory convergence. This is an exacting requirement, probably
too demanding for early stages in the model development process. However, it is good and solid advice
for the final stages of model calibration and, in particular, for strategic project evaluation.

Patriksson (1994) developed a good systematic way of looking at the many different algorithms that
can be used to solve the mathematical programme for User Equilibrium (11.3–11.5). Those found in
practice (i.e. implemented in commercial software) can be grouped into:

a) a linear approximation (Frank-Wolfe);
b) route or path based assignment;
c) origin based assignment.

The most commonly used algorithm is due to Frank and Wolfe. This algorithm can be seen as an
improvement on the standard iterative method discussed in section 10.5.4.
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11.2.3.1 The Frank–Wolfe Algorithm

This is presented in both conventional and pseudo code format:

1. Select a suitable initial set of current link costs, usually free-flow
travel times Ca (0). Initialise all flows V ◦

a = 0; make n = 0.

2. Build the set of minimum cost trees with the current costs; make
n = n + 1.

3. Load the whole of the matrix T of these trees all- or-nothing,
obtaining a set of auxiliary flows Fa.

4. Calculate the current flows as:

V n
a = (1 − φ)V n−1

a + φFa

choosing φ such that the value of the objective function Z is
minimised.

5. Calculate a new set of current link costs based on the flows V n
a ;

use a good convergence indicator (say RelGap<0.0001) to
decide whether to stop or to proceed to step 2.

Initialisation
for every link in the network

Let ca =Ca (0) for all a
Let V n

a = 0 for all a and n = 0;
end for

Main loop
for n = 1 to number of iterations

build minimum path trees with
Va

n−1 flow costs
load T AON and obtain flows Fa

estimate φ to minimise Z
make V n

a = (1 − φ)V n−1
a + φFa

update ca =Ca(Va
n)

if RelGap<0.0001 stop

end for

The main improvement over the iterative method is in step 4, where φ is calculated using the math-
ematical programming formulation instead of a fixed rule. In essence, Frank-Wolfe solves a linearised
sub-problem to get a good descent direction and finds a new solution using linear search. This is enough
to guarantee reasonable convergence to Wardrop’s equilibrium.

The Frank–Wolfe algorithm can be visualised as a descent approach to the problem of minimising
the objective function. The problem is similar to the establishment of the rules to be followed to find
the lowest point of an enclosed valley in thick fog (or more realistically perhaps, to find the peak of a
mountain in thick fog, but then one has to use up instead of down in the rules below). A suitable set of
rules for the valley problem would be:

1. Choose what looks like a good downhill direction; in thick fog this will depend essentially on
local topography.

2. Walk in that direction until you start to go uphill again.
3. Stop at that point and choose another good downhill direction and proceed to step 2, unless you have

found a point with no downhill directions, i.e. the bottom of the valley.

This is essentially what the Frank–Wolfe algorithm does, albeit in a space with many more dimensions.
At each step in the iterations we have a current feasible solution (a location in the valley) and the algorithm
uses the latest all-or-nothing assignment to provide a descent direction. The use of the latest all-or-nothing
assignment to this end can be seen as a local approximation to minimising the objective function Z.
Given that the current feasible solution is specified by the path flows {Tijr}, Frank–Wolfe seeks a second
attractive feasible direction {Wijr} using a linear (Taylor series expansion) approximation to Z:

Z ′({Wijr}) = Z ({Tijr}) +
∑

ijr

∂ Z

∂Tijr
(Wijr − Tijr)

= Z ({Tijr}) +
∑

ijr

CijrWijr −
∑

ijr

CijrTijr (11.12)
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Here the only term which is not fixed by the feasible solution {Tijr} is Cijr Wijr; so if we wish to minimise
a local approximation to Z we must choose routes Wijr such that the corresponding multipliers Cijr are
minimised. A way to do this is to choose routes which are currently and locally minimum cost, i.e.
all-or-nothing assignment on trees from current costs.

In general terms the Frank–Wolfe algorithm tends to converge rapidly over early iterations but less
so as it starts to approach the optimum. Related to this is the problem that link flows tend to oscillate
during iterations making it more difficult to achieve the necessary precision in the final solution. It has
the advantage of requiring little computer memory as only link variables need to be stored. Modern
computers offer plenty of memory so the original advantage is less of a constraint. The slow convergence
of Frank-Wolfe is a well-known problem and a number of improvements have been suggested to speed
up convergence; see for example the work of Weintraub et al. (1985) and Arezki (1986). Alternative
solutions methods, as those discussed below, offer better convergence properties, especially for large and
congested networks. It is interesting to note that better solutions are often helped by the adoption of a
new framework to cast the problem in.

11.2.3.2 Route Based Assignment

There are at least two important algorithms that work on the path-flow (rather than link flow) space.
We will present here that due to Jayakrishnan et al. (1994) as a ‘gradient projection’ algorithm. This
algorithm uses a transformed objective function which includes the flow conservation constraints into
the objective.

The formulation of the algorithm is based on the traffic demand constraints:

∑

r

Tijr = Tij

The shortest path flows can be expressed as:

Tijr̄ = Tij −
∑

r /∈r̄

Tijr (11.13)

Now, the optimisation problem can be re-stated as:

min Z̄ (Tijr̄)
subject to Tijr ≥ 0 ∀ Tijr ∈ T̄ijr

where Z̄ is the new objective function and T̄ijr is the set of non-shortest path flows.
At any (non-optimal) stage in the algorithm a better solution can be found by moving in the negative

gradient direction. This is calculated with respect to the flows on the non-shortest paths and a move-size
is found using second derivatives with respect to these path flows. For a fuller description of the algorithm
see Jayakrishnan et al. (1994). Larsson and Patriksson (1992) have developed a related algorithm they
call Disaggregate Simplicial Decomposition.

11.2.3.3 Origin Based Assignment

Origin-based Assignment (OBA) represents, in fact, a family of solution methods (Bar-Gera 2002). The
basic idea is to define the solution variables in an intermediate way between links and routes. The main
solution variables in this algorithm are origin-based approach proportions, αia for every origin i and
every link a, such that for every origin i and node p the sum of origin-based approach proportions over
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all links ending at node p is equal to one. Using origin-based approach proportions, route proportions
are determined by the product of approach proportions of all the links along the route, that is

γijr =
∏

a⊆r

αia

Route flows are determined by the product of OD flow and route proportion, that is

hijr = Tijγijr

It can be shown (Bar-Gera 2002) that if link a goes from node p to node q, and if the total flow from
origin i to node q is giq then the total flow from origin i that arrives at node q through link a is fia = αia giq .

This representation of the solution allows an efficient storage of route flows. A key element in this
solution method is that for every origin an a-cyclic restricting sub-network is chosen, Ai, such that for
origin i approach proportions of links that are not included in Ai are restricted to zero.

The following outline of the algorithm is based on Boyce (2007). Start with trees of minimum cost
routes as restricting sub-networks, leading to an all-or-nothing assignment. Next, consider all origins in
a sequential order. For each origin the restricting sub-network is updated, and the origin-based approach
proportions are adjusted within the given restricting sub-network.

To update a restricting sub-network, unused links are removed; the maximum cost from the origin
to node q (vq) within the restricting sub-network, is calculated for all nodes and all links pq where
vp <vq are added to the restricting sub-network. Once a new restricting sub-network is found, several
computationally intensive steps are needed including reorganisation of the data structure.

As the restricting sub-networks tend to stabilise quickly, it is useful to update origin-based approach
proportions while keeping the restricting sub-networks fixed. This is done by introducing inner iterations.
To update origin-based approach proportions within a given restricting sub-network, a search direction
based on shifting flow from high cost alternatives to low cost alternatives is used. In addition to current
costs, estimates of cost derivatives are used to improve the search direction in a quasi-Newton fashion.

The full algorithm can be displayed (Boyce 2007) in pseudo code as:

Initialisation:
for every origin i

Let Ai be a tree of minimum cost routes under free flow conditions from i
Let αia equal 1 for all links in Ai and 0 otherwise. (all-or-nothing assignment)

end for

Main loop:
for n = 1 to number of main iterations

for every origin i
update restricting subnetwork Ai

update origin-based approach proportions αia

end for
for m = 1 to number of inner iterations

for every origin i
update origin-based approach proportions αia

end for
end for

end for
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Update restricting sub-network for origin i:
remove unused links from Ai

for every node p compute the maximum cost νp from i to p
for every link a = [p,q]

if Vp > Vq add link a to Ai

find new topological order for new Ai

update data structures

Update origin-based approach proportions for origin i:
compute average costs and Hessian approximations

for step size 1, 1/2, 1/4, 1/8. . .

compute flow shifts and scale by step size
project and aggregate flow shifts
if convergence criteria is met then stop

end for
apply flow shifts
update total link flows and link costs

Dial (1999), and Bar Gera and Luzon (2007) have developed variations on this approach that represent
improvements on the original algorithm.

The following table compares some of the features of the three general approaches:

Link based Path based Origin based

Decision space Link flows Path flows Origin based approach
proportions and link flows

Memory requirements Minimum Greatest Medium

Speed of convergence Fast early, slower
close to optimum

Fast Fast

Either the Path- or the Origin-based approaches are to be preferred over the traditional Frank-Wolfe in
most cases, depending on what is available in a particular software package.

11.2.4 Stochastic Equilibrium Assignment

We have discussed pure stochastic and pure user-optimised equilibrium traffic assignment models. In
the first case a spread of routes between two points is produced because of variability in the perceived
routes costs, and in the second because of capacity-restraint effects. One would expect that in reality both
types of effects should play a role in route choice. Models which try to include both effects are called
stochastic user equilibrium (SUE) models and they seek an equilibrium condition where:

Each user chooses the route with the minimum ‘perceived’ travel cost; in other words, under SUE
no user has a route with lower ‘perceived’ costs and therefore all stay with their current routes.
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The difference between stochastic and Wardrop’s user equilibrium is that in SUE models each driver
is meant to define ‘travel costs’ individually instead of using a single definition of costs applicable to
all drivers.

In theory, models incorporating stochastic and equilibrium properties look particularly attractive; there
are, however, operational and practical difficulties for applying them. From a practical point of view,
the most important of these difficulties lies on the convergence properties of these algorithms. To examine
this problem, let us define convergence here in the following way: an assignment algorithm is said to be
convergent if:

� one starts with a particular set of link costs Ca, for example free-flow costs in the first iteration but
calculated costs as a function of flows in subsequent ones; and

� one assigns a matrix using specific rules, say Dial’s, and produces new link flows {Va}, and then one
finds that:

Ca = Ca(Va)

In other words, the costs resulting from the new flows are practically the same as those used to find
routes and assign traffic. If an algorithm is not convergent the solution (flows and costs) will depend on
when the iterative process was stopped, i.e. an arbitrary decision. For example, the next planner dealing
with exactly the same problem but specifying a different number of iterations would find different costs;
this is obviously not a desirable property for the assessment of transport projects.

It can be shown that under specific circumstances it is possible to formulate convergent SUE algorithms
(Sheffi 1985). In fact, a practical algorithm to perform SUE assignment is just an extension of the iterative
loading methods (MSA algorithm) described in section 10.5.4. Such an algorithm can be described
as follows:

1. Set current costs Ca = Ca (0), i.e. free-flow travel costs, initialise Va = 0 for all a, make n = 0.
2. Make n = n + 1; build a set of minimum cost trees with the current costs.
3. Assign the trip matrix to the network using the current trees and a suitable stochastic method, e.g.

Burrell’s; obtain a set of auxiliary flows Fa.
4. Calculate current flows as:

V n
a = (1 − φ)V n−1

a + φFa

with φ = 1/n.
5. Calculate a new set of current link costs based on the flows V n

a ; if the flows (or current link costs)
have not changed significantly in two consecutive iterations, stop; otherwise proceed to step 2.

This algorithm will always tend to produce small changes in flows and costs as φ is small for large n.
However, it is important to prove that it converges to the right SUE solution.

Sheffi (1985) has shown that this algorithm converges to a SUE solution in the long run, that is, for
a large number of iterations, perhaps 50 or more. The convergence of this algorithm is not monotonic
because the search direction is only a descent direction on average. The speed of convergence depends
on the level of network congestion and on the dispersion parameter.

The convergence of the MSA algorithm for SUE problems is rather slow for congested networks.
Sheffi (1985) has also shown that for very congested networks UE provides a good approximation to
SUE and is faster in convergence. This suggests that the use of SUE would only be advantageous in low
to medium congested assignment problems.
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11.2.5 Congested Public Transport Assignment

In the previous chapter we looked at public transport assignment with fixed costs. This means the link
costs do not depend on the number of passengers on the bus or train, and they do not depend on the
carrying capacity of each unit. It is a reasonable approach in all those cases where the goal of the planning
process is to provide enough capacity for all public transport passengers on the routes of their choice.
And it has the advantage of facilitating the solution to the public transport assignment problem.

There are, however, situations where it is not feasible to provide enough public transport capacity to
preclude congestion, or when that capacity is not present in the base year. In these cases the route choice
of the public transport passenger is likely to be influenced by the congestion onboard the vehicles; some
travellers will switch from congested to less congested routes, even if the less congested routes are not
as attractive in terms of travel time or cost.

We therefore turn our attention to the assignment problem where link travel times are no longer
constant. The dependency of link costs on passenger flows may take different forms, but from a solution
viewpoint, the simplest and most convenient are continuous non-decreasing functions of the correspond-
ing link flows. This dependence of the link cost on the public transport volume may represent an actual
slowing down of the vehicle due to the number of passengers, or it may be interpreted as a generalised
cost which includes a ‘discomfort’ term that increases as the vehicles get crowded.

In this context, the transit assignment problem is no longer separable by destination node, since the
link costs depend on the total flow of passengers. The total transit volumes are the sum of the volumes
bound for each of the destinations. As the expected cost of any given strategy is no longer fixed, but
depends on the total volumes, only strategies with minimal expected cost will be used by the travellers
(Wardrop 1952).

Spiess (1983) has shown how the problem above can be formalised and solved by applying the
successive linear approximation method (Frank and Wolfe 1956). An important advantage of this method
is that only total volumes need to be computed and stored, since the destination-dependent volumes are
dealt with implicitly. This approach is easy to implement in packages like EMME/2.

A variant of the macro outlined above is being used at London Transport for modelling crowding in
the London Underground. Instead of using one of the default congestion functions based on nominal
capacity, the macro has been modified to include the actual profile of train density and passenger load
during peak periods (Abraham and Kavanagh 1992).

However, there are conditions where it is not reasonable to assume that link costs depend only on
passenger levels on that link. For example, the delay at a stop may depend significantly on the number
of passengers already on the public transport unit (bus or train/metro) as some people may not be able
to board the first vehicle that comes along. In this case, delays or generalised costs on a link will depend
significantly on flows on other links as well; the situation is not entirely dissimilar to junction delays.

In these cases the modelling of congestion should be done using asymmetric generalised cost functions.
Here the perceived waiting time for a service (line) for a boarding passenger depends on the number of
passengers already on board, or the dwell time of a line at a node depends on the number of boarding
and alighting passengers. Although such phenomena do occur in reality, their inclusion into assignment
models leads to models without the guarantee of a unique solution.

De Cea and Fernández (2000) developed a multimodal/multiple user class’s equilibrium model that
incorporates asymmetric generalised cost functions for public assignment (but symmetric functions for
road assignment). The model combines destination, mode choice and assignment in an equilibrium
framework. Destination and mode choice are treated in a hierarchical logit formulation (destination at
the top) and the problem combined with equilibrium assignment with capacity constraints. The problem
is formulated as a variational inequality and a diagonalisation algorithm is used for its solution. It is
recognised that there is no guarantee of convergence to a unique solution. However, the authors state that
they have achieved convergence in all their applications of the model (De Cea et al. 2005).
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11.3 Transport System Equilibrium
11.3.1 Equilibrium and Feedback

The type of equilibrium problems we have discussed so far concerns just a single mode in a network.
Wardrop’s first principle models this type of behaviour and a suitable algorithm permits the identification
of the routes and flows that will generate consistent costs for all users. As stated before, a similar principle
applies to congestion or capacity problems in public transport networks.

The problem becomes more complex when one considers interactions between two or more modes.
These may take the following forms:

� Congestion generated by cars will affect bus travel times in certain routes and therefore change
assignment strategies for public transport users; congestion generated by buses (and street-running
LRT systems) and bus stop operations will affect capacities and speed for cars, and therefore their
route choices;

� Interaction due to park-and-ride and kiss-and-ride operations for buses and for segregated track
systems. The attractiveness of these mixed-mode operations will depend on road congestion, service
frequency and fares (mode and parking) and all of these are, in general, mutually related.

Pragmatic approaches to this problem are usually of the hard or soft speed-change nature discussed
in section 10.5: assume bus times and flows fixed and known, assign cars to the network to equilibrium,
assign passengers to the transit network, obtain new speeds and travel times and fix them, re-assign,
obtain new speeds, re-assign, etc. Of course, if one is not prepared to change the bus frequencies in
accordance to demand, the problem may converge soon at this level.

In the case of mixed-mode users the problem is more difficult because they may decide to change
their park-and-ride station as a result of congestion in the road network and therefore change the same
levels of congestion when they do so. Even if mixed-mode movements are few at present, not including
them in the equilibrium procedure may cause severe problems for design-year forecasts in heavily
congested networks.

In all the cases above we have kept the assumption of a fixed trip matrix (inelastic demand) for each
mode. However, what we have seen in earlier chapters must lead us to treat the assumption of a fixed
matrix with caution, at least when we are considering major changes to the transport network or longer
timescales. Indeed, the whole point of distribution, mode and time of travel choice models is that demand
is elastic, in particular to travel and route generalised costs. This leads us to consider the influence of
congestion and delay on mode and destination choice at least: the issue of System Equilibrium or at least
Model System Consistency.

Looking at the whole modelling system in forecasting mode, the generalised costs of travel will be
affected by congestion and future interventions like new links and modes. Any assumption about travel
costs must be revised after assignment and the system of models should be run again to obtain demand
consistent with future costs.

What we have now is a nested set of models and we need to make sure that the travel costs used
by all of them are consistent. A naive (in the sense of simple, not pejorative) iterative strategy would
be ‘run all the models first, obtain new travel times, feedback the new travel times to the models
above and repeat until convergence’. This naive feedback strategy is similar to either hard or soft-speed
adjustment methods for assignment discussed briefly in Chapter 10. Similarly, it has all the makings
of a non-convergent approach. Oscillations are likely to be a feature of this type of technique unless
special conditions are met, or we pay considerably more attention to the development and use of
better algorithms.
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Example 11.3 We consider again the town-centre/bypass problem of Example 10.4 but we now add
a rail service that links A to B in 12 minutes ten times an hour. For simplicity let’s assume that car
occupancy is just 1 person per car and that there are no fares and no fuel or access costs; time is the only
cost element. The cost of using rail is then 18 generalised minutes (12 + 2 times 3). The total demand
VT is still 2000 passengers an hour. The choice between rail and car is estimated using a logit model
with only one parameter λ. In this case it is very easy (and fast) to reach equilibrium on the road side
using the fact that

Vb = 0.8 VC − 200

and

tb = 15 + 0.005Vb

with the total car demand Vc is the total demand minus rail demand: VC = VT − VR .

The quality of convergence to equilibrium can be measured by the proportion of total demand that
is displaced from one mode to the other each iteration. Convergence is reached when this displaced
demand is zero. One would expect that the speed of convergence would depend on the parameter λ

as higher values (giving greater weight to cost differences) will make the logit result getting closer to
all-or-nothing mode choice. Figure 11.3 shows the number of iterations needed to reach particular levels
of convergence as a function of λ for this simple example. As can be seen, low values of λ enable
reasonable convergence for some 15-20 iterations. The reader can verify that 10 iterations are enough if
λ is 0.05, for example. For larger values of λ, convergence requires solving the whole model 100 times
or more. Indeed, in this case for λ greater than 0.34 convergence is never achieved making it unsound to
compare any two schemes after an arbitrary number of iterations. For instance, for λ = 0.34 the number
of trips by rail after 100 iterations oscillate between 650 and 950 each time. Of course, one should not
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generalise from this simple example to real networks and problems. However, it shows at least that great
care must be placed in organising the interaction between different sub-models.

This is an important issue that, in our experience, is sometimes ignored or handled incorrectly in
practice. Moreover, in the USA at least, running the models with ‘feedback’ is required by Congressional
and judicial mandates. Therefore, we attempt here to approach the issue from two complementary
perspectives. We try to explain the key components of the problems in both intuitive and a more formal
mathematical framework.

First, let us mention that the problem is not even a recent one. It was researched by a British applied
mathematician John Murchland and Suzzane Evans (Evans 1976), a graduate student at University
College London, in the seventies. She successfully solved the combined distribution and assignment
problem in her PhD thesis but after a couple of published papers changed her field of inquire. They
introduced the terminology of ‘combined models’ that has been applied ever since.

One early review of the state of the art is Fernández and Friesz (1983). More recent developments have
focussed on developing improved and practical algorithms and recommendations. The next sections are
inspired by the work of Professor David Boyce whose efforts to convey the importance of the problem
and the rigour required to tackle it correctly are exemplary.

11.3.2 Formulation of the Combined Model System

A useful way of tackling this problem is to frame it as a mathematical programme. We have already
done this separately for Distribution, Mode Choice and Equilibrium Assignment; framing a combined
mathematical programme seems a natural next step. For convenience, we start first with the combined
Mode Choice and Assignment problem.

A reasonable start is to collapse as many sub-models as possible into one, in particular if one can
include assignment in the same process. What may be important, however, is not to compromise too
much the realism of the modelling process for the sake of expedience in equilibrium, particularly in
short-term tactical decision making.

Consider first the problem in general terms where a typical demand curve may be inverted to give
travel costs as a function of number of trips Cij = gij (Tij). We then have a combined problem described
in terms of relationships between flow levels and costs; some of these flows are trips on real links a and
others are flows on O-D pairs (hyperlinks) with the “cost function” above.

Now consider the following objective function:

Minimise Z =
∑

a

∫ Va

0
ca(υ) dυ −

∑

ij

∫ Tij

0
gij(t) dt (11.14)

subject to

Tijr ≥ 0

Tij =
∑

r

Tijr (11.15)

Va =
∑

ijr

Tijrδ
a
ijr (11.16)

The derivative of Z with respect to Tijr is:

∂ Z

∂Tijr
= cijr − gij
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We can now consider the behaviour of Z at T ∗
ijr directly:

If T ∗
ijr = 0 then

∂ Z

∂Tijr
≥ 0 and cijr ≥ gij (11.17a)

If T ∗
ijr > 0 then

∂ Z

∂Tijr
= 0 and cijr = gij (11.17b)

Therefore, if a particular path is used, then the path cost specifies a value for the demand curve, so we
must have:

gij(Tij) = c∗
ij

A couple of issues are worth noting here. First, for assignment one usually deals with vehicular flows
whereas in distribution and mode choice the main variables are trips. There is a need to account for
vehicle occupancy in combined models although this factor has been omitted for simplicity. The inverted
demand function could be of a very general form provided the problem remains a convex one. However,
in many practical problems it may not be possible to develop suitable closed analytical forms.

Consider a slightly more general case where we add a transit mode b to the system; assume first
that the travel times on this transit mode are independent from road speed. The function can be written
as follows:

Minimise Z = η
∑

a

∫ Va

0
ca(υ) dυ +

∑

ij

cb
ijT

b
ij (11.18)

Subject to
∑

ijr

ηT c
ij δ

a
ijr = Va a flow conservation constraint (11.19)

here η is vehicle occupancy, b indicates the public transport mode and c the car; k is the index for mode,
either b or c.

We now add a constraint stating that total O-D flows are split between the two modes and add also a
dispersion constraint to ensure that this split is not all-or-nothing, as we cannot account for all factors
explaining mode choice.

Tij = T c
ij + T b

ij for all i, j (11.20)

and
∑

ijk

T k
ij log T k

ij = −S0 (11.21)

T k
ij ≥ 0 (11.22)

Equation (11.21) is a dispersion constraint that allows some flows to use the higher cost mode; the
associated parameter (multiplier) would be estimated at calibration to reflect observed dispersion. In this
combined problem we have relaxed slightly the user equilibrium conditions to allow trips to choose a
different mode (hyper-route) whilst retaining the logit formulation for mode choice.

If we further add an origin-destination choice element to the problem, to relax the assumption that Tij

is fixed we have:
∑

jk

T k
ij = Oi and (11.23a)

∑

in

T k
ij = D j (11.23b)
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The optimality conditions for this model are the same as for User Equilibrium plus:

T k
ij = Tij exp(−λCk∗

ij )
∑

n

exp(−λCk∗
ij )

(11.24)

and

T k
ij = Ai Oi B j D j exp(−λCk∗

ij ) (11.25)

where Ck∗
ij is the user equilibrium cost of travelling from i to j by mode k.

This solution has the same dispersion coefficient λ for mode and destination choice. A second
dispersion constraint (on ij) can be added to convert it to a problem where these dispersion constraints
are allowed to be different.

The constraint (11.21) can be integrated into the objective function using the Lagrange multiplier λ

and retain only the linear constraints:

Minimise Z = η
∑

a

∫ Va

0
ca(υ) dυ +

∑

ij

cb
ijT

b
ij + 1

λ

∑

ijm

T m
ij log T m

ij (11.26)

subject to constraints (11.19 to 11.23b).
These are all linear constraints and the objective function is the sum of convex functions. The solution

algorithm proposed by Evans (1976) can be generalised as follows (Boyce 2007):

1. Initialisation – Make iteration counter n = 0; compute an initial solution for (T 0
ijk), (V 0

a ). This nor-
mally involves using free-flow costs to estimate gravity and mode choice models and assign trips to
the networks.

2. Update link costs. Ca = Ca(V n
a ); increment n by 1.

3. Compute new shortest routes from each origin i to destination j and obtain new (Cn
ijc), that is car costs.

4. Solve the OD and mode choice model and obtain the sub-problem flows (en
ijk), sometimes called

auxiliary flows, in this case at the Origin-Destination-Mode level.
5. Perform all-or-nothing (AON) assignment of car flows (en

ijc) to the shortest path from i to j obtaining
car flows (gn

a ).
6. Compute the Relative Gap and test for convergence.
7. Perform a line search to determine the optimal step length (weight) λn.

Minimise Z = η
∑

a

∫ V n
a

0
ca(υ) dυ +

∑

ij

cb
ij(T

b
ij )n + 1

λ

∑

ijm

(Tijm)n log(Tijm)n (11.27)

where V n
a = (1 − λn)V n−1

a + λngn
a and T n

ijm = (1 − λn)T n−1
ijm + λnen

ijm

8. Update the OD mode and link flows

T n
ijm = (1 − λn)T n−1

ijm + λnen
ijm

V n
a = (1 − λn)V n−1

a + λngn
a

9. Retest the updated value of the objective function for convergence; if not achieved go back to Step 2.

This approach has a critical difference with the naive feedback treatment of the problem. Evans
solution is to average flows (on links and trips by mode and O-D pair) rather than just feed-back costs,
averaged or otherwise.
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Similar formulations have been produced by, among others, Gartner (1980) and Sheffi (1985). This
type of approach has been extended further by De Cea et al. (2008) who presented very general combined
models with hierarchical demand choices using a multi-objective entropy maximisation approach. This
is an important and valuable generalisation as it allows for a general hierarchy of choice models in
combination with what they correctly call demand-performance models. The choices may include:
destination, mode, time of travel, modal transfer point, etc. The main characteristics of their approach are:

i) Demand choices are assumed to have a hierarchical structure where entropy must be maximised
to produce the most likely arrangement subject to the corresponding constraint at each level of the
nested tree.

ii) A combined demand model incorporating these choices can be incorporated as a multi-objective
programming problem; they put the destination choice model at the top of this tree but other
arrangements are possible.

iii) All users by class and mode behave according to Wardrop’s first principle; the link flow-cost functions
are separable and convex.

iv) The combined performance-demand equilibrium models are also formulated as multi-objective
programming problems.

v) A convex optimisation problem cannot be formulated if the network cost functions are asymmetric
but the problem may be specified as a variational inequality.

With these conditions the set of choice models turns out to be a hierarchical logit model where the
scaling parameters must comply with the requirements for their relative values from bottom to the top
of the hierarchy.

11.3.3 Solving General Combined Models

The considerations above are particularly useful when it is possible to formulate an appropriate mathe-
matical programming problem with the necessary conditions of convexity and separability or symmetry
of the performance-demand functions. The solution algorithm will depend, in general, of the specific
formulation in each case. One of the attractions of the naive feedback approach is that it is general
enough and does not require assumptions about the characteristics of the model formulation. As we have
seen, however, there is no guarantee of convergence to a unique solution that would make it possible to
compare strategies or projects.

It is generally accepted that the weights in the generalised Evan’s solution method could be replaced
by pre-determined weights, for example the rules of the Method of Successive Averages (MSA). The
sequence of sub-problem weights or step-sizes λn applied in the MSA are 1, 1/2, 1/3, . . ., 1/n. The use
of this sequence is known to converge to equilibrium albeit at a fairly slow rate.

An alternative approach is to use relatively arbitrary constant weights instead of the MSA sequence.
Perhaps surprisingly, the constant weight (CW) approach has been found in practice to converge faster to
equilibrium than MSA, see Bar-Gera and Boyce (2006). A more general version of this algorithm could
be presented in an intuitive form as follows:

Step 1. Input data, the road and public transport networks, trip end constraints Oi, Dj.
Step 2. Compute an initial solution for iteration n = 1 using free-flow costs or another suitable

starting point.
Initialise travel costs Cn

ijm.
Solve the demand model en

ijm = T n
ijm (a provisional solution for O-D-mode).

Assign T n
ijc to road network; where the sub-index c indicates cars.
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Step 3. Compute a solution for n = n + 1 the next iteration.
Calculate costs on used route-mode combinations Cn

ijm.
Solve the demand model en

ijm (auxiliary demand volumes).
Step 4. Average trip matrices T n−1

ijm and en
ijm

For MSA T n
ijm =

(n − 1

n

)
T n−1

ijm +
( 1

n

)
en

ijm

For CW T n
ijm = wT n−1

ijm + (1 − w)en
ijm

Step 5. Assign T n
ijc to the road network to the desired degree of convergence and produce V n

a

Step 6. Check for convergence of en
ijm to T n−1

ijm

Total Misplaced Flow TMF =
∑

ijm

∣∣T n
ijm − en

ijm

∣∣ ≤ E , (11.28)

or

Root Squared Error RSE =
√∑

ijm

(T n−1
ijm − en

ijm)2 ≤ E (11.29)

if converged, stop, otherwise continue to Step 3.

This is a general formulation that can be applied with the MSA or CW methodology. Bar-Gera and
Boyce (2006) and Boyce et al. (2008) report that on real networks the use of constant weights performs
better than MSA in terms of speed and consistency of convergence. They recommend the adoption of
CWs with w in the range of 0.2 to 0.5. In particular, the same weight w = 0.25 performs well for
three cases with very different congestion levels. Naive feedback always performed poorly and therefore
should be always avoided.

A general (provisional) rule seems to be to use the CW method above testing a few weights w around
the 0.25 to find what works best for a particular network and matrices.

Equilibrium in transport systems and markets is not an end in itself. There are good reasons to suspect
that equilibrium does not happen in practice, not even at the simplest network level. Real systems are in
a permanent state of change, with travellers experimenting new routes, modes and destinations. Families
change residences, jobs, shopping and social patterns and lifestyles. However, the state of the art in
dynamic modelling of these phenomena is still many years behind that of equilibrium modelling.

The main reason to use models is to provide advice on transport decisions and this requires comparing
alternative ways of intervening in the transportation system. Consistency in the use of models to estimate
the performance of these interventions is then of capital importance as we wish to compare ‘like with
like’. Casting the transport modelling effort into a general equilibrium framework seems a prerequisite
for ensuring this consistency. It is not, of course, a sufficient condition: there will be cases where partial
modelling of the system will be enough to discriminate a good scheme from one that is not so good.
However, the state of the art of equilibrium modelling is such that one seldom has to sacrifice too much
realism to achieve it.

Computer memory and speed constraints are mostly a thing of the past. Most modern software now
provides all the facilities required to seek equilibrium solutions involving route, mode, destination and
time-of-departure choice. There seems to be little reason not to use these facilities, at the very least for
the final runs used to compare two alternative strategies or schemes.

11.3.4 Monitoring Convergence

The combined problem solution methods discussed above rely on a valid estimate of the degree of
convergence to an equilibrium solution. In general terms, two convergence criteria are needed, one for
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the trip matrix (destination, mode and time of day) and one for the link flow arrays. These are sometimes
combined under the banner of ‘relative gap’ (RG).

Feasible solutions to convex optimisation problems have a lower bound associated to them; this is
defined in terms of auxiliary demand matrices en

ijm and flows V n−1
a and gn

a . The RG is obtained from the
lowest objective function (LOF) value that is always a result from the current iteration, and the best (or
highest) lower bound (BLB) which may be the results of an earlier iteration:

RG = (LOF − BLB)

BLB
These measures are useful for global convergence but are not that easy to interpret intuitively and

this makes it difficult to establish a desired level for the tolerance E in (11.28). When dealing with
O-D (plus mode and time of travel) volumes, it seems natural to compare the current solution with that
resulting from the generalised costs of travel under current conditions. The preferred measure is the total
misplaced flows as defined in (11.28) and measured in trips per unit time (hour). This lends itself to an
easier intuitive interpretation.

For example, consider a scheme involving the introduction of a new metro station that is expected to
attract/generate 2,000 trips per hour during the peak. It will be desirable to know that the solution found
to the combined problem is misplacing less than, say 200 trips. Depending on the problem and model, it
may be acceptable to have 2,000 misplaced trips over a larger area but figures above, say, 5,000 trips are
likely to cast some doubt about comparisons between alternatives.

Assignment accuracy can be ascertained using the distribution of excess costs among all used routes:

ECijr = Cijr − C∗
ij (11.30)

where Cijr is the current cost from origin i to destination j via route r, and C∗
ij is the minimum cost

between those O-D pairs.
A good measure is the average excess cost (AEC)

AECn =

∑

ijr

Tijr ECijr

∑

ij

Tij

which is equivalent to a normalised gap for the fixed demand problem.

11.4 Traffic Dynamics
11.4.1 The Dynamic Nature of Traffic

In this section we focus a bit more deeply into the nature of vehicular traffic and how this is modelled
on conventional and more detailed assignment models. There are three common assumptions used in
assignment models that have proved helpful in devising more rigorous mathematical programming
formulations and determining the conditions for a unique equilibrium solution:

� The traveller has full knowledge on the generalised costs of travelling on every link and route in the
network (perfect information assumption).

� Delays on links can be described using a function of flows on that link alone (separability assumption).
� The demand and flows during a modelled period do not change over time (steady state assumption).

In congested real world networks, none of these assumptions is very realistic. Even with the best GPS
guidance, knowledge about travel costs on any network require perfect foresight about the future costs
when the traveller actually reaches more distant parts of the network. Stochastic assignment goes some
way to address this issue but the introduction of time dependent delays makes it more difficult to handle.
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Delays at a junction approach depend not only on own link flows but also, and in some cases chiefly,
on flows on other approaches. Priority junctions, roundabouts and even traffic signals, display a degree of
interaction among entry links and flows thus leading to delay functions that are non-separable. Junction
interaction delay models seek to overcome this limitation at some cost in tractability.

The fact that demand varies over time and that peak flows propagate during the peak period is well
known and was already discussed in Chapter 10. One can try to handle this by modelling a short
time period, say just the peak hour, where demand can be considered to be more or less uniform.
But even then, real capacity constraints in the network create dynamic conditions that standard speed-
flow curves cannot handle correctly. Conventional flow-delay curves, as those discussed in section
10.1.3, allow flows to exceed capacity and normal equilibrium assignment assumes that all the demand
in a time period reaches its final destination. Reality is different; real capacity constraints generate
dynamic queues at bottlenecks that prevent all traffic reaching their destinations during the modelled
period. Moreover, these queues remain and grow until demand declines below capacity when they start
to clear.

Example 11.4 Take a 5 kms long road corridor that has a junction every kilometre. The capacity of each
junction is 2,000 vehicles/hr and the free flow speed is 60 km/hr (t0 = 1 min/km). Assume that a BPR
function with α = 4 and β = 4 is a valid representation of delay on these five links. The flow-travel
time relationship for each 1 km link is depicted in Figure 11.4. Consider now that a greater capacity road
feeds onto this corridor 2,200 vehicles during the peak hour. Using a conventional traffic model based
on BPR curves the time at each link (junction) will be 6.86 minutes. As the BPR curves accept flows
above capacity, the total time spent on those 5 kilometres will be 34.30 minutes.

However, in reality queues will form at the first junction so that only 2,000 vehicles/hr filter through to
the other four junctions during the peak hour. The delays for these 2,000 vehicles will be only 5 minutes
per link. If we accept the BPR curve as accurate the total delay will now be 6.86 minutes for the first link
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Figure 11.4 BPR curve for 1 km links in Example 11.4
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plus 4 times 5 minutes, i.e. 26.86 minutes. In fact 10% of the vehicles will not clear the first junction in
the first hour. These would be the last 200 vehicles arriving at that junction but all previous vehicles will
also suffer additional delay. This is because the arrival rate is greater than the capacity and the queue will
build up to reach the value of 200 vehicles at the end of the hour. These 200 queueing vehicles will take
up storage space and, if they need 10 metres each on two lanes, will block the upstream junction causing
additional delays. This deterministic analysis assumes regular arrivals and departures; randomness in
arrivals will add to these delays.

This simple example illustrates some of the difficulties of modelling traffic assignment accurately
using conventional speed-flow curves that allow over-capacity flows. Improved assignment methods will
have to consider the physical characteristics of traffic and handle issues like real capacity constraints, the
storage capacity of links to handle queues, and queues remaining at the end of a modelling period and
spilling over the next time slice. Another problem that is gaining in importance is the role of reliability
in the estimation of travel times. This is, of course, central to time-critical journeys like those to catch
a flight or attend an important meeting. How best to model this feature is also important in improving
assignment models.

11.4.2 Travel Time Reliability

The variability and unreliability of travel time in congested urban areas has become a significant issue for
many types of trips. As traffic increases in heavily loaded networks, the travel time required to perform a
particular journey becomes particularly difficult to estimate. Under these circumstances, users may have
to make large time allowances to avoid missing a plane or a business meeting; for other activities they
may just accept the penalty associated with unpredictable delays. It has been argued that one of the key
benefits of pricing for road space is to increase the reliability of journey times and therefore produce
significant resource savings.

It is possible to use stated preference/revealed preference surveys and data to develop appropriate
generalised cost functions incorporating these effects. In this way one could develop a subjective value
of unreliability in travel time. This requires a measure of such reliability, for example the expected
standard deviation of travel time σ t or the expected coefficient of variation of travel time. Note the
emphasis on expected or subjective measures of travel time variability.

An equally important requirement is to develop models that link travel time variability to congestion
and supply conditions (incident management facilities, redundancy in the network, etc.). This is a less
well-researched area for a number of reasons. First data collection is often very expensive in this field
as one would require repeated journeys (same departure time, same origin and destination) over a large
number of days to pick up systematic and random variations; this has to be repeated for several times of
the day and several origin–destination pairs. Second, the supply models have to be reasonably simple to
be of use in large strategic models, or sensitive to key policy instruments (new traffic control measures,
variable message signs/route guidance) for detailed tactical modelling.

Willumsen and Hounsell (1998) report a general study for use in strategic models in the context of
road pricing. They used extensive observations in a congested network (London) and extended their
value using simulation runs for over 2,000 O–D pairs and over a large number of ‘days’. As independent
variables they selected actual journey time (JT), free flow travel time (FFTT) and a congestion index,
defined as CI = JT/FFTT.

A number of models were calibrated to estimate the standard deviation of travel time under different
congested conditions. The authors recommend the following model as offering a good compromise
between simplicity and realism:

σt = 0.9 FFTT0.87(CI − 1)
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In practical terms this model offers a simple form for relating the standard deviation of travel time to
network conditions and is relatively insensitive to trip length, therefore offering promise of adaptation to
environments different from London. One advantage of this treatment is that journey time variability can
be estimated after assignment and then incorporated into other choice models (time of day, mode, and
destination choice). Complex interactions between congestion, travel time variability and route choice
are then avoided.

11.4.3 Junction Interaction Methods

Classic assignment methods often use the simplification that delays on a link will depend only on flow
on the link itself; this is useful to set a straightforward traffic assignment problem convergent to a
unique solution. However, this assumption may not be realistic enough for congested urban areas. If
one considers the route choice and assignment problems in greater detail, one should search for better
delay models and a better treatment of dynamic problems. In addition there is a need to consider the
interaction between traffic control and route choice, and to treat different vehicle classes separately. We
shall discuss these issues in turn.

11.4.3.1 Improved Delay Models

So far we have considered traffic as a continuous variable operating under steady-state conditions. In
reality, traffic is made up of discrete entities (vehicles) which in urban areas form queues at junctions and
bottlenecks. If a particular assignment model puts more traffic on a junction than its capacity, it is very
likely that the flows downstream will be overestimated; this happens because the junction will actually
put an effective upper limit, not recognised by the model, and the modelled flows downstream will be
greater than the actual flows. Therefore, potential routes using these links may well be ignored by the
model. Double counting of delay and missing of potential routes are a perverse effect of this simplistic
treatment of traffic delay.

Two types of improvement are needed here: first, to consider the physical nature of queues at junctions
and their effects in limiting traffic downstream; second, the need to model the time-dependent nature
of queues at junctions as demand builds up and decays before, during and after the peak period. The
second problem can be treated using time-dependent queueing models as proposed by Kimber and Hollis
(1979). These approaches model the way in which queues and delay change over time, as traffic demand
evolves, and even allow for the presence of queues at the start of a time period of interest.

The first problem requires a physical model of queues and this can be undertaken through a simple
conversion of vehicles queued into queue length or, in more detailed models, through the simulation of
the actual queues. A critical issue is the ability of these models to represent the situation where a queue
begins to block back an upstream junction and the additional delays this generates to other streams.

11.4.3.2 The Interaction between Traffic Control and Delay

This is difficult to treat in detail. Most large urban areas are under area traffic control (ATC) systems,
that is, computer control of the traffic signals to reduce delay and, in some cases, create attractive ‘green
waves’. It is known that such systems are designed to cope well with existing traffic patterns and that
travel time savings of between 10 and 20% can be achieved in comparison with non-coordinated systems.
The problem is that the traffic flow patterns (flows on links) depend on the set of best routes available
and that these depend, in turn, on signal timings at each junction. However, any model attempting to
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combine assignment and traffic control may run into a number of problems; see for example Allsop and
Charlesworth (1977) and M.J. Smith (1979a, 1981).

One possible solution is to run an assignment problem with fixed signal settings, obtain a future
set of link flows and then run a program like TRANSYT (Robertson 1969) to optimise the setting for
these new flows. The process should be repeated with the new settings, obtaining in turn new flows,
with the hope that these iterations will converge to a stable and self-consistent solution. The problem
is that the solution depends considerably on the starting point; if a corridor is heavily used in the first
iteration, TRANSYT will produce signal timings to reduce delay there, thus encouraging more trips
to prefer it in the next iteration. This also tends to favour all-or-nothing type of solutions to the traffic
control/assignment problem.

11.4.4 Dynamic Traffic Assignment (DTA)

11.4.4.1 General Requirements

There are some basic requirements for a truly dynamic traffic assignment model. These have been
identified by, among others, Heydecker and Addison (2005) as:

� Positivity: we are only really interested in non-negative flows on links, paths, trip matrices and costs.
� Conservation: the model must satisfy flow conservation requirements.
� FIFO: in real traffic the FIFO (First In, First Out) behaviour generally prevails and this must be

maintained in the model if proper delays are to be estimated.
� Minimum travel time: flows do not propagate instantaneously.
� Finite clearing time: there are no queues left at the end of the modelling period; infinite delays do not

occur (as a standard queueing model might suggest).
� Capacity: there is such a thing as strict capacity constraint in the sense that actual flows cannot exceed

it even for a short period of time.
� Causality: delays now are affected by what other vehicles do or have done in the past, not in the future.

These requirements lead to correct flow propagation and the consequent interrelationship between
travel time and link outflow. Finite clearing time ensures that no travellers remain on the network
indefinitely and that it returns to free-flow conditions after the study period. The causality requirement
ensures that response follows stimulus.

Wardrop’s user equilibrium principle of route choice can be extended to the dynamic problem
as follows:

Under equilibrium conditions in networks where congestion varies over time traffic arranges itself
so that at each instant the costs incurred by drivers on those routes that are used are equal and
no greater than those on any unused route.

If travellers choose not only route but also departure time, Wardrop’s equilibrium expression can be
further extended:

Under equilibrium conditions in networks where congestion varies over time and travellers can
choose their time of travel, traffic arranges itself so that the total cost associated with travel on
those route that are used by travellers at the time when they are used, are equal and no greater
than those on any route at a time when it is not used.
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It is possible to present the dynamic user equilibrium problem, with or without choice of time of travel,
in a closed form. However, practical methods for its solution often rely on modelling discrete time-slices
or time-intervals. Therefore, a key element in the development of numerical methods for the solution of
dynamic assignments is the transition from the continuous time formulation of the equilibrium conditions
to a discrete time formulation for its solution.

The numerical solution method will typically assign a calculated flow at time s, Tij(s), to a path p
throughout a time increment [s, s+s). It is important to use the flows and costs of that time interval to
model equilibrium conditions. If the previous costs are used for assignment, the result will not represent
the new traffic conditions.

This approach can be applied to a mathematical programming formulation discussed by Han and
Heydecker (2006). In this case, the objective Z(s) that is minimised is calculated at each incremental
time interval using the flow that is assigned throughout that increment together with the costs c(s+s) at
the end of it. Although somewhat outside the scope of this book, we must mention that the variational in-
equality formulation developed initially by M.J. Smith (1979b) and Dafermos (1980) provides a practical
approach to calculation of dynamic traffic assignments within the present framework. This was introduced
for dynamic traffic assignment by Friesz et al. (1993) and has been adopted by others since then.

11.4.4.2 Micro and Meso-Simulation

Finding a Dynamic User Equilibrium (DUE) solution for a set of time-varying link and route volumes
and travel times that satisfy the Wardrop’s equilibrium for a given network and time-varying O-D demand
pattern is non-trivial. Each traveller’s best route choice depends on congestion levels throughout the trip,
and these in turn depend on the route choices and progress through the network of other trip makers
who leave at different times. This interdependence means that solutions are found through an iterative
process, starting from some initial set of route choices, and gradually improving them. A practical goal of
many current DTA models is to find something close to equilibrium within a reasonable amount of time.

Several different approaches have been tried over the years to deliver practical ways of solving these
problems. As computer power has increased new and better software has led to more interesting and
persuasive solutions. The approaches could be classified under the labels meso and micro-simulation.
Meso-simulations models came first. One approach was to use route choice simulation via packets of
vehicles released sequentially during a time period, as treating them one by one was not possible at the
time. This was the approach followed by CONTRAM (Leonard and Gower 1982); the cost of using
each path is calculated from cost-flow and queueing formulae, and the path costs are then updated. This
process is iterated until a degree of convergence is achieved.

Another approach was to use platoon dispersion formulations, as those successfully used in TRANSYT
(Robertson 1969), to represent the movement of vehicles and their interaction at different types of
junctions. This is the approach used in SATURN (Hall et al. 1980) by dividing the period of interest into
shorter time intervals, typically 10 or 15 minutes long. Each time interval is then treated as a steady-state
assignment problem. This captures some of the effects of the build-up of congestion but still assumes
that all vehicles in the same time interval are faced with the same set of costs.

Moreover, SATURN cleverly combines a platoon-dispersion simulation module with a good equilib-
rium assignment module. The simulation module is based on the use of cyclic flow profiles to represent
the movement of platoons of vehicles over a network taking good account of the interaction of different
flows at roundabouts, signal-controlled and priority junctions. It needs information about the volume
on each movement (represented by a link) on the network to estimate capacity, queues and delays.
Therefore, an assignment model is required to load a trip matrix onto the network and obtain an estimate
of these flows. This is achieved through a separate assignment model which can perform Wardrop’s
selfish and stochastic user equilibrium assignments. The link between the two is through link volumes
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(from assignment to simulation) and through speed–flow relationships (from simulation to assignment),
as depicted in Figure 11.5.

Network Data
(lanes, junctions,

timings, etc)

Trip Matrices
(for discrete time

intervals)

Network build
Simulation and
conventional

Equilibrium
Assignment

Simulation
with Cyclic

Flow Profiles

Flows on links Flows-delay curves

Results

Figure 11.5 The simplified structure of SATURN

The simulation model is used, therefore, to generate suitable cost–flow relationships for the assignment
problem. The cost–flow relationships are produced for each link in terms of the flow on the link itself,
and take the form of a polynomial:

C(Va) = a0 + a1V n
a

However, these relationships are calculated from the current simulation model so that they take into
account the interaction and constraints generated by the flows on the other links in the network. In
fact, several iterations of the simulation–assignment cycle must be performed before the whole process
converges to a self consistent set of flows and costs.

Improved computer power has meant that it is now possible to simulate the movements of vehicles indi-
vidually, thus generating a group of micro-simulation models. These models are based on a combination
of traffic engineering relationships, car following, lane choice, gap acceptance/merging models including
the treatment of pedestrians, motorcycles and trams. Micro-simulation models are very powerful and
most of them include a visualisation module that produces good animations of traffic on the network.
Micro-simulation models offer a large number of parameters for calibration, including some that relate
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to the driving culture of a city or country, for example parameters for ‘aggression’, ‘anticipation’ and the
variability of gap acceptance with queue length.

The visualisation/animation modules are very useful in two main areas. First of all, they provide a
good environment to verify the reasonableness of the modelled traffic behaviour and therefore assist
model calibration. Second, and this has been most valued, they are very persuasive tools to demonstrate
problems and solutions to decision makers. Herein lays a risk. Sometimes a poorly calibrated model
may produce very persuasive animations thus supporting solutions that may not be the most appropriate.
Some of the best known micro-simulation models include AIMSUN (http://www.aimsun.com), VIS-
SIM (http://www.ptv.de) and PARAMICS (http://www.paramics.com). In general terms these packages
have a more detailed simulation of traffic dynamics and delays but as yet a less rigorous treatment of
equilibration.

11.4.4.3 Equilibrium and Simulation

There seems to be a degree of conflict between a very detailed and accurate treatment of the dynamics
of traffic delay and equilibrium. In a congested and well connected network, like those existing in urban
areas, the cost on a link depends not just on the flow on that link but on all other flows in the network
(albeit especially on those joining the same junction). The flow delays functions are, therefore, non-
separable in the sense that they cannot be written as a function of the flow on the link alone, so we get:

Ca = Ca(V1, V2, . . . , Va, . . . , Vn)

The strict condition for the convergence of this type of scheme requires that the delay on a link
depends mainly on the flow on the link itself and more weakly on flows on the other links (Sheffi 1985).
In practice, however, this condition is not satisfied as delays at, for example, priority junctions and
roundabouts depend primarily on the flows on the links having priority (circulating and main-road flows
respectively).

For example, SATURN attempts to diagonalise the flow-delay formulations after simulation. If we fix
all flows but that on link a and we vary Va between, say zero and the capacity at a, then we can ‘calibrate’
a cost–flow relationship that, in this iteration, depends only on Va. We can then perform a conventional
Wardrop equilibrium assignment using, for example, the Frank–Wolfe algorithm, obtain a new set of
flows on all links and run the simulation program again.

Example 11.5 Consider the simple network in Figure 11.6 corresponding to two routes from an origin
to a destination merging into one. The total flow is 100 vehicles from A to Z.

Figure 11.6 A simple network with a merge or give-way junction

http://www.aimsun.com
http://www.paramics.com
http://www.ptv.de
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Consider first the case in which both streams perform a merge operation; therefore delays on each
depend also on flow on the other link. Assume now that the cost–flow relationships are as follows:

C1(V1, V2) = 8 + 0.3 V1 + 0.2 V2

C2(V2, V1) = 13 + 0.4 V2 + 0.2 V1

This can be solved to find a single equilibrium point at V1 = 83.5 and V2 = 16.5 with a minimum
cost of 36.35. However, it is illustrative to show a range for values for V1 and the corresponding link and
total expenditure:

V1 C1 C2 Expenditure

0 28.0 53.0 5300
10 29.0 51.0 4880
20 30.0 49.0 4520
30 31.0 47.0 4220
40 32.0 45.0 3980
50 33.0 43.0 3800
60 34.0 41.0 3680
70 35.0 39.0 3620
80 36.0 37.0 3620
83 36.3 36.4 3632
84 36.4 36.2 3636
90 37.0 35.0 3680
100 38.0 33.0 3800

As can be seen, the solution is a unique, stable equilibrium point. If some flow switches to link
2 then that link has increased delay and therefore drivers will come back to the original route. The
same is true if more traffic switches to link 1. The fact that the total expenditure is minimal at an-
other point, approximately V1 = 75, is another example of the difference between social and selfish
user equilibrium.

Consider now a slightly different problem with the same type of network. Now the junction is of a
give-way type for link 1; link 2 has right of way and therefore its travel time does not depend on flow on
link 1. The new relationships are now:

C1(V1, V2) = 8 + 0.1V1 + 0.2V2

C2(V2, V1) = 20 + 0.05V2

The same type of table can be used to illustrate possible solutions to this assignment problem as shown
below. In this case, the solution V1 = 60 and V2 = 40 is not stable. A switch to link 1 will decrease
costs on that link faster than on link 2, therefore precipitating the solution V1 = 100 and V2 = 0.
However, a switch in the other direction, that is to link 2, has the opposite effect, increases costs on link
2 slower than on link 1 therefore leading to another solution: V1 = 0 and V2 = 100. These two extreme
solutions are stable albeit not with equal costs by each route; however, these two are UE solutions
as the costs of the paths not used are greater than the costs on the paths used. Any departure from
these extreme points will result in new cost pulling the solution back to the starting point. Note that the
equations chosen are simple but not unreasonable. Observe too, that the equation for the non-priority flow
shows that delay depends mainly on flow on the priority link, therefore violating the requirement for a
unique solution.
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V1 C1 C2 Expenditure

0 28 25.0 2500
10 27 24.5 2475
20 26 24.0 2440
30 25 23.5 2395
40 24 23.0 2340
50 23 22.5 2275
60 22 22.0 2200
70 21 21.5 2115
80 20 21.0 2020
90 19 20.5 1915
100 18 20.0 1800

The fact that the solution V1 = 100 is preferable because of lower overall expenditure is only relevant
in terms of network design. For example, we may wish to direct drivers to choose link 1 and ignore link
2. Without this advice drivers may find either of the two extremes or even one on a particular occasion
and the other the following day. Reality may be non-convergent to a stable equilibrium solution; good
assignment models may fail to converge simply because they represent well this feature of reality.

SATURN and models like it therefore, can only be said to provide a reasonable practical approximation
to the ideal of Wardrop’s equilibrium in congested urban areas. They normally offer practical indicators
to estimate how close to a possible equilibrium the iterative process has been able to reach at any one
stage. Meso and micro-simulation models do represent, however, the state of the art in detailed traffic
assignment for the design of traffic management and other schemes in urban areas.

11.5 Departure Time Choice and Assignment
11.5.1 Introduction

Peak spreading is a phenomenon widely observed in most large urban areas. As congestion increases,
drivers start choosing different departure times to avoid the worst delays and therefore the duration of
the peak is increased. In very large and congested urban areas it is not uncommon to observe extended
peaks (morning and evening) and an interpeak period with quite high levels of flow and delay.

The change of departure time has been recognised in many cases as the second most likely response
to changes in travel conditions, the first one being the change of route. This is mostly due to efforts to
avoid the worst of congestion but it will increasingly reflect also more enlightened pricing structures for
toll roads and road user charging as well as public transport fare systems.

Traditional approaches to modelling this phenomenon have been very simple. It is always possible to
adopt pragmatic assumptions about the duration of the peak in the future and how expected demand is
going to be spread over this period. This requires only simple factoring of demand for future peak periods
in order to generate reasonable levels of congestion and delay. However, these pragmatic approaches
lend themselves to arbitrary decisions that will affect the evaluation of schemes and policies, and ignore
the fact that travelling at a less desirable time increases the disutility of travel.

We outline the key issues in modelling time of day choice. Because of its close relationship with
assignment and delay, this theme integrates both assignment and choice modelling. This section first
considers current thinking behind time of travel choice and then looks at the associated supply models.
Finally, a simple combined departure time choice and assignment model is presented together with its
current limitations and pointers for improvement.
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11.5.2 Macro and Micro Departure Time Choice

It is useful to distinguish between macro and micro time of travel choice. Macro time choice involves the
selection of travel between broad time periods (say 2–3 hours), for example the decision to go shopping
at an off-peak period instead than at 05:00 PM. Micro departure time choice is related to the phenomenon
of peak-spreading. As congestion increases in a city, some travellers will choose to depart a bit earlier or
a bit later than originally desired in order to avoid the worse of congestion.

In principle, macro departure time choice can be modelled as a logit choice between travelling at
different periods. Each period will offer some advantages in terms of desirability and disadvantages in
terms of travel time and costs (parking and/or congestion charging). However, if the demand models use
the typical division of time into two (say 3 hours) peak periods and an inter-peak the freedom of most
trips to transfer between them will be severely constrained: few work trips, for example, could move
outside the three-hour peak periods entirely, and such a mechanism might be applied predominantly for
discretionary trips as opposed to the journey to work or education.

To model macro choices, it is necessary to know what proportion of each type of trip takes place in
each period. This information is best collected from household survey data that contains complete tours.
At a macro level, trips must be allocated to a discrete time period even those which start and finish
in different periods. An incremental logit model (see Chapter 12) can then be used to modify the total
number of trips of each type in each time period according to the changes in the mean generalised costs
in each period.

In these cases, it will be important to apply different sensitivity parameters to different trip purposes,
since travellers to work/education and business, for example, are less likely to reschedule their activities
than shoppers.

11.5.3 Underlying Principles of Micro Departure Time Choice

A basic concept in micro departure time choice is that travellers have a preferred time of travel and any
shift away from it incurs disutility, known as schedule disutility. The preferred time of travel may be
defined as the preferred departure time or preferred arrival time, the second one being more important for
certain activities (e.g. work with a fixed starting time, business meetings, theatre). The schedule disutility
can be added to the travel time disutility to express a combined utility function for travel with variable
departure time.

The work of Small (1982) inspires most applications of these ideas. If we focus on arrival time, Small’s
function takes the following form:

U (τ ) = −α · C(τ ) − β · SDE(τ ) − γ · SDL(τ ) − δ · dL (τ )

where τ is the arrival time and C is the travel duration, expressed as a function of the arrival time, since
traffic conditions vary by time of day. SDE and SDL are called the early schedule delay and the late
schedule delay. SDE and SDL express the difference between the chosen time of arrival and the preferred
arrival time (PAT), in the case of early and late arrival respectively. Therefore, SDE and SDL can be
defined as:

SDE = max (PAT − τ, 0)

SDL = max (τ − PAT, 0)

The parameters α, β, γ and δ are positive. α, β, and γ measure the disutility associated with a unit of
increase in C, SDE and SDL respectively; δ is a fixed penalty for late arrival, and dL is a dummy variable
for late arrival (equal 1 if τ > PAT and 0 otherwise). The fixed penalty is often omitted from the function
and subsumed within the utility parameter for late schedule delay γ .
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The utility function defined above can be regarded as the sum of a travel duration term (−α C (τ )) and
a term expressing the variation in utility associated with the arrival time per se (−β SDE −γ SDL −δ dL),
referred to as the schedule utility term. This term is maximised when travellers arrive at their preferred ar-
rival time (τ = PAT, making the schedule utility equal to zero). Therefore, when travel duration is constant
and no trade-off is possible between travel duration and schedule utility, the distribution of actual arrival
times is identical to the distribution of PATs. However, when travel duration varies by time of day, trav-
ellers will shift from their preferred arrival time if the schedule disutility is outweighed by the gain from
reduced travel time, resulting in a distribution of actual arrival times wider than the distribution of PATs.

The parameters for these combined utility functions can be estimated by stated preference/revealed
preference techniques; see for example Small (1982) and Bates (1996). An example is shown in
Figure 11.7, where the y-axis is the schedule utility in travel duration units (hours) and the x-axis is
the arrival time either earlier or later than PAT (hours).

δ = 0.50

Slope γ = 2.50

Slope β = 0.60

Schedule
disutility

Early Late
Arrival time

Figure 11.7 Idealised schedule (dis)utility (equivalent minutes of travel time) based on small’s basic model

The coefficients in the figure reflect an idealised disutility function. The asymmetry of the function
is something observed in many stated preference/revealed preference studies: a 5 min delay in arrival is
generally perceived as worse than arriving 5 min too early. In this idealised case, an arrival 30 min earlier
than PAT would be justified if the individual could achieve a travel time saving of more than 0.30 h or
18 min. An arrival 30 min later than PAT would incur a fixed penalty equivalent to 30 min of travel time
plus an additional penalty of 1.25 h or 90 min. Therefore, this 30 min late arrival would only be justified
if the individual could save more than two hours of travel time, an unlikely event. Of course, different
(groups of) individuals will have different values for α, β, γ and δ and also different PATs.

The basic formulation where the penalty term is omitted has been extended by Hyman (1997) to
include an indifference band around the PAT, during which arrivals incur no schedule delay. Hendrickson
and Plank (1984) proposed a quadratic form of the utility functions, and Polak et al. (1991) proposed
a piecewise linear model. Addison and Heydecker (1999) have also examined three classes of smooth
functions, namely the sheared hyperbola, the superhyperbola and a simple non-convex function, the
Witch of Agnesi. Despite these efforts, most practical applications have relied on linear functions, with
or without a fixed disutility for late arrival δ.
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11.5.4 Simple Supply/Demand Equilibrium Models

The utility functions associated with travel demand by time of day can be combined with supply
characteristics to provide an equilibrium time-dependent demand profile emerging from the interaction
of travellers’ preferences and choices. Earlier models considered simple network types, consisting of one
origin-destination pair connected by a single link with a bottleneck in between (Figure 11.8). Vickrey
(1969) examined equilibrium with a fixed number of identical commuters travelling through a single link,
where flow is uncongested (travel time is constant and equal to zero for simplicity), except at a bottleneck
with fixed capacity that causes delay directly proportional to the length of the queue. Applying the basic
principle of equilibrium, namely that no commuter can increase their overall utility by altering their
departure time, Arnott et al. (1993, 1994) extended Vickrey’s model, calculating the resulting departure
profile of the commuters.

Bottleneck

ORIGIN DESTINATION

Figure 11.8 Simple network type

Figure 11.9 illustrates the Arnott et al. (1994) equilibrium departure profile for homogeneous com-
muters. This is fully defined by closed-form expressions for the departure rates (q1, q2), the arrival times
of the first and last arrival (τ 1, τ 2) and the switching time τ p at which the departure rate changes from q1

to q2 and the maximum queue occurs.
Several authors have extended Vickrey’s model to account for heterogeneity among travellers in their

PATs and/or in the parameters associated with travel duration and schedule delay. Hendrickson and

PAT τ2τpτ1 Time

M
ax

im
um

qu
eu

e

Departures
slope q1

Departures
slope q2

Arrivals
slope h
(capacity)

C
um

ul
at

iv
e 

ar
ri

va
ls

/d
ep

ar
tu

re
s

Figure 11.9 Equilibrium departure profile for homogeneous commuters
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Kocur (1981) considered Vickrey’s problem when travellers have a distribution of PATs. Arnott et al.
(1994) approached the issue of heterogeneity by segmenting the population into homogeneous subgroups
according to the values of their PATs and utility parameters.

11.5.5 Time of Travel Choice and Equilibrium Assignment

Practical applications of these principles require casting the problem in the context of variable demand
equilibrium assignment modelling, since it requires both the flows and the level of demand for every
time period (slice) to be determined. Given the progress discussed earlier in combining equilibrium
assignment formulations with logit choice models, it appears natural to use a similar approach to include
time of travel choice as well. Willumsen et al. (1993) assumed that, for each O–D pair, C(τ ) was variable
in the peak (and calculated through equilibrium assignment) but constant in time periods outside it; this,
and the use of linear-in-the-parameters Small-like utility functions, enabled them to cast the problem in a
simple combined logit choice and equilibrium assignment formulation. The time of travel choice is then
made discrete: travel ‘now’ or travel during an ‘earlier time slice’ or during a ‘later time slice’. Similar
approaches have been put forward by Hendrickson and Plank (1984) and Cascetta et al. (1992).

These approaches, although superior to ignoring time of travel choice altogether, have a number
of limitations:

� They ignore any interaction between time periods. Trips displaced from the peak to other time periods
will increase travel times in them and therefore new calculations for C(τ ) will be required. As it
is generally not possible to estimate a function for C(τ ) the full treatment for time of day choice
is very difficult and therefore, this approach is an approximation of the dynamics between different
time periods.

� Time of departure should be a continuous variable and its ‘discretisation’ into time slices is a coarse
approximation. The use of relatively small time intervals (say 15 min instead of peak/off-peak hours)
is an improvement but still an approximation.

� Linear-in-the-parameter logit formulations may be particularly flawed in the case of time of day choice.
This is because the alternatives are almost certainly correlated in this case, as travel times on one time
slice depend on travel times on other time slices.

The problem of interaction between time slices with an improved departure time model has been
tackled in a practical manner by HCG et al. (2000) in the form of HADES (Heterogeneous Arrival
and Departure times based on Equilibrium Scheduling theory). HADES is a departure time model for
heterogeneous travellers, which interfaces with external commercial assignment software. Taking into
account network travel times and travellers’ PATs and utility parameters, HADES produces a time-
dependent O–D matrix. The solution to the equilibrium problem is approached by iterating between the
demand component (HADES departure time model) and the supply component (external assignment
model) as illustrated in Figure 11.10.

The use of logit choice models in departure time choice has been criticised by Bates (1996), among
others. This is partly due to the assumption of independence of the random components of the utilities
of different alternatives in the multinomial logit model. Additionally, this model cannot accommodate
heteroscedasticity problems likely to arise if error terms are proportional to a power of the schedule delay
increasing with greater late or early shifts from the PATs.

The assumption of independent random utility components is restrictive and unrealistic in this case as
adjacent intervals are very likely to be correlated, because the unobserved attributes (random component
of the utility) affect the desirability of the alternatives in a similar way. Small (1987) also stresses the



P1: TIX/XYZ P2: ABC

JWST054-11 JWST054-Ortuzar February 24, 2011 11:48 Printer Name: Yet to Come

Equilibrium and Dynamic Assignment 425

Preferred arrival
times

Behavioural
characteristics

Departure time
model

Network travel
durations

Time−dependent
OD matrix

Assignment
model

Figure 11.10 Operation of HADES in conjunction with an assignment model

fact that correlation usually arises when the dependent variable is only a discrete representation of an
underlying continuous variable; this is the case for the time variable.

However, logit choice models have been extended and improved in a variety of ways to accommodate
various patterns of stochastic correlation among alternatives, as discussed in Chapters 7 and 8, relaxing
the assumption of the independence of random components across alternatives.

Several researchers have pointed out that a richer representation of time of travel choice behaviour
could be achieved within the context of all the activities undertaken by trip makers in each tour. This
is certainly correct, but as indicated by Mahmassani (2000), it is not a simple problem and we must
perhaps wait until improved passive data collection methods become common practice. Novel measuring
techniques using global positioning systems (GPS) and the now ubiquitous mobile phones and personal
digital assistants (PDAs) are likely to revolutionise data collection in this field.

11.5.6 Conclusion

The existing literature indicates a diversity of adopted approaches in modelling departure time choice, as
well as lack of consensus. There is still much work to be carried out, both theoretically and in practice,
to bring this important area of travel behaviour into the mainstream of transport modelling.
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Dynamic user equilibrium approaches seem to offer possibilities for incorporating departure time
choice, possibly within a stochastic context and a robust network performance sub-model predicting travel
times on a continuous basis. However, such an explicit treatment of time requires a detailed description
of flow through the network as well as robust solution algorithms; this makes it both analytically and
computationally demanding. Its practical implementation in this form must await further developments
in these fields.

A better avenue seems to be to try to overcome the limitations of the models proposed in software like
HADES, both in terms of their internal consistency and of the time of travel choice model (Polak 1999).
However, the clear importance of this behavioural response to congestion (and differential pricing) makes
it important to explore practical and better ways of incorporating these effects into most transport models
for congested urban areas.

Exercises
11.1 A 12-kilometre expressway connects two urban areas. The supply function for each of the three

lanes per direction of the link may be approximated by

t = 20 + q/200

where t is the travel time in minutes and q the flow per lane in passenger car units (PCU) per hour.
The road is normally used by cars and express (non-stop) buses only; the corresponding vehicle
travel times are tc and tb. The bus service has a peak-hour frequency of one bus per minute. The
demand function for car travel has been estimated to be:

Vc = 3480 − 60tc

where Vc is the total car flow per hour and direction. In a similar way, the demand function for bus
trips is thought to be:

Vb = 4200 − 75tb

where Vb is the number of passengers per hour and direction. You may assume that both tc and tb

can be calculated from the above supply functions and that a bus is equivalent to 2 PCUs.
(a) What is the initial equilibrium state? If a bus has 60 seats, what is their load factor (occupancy

divided by capacity)?
(b) One of the lanes is now taken for exclusive use by buses. What is the new equilibrium state and

the new load factor for buses?
(c) Discuss the assumptions implicit in the demand functions used above.

11.2 Two cities 60 kilometres apart are connected by a two-way road over which cars operate throughout
the day. The peak-hour demand for travel by car between the two cities is thought to be well
described by the following function:

q = 6000 − 1500t

where q is the demand in vehicles per hour and t the travel time in hours. The travel times versus
flow relationship for the road is:

t = 0.90 exp (0.0003q)

(a) Estimate how many vehicular and person trips per hour are made under equilibrium conditions
if each car carries 1.5 passengers on average.

(b) A frequent (but slow) rail service is now implemented between the cities, where each train has
a nominal capacity of 300 passengers. During the peak hour the rail company is prepared to run
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a train every 10 minutes with an estimated travel time of 90 minutes. If passengers are assumed
to use the fastest mode available, is this a sensible level of service?

11.3 Consider the network and conditions described in Exercise 10.3.
(a) Express the objective function of the mathematical programme corresponding to Wardrop’s

selfish equilibrium in terms of the flows and travel time-flow relationships in the figure.
(b) Calculate the equilibrium flows on each link and the travel time for each group of travellers.

Calculate the value of the objective function above under equilibrium conditions and the total
expenditure in travel time in the system.

(c) Local traffic engineers have decided to install speed restrictions on link C–D so that the new
travel time versus flow function is:

t = 5.2 + 0.001q

Calculate the new equilibrium conditions in terms of flows and travel times and show that under
these conditions the total expenditure in travel time in the system is less than in (b).

11.4 The network in Figure 11.11 is loaded during the peak hour with 100 vehicles travelling from A to
D. The equations in the network show the travel time on each link in minutes as a function of the
flow q on the link in vehicles per hour. All links are unidirectional as shown.

Figure 11.11 Simple network for Exercise 11.4

(a) Identify the minimum-cost routes used, their flows and their corresponding equilibrium costs.
What is the total expenditure in travel time in the network?

(b) Assume that link CB is pedestrianised and therefore unavailable to vehicular traffic. Identify
the new equilibrium flows, costs and total expenditure in travel time in the network.

(c) Discuss your results.



P1: TIX/XYZ P2: ABC

JWST054-11 JWST054-Ortuzar February 24, 2011 11:48 Printer Name: Yet to Come



P1: TIX/XYZ P2: ABC

JWST054-12 JWST054-Ortuzar February 24, 2011 13:26 Printer Name: Yet to Come

12
Simplified Transport Demand
Models

12.1 Introduction
For many years the main emphasis in transport modelling has been to enrich their behavioural content
and improve data-collection methods as a means to enhance their accuracy, realism and reduce costs. A
parallel line of research has sought to improve transport modelling by emphasising the use of readily
available data and the communicability of simpler model features and results. This stream of research
has had an impact in practice as it offers not only reduced costs but also simplified data-collection
and processing requirements. The interest in simplified modelling techniques has spanned more than
30 years (see for example the compilation in Ortúzar 1992). As consultants and local authority modellers
are often asked to study transport proposals in very short time spans, the development of better and
sounder simplified methods will always be welcome.

The idea of using simpler and quick response models is not new. The practice of not using any formal
model for transport project assessment is much more prevalent than what official documents and technical
literature would lead one to believe. Of course, the idea of not using any formal model simply means that
decision makers are using their own, mental models, to make decisions. These may be quite powerful
and certainly more sensitive to political and social variables than any formal mathematical effort.

Mental models are formed and refined through observation, analogies, discussions, experimentation
and mistakes. Mental models are indeed essential to make use of formal ones, interpret their results
and add considerations normally outside their scope. For this end, the limited numerical processing
ability of mental models is not a major limitation. However, mental models have two major weaknesses:
(i) sometimes they fail completely, for example, to consider the explosive implications of exponential
growth or the interconnections between seemingly unrelated decisions on taxation and mode choice; (ii)
they cannot normally be ‘opened up’ to discuss them and qualify the recommendations resulting from
their use. They are, therefore, more difficult to transfer to other users.

There is a whole range of modelling approaches in between the extremes of using no formal models at
all and employing the most advanced and complex simulation techniques. One of the ways of looking at
these is to consider the manner in which different approaches represent space, and hence distance, the key
element in transport. Some models ignore space completely. These are usually of the kind concentrating
on the financial implications of subsidies, taxation, and so on. They may be simple elasticity models,
sometimes used to discuss fare increases or changes to petrol prices and car taxes. In other cases they may
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include more complex interactions, for example, between road, petrol and car taxes, and car ownership
and use.

Some authors have advocated the use of structural modelling techniques; see for example the interesting
work of Roberts (1975) in respect of fuel consumption. In this case a directed graph is often used to
connect elements in the transport system, for example, the number of cars, fuel tax, improved fuel
consumption, pollution emissions and costs. Weights could be attached to these linkages to represent the
relative strength of each relationship.

If weights are replaced with formal equations, calibrated from actual observations, one ends up
with a non-spatial interaction model. Khan and Willumsen (1986) developed a model of this kind to
enhance the study of car ownership in less developed countries; the philosophy behind their model was
that in developing countries car ownership should not just be forecast but examined together with its
implications for resource allocation to roads and fuel consumption. The model included, in addition to
the variables above, functions representing fuel consumption and the need for additional expenditure on
road maintenance and new construction. Some of these, in particular construction and the importation of
new cars, have severe implications for the balance of payment in these countries and should be explored
before deciding on a policy relaxing restrictions to car ownership and use, see chapter 15.

A better representation of space can be obtained with idealised models of the type first proposed
by Smeed (1968) and also used by Wardrop (1968) to study, among other policy issues, the limits of
car commuting in urban areas. As more people use cars for the journey to work, more space needs
to be devoted to roads and parking until radical changes are needed to the nature of the urban area.
These models have seldom been used for decision making but have served to illustrate important
policy issues.

The next stage in space modelling involves simplifications to more conventional modelling approaches
as addressed in this book. Sketch planning models have been developed specifically to provide quick
response and limited data-collection requirements; they are discussed in section 12.2. Increasing the
degree of realism, we then discuss the idea of using simplified incremental split models in section
12.3. Section 12.4 covers an important group of models which make use of readily available data, in
particular traffic counts. The special characteristics of transport systems in corridors enable another type
of simplification, as discussed in section 12.5. Finally, the interpretation of model output and the use of
models would also benefit from special training techniques; gaming simulation has been put forward as
assisting in this area and it is discussed in the last section of this chapter.

12.2 Sketch Planning Methods
Sketch planning models have been put forward as tools for long-range planning by many authors, as
reported in OECD (1974) and Sosslau et al. (1978). They are models with a greater level of detail than
the idealised network approaches mentioned in the previous section but much simpler than conventional
computer suites. This feature facilitates the analysis of broad transport and land-use strategies at a coarse
level of resolution, without requiring large amounts of data or the rigid assumptions of ideal space
models. Their practical implementation ranges from scaled-down conventional aggregate modelling
suites of programs to ad hoc approaches developed from some simple ideas and assumptions.

Most sketch planning methods rely considerably on the transfer of parameters and relationships from
one area or country to another. Only certain aspects of the models are made location dependent, usually
network characteristics, population, income levels, and so on. Perhaps at one extreme of sketch planning
models are those relying heavily on assumed regularities in human behaviour in the transport field.
A typical example of this was the UMOT (Unified Mechanism of Travel) model proposed by Zahavi
(1979). This model was based on the assumption that the following relationships were transferable over
time and space (regions, countries):
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� the average daily travel time per traveller, i.e. an assumption of constant travel time budgets;
� the average daily travel expenditure (money) as a function of income and car ownership, i.e. a money

budget relationship;
� the average number of travellers per household as a function of household size and car ownership;
� the unit cost of owning and running a car;
� the speed-flow relationship by road type;
� the threshold of daily travel distance that justifies owning a car.

These relationships were developed by Zahavi following an extensive compilation of data bases from
all over the world. UMOT only required as location-specific input the following:

� the number of households and their sizes in the study area;
� the income distribution of households;
� the unit cost of travel by mode;
� the length of the road network in the study area.

An interesting feature of UMOT was that it produced the following results as output:

� car ownership per household by income group;
� aggregate modal choice for the whole city;
� average travel times and speeds;
� other performance indicators like total expenditure and travel times.

UMOT gained some support as a tool for testing broad policy options, for example on fiscal policy
(taxation), on fuel and car ownership, pricing policy for public transport and even broad infrastructure in-
vestment programmes. However, the model was tested by Downes and Emmerson (1983) and Willumsen
and Radovanać (1988), among others, who found that, in general, it did not represent situations in other
countries well, not even at a very high level of aggregation. In fact, the transferability of relationships and
budgets was not found to be consistent enough to warrant the use of UMOT, even after improvements to
the models were implemented by the authors.

Sketch planning techniques seem to offer advantages in terms of simplicity, fast response and low data
requirements. However, very often they rely too heavily on the transfer of relationships and parameters
from one context to another. This detracts from the analysis unless it is performed only as an initial
coarse sketch to select possible solutions for more detailed consideration.

12.3 Incremental Demand Models
A number of approaches have been put forward to perform quick demand analysis of the impact of
changes in fares, levels of service (LOS), or other attributes of a particular mode. The best known
methods fall under the heading of incremental elasticity analysis and pivot-point modelling. In both
cases, the aim is to estimate small changes in demand as a result of (small) changes in one (seldom more)
of the LOS attributes, at a given point in time.

12.3.1 Incremental Elasticity Analysis

Consider an initial situation where the level of demand for a mode is T0, its level of service S0 (probably
a vector including attributes like travel time, fare, waiting time, etc.). The elasticity of demand with
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respect to LOS (at a given level of demand and LOS) is given by:

Es = S0

T0

∂T

∂S
≈ S0

T0

T − T0

S − S0
= S0

T0

�T

�S
(12.1)

There is an initial distinction between arc and point elasticities. The right hand side of (12.1) is an
expression for arc elasticity. As S approximates S0 the elasticity will approach the exact point value ∂T

∂S .
In general, point elasticites are more often estimated from demand models and arc elasticities from time
series data. This definition leads to:

T − T0 = EsT0(S − S0)

S0
(12.2)

The left-hand side of this equation is the estimated change in demand for the mode due to a relative
change in the level of service of size (S − S0)/S0. This type of calculation is often used during fare or
frequency reviews for public-transport services.

This is, of course, an approximation which assumes that we have calculated Es beforehand (perhaps
from time series data), that this elasticity is constant (or that the demand function is linear–not very
likely) and that everything else remains the same. This result is a reasonable approximation for small
changes in the LOS variables.

Example 12.1 The fare/demand elasticity of public transport is often taken to be −0.30. If a public-
transport system carries 200 000 passengers in the peak period at an average fare of 80 pence/trip:

� Estimate the fall in the demand if the average fare increases by 2.5%.
� Find out how sensitive is the result to the elasticity value.

In this case T0 = 200 000; Es = −0.30, and (S − S0)/S0 = 0.025, so using (12.2) we get:

T − T0 = −0.30 × 200 000 × 0.025 = −1500 passengers

If Es = −0.2, the expected reduction in patronage would be 1000 passengers; if it is −0.4, it would
then be 2000 passengers.

It is also possible to define a cross-elasticity, that is the change in demand of one alternative (mode,
destination, route) when the LOS of another alternative changes; say the change in demand for inter-city
rail when air travel fares increase.

We define cross-elasticities of demand for mode i with respect to attributes in mode j as:

Eij = Sj

Ti

∂Ti

∂Sj
≈ Sj

Ti

�Ti

�Sj

Elasticities for a few types of demand functions with respect to changes in one attribute S of the LOS
are given below:

Type Functional Form Elasticity

Linear T = α + βS E = βS

T
= 1

1 + α/βS

Product T = αSβ E = β

Exponential T = α exp(βS) E = βS

Share pi = Ti∑
j

Tj

ESi (pi ) = 1 − pi

ES j (pi ) = −p j
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There are plenty of compilations of elasticities from around the world. One of the most use-
ful is that from the Victoria Transport Policy Institute (www.vtpi.org) compiled by Todd Litman
(http://www.vtpi.org/tdm/tdm11.htm). One would expect all elasticities with respect of components
of generalised cost of travel to be negative (an increase in cost results in a reduction in demand).

Note that point elasticities, estimated from an analytical function, are symmetric: the absolute value
of a positive change is the same as that of a negative change. However, we know from experience that
this is not the case. The impact of a 10% increase in fares is greater than that of a 10% reduction; people
place greater value to a loss than to a gain of the same magnitude, an issue that we also revisit in another
chapter. Economists also distinguish between short and long-term elasticities based on the fact that it
may be difficult to adapt instantly to some changes in costs. For example, a moderate change in fuel costs
may have little impact on travel in the short term as people will continue to travel to work. However, in
the long term people will change jobs and/or place of residence and, in considering these choices, they
will also take into account travel costs and the availability of public transport, something they could not
do in the short run. We would expect, therefore, that long term elasticities will be larger than short term
ones: demand should be more elastic in the long term.

It should also be noticed that if the change in costs is large, say a doubling of fuel prices, the additional
expenditure incurred by travellers will affect consumption in other goods and services as incomes and
budgets are fixed in the short run. This is an ‘income effect’ and is the change in consumption resulting
from changes in one or more prices.

Finally, one can also estimate elasticities of travel demand to changes in attributes of the traveller (for
example income levels) or the region (for example GDP). We would expect these to be positive and most
likely declining with per capita income levels. Evidence suggests, for example, that transport demand
elasticities to GDP are greater than one in emerging countries but less than one in post industrial ones.
This is important as it will help to de-couple economic development and traffic growth.

12.3.2 Incremental or Pivot-point Modelling

This method has been developed to estimate future travel demand on the basis of knowledge of the
current levels of demand and changes in the LOS variables for each alternative. In this case we require
knowing the demand function but not the specific values of the levels of service variables which are not
to change; for example, that of parking charges in different parts of a city. The only data needed are the
current market shares of each mode and the proposed changes in the LOS variables; then, an incremental
form of the demand model is used to ‘pivot’ around the current situation.

The incremental form of the Multinomial Logit (MNL) mode choice model was first given by
Kumar (1980):

p′
k = p0

k exp (Vk − V 0
k )

∑

j

p0
j exp (Vj − V 0

j )
= p0

k exp (�Vk)
∑

j

p0
j exp (�Vj )

(12.3)

where p′
k is the new proportion of trips using mode k; p0

k is the original proportion of trips by mode k;
and (�Vk = Vk − V 0

k ) is the change in the utility of using mode k, in our case generated by changes to
the LOS attributes of mode k.

It is also possible to develop incremental forms for the Nested Logit model (Bates et al. 1987; Martı́nez
1987). In this case we will have a change in utility at the lower nest as: �Vi = β(Vi − V 0

i ) and for choices
above the lower nest the change in utility is the composite change over the alternatives at the level below:

�V ∗ = ln
∑

i

p0
i exp(�Vi )

http://www.vtpi.org
http://www.vtpi.org/tdm/tdm11.htm
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Example 12.2 Consider a transport system with three modes: car, bus and rail with proportions 0.4,
0.45 and 0.15. Assume that the utility function has the following linear form:

Vk = −0.10tk − 0.20wk − 0.05Ck/I + δk

where tk stands for in-vehicle travel time, wk for waiting time and Ck/I, cost divided by income; δk is a
modal penalty.

Assume also that we are only interested in changes in frequency that would reduce expected waiting
time by rail from 10 minutes to 7.5 minutes and increase that of bus from 3 to 4 minutes; therefore we
would have for rail:

Vr − V 0
r = −0.2(7.5 − 10) = 0.5

and for bus:

Vb − V 0
b = −0.2(4 − 3) = −0.2

The change in modal share would then be:

p′
r = {0.15 exp (0.5)}/{0.15 exp (0.5) + 0.45 exp (−0.2) + 0.4}

the reader can verify that this produces:

p′
r = 0.24 and p′

b = 0.36

In the same vein, the singly constrained incremental gravity model can be written as:

Tij = Gi T 0
ij a j exp (−β�GCij)∑

l

T 0
l j a j exp (−β�GCl j )

(12.4)

where Gi is the total trips generated at zone i, �GCij the difference in generalised cost between the base
and design years, and aj growth factors reflecting changes in the destinations j.

Incremental forms for most travel choice models are not, in general, difficult to develop or implement.
For example, Abraham et al. (1992) report on an incremental model for the whole of London handling
both mode and doubly constrained gravity models for different person types and modes. This was
implemented in EMME/2 taking advantage of its macro facilities. Other software has similar modules to
implement incremental mode, distribution and other Logit choice models (see Willumsen et al. 1993).

Incremental or pivot-point model formulations are helpful as we only need to account for changes in
the generalised costs or utility functions, not their complete values. Therefore, if we are not introducing
new modes modal penalties can be ignored as they cancel out in �GC or �V . An additional advantage
is that the model preserves the current (or base) matrices, therefore retaining any special associations
detected in the data but never completely accounted for in a model; this is particularly valuable when
dealing with destination choice where the gravity model has never performed sufficiently well. The
incremental gravity model is expected to represent changes in the trip pattern resulting from changes in
travel costs and generations and attractions.

The way pivot point or incremental models have been described is in accordance with the underlying
principles of logit and gravity model development. A similar, but less rigorous, idea is to focus on changes
in demand as a result of changes in certain attributes but using absolute models incrementally instead
of pivot point models. The main motivation behind this approach lies in the difficulties in calibrating a
distribution model that fits observations sufficiently well. It is common practice in many countries, like
the UK, to spend considerable resources in collecting origin-destination (O-D) data and developing one
or more robust O-D matrices (by trip purpose and time of day). It is very difficult indeed to adopt any
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type of distribution or destination choice model that would not distort these matrices significantly. It is
highly desirable, in these cases, to use the rich information in the ‘observed trip matrix’

[
T 0

ij

]
fully and

attempt to model only changes in trip patterns as a function of cost and trip end future states.
In this case, modellers would use absolute models but apply them incrementally. To this end an

absolute (usually gravity) model is estimated for the base year
[
GM0

ij

]
and then used for a future year[

GM1
ij

]
. One approach would be to estimate the future matrix as:

T 1
ij = T 0

ij

GM0
ij

GM1
ij for all ij

Note that this approach is equivalent to adopting a full set of k factors in a gravity model. The problem
with this is that those cells in the base year matrix T0 that are zero will remain zero in the future; this
would be unrealistic for zones that are fairly empty in the base year but are expected to have increased
activity in future years. An alternative approach that avoids this problem is to employ an additive form:

T 1
ij = T 0

ij + (GM1
ij − GM0

ij)

This has the potential danger that some cells may turn out to have negative values that should be rounded
up to zero. The essential feature of these two approaches is capturing any significant difference between
the base year output from a calibrated model and the observations, and to pass on these differences to
future forecasts.

12.4 Model Estimation from Traffic Counts
12.4.1 Introduction

Conventional methods for collecting origin-destination information from, for example, home or roadside
interviews tend to be costly, labour intensive and time disruptive to the trip makers. The problem is
even more acute in developing countries, where rapid changes in land use and population shorten the
‘shelf-life’ of data. The need for developing low-cost methods to estimate the present and future O–D
matrices is apparent.

Traffic counts can be seen as the result of combining a trip matrix and a route choice pattern. As
such, they provide direct information about the sum of all O–D pairs which use the counted links. Traffic
counts are very attractive as a data source because they are non-disruptive to travellers, they are generally
available, they are relatively inexpensive to collect, and their automatic collection is well advanced. The
idea of estimating trip matrices or demand models from traffic counts deserves serious consideration and
the last decades have seen the development of a number of approaches attempting just that.

Consider a study area which is divided into N zones inter-connected by a road network which consists
of a series of links and nodes. The trip matrix for this study area consists of N2 cells, or (N2 − N)
cells if intra-zonal trips can be disregarded. The most important stage for the estimation of a transport
demand model from traffic counts is to identify the paths followed by the trips from each origin to each
destination. The variable pa

ij is used to define the proportion of trips from zone i to zone j travelling
through link a. Thus, the flow (Va) in a particular link a is the summation of the contributions of all trips
between zones to that link. Mathematically, it can be expressed as follows:

Va =
∑

ij

Tij p
a
ij, 0 ≤ pa

ij ≤ 1 (12.5)

The variable pa
ij can be obtained using various trip assignment techniques ranging from a simple all-

or-nothing to a more complicated equilibrium assignment. Given all the pa
ij and all the observed traffic
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counts (V̂a), there will be N2 unknown Tij values to be estimated from a set of L simultaneous linear
equations (12.5), where L is the total number of traffic counts.

In principle, N2 independent and consistent traffic counts are required in order to determine uniquely
the trip matrix T. In practice, the number of observed traffic counts is much less than the number of
unknown Tij values. Therefore it is impossible to determine a unique solution to the matrix estimation
problem. In general, there will be more than one trip matrix which, when loaded onto the network, will
reproduce (satisfy) the traffic counts. Two basic approaches have been proposed to resolve this problem:
structured and unstructured methods. In the structured case, the modeller restricts the feasible space
for the estimated matrix by imposing a particular structure which is usually provided by an existing
travel demand model, for example a gravity or direct-demand model. The unstructured approach relies
on general principles, like maximum likelihood or entropy maximisation, to provide the minimum of
additional information required to estimate the matrix. These two general approaches will be discussed
below, but first we must consider the relationship between route choice and matrix estimation.

12.4.2 Route Choice and Matrix Estimation

Robillard (1975) classified assignment methods for trip matrix estimation from counts under two main
groups: proportional and non-proportional assignment. Proportional assignment methods make the
proportion of drivers choosing each route independent from flow levels. The most common example is
all-or-nothing assignment and in this case pa

ij is defined as:

pa
jq =

{
1 if trips from origin i to destination j use link a
0 otherwise

Pure stochastic assignment methods such as Burrell’s and Dial’s also fall into this group but in these
cases pa

ij can also take intermediate values between 0 and 1.
Non-proportional assignment techniques take explicit account of congestion effects and therefore

the proportion of travellers using each link does depend on link flows. Equilibrium and stochastic user
equilibrium assignment methods are members of this group.

Non-proportional assignment techniques are thought to be more realistic for congested conditions.
However, the advantage of proportional assignment methods is that they permit the separation of the
route choice and matrix estimation problem; the proportion of trips using each link pa

ij can be assumed to
be independent of the trip matrix to be estimated. In contrast, non-proportional route choice requires the
joint or iterative estimation of route choice and trip matrices so that both are consistent. In what follows,
we shall assume that proportional assignment methods are a reasonable approximation to route choice;
we shall discuss later the extensions needed to cover non-proportional methods.

12.4.3 Transport Model Estimation from Traffic Counts

The calibration of a gravity model was one of the first methods put forward for estimating trip matrices
from traffic counts. The basic idea is to postulate a particular form of gravity model and examine what
happens when it is assigned onto the network. For example, in the case of inter-urban travel the trip
matrix could be:

Tij = αPi Pj

d2
ij

where Pj is the population of urban area j, dij is the distance between both areas and α is a constant for
calibration, in this case the only one. If a matrix of this kind is assigned on the network we get:

Va =
∑

ij

pa
ijαPi Pj

(dij)2
= α

∑

ij

pa
ij Pi Pj

(dij)2
(12.6)
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Note that on the right-hand side of this equation the only unknown is α: the other variables are provided
by external data or a good route choice model. One can generalise this model slightly and include other
trip generation/attraction factors like employment, industrial production, shopping floor space, and so
on. If we denote the gravity part of this model by:

Gij = Oi D j

d2
ij

and allow several journey purposes k (or commodities if one is dealing with freight movements), one
can write:

Va =
∑

k

∑

ij

pa
ijαk Ok

i Dk
j /(dij)

2 =
∑

k

αk

∑

ij

pa
ijG

k
ij (12.7)

Here the αk are parameters for calibration but the rest of the data are, once more, assumed to be
available. It is relatively simple to see that the αk may be estimated using least squares techniques. In
this case we postulate that V ′

a = Va + εa, where εa is an error term. A change of variable:

Xk =
∑

ij

pa
ijG

k
ij

permits writing:

V ′
a = α0 +

∑

k

αk Xk (12.8)

where α0 is the intercept and may be deemed to depict the part of the flow not represented by the gravity
model, for example local or intra-zonal traffic. This type of approach was followed by the first researchers
in this area, Low (1972) for urban areas and Holm et al. (1976) for planning inter-urban networks
in Denmark.

Equation (12.7) has at least one obvious deficiency. If a particular Oi and a particular Dj are each
doubled, then the number of trips between these zones would quadruple when it would be more likely
that it should double also. To improve on this the following more conventional model can be used:

Tij =
∑

k

[
αk Ok

i Dk
j Ak

j Bk
j f k

ij

]
(12.9)

where αk is a scaling parameter which enable us to use different units for Tij and Ok
i , Dk

j . Ak
i and Bk

j are
the balancing factors expressed as:

Ak
i =

[∑

j

(Bk
j Dk

j f k
ij )

]−1

Bk
j =

[∑

i

(Ak
i Ok

i f k
ij )

]−1

and f k
ij is a deterrence function, for example exp (− βk Cij).

Estimating this more conventional model from traffic counts represents a greater effort as the parame-
ters for calibration are now Ak

i , Bk
j , βk and αk. This calls for alternative calibration methods, for example

non-linear regression as used by Högberg (1976) or Robillard (1975).
Tamin and Willumsen (1989) generalised this approach following suggestions from Wills (1986) to

combine in a single model features of the gravity and the intervening opportunities (OP) model. Wills
proposed a flexible gravity-opportunity (GO) model for trip distribution in which standard forms of the
gravity and opportunity models are obtained as special cases. The choice between gravity or opportunity
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approaches is decided empirically by allowing the estimation of parameters which control the global
functional form of the trip distribution mechanism.

We can define a transformation δ
i
dj such that δ

i
dj equals 1 if destination j is the dth position in ascending

order of distance away from i, and zero otherwise, then the ordered (opportunities) trip matrix can be
obtained by the following transformation:

Zid =
∑

j

[δi
dj Tij] (12.10)

While the ordering transformation δ
i
dj produces an ordered trip matrix, its inverse (δi

dj)
−1 allows the

observed trip matrix to be recovered by

Tij =
∑

d

[(δi
dj)

−1 Zid] (12.11)

It should be noted that this class of transformation is applicable to any variable based on the O–D
matrix, notably the cost matrix and the proportionality factor, in addition to the trip matrix. We can also
define a direct Box–Cox transformation such as (8.2) on a variable y as:

yτ =
{

(yτ − 1)/τ τ �= 0
log y τ = 0

and an inverse Box–Cox transformation as

y(1/τ ) =
{

(yτ + 1)1/τ τ �= 0
exp y τ = 0

These transformations may be combined into a new function which we introduce as a convex combi-
nation in μ,

y(τ,μ) = μy(τ ) + (1 − μ)y(1/τ ), 0 ≤ μ ≤ 1 (12.12)

The proposed model can finally be written then as:

Tij =
∑

k

[αk Ok
i Dk

j Ak
i Bk

j f k
ij ] (12.13)

where:

f k
ij =

∑

d

[(δi
dj)

−1 Fk
id] (12.14)

Fk
id =

(
d∑

p

U k
ip

)(τ,μ)

−
(

d−1∑

p

U k
ip

)(τ,μ)

(12.15)

U k
ip = exp[(1 − τ )γm log Di

pk − βmCip] (12.16)

and

Di
dk =

∑

j

[δi
dj D

k
j ] (12.17)

From this general form several special cases may be derived by setting τ and μ to particular val-
ues. Three extreme cases generating specific models are easily identified: the gravity (GR), the pure
logarithmic-opportunity (LO) and the pure exponential-opportunity (EO) models.

Three estimation methods were implemented by Tamin and Willumsen (1989) to calibrate the general
form from traffic counts, namely: non-linear least squares (NLLS), weighted non-linear least squares
(WNLLS) and maximum likelihood (ML). The general model was tested for both freight transport in
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Bali, Indonesia (Tamin and Willumsen 1992) and passenger traffic in Ripon, UK (Tamin and Willumsen
1989). In the case of road haulage, even if the traffic counts were not classified by lorry type it was
possible to discriminate up to nine different commodity types, one of them empty trucks. In this case
proxy data to the Ok

i and Dk
j are required, for example production levels of certain commodities. The

parameter αk then plays the double role of converting these proxies first to tonnes and then to lorries.
The main conclusions from this research were:

� The GO and OP models are more time consuming than the GR model since they require more
complicated algebra and procedures which take longer to solve.

� Good fit at the traffic count level produced a general good fit at the trip matrix level as well.
� Although Burrell’s stochastic assignment was also used to estimate the pa

ij, it gave no better fit to the
traffic counts than all-or-nothing assignment.

� Although the GO was the best model in terms of matching the observed traffic counts, it cannot be
guaranteed that it will also produce the best-fit to an independently observed trip matrix. In fact, it was
found that the model which gives the best fit at the trip matrix level is the GR gravity model with the
NLLS method and Burrell assignment.

Holm et al. (1976) have extended the gravity model approach to include some features of equilibrium
assignment. They make use of an iterative loading with φ = 1/n (see section 10.5.4) to obtain the
proportion of trips using each link. However, this is only a heuristic approximation as under strict
equilibrium conditions the proportions are not, in general, unique.

Of course other, perhaps direct-demand, models could also be used in this type of estimation method.
One interesting advantage of this approach is that once a demand model is calibrated it may be used for
forecasting purposes too, provided future values for parameters like Oi and Dj are available or estimable.

12.4.4 Matrix Estimation from Traffic Counts

Entropy-maximising and information-minimising techniques have been used as model-building tools in
urban, regional and transport planning for many years, particularly after the work of Wilson (1970). For
example, we discussed the derivation of the conventional gravity model from an entropy-maximising
formalism in Chapter 5. In this context, the entropy-maximising formalism provides a naive, least-biased,
trip matrix which is consistent with the information available represented as constraints to a maximisation
(of an entropy function) problem. In the case of the gravity model the constraints represent trip-end and
total cost information.

This idea was used by Willumsen (1978) to derive a model to estimate trip matrices from traffic counts.
The problem can be written as:

Maximise S(Tij) = −
∑

ij

(Tij log Tij − Tij) (12.18)

subject to:

V̂ a −
∑

ij

Tij p
a
ij = 0 (12.19)

for each counted link a, and:

Tij ≥ 0
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Constraints (12.19) replace the trip-end and cost constraints of the gravity model derivation. The use
of Lagrangian methods permits the formal solution to this problem to be found as:

Tij = exp
∑

a

(−τa pa
ij) =

∏

a

X
Pa

ij
a (12.20)

where τ a are the Lagrange multipliers corresponding the constraints (traffic counts) and,

Xa = exp (−τa)

The availability of an old matrix, or simply a matrix estimated (or cordoned off) from another study
could be accommodated to some advantage. Let t be this prior matrix, sometimes called a ‘reference trip
matrix’; the new objective function becomes:

Maximise S1(Tij/tij) = −
∑

ij

(Tij log Tij/tij − Tij + tij) (12.21)

subject to the same constraints (12.19) and non-negativity. This objective function is, of course, convex
and the term tij, being a constant, is only there for convenience; it can actually be eliminated from the
derivation of the model.

Using the same methodology and change of variables, the formal solution can be seen to be:

Tij = tij exp
∑

a

(−τa pa
ij) = tij

∏

a

X
Pa

ij
a (12.22)

Example 12.3 Consider the simple network depicted in Figure 12.1. This network has two origins
(1 and 2) and two destinations (3 and 4). The flows on all links are also shown in this figure.

Figure 12.1 Simple network with traffic counts

It can be seen that there are only six (integer) trip matrices that can reproduce the observed flows as
shown below.

Matrix SixthFifthFourthThirdSecondFirst
j

i 3 4 3 4 3 4 3 4 3 4 3 4

1 8 0 7 1 6 2 5 3 4 4 3 5
2 2 5 3 4 4 3 5 2 6 1 7 0

S(Tij ) −11.07 −7.46 −5.98 −5.78 −6.84 −9.96
S1(Tij /tij ) −5.79 −3.69 −3.70 −5.07 −7.22 −12.20

The entropy-maximising formalism seeks to identify the most probable trip matrix consistent with the
information available, in this case five traffic counts. Incidentally, the reader can verify that only three
of these counts are independent (see section 12.4.5); therefore the problem is, indeed, underspecified.
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The values of the objective function S(Tij) are also shown in this table. According to this, the most
probable trip matrix would be the fourth, {5, 3, 5, 2}, as it has maximum entropy value. If a prior matrix
is available then a second objective function (12.21) should be used. Assume the prior matrix {3, 2, 1, 3}
is available; the new values from the entropy function are also depicted above. The most probable trip
matrix in these circumstances is the second one, {7, 1, 3, 4}. Of course, in more practical problems
we cannot hope to calculate directly the entropy values of all possible matrices. Note, for instance, that
reducing the number of counts increases the number of feasible trip matrices. More importantly, flows of
the order of hundreds or thousands increase the number of possible (integer) trip matrices enormously.
What is needed is an effective solution method not requiring matrix identification.

There are several possible methods to solve model (12.22). The most widely used one is the multi-
proportional approach. This is, in essence, an extension of the bi-proportional and tri-proportional
methods discussed in Chapter 5. In this case, instead of balancing the trip matrix trying to match trip-end
totals (and cost-bin totals in the tri-proportional case), we undertake successive corrections to the prior
trip matrix in order to reproduce the observed traffic counts. There is one correction factor Xa for each
traffic count and its calculation involves the iterative estimation of these factors until the observed link
flows are replicated to within an acceptable tolerance.

If no prior matrix is available, t can be taken as unity; in effect, an entropy-maximising formalism may
be considered to generate as the most likely trip matrix, one that has the same number of trips in each
cell, unless being prevented from achieving this by the constraints. In other words maximising entropy
is equivalent to minimising the difference between a uniform target and the estimated matrix.

The detailed analysis of this maximum entropy matrix estimation (ME2) model and that of a related
approach, based on information-minimising principles, is given by Van Zuylen and Willumsen (1980).
Both models are practically equivalent and share most of their properties. The ME2 model will always
reproduce the observations V ′

a to within a given tolerance provided the constraints define a feasible space,
i.e. equations (12.19) must have at least one solution in non-negative Tij. An additional condition for the
prior matrix t is discussed below.

It can be shown that minimising the negative of the objective function (12.21) is approximately
equivalent to minimising:

S2(Tij/tij) = 0.5(Tij − tij)2

Tij
(12.23)

This is an error-like measure of the difference between the values of tij and Tij. In effect, the negative
of S1(Tij/tij) is also a natural measure of the difference between these cell values: it is zero when tij = Tij

and increasingly positive as the difference increases. In this sense, the estimated matrix is that closest to
the prior matrix which when loaded onto the network can reproduce the traffic counts.

The model can accommodate other sources of data provided they can be incorporated as linear
constraints. An example of this type may be information about the trip length distribution (TLD) thought
to be realistic for the study area. This type of information can be translated into constraints equivalent to
those of cost bins, as discussed in Chapter 5; for example:

1

T

∑

ij

Tij δ
k
ij = Pk (12.24)

where T is the total number of trips, Pk is the proportion of trips in cost (length) range (bin) k, δk
ij is 1 if

trips between i and j have cost in range k, and zero otherwise.
Public-transport systems with a zonal or other variable fare system permit the introduction of con-

straints of this type to help estimate the corresponding trip matrices using passenger counts and ticket
sales data (see de Cea and Cruz 1986).
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Moreover, the mathematical program can also be written with a combination of equality and inequality
constraints, thus enhancing the value of this type of approach. For example, the planner may know that
the capacity of a link is Qa but not have a traffic count for it; or that no more than D′

j vehicles can go to
a particular destination because of parking capacity there. This type of information can be incorporated
as inequality constraints, for example:

∑

ij

Tij pa
ij ≤ Qa for some links a (12.25)

∑

i

Tij ≤ D′
j for some destinations j (12.26)

The solution to this program is still a multiplicative model; Lamond and Stewart (1981) have shown
how the multi-proportional algorithm can be extended to handle inequality constraints; therefore the
same solution method may be used for this expanded model.

One of the features of the (extended) ME2 model is its multiplicative nature. This means that if a cell
in the prior matrix is zero it will remain zero in the solution as well. This may be a source of problems
if the cell in the prior matrix was zero by chance (i.e. because of the sampling rate adopted in the study)
instead of representing an O–D pair with no trips at all. One pragmatic solution to this problem, for
very sparse prior matrices, is to ‘seed’ the empty cells with a small value, for example 0.5 trips. The
constraints, through the multi-proportional or other solution algorithm, will then ensure that some of
these trips ‘grow’ to one or more full trips while others regain a zero value.

Example 12.4 Consider the same network as in Example 12.3 but assume now that we only have
two traffic counts, on links 5–6 and 2–5 (15 and 7). Table 12.1 shows the multi-proportional algorithm
as applied to this problem. The table shows first the full solution for the case of uniform (no) prior
matrix, Case A.

Table 12.1 Multiproportional solution for two traffic counts

Trips per O–D pair

Traffic count Modelled flow Ratio 1–3 1–4 2–3 2–4

A Prior Matrix 1.00 1.00 1.00 1.00
Iteration 15 4.00 3.750 3.75 3.75 3.75 3.75
1 7 7.50 0.933 3.50 3.50
Iteration 15 14.50 1.034 3.88 3.88 3.62 3.62
2 7 7.24 0.967 3.50 3.50
Iteration 15 14.76 1.016 3.94 3.94 3.56 3.56
3 7 7.11 0.984 3.50 3.50
Iteration 15 14.89 1.008 3.97 3.97 3.53 3.53
4 7 7.05 0.992 3.50 3.50
Iteration 15 14.95 1.004 3.99 3.99 3.51 3.51
5 7 7.03 0.996 3.50 3.50

B Prior matrix 3.00 2.00 1.00 3.00
Iteration 15 15.03 0.998 4.81 3.21 1.75 5.24
5 7 6.98 1.002 1.75 5.25

C Prior matrix 3.00 2.00 0.00 3.00
Iteration 15 15.06 0.996 4.82 3.21 0.00 6.97
6 7 6.97 1.004 0.00 7.00

D Prior matrix 3.00 2.00 0.50 3.00
Iteration 15 15.04 0.998 4.81 3.21 1.00 5.99
6 7 6.98 1.002 1.00 6.00
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As can be seen, it takes only five iterations to reach convergence within 5% tolerance. The solution
{3.99, 3.99, 3.5, 3.5} does not coincide with the maximum-entropy solution in Example 12.3 because
the number of traffic counts is not the same. Case B shows the problem with the prior matrix {3, 2, 1, 3};
again, it takes only five iterations to reach satisfactory convergence. The solution {4.81, 3.21, 1.75,
5.25} is indeed different, thus showing how the information contained in an outdated trip matrix can be
used to advantage in matrix estimation; there is something of value in past information worth making
use of.

Case C illustrates what happens when there is a zero entry in the trip matrix. There is still a solution but
the zero is preserved in it. Finally, Case D shows the effect of ‘seeding’ the zero in the prior matrix with
0.5. The solution this time, {4.81, 3.21, 1.0, 6.0} affects only trips from the origin previously containing
the zero.

Consider now the effect of increasing the number of counts to three by including link 6–3. The
corresponding results are depicted in Table 12.2.

First, note that the number of iterations required has now increased. This seems to depend not so much
on the actual number of counts used but on how close to removing all flexibility in the matrix these are.
In this case three out of four degrees of freedom are removed by these counts. The solution in case A,
{5.33, 2.68, 4.67, 2.35}, is the one that maximises S(Tij) and if rounded to integers coincides with the
solution in Example 12.3.

The solution for case B, {6.55, 1.51, 3.45, 3.58}, has the same properties in respect of S1(Tij). Case C
is interesting as it shows that in this opportunity with the inclusion of a zero in the prior the algorithm
fails to converge, even after 20 iterations. The reader may verify that forcing cell 2–3 to zero makes
the problem unfeasible: there are seven trips out of node 2 but only five are permitted to reach their
destination. Case D illustrates the effect of seeding the empty cell with 0.5 trips; the algorithm now
converges to a reasonable solution.

Table 12.2 Multiproportional solution for three traffic counts

Trips per O–D pair

Traffic count Modelled flow Ratio 1–3 1–4 2–3 2–4

A Prior matrix 1.00 1.00 1.00 1.00
Iteration 15 4.00 3.750 3.75 3.75 3.75 3.75
1 7 7.50 0.933 3.50 3.50

10 7.25 1.379 5.17 4.83
Iteration 15 15.05 0.997 5.32 2.68 4.65 2.35
10 7 7.00 1.000 4.65 2.35

10 9.97 1.003 5.33 4.67
B Prior matrix 3.00 2.00 1.00 3.00

Iteration 15 15.11 0.992 6.51 1.51 3.41 3.56
14 7 6.97 1.004 3.42 3.58

10 9.94 1.006 6.55 3.45
C Prior matrix 3.00 2.00 0.00 3.00

Iteration 15 17.15 0.875 8.75 0.13 0.00 6.12
20 7 6.12 1.143 0.00 7.00

10 8.75 1.143 10.00 0.00
D Prior matrix 3.00 2.00 0.50 3.00

Iteration 15 15.10 0.994 6.98 1.05 2.96 4.01
19 7 6.97 1.004 2.97 4.03

10 9.95 1.005 7.01 2.99
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12.4.5 Traffic Counts and Matrix Estimation

One can ask at this stage whether any set of counts is suitable for trip matrix estimation. For example,
is it possible that certain combinations of counts make it impossible to estimate a matrix which satisfies
them? These problems will be discussed under the headings of independence and inconsistency of
traffic counts.

12.4.5.1 Independence

Not all traffic counts contain the same amount of ‘information’. For example, in Figure 12.2 traffic link
c is made up of the sum of traffic on links a and b. Counting traffic on link c is then redundant and only
two counts there can be said to be independent.

Figure 12.2 Dependent counts

Wherever a flow continuity equation of the type ‘flows into’ a node equals ‘flows out of’ the node
can be written, its counts will be linearly dependent. In this case it will always be possible to describe
one link flow as a linear combination of the rest. Note that a centroid connector attached to node 5 will
remove the dependency in Figure 12.2.

12.4.5.2 Inconsistency

Counting errors and the fact that often traffic counts are obtained on different occasions (hours, days or
weeks) are likely to lead to inconsistencies in the flows. In other words, the expected flow continuity
relationships will not be met. If the count Vc in Figure 12.2 were to be 160 instead of 150, the cor-
responding equations would be inconsistent and no trip matrix could possibly reproduce these flows.
One way of reducing this problem is to allow an error term in the equations or to remove the inconsis-
tencies beforehand.

It is possible to identify two sources for inconsistencies in the link flows. The first one is simply
the fact that errors in the counts may lead to situations in which the ‘total flow into’ a node does not
equal the ‘total flow out of’ the same node, thus not meeting link flow continuity conditions. The second
source is a mismatch between the assumed traffic assignment model and observed flows. For example,
an assignment model may allocate no trips on a link having an observed (perhaps small) flow. In these
conditions there will be no trip matrix capable of reproducing the observed link flows using that route
choice model.

Example 12.5 It is useful to distinguish between these two types of inconsistency, first at flow level and
then at path flow level. Assume we have observations on the flow of four links (identified by the pair of
nodes delimiting them) and we would like to find non-negative trip matrices satisfying these and a route
choice model as depicted in Figure 12.3.
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Figure 12.3 An example of path flow inconsistencies with counts: (a) network and flows, (b) assumed route choices

Consider first the case where the count x has been found to be 8, thus making the total flow into node
6 equal to 15, and the flow out of this node equal to 16. These counts are then inconsistent, perhaps
because they were taken on different days or simply because of counting errors. We can remove this
inconsistency by arbitrarily increasing the flows on links (1, 6) or (2, 6) by one, or by reducing the flows
on links (6, 3) or (6, 4) by one. We can be more systematic and make the least adjustments necessary to
preserve flow continuity conditions. For example, if what we want to minimise is the sum of the squares
of the increments/reductions, then the optimum change is 0.25 on each link.

An alternative approach is to seek a maximum-likelihood solution to this problem, as put forward in
Van Zuylen and Willumsen (1980). This assumes that link flows are Poisson distributed and that the
observations available are samples on this distribution. Maximum likelihood is then used to generate a
model for producing improved and consistent estimates of the flows. On the other hand, model calibration
from traffic counts, as discussed in the previous section, makes an explicit allowance for errors in the
observed link flows. These methods are not limited, therefore, by independence and consistency problems.

Consider now the case when the count x is 7. It can be seen that the link flow continuity conditions
are now met. However, the assumed assignment depicted in Figure 12.3b is incompatible with the flows
shown in Figure 12.3a. No feasible trip matrix can reproduce the count of 8 at link (6, 3) because the
only path using it, B–C, is limited to a maximum of 5 by link (2, 6).

The set of linear equations corresponding to this example is given by:

link (1, 5) TAC = 6 (12.27)
link (5, 3) TAC = 6 (12.28)
link (1, 6) TAD = 10 (12.29)
link (2, 6) TBC + TBD = 5 (12.30)
link (6, 3) TBC = 8 (12.31)
link (6, 4) TAD + TBD = 7 (12.32)

Clearly equations (12.30) and (12.31) are incompatible with the non-negativity of TBC. The same
applies to equations (12.29) and (12.32), making it impossible to solve this set of equations. In simple
problems like this, inconsistencies can be ascertained by inspection but in more complex networks they
can only be identified by means of row and column operations on the linear equations. For large systems
these operations are likely to be expensive in terms of computer requirements.

In this simplistic example it is not difficult to see that the problem originates in the assumed single route
between A and C. If two paths were allowed, one via node 5 and the other via node 6, the inconsistency
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could be removed. Furthermore, the value of the resulting variable p6
AC cannot be arbitrarily chosen; in

effect, a feasible solution requires

0.2 ≤ p6
AC ≤ 0.5

The fact that the path flow continuity conditions are not met seems to reflect errors in assignment,
whereas the link flow discontinuities are a reflection of errors in the traffic counts alone. It seems
reasonable then to develop a technique for removing the link flow inconsistencies in the counts in order
to ensure that the link flow continuity conditions are met. On the other hand, a reasonable approach to
deal with the lack of consistency at the path flow level seems to be the adoption of a better route choice
model. In general terms, consistency at the link flow level is a necessary but not sufficient condition for
consistency at path flow level. Consistency at path flow level is, however, a sufficient condition for link
flow consistency.

The interested reader may verify that there are only seven different (integer) trip matrices which can
satisfy the observed flows in the example above.

12.4.6 Limitations of ME2

ME2, probably because of its simplicity, relative efficiency and ease of programming, has been widely
implemented and used, particularly in the UK. The model has, however, some known limitations and it
is worth exploring them before discussing opportunities to improve it.

One of the limitations arises when traffic has grown (or declined) markedly between the prior (or old)
trip matrix and the present. The model estimates the matrix closest to the prior which, when loaded on
the network, reproduces the traffic counts but this may lead to distortions. In these cases it is probably
better to consider the structure of the prior matrix, say through the proportion of total trips which appear
in each cell, and not the absolute number of trips in each O–D pair. One would then try to find a matrix
with the closest structure to that of the prior matrix which reproduces the traffic counts when loaded onto
the network. This can be approximated by means of a general growth factor first, for example:

τ =

∑

a

V̂ a

∑

a

∑

ij

tij pa
ij

(12.33)

which is then applied to the prior matrix before using the ME2 model. In this way the structure of the
prior matrix is preserved as much as possible. The estimation of τ above is only an approximation; for a
more rigorous approach see Bell (1983).

A second limitation of ME2 is the fact that it considers the traffic counts as error-free observations on
non-stochastic variables. In effect, the model gives complete credence to the traffic counts and uses the
prior matrix only to compensate for the fact that they do not contain sufficient information for estimation
purposes. However, this may not be very appropriate in practice. For a start, one must acknowledge
that traffic counts are certainly not error free. Apart from counting errors there is the problem of time
variations (hourly, seasonal, etc.). Traffic counts obtained on different days or at different times can
hardly be considered to be observations on a non-stochastic variable.

Willumsen (1984) has suggested an approach to compensate for this second difficulty. It starts from
the idea that functions of the type {X log X/Y − X + Y} can be seen as useful measures of the difference
between X and Y . He then constructs a composite objective function to satisfy the following:

Minimise S3 =
∑

ij

(Tij log Tij/tij − Tj + tij) +
∑

a

φa(Va log Va/υa − Va + υa) (12.34)
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where

Va is now the ‘true’ value of the traffic count at a.
υa is the value of one observation of the flow made at a.
φa is a weighting factor which depends on the confidence attached to the observation υa .

The use of the Lagrangian method now leads to the solution:

Tij = tij
∏

a

X
pa

ij
a (12.22)

Va = υa X 1/φa
a (12.35)

Again this model can be solved using the multi-proportional algorithm but in this case we also need
to correct the observations to obtain a better estimation of the true value of the link flows. Note that if φa

is very large, i.e. we assign a high weight to the counts as we believe them to be very accurate, Va tends
to υa ; in the limit with φa = ∞ we revert to the original model as Va = υa . Note that the smaller the
value of φa, the greater the credence given to the prior matrix t.

One would expect that the weights φa depend on the variability of the observations. Brenninger-Gothe
et al. (1989) have discussed this model in detail. They have shown that a very natural value for the
weights φa is the variance (or standard deviation) associated with the observations. If these are not
available they can be estimated using some assumption about the distribution of the error terms. These
authors have further extended the model to consider weights attached to both the prior matrix (μij) and
the traffic counts (φa); thus the new objective function becomes:

Minimise S3 =
∑

j

μij(Tij log Tij/tij − Tij + tij) +
∑

a

φa(Va log Va/υa − Va + υa) (12.36)

The main limitations of ME2 can therefore be reduced using reasonably simple methods. However,
other authors have proposed alternative approaches to solve the matrix estimation problem, some of
which start from a different basic framework.

12.4.7 Improved Matrix Estimation Models

Bell (1983) has formulated a model which tries to preserve the structure of the prior matrix, in the
sense described in the previous section, adding a new constraint and thus modifying the mathematical
programme as follows:

Minimise −S2 subject to

V̂ a −
∑

ij

Tij pa
ij = 0 for each counted link a (12.19)

τ =
∑

ij

Tij

/∑

ij

tij (12.37)

and

Tij ≥ 0

In addition to this, Bell suggests the use of a Newton–Raphson method to solve this model with an
iterative estimation for τ . Alternatively, one may assume an initial value for τ , solve the standard model
using a multi-proportional method and then check if it is consistent with equation (12.37). The cycle
should be repeated until the value of τ converges.
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The use of a Newton–Raphson algorithm has advantages in terms of computer time and is also useful
in tracing the effect of errors in the traffic counts through to the estimated trip matrix (Bell 1983); this
type of sensitivity analysis is an alternative to the treatment of errors in the traffic counts suggested above.
However, the Newton–Raphson method requires more memory and is therefore restricted to small and
medium-size networks.

A variant to the standard objective function (S1) is either to linearise it using Taylor’s expansion or to
construct a generalised least squares formulation. In both cases we still try to minimise the difference
between prior and estimated matrices subject to the same constraint (12.19). Bell (1984) suggested the
Taylor series expansion solution whereas McNeil and Hendrickson (1985) and Cascetta (1984) have
put forward versions involving generalised least squares approaches. One problem is that under certain
circumstances these models may produce negative entries in the estimated trip matrix, in particular where
the prior matrix originally had small values. This is not an uncommon occurrence and therefore this
feature is undesirable.

Maher (1983) proposed the use of a Bayesian approach to the trip matrix estimation problem which
results in functional forms equivalent to the generalised least squares method. A prior estimate of the
trip matrix is updated in the light of a set of traffic counts; both are assumed to be multivariate Normal
distributed variables with known covariance.

Spiess (1987) proposed a maximum likelihood model to solve the problem. He considered a specific
formulation where for each O–D pair tij is obtained by observing an independent Poisson process with
mean �ijTij. This corresponds to the problem of taking a sample of an existing trip matrix with a sampling
rate of �ij < 1. The probability of observing tij is:

Prob[Poisson (�ijTij) = tij] = (�ijTij)
tij exp (−�ijTij)/tij! (12.38)

The joint probability of observing the sample matrix {tij} is therefore:

Prob [{tij}] =
∏

ij

Prob [tij] =
∏

ij

(�ijTij)tij exp (−�ijTij)/tij! (12.39)

Applying the maximum likelihood estimation technique to this problem requires finding the matrix
{Tij

∗} which satisfies the constraints and yields the maximum probability (12.39) of observing {tij}.
By taking logarithm of equation (12.39) and adopting the usual convention that 0 log 0 = 0, we can
formulate the maximum likelihood model as:

Max
∑

ij
(tij log(�ijTij) − �ijTij − log tij!) (12.40)

subject to the usual non-negativity constraints and to equation (12.19). Separating the logarithm into the
sum and discarding constant terms one can rewrite (12.40) as:

Min
∑

ij
(�ijTij − tij log Tij) (12.41)

This objective function is convex in Tij; provided the set of constraints is consistent and the flows
feasible, then the existence of an optimal solution is assured. The solution may be obtained by any
standard solution method for convex programming problems. However, Spiess (1987) has developed an
algorithm that exploits some of the specific properties of this problem.

For further comments on this problem and possibilities for extensions see Cascetta and Nguyen (1988)
and Willumsen (1991).

12.4.8 Treatment of Non-proportional Assignment

The ME2 model discussed in the preceding sections is based on the assumption that it is possible to
obtain the route choice proportions {pa

ij} independently from the matrix estimation process. Wherever
congestion plays an important role in route choice this assumption becomes questionable as the route
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choice proportions and the trip matrix become interdependent. Because of its theoretical and practical
advantages, equilibrium assignment is the natural framework for extending the ME2 model for the
congested network case.

The main problem in incorporating Wardrop’s equilibrium into trip matrix estimation is that now the
route choice proportions and the trip matrix to be estimated are interdependent. One way of tackling
this problem is to adopt an iterative approach: assume a set of route choice proportions {pa

ij}, estimate a
matrix T, load it onto the network and obtain a new set of route choice proportions; repeat the process
until route choice proportions and estimated matrices are mutually consistent.

This general scheme can be implemented in different ways. For example, in SATURN (Hall et al.
1980) the route choice proportions are estimated using the value φ in the Frank–Wolfe algorithm (the
optimum linear combination of accumulated and auxiliary flows; see section 11.2.3). It is recognised that
in general the path flows under equilibrium conditions are not unique. However, this method assumes
them to be unique.

An alternative approach requires restating the original problem in terms of a three-dimensional matrix
(origin, destination and route) as follows:

Maximise S4 = −
∑

ijr

Tijr(log Tijr/tijr − 1) (12.42)

subject to
∑

ijr

Tijr δa
ijr − V̂ a = 0 (12.43)

and

Tijr ≥ 0

where the index r indicates the route or path chosen; δa
ijr is 1 if route r between i and j uses link a, and

zero otherwise.
It is always possible, of course, to reconstruct the O–D matrix {Tij} by aggregating the path flow

matrices {Tijr}. Again the solution to this new program is:

Tijr = tijr
∏

a

X
δ

a
ijr

a (12.44)

and

Tij =
∑

r

Tijr (12.45)

The prior path flows may be calculated from the prior trip matrix as tijr = tij/Rij, where Rij is the
number of paths between i and j. In this case, the path flows can take any value as they are not assumed
unique. The Frank–Wolfe algorithm for equilibrium assignment is used to identify attractive paths (those
selected at each all-or-nothing step) but not to define the strict proportions of the trip matrix using them.
This is only a heuristic scheme and a suitable algorithm for its solution is as follows:

1. Assign, using equilibrium assignment methods, a base-year matrix {tij} to the network and save the
corresponding routes (trees). Set the cycle counter n to 1.

2. Estimate a trip matrix {Tij}n for iteration n, using independent routes {δa
ijr} and observed flows {V̂a}.

3. Assign {Tij}n to equilibrium, saving the routes (trees) used in the process.
4. Increment n by 1 and return to step 2 unless the changes in routes {δa

ijr} or estimated matrices have
been sufficiently small.
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For a test of this approach and a comparison with proportional assignment techniques in the case of a
comprehensive data set for Reading in the UK, see Willumsen (1982).

A more general approach has been put forward by Fisk (1988) and Oh (1989), where maximum-entropy
matrix estimation and user equilibrium assignment are combined as a single mathematical program.

12.4.9 Quality of Matrix Estimation Results

Matrix adjustment from traffic counts is a powerful group of techniques that provides significant help in
developing useful and robust trip matrices. However, in order to use the approach in a sound and reliable
manner a number of points require careful attention. One particular aspect to bear in mind is the fact
that matrix estimation techniques may try to force an adjusted trip matrix to reproduce traffic counts
even if there are significant errors in the network, the assignment method or the counts themselves. The
following recommendations reflect our views on pitfalls to avoid when using this type of technique:

� Make sure the network is fully debugged and that all relevant turning movements are well represented.
� Use an assignment method appropriate to the context; this usually means equilibrium assignment.
� Ensure that any prior matrix is reasonable and do not over-rely on one that is not.
� Set aside some 10–15% of the traffic counts for validation of the adjusted trip matrix.
� Ensure all traffic counts are adjusted using seasonal and daily factors to a common representative day

and that only relevant vehicle types are included (i.e. do not use passenger car units (pcus) when car
trips are needed).

� If possible, assign a level of confidence to each count and allow greater tolerance to those that are
less reliable.

� Bear in mind that some bottlenecks may restrict actual traffic on the network to levels below demand
(metering effect); it may be better to ignore counts affected by this constraint.

� Apply matrix estimation techniques in small increments and obtain network and matrix statistics at
the end of each run: compare number of trips and travel speeds and trust only matrices that do not
change these indicators by more than 10%; monitor in particular the trip length distribution before and
after matrix estimation as significant changes probably indicate the trip matrix is being distorted by
the procedure.

� Use only the validation counts above to report fitness for purpose.
� Never accept a post-matrix estimation trip table without thorough checks on its validity; these methods

are powerful and generally easy to use but may distort a perfectly good prior matrix too much and
render the results of any scheme test unreliable.

12.4.10 Estimation of Trip Matrix and Mode Choice

The idea of extending this type of approach to matrix and mode choice estimation is attractive. Let
us consider a singly constrained destination/mode choice model of the following Logit form:

Tij = Oi

Sj

∑
k

exp
(∑

p
θp X p

ijk

)

∑
d

Sd

∑
k

exp
(∑

p
θp X p

idk

) (12.46)

where the mode choice component of the model is given by:

Pk
ij =

∑
p

exp
(∑

p
θp X p

ijk

)

∑
m

exp
(∑

p
θp X p

ijm

) (12.47)
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Tij are trips between zones i and j, Oi is the total number of trips originating at zone i, Sj is a
measure of the attractiveness of zone j, Pk

ij is the proportion of trips using mode k between zones i
and j, X p

ijk is the pth explanatory variable for mode k (for example, in- vehicle travel time) and θ are
model parameters.

Although the derivations we will present below are for the simpler MNL case, they can easily be
extended to consider the simultaneous estimation of more general Nested Logit forms (Ortúzar and
Willumsen 1991).

12.4.10.1 Simple Unimodal Case

Let us consider first a single mode case with just one scale parameter μ, multiplying a ‘generalised
cost’ variable Xij, to be estimated. In this simple case (12.46) reduces to:

Tij = Oi
Sj exp (μXij)∑
d

Sd exp (μXid)
(12.48)

Now, assume we possess observations on a set of link flows V̂a , and also that we know, from
an assignment model, the proportions Pa

ij for all links with observed flows. In such a case we can
postulate that equation (12.19) holds and to estimate the value of μ we can, for example, seek to
minimise the following normalised non-linear (generalised) least squares function:

S =
∑

a

[(
V̂ a −

∑

ij

Tij pa
ij

)/
V̂

2
a

]2

(12.49)

In order to find the minimum we usually require first and second derivatives of S with respect to
μ. These are provided by Ortúzar and Willumsen (1991); unfortunately, even in this simple case the
derivatives look rather intractable so a unique solution to the problem may be difficult to establish.

12.4.10.2 Updating with Aggregate Modal Shares

Let us consider the transference of model (12.46)–(12.47) with parameters θ estimated in another
context; we ignore the original mode-specific constants as they ensure reproduction of the aggregate
market shares in that context. Define a transfer utility function as:

Vijk = μ

(
∑

p

θp X p
ijk

)
+ Mk (12.50)

where X p
ijk are zonal values for the level-of-service and socioeconomic variables in the new context,

μ is a scale parameter as before and M a set of (K − 1) mode-specific constants to be estimated; K
is the total number of modes.

In this case it is possible to find maximum likelihood estimators for μ and M but it is possible to
guarantee a unique optimum only for fixed μ, i.e. when only the constants are updated.

(continued)
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12.4.10.3 Updating with Traffic Counts

The main problems arise in this case if we are interested in mixed-mode combinations but only have
counts for the ‘pure’ modes. For example, consider the case of choice between car, bus, underground
and combinations of the latter with the first two. It is obvious that even if we have separate counts
for each pure mode, these include observations corresponding to the mixed-mode movements. If
we settle for a mode aggregation and are interested in estimating the scale parameter μ and a set of
constants for the pure modes, the problem can be solved using a generalised least squares formulation
similar to (12.49), as shown by Ortúzar and Willumsen (1991).

12.4.10.4 Updating with Combined Information

Assume we wish to update μ and M of (12.50) and have available observed aggregate shares Pk and
sets of observed passenger counts V̂ for each competing mode. The problem can be formulated either
as a maximum likelihood or generalised least squares one.

In the first case we will get different functions to maximise and hence different first-order con-
ditions and optima, depending on the assumptions made about the distribution of count errors. The
favourite assumptions have been multinomial, independent Poisson and independent Normal (see
Tamin and Willumsen 1992). As it can be assumed that data on counts are independent of data
on aggregate shares, the log-likelihood function takes the form of a sum of two expressions. If
it is assumed that the counts have no error, a final case of interest results which requires max-
imising a much simpler function subject to (12.19). Expressions for each of these cases are given
by Ortúzar and Willumsen (1991); there is no guarantee, however, that either of them leads to a
unique optimum.

The generalised least squares formulation has two advantages: the first is that no distributional
assumptions are needed on the data set; the second is the possibility of incorporating explicitly
differences in the accuracy of each data item prior to estimation. A need for normalising, which is
also a feature of this approach, is very evident here given the different order of magnitude of the
differences between observed and modelled values for both types of data. For example, the maximum
difference in the case of aggregate shares is just 1, while differences in count data may easily run to
figures in the hundreds or thousands.

The range of methodologies available in principle to solve this important problem is difficult
to evaluate without recourse to experimentation; by the end of 2010 such an exercise had not
been reported.

12.5 Marginal and Corridor Models
12.5.1 Introduction

We have seen how conventional modelling approaches often require large amounts of resources (espe-
cially computing time and technical expertise), sometimes have a slow response rate, may not be sensitive
to some of the policy options needing analysis and may be based on weak theoretical frameworks (see for
example, Supernak 1983). In previous chapters we have discussed how to avoid most of these common
pitfalls; in this section we wish to explore some shortcuts which can be taken to speed up the response
time of modelling exercises.

Having considered some of the simplified approaches in the preceding sections one must recognise
that they would seldom satisfy, on their own, all the requirements of a large scale project or major
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policy change. The use of trip matrix estimation techniques from traffic counts may be acceptable for
situations where a fixed-matrix assumption is reasonable, for example, the design of traffic management
schemes. However, the adoption of model estimation from traffic counts methods is still weak in terms of
modal choice, an important element in most project assessments. Sketch planning methods offer quick
response but at a high risk in terms of coarseness of the analysis. It is interesting to explore whether these
approaches can be combined to utilise their strengths and avoid their weak points.

The basic idea is to adopt an approach which would use simpler models to provide a planning
background and would selectively apply ‘state-of-the-art’ models to the most relevant decision elements
of the problem. Technical journals devote little space to report systematically on the many shortcuts
planners and consultants by necessity adopt in practice (Leamer 1978). Some conferences offer better
illustrations of these; see for example Ashley et al. (1985) and Clancy et al. (1985).

The first element in the development of practical simplified approaches is to recognise that there is
always some implicit or explicit planning context providing local experience and data. How to utilise
these two effectively should always be the first step in this task. The production of sound advice to
decision makers under severe time constraints should deal with questions like the following:

� how best to simplify or select models that will appropriately represent the impacts of the project to
be analysed;

� how to make adequate use of existing data and local experience;
� how to take advantage of some of the special characteristics of the problem in hand; and
� how to deal with the inevitable biases introduced through the pragmatic answers adopted to the

questions above.

12.5.2 Corridor Models

A typical opportunity for simplifying modelling tasks without compromising realism too much is pro-
vided in corridor studies. Corridors are strong, basically linear, transport facilities sometimes combining
high-capacity and limited-access arterial roads with rail rapid transit or bus-way provisions. The linear
nature of the facilities may help to simplify the modelling task; it may be sufficient to model the linear
corridor and consider only the points of entry and exit to it as origins and destinations. There may be a
major destination at one end of the corridor (the central business district for example) or they may be
distributed throughout its length.

In any case, assignment problems will be minimal or non-existent and the modelling effort will be
able to concentrate on issues such as mode and, in some cases, destination choice. The basic information
needed will be the current flow levels by mode and section of the corridor, data on level of service
variables for each mode and section, and the relevant characteristics of travellers. A good deal of these
data is obtainable through choice-based interviewing either in-vehicle (train) or at the main destina-
tions (workplace).

The extreme simplification of the network structure generates considerable savings in data collection
and coding. The transfer of discrete choice models from other contexts may be undertaken using the
techniques discussed in section 9.5. If necessary, trip generation transfer may be performed using the
methods discussed in section 4.7; however, in most cases a fixed multimode trip matrix is assumed for
these studies. If the study is to cover several years in the future, it may be necessary to use a matrix
updating technique based on growth factors, as discussed in Chapter 5.

Corridor modelling with severe capacity constraints requires some care. Bottleneck effects in the
corridor should be treated specifically and sometimes micro-assignment models may be applied to them.
Direct demand models also appear as suitable choices for this type of problem.
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12.5.3 Marginal Demand Models

Faced with problems which cannot be tackled through a full-scale transportation study due to limited
resources and time availability, one would like to concentrate efforts on that part of the transport demand
most likely to be affected by the project or policy in question. If the project is not corridor based this
requires a little more care and attention. However, often the special characteristics of the problem may
be utilised to simplify the task in hand. A generalised approach to this problem was proposed by De Cea
et al. (1986). This approach is outlined below and shown in Figure 12.4.

Figure 12.4 Steps in project evaluation using a marginal demand estimation approach

1. Definition of the problem. The terms of reference of the study, if available, should facilitate an iden-
tification of the main elements of a problem, be it a particular investment project or the consideration
of a new policy option. Terms of reference, however, do not exempt the analyst from identifying the
wider implications of the alternatives to be considered.

2. Identification of the relevant population and the impact potential of the project. At this stage, one
seeks to identify the most likely impacts of a project or policy option and the sections of the population
most likely to be affected. In principle anything is likely to affect everything else, but one should try
to identify first-order effects and those most likely to perceive (gain or lose) the costs and benefits of
the project.
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3. Identification of the technical resources available to analyse the main impacts of the project on the
relevant population. The existence of data, perhaps not up to date, other studies and models, and
in particular local expertise, can play a key role in providing sound and quick advice to decision
makers. Updating data sets and adjusting existing models should normally require fewer resources
than starting from a clean slate. Local knowledge may be crucial at this stage.

4. Selection of background and marginal demand models. A key element of this approach is the use of
a coarser background model to estimate the general level of demand, and a finer marginal demand
model to identify the specific impacts of the project on that general demand. The choice of background
and marginal demand models depends on the nature of the problem and on the technical resources
available. The marginal demand model is applied to the relevant population only and should, of
course, be able to discriminate the impacts of the project and/or policy options on that population. In
selecting these models the feasibility of their implementation and use within the time and resources
framework of the study is paramount. The simplifying assumptions adopted at this stage should be
properly documented.

5. Implementation of the models and data sets. Background and marginal demand models should then
be mounted on a computer together with the data sets to be used and updated as part of the study. In
many cases it will be necessary to write short programs to convert data sets to suitable formats and to
perform the required tests and report production.

6. Application of the background and marginal demand models to the base year and their validation.
This may require some additional data collection, ideally on a small scale.

7. Application of the background and marginal demand models to forecast relevant future years. This
will require first forecasting the values of the planning variables for those years and then applying the
models with and without the project or under different policy options.

8. Evaluation. Model runs in the previous two steps should provide the indicators required for an
evaluation of the options open to decision makers. Attention should be paid to frame this evalua-
tion in terms of good local practice and to produce the indicators which decision makers consider
most meaningful.

9. Sensitivity analysis. The simplifying assumptions adopted in previous stages and the uncertainty
about the future make it necessary to test how sensitive the advice produced is to changes in the
inputs and weights adopted in the study. Budget and time constraints will usually limit the amount
of sensitivity tests that can be performed. It is often possible, however, to elicit preferences from
decision makers on what they consider to be the most important elements to be examined in these
tests. These may take the form of questions like:

Would the project still be feasible if . . . oil prices double or the discount rate is increased
by 2%?

These preferences could then be used to select sensitivity tests complementing those required by
the simplifying assumptions adopted above. This is a pragmatic methodology whose virtues and
limitations can only be assessed in practice.

De Cea et al. (1986) followed this approach to study a possible extension to the Santiago (Chile)
underground network. In outline their approach involved:

� The identification of the population of interest as that in zones with walk access to the Metro before
or after the potential extension, including mixed-mode journeys.

� The use of trip matrix estimation techniques based on traffic counts to provide background trip matrices
for both cars and public transport; use was made of an extensive set of traffic counts supplemented by
ad hoc surveys at bus stops and Metro stations.
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� The transfer of a corridor-based disaggregate mode choice model to the study area through the
recalibration of the mode-specific constants. The availability of the corridor model and suitable income
data made this possible.

� Economic, financial and environmental evaluation of the project complemented by sensitivity analysis
of key parameters.

This complete study was undertaken in four months. The cost-benefit analysis predicted a reasonable
return on investment. The extension of the Metro has now been implemented and the results apparently
confirm the accuracy of the study.

12.6 Gaming Simulation
Mathematical models do not solve any real-life transport problems: it is the interpretation of mathematical
solutions which is useful to make decisions concerning transport problems. Simplified models may
help in reducing the effort required to find a mathematical answer and in facilitating the subsequent
interpretation of this solution in relation to the real problem. We use conceptual or mental models to
understand, interpret and act in our professional life. Mental models are, in effect, a prerequisite for the
development and application of mathematical ones run on a computer.

Despite their significance and because of their character, it is difficult to examine mental models and
this often leads to quite unmanageable communication problems. Better and richer mental models in
the minds of planners and decision makers are probably as important as the use of rigorous and sound
behavioural models in the computer, if transport planning is to be improved. Given the key role played
by mental models in the use and application of mathematical ones, it seems sensible to investigate
techniques for improving the first in order to get better solutions through the second.

But how are mental models acquired, revised, rejected and enhanced? The main factors seem to be
formal and informal education, discussions and, above all, practical experience. One of the main problems
facing planning education and training is how to provide realistic experience. This is particularly acute in
the transport field where the most important consequences of a policy measure or infrastructure project
may follow only after considerable time. Besides, it is surprisingly easy to become too involved in the
details of particular techniques and lose sight of the wider process where they must fit.

The need for methods of developing a general comprehension of a system rather than detailed
information about its parts has been recognised in several fields, particularly in management and business
training. Several educational techniques have been developed to this end: case studies, role playing and
different types of exercises. Gaming simulation is a particularly attractive technique in this field. It
was originally developed for military purposes in the form of war games but since computers became
widely available it has spread successfully into management science, politics, sociology, and regional
and transport planning.

Educational games are sequential decision-making exercises structured around an artificial environ-
ment acting as surrogate for the real world. This artificial environment may be just a set of instructions and
graphical material or may involve an elaborate simulation exercise using computer programs, physical
models and animated displays. As in real life, games usually have a competitive dimension. This feature
can be incorporated in at least two forms: by dividing the players into teams with partially conflicting
objectives (e.g. car owners, environmental protection officers, local residents, etc.) or, by facing each
player with a computer model of a complex system plus a common set of initial conditions and final
objective. Key indicators can then be used to assess the performance of each player in achieving these
objectives. The first approach stresses the need for negotiation and compromise whilst the second em-
phasises efficiency in pursuing objectives. Both methods enhance understanding of complex systems and
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support the development of learning skills. In both cases the success of players depends on their ability
to learn from the outcome of their own decisions that of others and from the effect of unexpected events
like a strike or fuel price increases. The final objective of any gaming-simulation exercise is augmenting
the ability to learn through the enrichment of the conceptual model every player has of a system. For a
good background on gaming-simulation design and experience the reader is directed to Greenblat and
Duke (1975) or Taylor (1971), and in the transport field to Ortúzar and Willumsen (1978).

A number of gaming simulations have been developed specifically for the transport field. Some of these
cover problems like negotiating the alignment for a new road or planning new public-transport services.
Probably the most widely used game in the urban transport management field is GUTS (Willumsen and
Ortúzar 1985). The original objectives for this computer-based game were:

� The game should treat the transport sector of an urban area as a system, i.e. it should highlight the
interrelations between modes, traffic management and investment decisions, and financial constraints;
therefore, the computer program contains relationships conveying these interactions.

� The game should be realistic but manageable; the most common types of investment and traffic
management decisions should be included and key financial and resource constraints be simulated.

� The model should allow for a range of alternative and even conflicting objectives to be pursued, and
consequently the program should produce not a single but multiple performance indicators; at the same
time, the information available to players should not be too different from that commonly available to
decision makers.

� The game should stress the importance of continually monitoring the performance of a trans-
port system.

� The model should allow the representation of different types of urban areas in terms of residence,
employment, car ownership, income distributions and growth rates, public-transport patronage and
related indicators.

GUTS is available as an interactive program for computers with modest memory requirements. The
model is based on a simplified, urban area with circular symmetry. Two modes of transport, car and
buses, operate freely and in competition; the user can make decisions on public-transport fares and
levels of service, the introduction of bus lanes, supplementary licence schemes, parking provision
and charges, as well as major investment projects. The program checks these decisions and runs the
model to represent one year of operation of the transport system. At the end of the run indicators on flow
levels, speeds, modal split, travel time and expenditure by person type are produced, and the financial
performance of the bus company is reported. Changes in accessibility levels and the impact of new
investment are also simulated, as are unexpected events inducing changes to the cost structure of the
transport modes operating in the city. The symmetry condition imposed on the city simplifies the model
with advantages in terms of speeding up the learning curve of the user and enhancing running time in
the computer.

Games like GUTS can enhance transport planning in a number of ways. First, in their normal training-
tool mode, they can be used to educate new recruits to a team and to develop a common language
throughout an office. Second, a model of this type may be seen as a simple ‘sketch planning’ tool
valuable in discussing broad policy options and particular conceptions of decision makers. GUTS, and
similar programs, are no substitute for full-scale models but may help bridge the gap between broad
strategies and specific modelling studies. A third use of tools of this kind is in demonstrating the
advantages and limitations of mathematical models. The extremes of total rejection of transport models
or their blind acceptance are still present in some political and planning quarters. The evident simplicity
of a gaming-simulation exercise combined with its capacity to represent interactions between modes and
decisions and decision makers, provide a good example of what the formal modelling approach can offer.
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The use and subsequent critique of the game by politicians and planners would help them to understand
each other’s activities and interests better.

Exercises
12.1 The network in Figure 12.5 represents a small area with two origins A and B and two destinations

Y and Z.

Figure 12.5 Simple network for Exercise 12.1

Traffic counts have been made of the car flows using the network with the following results:

Link Flow
M–N 400
N–P 700
P–Q 500

(a) Use an entropy-maximising model to estimate a trip matrix from the information above.
Assume a suitable prior matrix for this problem if necessary. A 3% error in the modelled flow
is considered acceptable for this question.

(b) Repeat the calculations above but assuming the prior matrix is given by:

Y Z

A 100 50
B 80 200

12.2 The network in Figure 12.6 represents links connecting two origins A and B to two destinations C
and D in a developing country. The populations of the two origins are 10 000 and 20 000 inhabitants
respectively and the markets held at C and D are equally attractive in terms of size and prices. The
link distances (in km) are indicated in the figure.

Figure 12.6 Simple network for Exercise 12.2
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Person counts have been obtained for three links as follows:

Link Persons/day
A – X 3400
X – Y 11 900
Y – D 4100

Calibrate a model of the type

Tij = bPi D j d
−n
ij∑

j

D j d
−n
ij

where Pi is the population of zone i, Dj is the attractiveness index for the market in zone j, and dij

is the travel distance between i and j. Try at least two values for the power n, including n = 2 and
n = 2.5.

12.3 Three villages, A, B and C, are connected by a navigable river in an underdeveloped country.
Village A has a population of 1000 inhabitants; village B is 30 km downstream of A and has a
population of 2000; village C is 10 km down-stream of B and has a population of 300 inhabitants.
The value of the goods exchanged in each village per day is 500, 600 and 600 pesos respectively.

Two observers have spent some time making directional counts of passengers travelling in boats
along the river with the following results:

River section Passengers per half day
A – B 45
B – A 60
B – C 360
C – B 560

(a) Calibrate a gravity model of the form suggested in Exercise 12.2, where Dj is replaced by the
population of village j. Use n = 2.0.

(b) Calibrate a similar model but replace Dj by the value of the goods exchanged in each village
per day.

(c) Which model do you think is best? Why?
12.4 The elasticity of the demand for buses to the fare is typically acknowledged to be in the region of

−0.3. The average trip maker between zone A and the centre of town (CBD) currently faces a bus
fare of $2 per trip; the bus share of all trips between A and the CBD is 60%, other trips use either
car or underground.

If the total number of trips between both zones is 2,000 estimate the loss in patronage of the
buses if the fare is raised to $3 per trip, all other things being equal, using the incremental logit
method. Compare your result with the more crude elasticity calculation; discuss your findings (Hint:
estimate the parameter θ c from the data given the simple expression for the logit direct elasticity).
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13
Freight Demand Models

13.1 Importance
Most of this book has concentrated on demand modelling for passengers, with a strong emphasis on
urban problems. However, freight movements, and in particular road haulage, are an important source of
congestion and other traffic problems. The noise and nuisance generated by heavy lorries, the problems
created by on-street loading and unloading of goods vehicles to serve shops and premises, and the usual
complaint about lorries taking up a good deal of the capacity of inter-urban roads are only some of the
problems associated with this type of traffic.

Unfortunately, in urban areas the policy options available to influence road haulage are very limited.
They are mainly controls on loading/unloading, on the size of vehicles allowed in certain areas (lorry
routeing), special lorry charges, the provision of major freight interchanges, the encouragement of rear
access to premises and improved layouts at new developments.

Freight demand modelling may play a particularly important role in developing countries where the
efforts to increase exports and to gain access to underdeveloped areas are even more urgent. Facilitating
the movement of goods in these cases is likely to have a major impact on economic development.
Moreover, the competition between road and rail in some of these countries is a key issue in resource
allocation for investment and maintenance.

In the case of inter-urban and international movements there is greater scope for policies to influence
freight mode choice and to regulate competition between rail and road. Improved allocation of road user
charges and targeting subsidies to key rail or road services, are also an important policy option. The
design of these tools may require more refined modelling efforts than those used in urban studies.

One might expect the choices made for freight movements should follow economic rationality alone:
minimise a combination travel times and costs appropriate to the value of the goods being transported.
In this case the “value of the goods” is not only how much they cost but what are the implications of
their delayed or early arrival in terms of storage costs and downstream manufacturing/sales delayed.
However, an observation of real flows finds many examples where this economic rationality seems to be
difficult to interpret or it is much more subtle and complex than we would expect: moving bottled water
all across the world, for example.

One can envisage the complexity of freight movements as the result of four layers of decision and
activities. The first layer deals with decisions on productions, destinations, type of product, volume and
trade relationships: who produces what, in what quantities and for what intermediate or final consumer.
The second layer deals with logistics: decisions on the use and location of inventories and supply chain

Modelling Transport, Fourth Edition. Juan de Dios Ortúzar and Luis G. Willumsen.
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management, for example Just-in-Time contracts and lean manufacturing. The third layer of activities
deals with the choice of transport modes, vehicles and multi-modal facilities to deliver the goods
according to the previous decisions. Finally, the fourth layer specifies the (multi-modal) transport route
followed to reach each particular destination. The actual route chosen may be relatively simple in the
case of road haulage but it will be more complex when routeing containers or Intermodal Terminal Units
(ITUs) on a rail network, unless there are enough to make up a full trainload.

Attention to each of these layers will depend on the scope and geography of each study. Urban
studies will probably focus mostly on the fourth layer and consider the upper three more or less given
and identifiable through relatively conventional data collection surveys. Future conditions may imply
changes in both route availability and the location of origins and destinations of movements thus focusing
on the first and fourth layers.

Regional and international studies will tend to cover the four layers with perhaps a simplified approach
at modelling changes in logistic decision making. Trade flows, mode and route choice are likely to be
significant focus of attention; data collection and processing will look deeper into these issues.

Given these facts, it appears surprising that much less research has been undertaken on modelling
this type of movement than the effort allocated to passenger demand. Why would this be the case? We
believe there are several reasons for this:

� There are many aspects of freight demand that make it more difficult to model than passenger
movements; some of these are discussed below.

� For some time urban congestion has been highest in the political agenda of most industrialised countries
and in this field passenger movements play a more important role than freight.

� The movement of freight involves more actors than the movement of passengers; we have the industrial
firm or firms sending and receiving the goods, the shippers organising the consignment and modes,
the carrier(s) undertaking the movement and several others running transhipment, storage and custom
facilities. In some cases two or more of these may coincide, for example in own-account operations,
but there is always scope for conflicting objectives which are difficult to model in detail in practice.

� Recent trends in freight research have emphasised the role it plays in the overall production process,
inventory control and management of stocks. These trends are a departure from more traditional
passenger modelling techniques and share little in common (see Regan and Garrido 2002).

This chapter summarises approaches to freight demand modelling. It starts with a discussion of the
main difficulties associated with modelling freight movements. It then presents what is probably the most
traditional approach to the problem, which is to adapt the conventional four-stage aggregate demand
model to the case of commodities. Extensions of the disaggregate approach to freight demand are also
outlined. The section closes with some practical considerations for the implementation of these ideas.
The interested reader is directed to the classic book by Harker (1987) for further details.

13.2 Factors Affecting Goods Movements
As in the case of passenger demand, it is useful to consider first the factors that one would expect to
influence freight movements. The following is not an exhaustive list but covers the most important ones.

� Location factors; freight is always a derived demand and usually part of an industrial process. Therefore,
the location of sources for raw materials and other inputs to a production process as well as the location
of intermediate and final markets for their products, will determine the levels of freight movements
involved as well as their origins and destinations.

� The range of products needed and produced is very high, much greater than even the most exaggerated
or detailed segmentation of travel demand by person types and journey purposes. A given demand for



P1: TIX/XYZ P2: ABC

JWST054-13 JWST054-Ortuzar January 29, 2011 10:42 Printer Name: Yet to Come

Freight Demand Models 463

bolts cannot be satisfied by providing cashew nuts. There will be very many commodity matrices in
any study of freight demand.

� Physical factors. The characteristics and nature of raw materials and end products influences the way
in which they can be transported: in bulk, packaged in light vans, in very secure vehicles if the products
are of high value, in refrigerated containers if they are perishable. There is a greater variety, therefore,
of vehicle types to match commodity classes than in the case of passenger transport.

� Operational factors. The size of the firm, its policy for distribution channels, its geographical dispersion
and so on, strongly influence the possible use of different modes and shipping strategies.

� Geographical factors. The location and density of population may influence the distribution of
end products.

� Dynamic factors. Seasonal variations in demand and changes in consumers’ tastes play an important
role in changing goods’ movement patterns.

� Pricing factors. As opposed to the case of passenger demand, prices are not, in general, published
material because they are much more flexible and subject to negotiations and bargaining power.

13.3 Pricing Freight Services
It is usually quite difficult for the analyst to obtain reliable data about freight charges. For example, in
Europe both transport firms and users try to keep them confidential so as to strengthen their position
when it comes to renegotiate them. The factors affecting charges or cost imputations, and therefore mode
choice, are thought to be:

� The length of the supply contracts. A better price can be obtained if the shipper guarantees demand for
one or more years rather than just for one single shipment. The existence of price adjustment clauses
helps to extend the lengths of contracts.

� The extent of volume discounts. Following from the above, a contract guaranteeing steady high-volume
shipments is likely to benefit from a lower price.

� The importance of terminal facilities. The availability of a rail terminal nearby, or even at the firm,
would certainly reduce the cost of shipping by rail; its absence would increase the likelihood of using
road transport all the way, without even considering rail or water transport.

� The use of own-account operations, especially road haulage. Some firms prefer this type of operation
for reasons other than transport (image, reliability, integration). These firms will tend to extend the use
of own-account operation for marginal products rather than consider a completely new mode.

� Some modes are more suited to transport particular commodities. For example, pipelines are ideal for
bulk liquids and some suspensions and merry-go-round (non-stop) trains are very suited for movements
from coal-mines to power stations. This closer fit of supply characteristics to demand would certainly
influence the charges made for those products.

� Hierarchical transport systems. For example, in the case of petroleum products, use of large tankers
to refineries, then small tankers and pipelines to major terminals, rail to other terminals, and lorries
to petrol stations and final users. These structures are difficult to modify in the short run as they have
evolved over a long period and are well established; thus, their pricing mechanisms may be very
difficult to change.

13.4 Data Collection for Freight Studies
As we have seen, the business of moving freight is more complex than that of passengers (see Figure
13.1). Data collection must, therefore, be planned taking into account the key features of goods transport
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Sender (consignee)
Scans and selects
freight forwarder on
the basis of reliability,
speed, price, etc.

Influenced by sources
and destinations, type
of goods and contract

Influenced by supply of
services, networks, vehicle

types

Freight forwarder
Organises shipping
process with carriers,
insurance, etc.

Operators/carriers
Provides trains, ships,
trucks and manpower
and routes

Drivers
Actual route taken may
be chosen on the road

Receiver (consignee)
Getting the goods

Figure 13.1 Actors and processes in freight movements
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to be captured in a particular region or city. What follows is a simplified version of the key participants
influencing choices in the movement of goods (Friedrich et al. 2003):

� The sender (shipper, consignor) who requires delivery of its goods to a particular destination and puts
these goods-units in the care of others (freight forwarder, carrier) to be delivered to a consignee. The
sender will decide on a freight forwarder based on reliability, speed of delivery, price and other factors.

� The freight forwarder who organises the shipping process. This firm will provide and schedule uni-
or inter-modal transport chains for transporting the goods. To deliver these services, the firm may
subcontract carriers or provide an own carrier service.

� The carrier (or carriers) is responsible for the transporting of goods. The carrier will provide the ships,
trains and/or vehicles, sometimes in combination, required for the transport operation along a section
of the transport chain. The vehicle-units operate on a network connecting origin, hubs and destination.
The carrier may specify a route to be followed by vehicle-units.

� The driver guides the vehicle/transport unit along a predefined route. In the case of road transport the
driver may decide during the trip to change the route between two points of the journey.

� The consignee is entitled to take delivery of the goods.

Additional actors appear at different stages in this process, for example insurance companies, quality
assurance inspectors, customs officials and facilities and intermediate storage units. Some of these
services are sometimes provided by shippers or carriers. These complexities are some of the reasons why
transport modelling for freight is so drawn-out; it is often difficult to identify exactly who takes actual
decisions on mode-combinations or routes and therefore difficult to collect data and develop choice
models, aggregate or otherwise.

Whenever goods are transferred from one of these participants to another, a small amount of data is
generated and stored in some way. As more of this data is collected and stored electronically it should
be easier, in principle, to access and process it. Commercial confidentiality, however, continues to make
this task very difficult.

For most urban transport studies it may be enough to collect information at roadside interview sites
on the type of vehicle used, the goods transported and their origin and destination. The delivery of goods
in urban areas it is often made more complex by the use of distribution/collection tours with multiple
stops. This information is difficult to collect at the roadside because of time constraints. This is why it
is customary to collect additional information from carriers and from major generators and attractors of
goods movements.

In summary, for urban studies the main sources of information would be:

� asking drivers on the road;
� identifying specific carriers (couriers, delivery companies, refuse collectors) and interviewing them

about tours and schedules;
� sometimes a mail-back survey may offer a moderate degree of success.

One must bear in mind that in rapidly growing cities construction work provides a significant source
and destination of freight movements, including empty vehicles. This is problematic for modelling
purposes as future construction activity is almost certainly going to take place in different, and difficult
to predict, locations than on the base year.

For regional and international freight studies the movements of interest are somewhat simpler. How-
ever, the logistic and multi-modal aspects of decision making is taking a more important role in defining
modes, routes and timings and these may be more difficult to model both on the base year and in the future.
Additional information is available from waybills and other instruments that accompany consignments
and this and may be accessible under favourable circumstances; alas, this is seldom the case.
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13.5 Aggregate Freight Demand Modelling
The great majority of freight demand models applied in practice have been of the aggregate kind (see for
example Van Es 1982; Friesz et al. 1983; Harker 1985). These applications follow the classic four-stage
model with some adaptations specific to freight. A typical example of this approach is the work of
Kim and Hinkle (1982), who used the American Urban Transport Planning Suite (UTPS) with some
adaptations to model state-wide freight movements. In outline this approach involves:

� Estimation of freight generations and attractions by zone.
� Distribution of generated volumes to satisfy ‘trip-end’ generation and attraction constraints. The usual

methods for this task are linear programming or use of a gravity model.
� Assignment of origin-destination movements to modes and routes.

We shall look at these and other factors in some detail below.

13.5.1 Freight Generations and Attractions

The techniques used to obtain total trip ends depend on the scope of the study, the level of aggregation
originally envisaged and on the type of products considered:

� Direct survey of demand and supply may be undertaken for major flows for some homogeneous
products: sugar, petroleum products, iron ore, coal, cement, fertilisers, grains, etc. These may be
forecast using industry or sector studies. This approach is usable for inter-urban movements but is not
recommended for urban problems.

� The use of macroeconomic models, for example of the input-output nature, based on regional rather
than national data.

� Growth-factor methods, such as those discussed in Chapter 4, are often used in forecasting future
trip ends.

� Zonal multiple linear regression is often used to obtain more aggregate measures of freight generations
and attractions, in particular in urban areas.

� Demand may be associated with warehouse capacity or with total shopping area at each zone (urban
studies) rather than with industrial development.

13.5.2 Distribution Models

Many urban studies simply apply growth-factor methods to observed goods movement matrices, as
discussed in Chapter 5. However, many inter-urban freight transport studies have used synthetic aggregate
models, even of the direct-demand type. The two aggregate techniques most used in this area are briefly
discussed here: a gravity model and a linear programming approach.

In the case of the gravity model it is relatively simple to re-interpret its functional form as:

T k
ij = A k

i B k
j O k

i D k
j exp

(−β kC k
ij

)
(13.1)

where k is a commodity type index; T k
ij are tonnes of product k moved from i to j; Ak

i , Bk
j are balancing

factors with their usual interpretation; Ok
i , Dk

j are supply and demand for product k at zone i (or j); βk

are calibration parameters, one per product k; and Ck
ij are generalised transport costs per tonne of product

k between zones i and j.
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The idea of using a generalised cost function formulation for freight demand is apparently due to
Kresge and Roberts (1971). This can be interpreted as follows (omitting superscript k for simplicity):

Cij = fij + b1sij + b2σ sij + b3wij + b4 pij (13.2)

where fij is the out-of-pocket charge for using a service from i to j; sij is door-to-door travel time between
i and j; σ sij is the variability of travel time s; wij is the waiting time or delay from request for service to
actual delivery – it may be a long time for maritime transport, for example, and pij is the probability of
loss or damage to goods in transit.

All of these depend on the mode used and to some extent on the commodity being transported.
The constants bn are, in general, proportional to the value of the goods. For example, in the case of
the probability of loss the cost is at least the goods value, but probably more, due to penalties for
delays in delivery. In the case of delay, variability of delay and transit times, the values of bn are at
least proportional to those of the goods, essentially through increased inventory costs. Modern industrial
production techniques, such as those emphasising ‘just-in-time’ deliveries, try to minimise these elements
together with stocking costs. The minimum for b1 to b3 is the cost of the interest rate applied to the value
of the goods during the time period considered.

In general terms, it is important to consider the relative contribution of transport (generalised) costs
to the final cost of a commodity. For example, in the case of wheat, coal, cement and bricks, transport
costs are a main element in their final price; however, in the case of convenience foods, consumer goods,
chocolates or electronics, transport costs have a low (direct) contribution to price.

A second approach to distribution modelling is linear programming (LP). This usually takes the
form of a minimisation program: minimise total haulage costs (in money terms, very rarely in terms of
generalised costs), subject to supply and demand constraints.

Minimise Z =
∑

ij

TijCij (13.3)

subject to:
∑

i

Tij = D j (13.4)

∑

j

Tij = Oi (13.5)

This is the well-known Hitchcock’s transportation problem which can be solved efficiently in a very
simple way. More advanced formulations may involve non-linear costs and perhaps more elaborate
constraints involving a time element and minimum shipment sizes.

This minimisation problem makes some sense from the point of view of a large firm trying to satisfy its
customers at a minimum cost. Alternatively, if an industry has several plants with different productions,
capacities and costs, the objective function may be to maximise profits or to minimise total cost at
the market place. From the point of view of modelling, the LP approach has a better chance of being
realistic when:

� the industry is concentrated in a few firms;
� there are low value goods and relatively high transport costs;
� there are few demand points (zones), perhaps a monopsony (a single buyer).

However, it must be recognised that although LP may be a good model for the behaviour of a single
client or industrial firm, it cannot hope to represent aggregate behaviour for various commodities. The
LP solution will tend to be too sparse, with particular destinations being served only by certain origins.
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On the other hand, the gravity model is quite flexible. By changing the value of β it is possible to vary
the relative importance of cost compared with supply and demand constraints.

The formal relationship between LP and gravity models has been explored by Evans (1973). She has
shown that in the limit, β = 0 in (13.1) will produce a matrix of movements where transport costs play
no role (in fact this is Furness’s solution to the growth-factor problem); whereas a very large value for
β will generate a solution closer to an LP model, i.e. where transport costs are dominant (in the limit
β = ∞ will reproduce the LP solution). Therefore, it is possible to use the gravity model formulation
to represent the whole range of client behaviour for destination choice, from that almost indifferent to
transport costs (electronics?) to the behaviour expected in the case of low-cost, high-bulk commodities
like cement, sand, and so on, where transport costs are paramount.

13.5.3 Mode Choice

This is essentially a shipper’s decision as to which carrier should be used to deliver the goods to their
destination. When modelled at this very aggregate level, modal choice is often treated using a Multinomial
Logit (MNL) formulation based on generalised costs, as described above. This may turn out to be very
approximate because the information can only capture those elements of mode choice incorporated in
the generalised costs concept above.

These shippers’ decisions are, of course, dependent on the rates charged by carriers, which in turn
depend on the volumes they move between each O–D pair. As the size of many consignments is significant
in terms of the impact on carriers’ rates, there are interactions inside mode choice which go beyond that
encountered between passengers and public-transport operators. This problem is often ignored at high
levels of aggregation.

In the case of urban freight movements the problem of mode choice is trivial; the coverage provided
by non-road modes is extremely limited.

13.5.4 Assignment

In the case of road haulage this is now a carrier’s decision sometimes modulated by the driver of each
vehicle: the choice of the best route to take the goods from origin to destination. To some extent this is the
least difficult of the problems. The use of capacity restraint is probably relevant to most urban situations.
In the case of inter-urban movements, on the other hand, it may be sufficient to use a stochastic assignment
model. However, it may be argued that different types of vehicles must be modelled in different ways; for
example, light vans may be much less sensitive to the hilliness of routes than heavy lorries; also, vehicles
carrying perishable goods might give greater priority to minimising time than those carrying, say, bulk
coal. The use of multi-class assignment methods may then be warranted to cope with this variety of
cost concepts.

Investigations into road haulage route choice have sometimes revealed somewhat unexpected influ-
ences on route choice. For example, some newly built toll roads sometimes lack rest, food and refuelling
facilities thus making them unattractive routes for long distance drivers. Lorry drivers often prefer to
drive at night to avoid the worst of congestion but they are sometimes limited in their choice by deliveries
on very narrow time windows.

In the case of rail, trains are sometimes scheduled according to a semi-variable timetable (Roll-on
Roll-off trains, mail). In these cases, the algorithms from timetable based public transport assignment
can also be applied to rail freight assignment. More often, freight trains operate in response to demand.
In this case, a timetable does not exist, not even a line network with headways or frequencies. What is
then required is a train formation algorithm to build the train journeys and their implied timetable. This
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may be an inappropriate level of detail in a regional study and in that case a short or multi path search
algorithm may be appropriate.

The use of a shortest path algorithm is likely to require incremental path searches, where the links
already used in the previous steps are penalised, in order to prefer routes using other links. This would
be important when it is necessary to distinguish different train types (slow local trains, faster direct
trains) and contain realistic penalties for shunting operations at transfer locations. It is important to
remember that marshalling yards and flat crossings impose capacity constraints to route choice and
assignment models.

Intermodal terminals have gained significant market share in the last two decades. They are usually
conceived as interconnected by rail corridors although shipping and road haulage also provide services.
Intermodal Terminal Units are transferred from one mode to another using gantry cranes and front lifters.
Intermodal terminals are often perceived as a set of platforms served by equipment and serving a user
catchment area via road and rail networks.

Intermodal assignment requires a multimodal network model where many routes may be used for a
specific pair of origins and destinations. A multi-modal route tree concatenates uni-modal route legs into
intermodal routes. A route leg describes the part of a journey between two transfer points which does
not require a transfer between vehicles. An intermodal freight assignment based on a route tree would
consist of the following steps (Friedrich et al. 2003):

� Generation of direct route legs between all origins and destinations using a uni-modal search.
� Generation of route legs between transfer points using a uni-modal search.
� Construction of route tree.
� Calculation of generalised costs for all routes including transfer costs.
� Distribution of demand onto routes.

13.5.5 Equilibrium

As in the case of passenger demand, the problem of system or market equilibrium pervades the whole
modelling exercise but the techniques to achieve it are still under development. One of the early formu-
lations of this problem is due to Friesz et al. (1983) who developed a freight network equilibrium model
(FNEM). This model considers explicitly the decisions of both shippers and carriers for an inter-modal
freight network with non-linear costs and delay functions that vary with commodity volumes.

FNEM treats shippers and carriers sequentially; shippers are assumed to be user optimisers trying
to minimise the delivered price of the commodities they send, and therefore Wardrop’s first principle
is used to replicate their behaviour. This sub-model is an elastic transport demand model expressed as
a mathematical programming problem solvable by the usual extension to the Frank–Wolfe algorithm,
as discussed in Chapter 11. The assignment to carriers is performed through the use of a ‘perceived’
network including only the O–D pairs, transhipment nodes, and associated links considered by shippers
in their decisions.

The carrier sub-model uses a full description of the actual transportation networks. Carriers are
assumed to be operating-cost minimisers and are modelled using Wardrop’s second principle. The flow
patterns of individual carriers are aggregated to obtain global network flows.

A similar approach was formulated by Moavenzadeh et al. (1983) for planning intercity transport
demand in Egypt. In this case the approach is based on the simultaneous transportation equilibrium
model (STEM) (Safwat and Magnanti 1988).

At a higher level of analysis, it may well be that the macroeconomic models used to generate the
total demand and supply levels, and in some cases the matrix of movements, use transport costs which
are inconsistent with those generated by other parts of the model. Consequently, when such models
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are employed sequentially with a detailed freight network model, the two may well fail to converge to
stable solutions.

Harker (1985) formulated a model called the generalised spatial price equilibrium model (GSPEM)
which ties together the concepts of spatial process and shipper-carrier equilibrium to simultan-
eously predict:

� the production and consumption of goods;
� the shippers’ routeing of freight traffic; and
� the freight rates.

A variant of the Frank–Wolfe algorithm was developed to solve a particular implementation of this
problem and it was applied to a large-scale problem (with approximately 3560 nodes and 14 600 arcs)
concerning the US coal economy.

Example 13.1 Three types of aggregate models were estimated by Tamin and Willumsen (1992) for
the island of Bali, Indonesia: a gravity (GR), an intervening opportunities (OP) and a combined gravity-
opportunities (GO) model. All these models were estimated with five different types of commodities
but using traffic counts alone. The resulting freight matrices were then compared with those observed
in a major survey of the island. It was found that although the GO model performed slightly better than
the pure gravity model, the gain in accuracy did not compensate the greater computational effort. The
GR model calibrated in this way was capable of discriminating between the five groups of commodities
obtaining a different β value for each. This model was far superior to the simple application of the
Furness growth factor method. For more details see Tamin and Willumsen (1992).

13.6 Disaggregate Approaches
Since discrete choice models were developed and applied to model passenger demand, the idea of
extending them to cover freight movements also gained currency; see for example Gray (1982) and Van
Es (1982). In the case of freight, the demand for transport is seen as that for a number of individual
consignments, each with its own characteristics, for which the individual shipper has to take a number of
transport-related decisions. Every decision is seen as a choice made from a discrete set of alternatives.
There is a number of related choices to be made in each case, e.g. to transport x tonnes at time t of
commodity k by transport mode m from origin i to destination j. The carrier would then have to choose
the route to perform this task.

The general flexibility of discrete choice modelling permits the construction of very general utility
functions for these types of choices. They can include, for example:

� the characteristics of the transport services, such as tariffs, times, reliability, damage and loss, minimum
consignment, and so on;

� the attributes of the goods to be transported, such as type of product, volume/weight ratio, value/weight
ratio, if the good is perishable, inventory system and ownership;

� the characteristics of the market, such as its relative prices, firm size, availability of loading/unloading
facilities, general infrastructure facilities;

� the attributes of the shipping firm, such as its production level, sale prices, plant location, available
infrastructure facilities, storage policy, and so on.

This type of approach has found limited application on a national scale. The main reasons for this are
the more limited understanding of all the elements involved in developing these utility functions and the
very demanding data-collection efforts required to estimate this type of model.
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However, its application to particular sub-markets or commodities may provide very valuable insights
for policy formulation. For example, Ortúzar (1989) was able to use stated-preference data to examine
the question of offering a new service (refrigerated containers) for international maritime cargo. This
type of approach has also been used by Fowkes and Tweddle (2000). Efforts in this direction are likely
to prove fruitful from both research and practical viewpoints.

13.7 Some Practical Issues
Despite efforts in recent years, freight demand modelling is still less advanced than passenger demand
modelling approaches. The leading edge of research and development seems to have been passenger
demand forecasting, with freight following its footsteps trying to adapt models to its particular needs.

The problems of data collection may be compounded in the case of freight. For example, data collection
for disaggregate approaches suffers from confidentiality and reliability problems. Even collecting data for
aggregate modelling represents a much greater effort than that for passenger movements: great dispersion
of firms, important daily and seasonal variations, and so on.

Opportunities for extensive roadside interviews are very limited, except at points where long delays
are inevitable (waiting for a ferry, for example). In some cases, such as international travel, it may be
advantageous to collate data from customs or a collection of waybills.

Because simplified models use low-cost and regularly collected data (traffic counts), it may be possible
to run them often enough to update forecasts and provide corrective measures for plans, i.e. they offer
opportunities for implementing a continuous planning approach.

In the case of urban freight modelling very simple approaches are normally followed. They are usually
based on models of vehicle movements disregarding the commodities shifted, the type of locations served
and the underlying economic activities that originate this demand. It is often considered sufficient to
obtain a commercial-vehicle matrix using roadside interviews (at cordon and screen-line points) and
then to gross it up to the planning horizon by means of growth-factor methods.

Some software packages offer some specialised facilities to solve relatively simple logistic problems
like the planning of tours and routes. Others offer more sophisticated modules to optimise the formation of
trains, routeing via hubs, using multi-modal networks taking advantage of intermediate storage facilities
at different costs.
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14
Activity Based Models

14.1 Introduction
Travel has always been seen as ‘derived demand’. We rarely travel just for the sake of travelling. We
do it in order to satisfy a particular need or requirement at a different location. We can perceive life
as a sequence of activities undertaken at different locations, over a period of a day or even week. To
perform these activities we need to make trips; these, in turn, are linked by the sequence of activities
over time.

The conventional trip-based approach, exemplified in the four stage model, has produced some sound
transport systems analyses, with travel demand and network performance procedures determining flows
that tend toward equilibrium with input from land use and transport supply. These models can be entirely
trip based, or more likely today, based on the estimation of Productions and Attractions and simple tours
to be modelled as such until the assignment stage which is entirely trip based. The use of Productions
and Attractions can be seen as a simplified way of handling the link between Travel and Activities (the
reason why we travel between two points).

Mitchell and Rapkin (1954) established quite early the link between travel and activities and called
for a comprehensive framework and inquiries into travel behaviour. For a number of reasons these ideas
were not taken forward at the time, at least partially because it was difficult to operationalise them for
practical planning purposes.

Many authors have contributed to the basic thinking on ‘activity analysis’. Among them, one must men-
tion the contribution from Hägerstrand (1970) and Jones (1979). Hägerstrand proposed a time–geographic
approach that delineated systems of constraints on activity participation in time and space. The first com-
prehensive study of activities and travel behaviour was led by Peter Jones at the Transport Studies Unit
at Oxford, where the approach was defined and empirically tested, and where initial attempts to model
complex travel behaviour were first completed.

Activities take place in space and to reach the desired location people must travel. Looking at trips
independently misses some of the behavioural richness of linking activities in different locations and
with different time windows or constraints. Some activities can be re-scheduled in time (postponing a trip
to the gym) but only within constraints (gym opening hours). Others, like work or school attendance, are
more difficult if not impossible to shift. Moreover, some activities may be re-scheduled and re-assigned
to different individuals in the household and then to a different day of a week; for example, undertaking
a main shopping trip for groceries. It is clear that, at least in principle, getting a better understanding of
how people organise activities and the tours that are associated with them, must provide a more solid
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basis for travel demand modelling. This chapter explores how much of that understanding of activities
and their schedules can actually be incorporated in operational models and what approaches can be
followed to achieve this.

In what follows, we address first the issue of tours in greater depth looking also at the activities they link.
We then look at activities and how we can model the complex interactions within a household that help
schedule them and therefore generate trips. The next section identifies the econometric structures than
can be used to represent these scheduling processes. A key element in Activity Based Modelling (ABM)
is to synthesise detailed populations for both the base and future years. We then discuss approaches to
model the daily schedule of activities of members of that population and the downstream tours and trips
that result. Finally, we discuss some general points about the approach.

14.2 Activities, Tours and Trips
It is useful to define the key terms in this discussion before advancing further. In this chapter we will
consider the following concepts:

� An activity is a continuous interaction with the physical environment, a service or person, within the
same socio-spatial environment, which is relevant to the sample/observation unit. It includes any pure
idle times before or during the activity (e.g. waiting at a doctor’s surgery).

� A stage is a continuous movement using one mode of transport, more precisely one vehicle. It includes
any pure waiting (idle) times immediately before or during that movement (e.g. waiting for a bus,
searching for a parking space and making parking manoeuvres).

� A trip is a continuous sequence of stages between two activities (a trip can have only one stage, for
example a car trip, or more as in a multi-mode trip).

� A tour is a sequence of trips starting and ending at the same location; a trip chain is the same as a tour
but it may not end at the same location.

� A trip purpose is defined by the most important activity undertaken at one of the ends of the trip.

Tours may be classified by length and by their ‘most relevant’ activity, for example: Home Based
Tours, Business Based Tours, etc. Consider, for example, an urban area where a classic Production
Attraction model is using the following trip purposes:

� HBW (Home Based Work) that includes the journey from work back home;
� HBEd (Home Based Education), including the journey back home;
� HBO (Home Based Other), including shopping, leisure, etc.;
� NHB (Non Home-Based Business);
� NHO (Non Home-Based Other).

Figure 14.1 illustrates the concepts and distinctions between Activities, Trips, Tours, and Purposes.
The diagram identifies four typical individuals (A to D) that can undertake six different (aggregated)
activities at Home, Work (Factory and Office), Education (School), Shopping and Leisure (Restaurant).

In this diagram, Person A undertakes one tour visiting School, Factory, Shopping mall and then back
home. Person A may have taken a child (Person E, not shown) to school and then proceeded to work. In
a classic model this tour would appear as four trips, one HBEd (or Escort), one NHB, and two NHOs.
Depending on how the data was collected and processed the first two might have been condensed into
one HBW trip.
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Figure 14.1 Daily activities, tours, trips and purposes

Person B has undertaken also one tour with three trips, HBW, NHO and HBO. A classic model would
have captured this sequence a bit better in practice. Person C undertakes two tours. The first is a simple
one to work and back and the second is also a simple tour with two HBO trips. These two tours would
be perfectly picked up in classical models as two HBW and two HBO trips.

The longest tour is made by Person D who goes to work in an office, visits a factory, goes shopping
and finally attends an evening course before returning home. Despite the complexity of the tour, a good
classic model would have picked up these trips but not their interrelationships.

The choice of mode is, of course, also related to tour structure and length. If car driver is chosen for the
first trip in a tour it is very likely that this will remain the choice for the other legs. A possible exception
is for short tours from work (not shown above) where public transport could be chosen for convenience,
speed and to avoid parking problems. Similarly, if public transport is chosen for the first leg of a tour,
this is likely to remain the choice for the rest of the outing, including taxis.

The description above is appropriate to compare tours and trips but does not give enough informa-
tion about activities. This is explored further in Figure 14.2 constructed on the basis of the data for
Person C.

Person C starts from Leisure at home (although sleep could be considered essential maintenance at
home, 8 hours minimum plus breakfast) and then travels to Work; this activity has a strict constraint as
starting time but is more flexible on leaving the place of work. C returns home for some Maintenance
(rest) and then goes out for a meal at a restaurant that, in this case, has a somewhat flexible start and end
as an activity (no strict reservation needed). The role of different time-constraints for the activities just
illustrated is made more complex as C is unlikely to want to eat in a restaurant alone. He may wish to
coordinate with the spouse for this meal, starting either at home or from a different location.
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Figure 14.2 Trips, tours and activities of Person C

In order to capture the behavioural richness of activities we must look at the household and the mutual
interaction between trips, tours and activities. We should also consider the following essential aspects of
activities and behaviour:

� Travel is derived from the need to change locations between successive activities.
� Individual activities are components of more significant personal projects (shopping for paint con-

tributes to a plan to redecorate your home), reflect longer-term commitments (work, religious atten-
dance) or satisfy some basic physiological or psychological demand such as sleeping or enjoying the
company of friends.

� Scheduling activities involves the choice of time, duration, location and access/egress mode for the
preferred activities.

� Some activities are ‘mandatory’ (work, education attendance) and offer limited flexibility in terms
of location and duration; others are required to ‘maintain’ other activities (eating, sleeping at home,
shopping, personal business away from home); finally, some activities although discretionary are still
essential for a fulfilling life: social, recreational, entertainment.

� Individuals have monetary and time constraints (money and time budgets).
� Individuals schedule their activities in co-ordination with other members of the household or of their

social network in order to maximise satisfaction, taking into account short and long term aspirations.
� Individuals are constrained in their scheduling of activities by the resources available to them, in

particular vehicles or the availability of good public transport services.
� Individuals are further constrained by the need to be available to others at particular times and locations,

either face-to-face (presentation to client) or by phone or videoconference.
� Longer term commitments to other household members, residential locations and work/educational

places provide additional constraints to individual choices.

The task of converting these issues into a workable and reliable activity scheduling process that
can be formalised using closed form formulations or more general computer codes is a demanding
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task. This was identified a long time ago (see for example, Jones et al. 1983) but the advent of cheap
and widely available computer power has made possible a number of alternative ways of tackling
this difficulty.

Before we look into that problem we must consider how to model the individuals that will participate
in the choices of activities and tours.

14.3 Tours, Individuals and Representative Individuals
In this section we consider what should be the unit of application of the ABM: households, individuals
or ‘representative individuals’. To address this question we look first at tours and their complexity.

If the majority of trips in a metropolitan area are of the Person C and D type, a simpler treatment for
tours may be sufficient (albeit with some loss of interactions). If the type of tours represented by Persons
A and B is significant, say over 15%, then it would be important to address this issue in practice.

A recent study of travel in the Auckland (NZ) region established that overall, 70% of tours have
outward and return trips of the same purpose (and corresponding to that of the tour); 57% of tours
comprise only two (out and back) legs. For HB Work and Business multi-leg tours, the average is around
two extra legs per tour while for the HB Other purposes it is 1.3 extra legs and for Education it is just
one extra leg (these extra legs being NHB trips).

Inevitably, longer and more complex tours require additional research, time and resources. It is difficult
to make a prior decision about how many different types of tours one should attempt to model. Longer
tours are less frequently found but may be more important in the future if policies to manage congestion
are implemented: a four-leg tour satisfying three different activities contributes less to congestion than
three ‘there-and-back’ tours doing the same. Depending on the approach, not all possible tours would be
included in a model, only the most important and frequent; for example, if 95% of the tours have four
trips or less this should probably be the maximum length to model.

The next task is to identify the individuals who would be modelled to undertake these representative
tours. In a fully disaggregated approach, these individuals will result from an expansion of a random
sample representing the whole universe of travellers. Each of these individuals will have a specific set
of characteristics: gender, income, type of work, type of family, car availability, etc. In a disaggregate
approach Sample Enumeration techniques, as discussed in Chapter 9, will be used to model individuals’
choices and to apply these results to the entire population of the study area. This is a major task for the
base year (when typically a Household Survey is available) but it becomes an even more demanding task
for future forecasting years where the population has to be synthesised. Population synthesis can also be
used to replace individual addresses for Home or Work with better spread addresses and even at a more
detailed level of resolution than traffic analysis zones (TAZ). The task of fully specifying these present
and future individuals is termed ‘population synthesis’ and is discussed later in this chapter.

An intermediate approach is to identify a number of ‘homogeneous behavioural groups’ or ‘repre-
sentative individuals’, say some 20 segments of the travelling universe. Each group will have a set of
characteristics pertaining to travel behaviour but they will still be represented as based on the centroid of
a given zone and travelling to other zone centroids. Figure 14.3 illustrates idealised synthetic populations
in a zone of a study area.

Both individuals and behavioural groups will require a population synthesis procedure to generate
their number and characteristics in each zone (and sub-zone) of the study area in the future on the
basis of known land uses in each area. If the key modelling focus is tours and trips, then homogenous
behavioural groups may provide sufficient disaggregation. If the interest is on the activities and processes
that generate those tours, it is difficult to envisage the use of homogenous behavioural groups as capturing
the complexity of these interactions. In fact, one would need to model not just individuals but all the
members of a household who take part in these decisions.
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Figure 14.3 Individuals and homogenous behavioural groups in a zone

14.4 The ABM System
It is important to recognise from the outset that the ABM is only part, albeit a key one, of the complete
modelling system. For a start, ABM covers only residents in the study area. A good deal of the model
system is still aggregated, zonal based, and produces the traditional outputs that are needed for the
appraisal of projects and policies. However, because of its finer treatment of activities, long term and
short term decision making, tours and mode choice, ABM is able to address, at least in principle, a wider
range of policy instruments and behavioural responses. Figure 14.4, adapted from Bowman and Bradley
(2008), shows the ABM core and the additional components of a complete transport modelling system:

The ABM core contains the population and long- and medium-term choice simulator, and the person-
day simulator. The first one models the long term choices, like normal place of work, car ownership
and season ticket commitments. Medium-term issues involve household tasks allocated to individuals
(escort children to school, convenience shopping, etc.) The person-day simulator searches for the most
appropriate set of activities and tours required to satisfy these tasks. The main output is a list household
and person day-tours (including destination, time of travel and mode choices) that, in turn, result in a trip
list that goes into a trip aggregator where all trips are consolidated. To these resident trips one needs to add:

� External trips from outside the study area.
� Special generator trips, in particular from an airport or some other large or long distance

travel station(s).
� Commercial vehicle trips, including courier deliveries and rubbish collection.
� ‘Noise trips’, that is trips that are seldom modelled but do exist in the network: empty taxis cruising

for passengers, drivers looking for a parking space, emergency services/police vehicles, people out for
a ‘drive’, lost drivers, etc.

The combination of all these trips (except normally the ‘noise’ group) is used to build time-dependent
trip matrices which are assigned to the network to equilibrium; this results in network performance
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Figure 14.4 A modelling system with an ABM core

indicators (travel times, etc) which are fed back into the ABM core and trip consolidators mod-
ules. Accessibility information is also fed back onto the urban system to influence land use and
population attributes.

We will look now at the components of the ABM core itself.

14.5 Population Synthesis
The task of population synthesis is not exclusive to activity based models. Indeed, aggregate and
disaggregate models have a ready population with most of the relevant characteristics available for the
base year when Household Travel Survey (HTS) data is collected. However, this population needs to
be synthesised for future years based on the few properties that are actually forecast by planners, such
as: number of people per zone, perhaps income, and with some luck car ownership. Other attributes,
like distribution of household sizes, age distribution, school and university attendance, multiple vehicle
ownership and so on, need to be estimated, more often than not at the level of the representative
households in each zone. This is where the task of population synthesis comes in.

ABM that forecast the activities and travel of urban populations require this task to be undertaken at a
higher degree of disaggregation; the most important developments in population synthesisers have been
attained seeking this more recent goal. The first task is to create a synthetic population and then simulate
the behaviour of the households and persons in that population.

Population synthesis involves generating an artificial population by expanding the disaggregate sample
data to mirror known aggregate distributions of household and person variables of interest (recall the
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discussion in Chapter 9). The process normally starts by creating a base year synthetic population from
census and HTS data and then use aggregate demographic and land use forecasts to create a synthetic
population for each future year. The synthesis procedure involves two main steps. First a demographic
distribution of households is estimated for each transport zone or small census area (zone), and then a
matching sample of households is drawn from a set of household records for which nearly complete
census information is available.

The demographic distribution is defined discretely by the cartesian product of several categorical
control variables (dimensions), with each multidimensional category (or cell) defined as a unique value
combination of the one-dimensional control variables. The number of households in each cell is estimated
through an iterative proportional fitting procedure analogous to the Furness method. The proportional
fitting procedure starts with an initial joint distribution available for (aggregate) census geographical units.
It then cycles iteratively through a set of control totals, one total for each category of each control variable.

Example 14.1 Consider a sample data as shown in Table 14.1 below. There are three household sizes
and only two income levels. We know from, say, census data that there are 55 households (HH) with low
income and 35 HH with high income in that zone, and that there is a total of 20, 40 and 30 HH of each
size. Our sample is shown in the 3×2 (say from a HTS) rectangle in the middle.

Table 14.1 Sample data and marginal distributions

Income

Low High TOTAL HH Size Marginals

HH Size Adjustment

1 3.00 1.00 4.00 20
2 2.00 4.00 6.00 40
3+ 4.00 2.00 6.00 30
Total 9.00 7.00
Income Marginals 55 35

The application of a bi-proportional adjustment in this case will lead to solve this population synthesis
problem such that after three row and column iterations we get the figures in Table 14.2:

Table 14.2 Adjusted synthesised data after three iterations

Income

Low High TOTAL HH Size Marginals

HH Size Adjustment

1 0.997 16.19 3.81 20.00 20
2 1.003 16.59 23.41 40.00 40
3+ 0.998 22.17 7.83 30.00 30
Total 54.95 35.05
Income Marginals 55 35

This approach can be extended to cover other dimensions like car ownership, number of students
at households, number of persons of different type and so on. The adjustments will then be multi-
proportional. As we saw in the case of matrix adjustments in Chapter 5, a requirement for this procedure
to work is to have consistent control of marginal totals. In this case, the iterative procedure will converge
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so that all control totals are satisfied and the correlation structure of the initial joint distribution is
preserved. Control totals are taken from Census tables for the base year. For the forecast years they will
come from demographic and land use forecasts, which may be less detailed. Note that for some model
applications, the number of households in each cell may need to be rounded to an integer number.

It is also useful to note that the problem of zero cells or zero marginals that affected trip matrix
expansion or matrix estimation, may apply also to the population synthesisers. Similar corrections
would need to be applied. In estimating a year distribution, all population synthesisers control for
household income, household size and number of workers. Additional household characteristics used
as controls in some cases include age, gender of householder, presence of children, and family vs. non-
family households.

For an ABM perspective, the process of population synthesis needs entering into a second phase. In
this case we need to identify person attributes from within each household; in this case again we will be
interested in retaining the person attribute marginal totals for each zone. It is known that the derivation
of person attributes can severely affect the accuracy of the subsequent modelling.

This second phase typically includes three or four steps. The first one is to convert into integer
the non-integer values for households in zones resulting from the first phase. Second, a Monte Carlo
procedure is typically employed to draw the correct number of households of each type from the HTS
or an available census sample. Note that as some of the desired data may not be available in the census,
or it may not be accessible to the modeller, it is often inevitable that one would sample from the HTS
and any activity diary dataset available. Third, the useful household and person variables are extracted
from the drawn households and retained for use by the model system. The fourth step is optional. Many
implementations of ABM have sought to use a finer level of geography than that offered by conventional
TAZ. This optional fourth procedure is used to assign each household to a more precise location (sub-
zone) within its geographic unit. The final output from these processes is a synthetic population in
which each synthesised household and its members have many clearly defined characteristics of interest
for use in the model system, and together they match the estimated demographic distribution within
each zone.

14.6 Monte Carlo and Probabilistic Processes
Most ABM use a Monte Carlo process to represent individuals (and vehicles) and their behaviour in a
transport system. The name comes from the use of random numbers (as in a roulette) to sample from a
population with a known distribution of attribute or characteristics. Pseudo random numbers between 0
and 1 can be generated very easily, for example in Excel using the RAND() function, and these values
can be used to sample from any distribution. To create a particular individual one may sample from a
0/1 distribution for Sex, from a Log-Normal distribution for Income, from special distributions for Age,
Family Size, Employment, etc, including sampling from a set of possible locations for sub-zone. This
is repeated for each individual and then samples are taken for tour length and characteristics, including
time of trip making.

Monte Carlo simulations are, therefore, very powerful in that it is possible to represent almost any
population, both present and future, and include all characteristics believed to be relevant in order to
identify activities and desirable tours. This flexibility comes at two prices. First, that it is often difficult to
have full confidence that the resulting model is rigorously ‘calibrated’ and representative of an external
reality that may be different from the ideas of the modeller. Second, the significant computer power and
time required to obtain reliable results; this limitation has been more or less removed by the developments
in computing (see also the discussion on random and quasi-random number in section 8.6.4). As random
numbers are used to represent individual characteristics and travel behaviour, it is not enough to simulate
one day (or one hour in a traffic micro-simulation project). It is necessary to repeat the process several
times, with different initial random numbers, to gain confidence in the stability of the results.
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Monte Carlo simulations can be used to model individual choices within a well structured family of
hierarchical logit models for the choice of, for example, activity patterns, tour length, tour characteristics,
choice of destination, time of day and mode.

14.7 Structuring Activities and Tours
ABM is in fact an integrated system or combination of several, mostly sequential, econometric sub-
models. In principle, the models would be structured to cover:

� Long-term commitments of the household and its members, including the amount and location of
work, residential location relative to work, education and friends, preferred types and locations for
shopping and leisure, etc.

� Medium-term schedules for each individual in the household reflecting the tasks allocated to them and
their specific activity demands, including projects like getting a degree or learning a new skill.

� Daily personal schedule of activities formulated by the individual, although some activities might
change during the day in response to changing conditions; this flexibility has been helped by the use
of mobile phones.

In practice, most applications start at the Person Day-Activity model and from this activity pattern
tours are selected and disaggregated into key components. It is possible to structure these components
as a set of nested discrete choice models, frequently of the logit type, as proposed in the key paper by
Bowman and Ben-Akiva (1999) that has influenced a number of ABM efforts, in particular TRANSIM.
An idealised example of this nested structure is presented in Figure 14.5:

Choice of full-day activity pattern

Home-based tour and time of day choice

Home-based tour destination and mode choice

Home-based sub-tour choice

Intermediate stop location choice

Figure 14.5 Example of nested choice structure for the activity schedule
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The lower tier models are conditional on decisions at the higher tiers. As one would expect, the
conditional model probabilities flow down the hierarchy whilst logsums, or expected utility values, pass
the information from low tier choices up to the top tier ones. Going down one has to calculate probabilities
for all alternatives in each nest representing a large number of combinations, as each branch above has
many sub-branches below.

Moreover, using logsums in this way means that we need to calculate the utilities of every combination
of alternatives going up the tiers before calculating probabilities from the top to the low tier nests. As
these alternatives include all destinations, times of travel, mode, tour and sub-tour types, intermediate
stops and so on, this is computationally very intensive.

The advantage of using a random utility framework and logit formulations is their solid theoretical
background, sound model estimation techniques and user’s familiarity with the strengths and limitations
of the approach.

Inevitably, the top tier choices are quite critical and, at the same time, complex. The choice of a
person full-day activity pattern may involve selecting among many (i.e. 50 or more) pre-identified
activity patterns with their respective utility functions estimated from the HTS and travel diary surveys.
One of these possible activity patterns is, of course, stay at home; the others require travel in different
combinations. It is customary to distinguish between primary activities and tours (work, education) and
secondary ones having more flexibility in location, timing and mode.

Taking as an example the seminal ABM for Portland (Oregon, USA) we can appreciate better the
scope and complexity of the task (Bowman and Ben Akiva, 1999). The Portland Day Activity Pattern
contains 114 alternatives differing in terms of the activities involved and their sequence. The choice set
covers Primary Activities and tours, and Secondary tours associated (extensions) to the primary ones:

Primary Activities:

� subsistence (work or education) on tour;
� subsistence (work or education) at home;
� maintenance (shopping, personal business, etc.) on tour;
� maintenance at home;
� discretionary (social, recreational, leisure, etc.) on tour;
� discretionary at home.

If the primary activity is on a tour, the daily activity pattern model also estimates the trip chain type.
There are eight possible subsistence tours, four for maintenance and four for discretionary tours. The
trip chain type is defined by the number and sequence of stops in the tour (i.e. a simple tour, one or more
activities on the way to the primary destination, one or more activities on the way home, and intermediate
activities in both directions). For the subsistence tours there is also a work-based sub-tour addition to
each of the four tour types above.

Secondary Tours
At the same time as the primary activity and tour type, the daily activity pattern model estimates the
number and purposes of the secondary tours with the following alternatives:

� no secondary tours;
� one secondary tour for work or maintenance;
� two or more secondary tours for work or maintenance;
� one secondary tour for discretionary activities;
� two or more tours for discretionary activities;
� two or more tours, at least one for work/maintenance and one for discretionary activities.
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As not all tour types apply to all the primary activity types, there are 19 possible combinations of
primary tour types; these, times six secondary tour types make up the 114 alternatives.

Besides these choices, one has to consider the timings, duration, modes and destinations/stops for
these tours and trips making the set of nested models rather demanding in terms of computational power.
Therefore, the methods for solving these large scale nested models become quite critical.

14.8 Solving ABM
In the case of the aggregate classic approach the model is applied using zonal enumeration. For each
travel zone, the number of trips by each mode to each destination zone at each time of the day is worked
out. This is generally the result of several sub-models: trip generation, proportion of trips going to each
destination, modal shares and so on. Model probabilities/shares are used to distribute demand across all
feasible alternatives. We may call this approach ‘zonal enumeration’.

In the case of ABM we need to use a different approach, either sample enumeration or Monte Carlo
microsimulations. Sample enumeration also follows an approach of multiplying conditional probabilities.
In this case, however, instead of applying the models separately for each travel zone, we apply them for
each household and/or person in a representative sample. Thus, sample enumeration tends to work on a
less aggregate scale than zonal enumeration but that is not necessarily the case. Zonal enumeration can
be applied also with many different segments of the population in each zone, so that we are essentially
working with an expanded sample of representative household/person types.

Sample enumeration, however, enables the retention of more complete information about each person
and household in the sample – not just those characteristics that are used to define market segments.
As a result, sample enumeration allows a wider range of variables to be included in the models that
are applied. Moreover, if models are estimated at the level of the person or household, then sample
enumeration applies them at the same level, avoiding aggregation bias.

Bradley et al. (1999) looked into the use of sample enumeration and Monte Carlo microsimulation as
two alternative methods for solving ABMs using the Portland case as a test bed. Despite using a number
of shortcuts for the sample enumeration approach they concluded that it was faster and more practical to
use Monte Carlo simulation.

In the case of stochastic Monte Carlo microsimulation one still needs to use the same choice trees and
analytical structure but just solves the hierarchical model in a different way. The logsum linkages are also
used to calculate utilities up the tiers for each individual up to the full activity/tour pattern. Instead of
calculating probabilities for all combinations of alternatives down the tree, samples of activity lists from
the survey data are taken and replace the information with choice data from the models. For example, in
the case of the Portland model (Bradley et al. 1999) the process involves the following steps:

� Draw a random sample of a single full-day activity/tour pattern from the top model probabilities.
� If the primary activity of the day is out-of-home, draw the times of day for the primary tour from the

tour time of day model probabilities.
� Use these synthetic choices to sample a corresponding day-long sequence chain of observed activities

from the HTS.
� For each tour in the pattern, sample from the destination and mode choice model probabilities to

replace the observed destinations and modes in the activity list.
� For any intermediate stops in any tours, apply the intermediate stop location models stochastically to

assign locations to those activities.

It should be noted that the only details retained from the HTS activity records are the more precise
timings and sequencing of activities, since the time of day models usually deal only with a discrete
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number of different time periods (e.g. five in the Portland model). All the other observed choices are
replaced by synthesised ones sampled from the models.

The use of Monte Carlo microsimulations seems to have become the preferred method for solving this
type of ABM. Of course, some questions remain:

� As we are using random numbers, do the starting point and their sequence influence results?
� Do we need to run the model several times with different sequences of random numbers to ensure we

obtain reliable and repeatable results?

Bradley et al. (1999) investigated these issues offering the following conclusions and recommenda-
tions:

1. Always run the model simulating the full population of interest.
2. The differences in results when using a different random number sequence at an aggregate level are

minor (1 or 2%).
3. When looking at more focused results, one must bear in mind that if the values are small, for example

the number of trips made by a population segment between one group of zones and another group,
then the percentage variations are likely to be large.

4. These variations are healthy reminders that all models inevitable contain errors; notwithstanding,
stochastic sampling errors are likely to be small compared to other sources of error present in any
model (measurement, specification, input forecast errors, for example).

14.9 Refining Activity or Tour Based Models
The description above has focused on the Person Day Activity model only; however, as discussed before,
an ABM also includes components for long and medium term decisions. This section provides some
additional information on the handling of these and other issues in a complete ABM system; this will
have modules for:

� Population synthesis for the geographic allocation of households.
� Longer term decisions: mostly car ownership but in some models also the choice of place of work

and education.
� Person/household-daily scheduling, including the choices of activity patterns that span the whole day

for a household or person.
� Tour-level choices as discussed in the previous section.
� Trip level choices: intermediate stop locations, mode and timing.
� Consolidation and assignment of trips to their respective networks.

Moreover, the ABM should also provide interrelationships between many of these decisions as, for
example, the choice of car as a mode by one person in a household will affect the choices of the
other members.

Choice of Usual Place of Work and Education
It is recognised that these are long term decisions that are not adjusted on a day to day basis. The choice
of a place to live is implicitly modelled in the population synthesiser so it is included at the top level.
The choice of usual place of work, and school or university education, is better modelled at the top of
the hierarchy as well and not as part of the person day-schedule; most models today include it at this
level. Note that some workers (construction, salespersons) may not have a ‘usual’ place of work. It is
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important to ask in the HTS exercise about the usual place of work even if it was not accessed on that
survey day.

Car Ownership
This is usually modelled also at the top level using a disaggregate model based on household and person
types as discussed in Chapter 15.

In and Out of Home Activities
The ABM approach recognises that some activities (work, study, maintenance, discretionary) may be, at
least partially, undertaken at home and we may wish to identify and include them. Most models, however,
focus mainly on out-of-home activities and recognise only the probability that a person will not make
any external tours in one day.

The number of out-of-home activities is relatively large, at least seven are usually considered: work,
school, escort, shopping, meals, personal business and social-recreational. Additional distinctions are
also possible.

Person Day-Patterns Linked Across Household Members
Originally, ABM treated linkages across members of the household implicitly through person type and
household composition variables. The use of microsimulation makes it easier to treat these linkages more
explicitly. For example, it is possible to simulate the children of a household first and then the adults
conditional to what the children do, in particular their educational activities. This will result in escort
activities being correctly allocated to adults and children.

Joint activities, such as going together for a meal out, should also be modelled consistently as they
are likely to have significant impact on mode choice, for example. This will require a module for joint
activity generation and participation; this additional effort must be traded-off against the greater accuracy
achievable for trip choices.

Activities Allocated Explicitly Among Members of the Household
In principle, certain activities are undertaken on behalf of the household rather than individually; for
example, shopping and escort trips. Modelling how these activities are allocated to different members
of the household and at different days of the week has been limited. This task is further hampered by
the limitations of survey methods currently in use; these are less useful to identify which activities are
more likely to be allocated to different members at different times. With a few exceptions, most ABM do
not have a module to allocate these activities to members and assume that they depend only on general
household and person characteristics. It is argued that who actually undertakes them is less important
than the fact that they are carried out and at certain times and destinations.

Number of Zones Used
In most cases the zones used for developing ABM are similar in size to those of a trip or tour based
aggregate model. Ultimately, the car and public transport assignment modules are exactly the same.
However, the use of microsimulation facilitates the implementation of finer geographical resolutions.
Several models use a finer sub-zone system below that of TAZ. For example, the Portland model uses
20,000 ‘block faces’ and the one in Sacramento 700,000 ‘parcels’ (Bowman 2009). This fine level
of disaggregation is useful to define more accurate destination choice alternatives, and estimate mode
choice using detailed access to public transport information and level of service data. Note that in this
way intra-zonal trips practically disappear from the model.

Time Periods and Time Constraints
Most ABM applications contain tour time-of-day models that reflect some sensitivity of time of travel
choice to network conditions. However, there is usually only a limited number (3 to 5) of assignment
periods, thus blurring some of the time sensitivity. There is a tendency to use more precise time windows
in order to schedule each tour and trip consistently during the day (Bowman 2009). This requires
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keeping track of the available time window after blocking off the time required by each activity and
associated trips.

This tendency is converging towards half-hour periods, the main constraint being the ability of people
to report times accurately. There seems to be a tendency to report times rounded to 10 or 15 minutes
intervals. At this level of detail there would be good reasons to move to dynamic assignment.

Network Equilibrium
Given the level of detail of the microsimulation approach for solving ABM it could be argued that there
is no role for network equilibrium, as it does not happen in reality and trying to achieve it would distort
results. Nevertheless, as indicated earlier, the reason to seek equilibrium solutions is to obtain modelling
results that enable the consistent comparison of alternatives. In the case of ABM we compound the
problem of iterative processing with the use of Monte Carlo simulations based on computer generated
random numbers.

Vovsha et al. (2007) have investigated this issue. They looked into a number of alternative methods
for ensuring, or at least approaching, convergence of the whole model system. They concluded that the
application of the Method of Successive Averages (MSA) to trip consolidated matrices and link flows
led to reasonable results after some 8-9 global (feedback) iterations. Further research is necessary in
this field.

14.10 Extending Random Utility Approaches
Despite their emphasis on activities the majority of the ABM are essentially microsimulation tour based
models using a random utility choice-modelling framework; this has limitations. Current ABM offers
only a little in the way real activity scheduling, of negotiations within the household on task allocations
and even less in terms of postponing tours to a later day of the week.

There are some experimental models that attempt to go further into treating these issues with greater
realism. The most promising approaches depart from the econometric methods solved by sample enu-
meration or microsimulation. Econometric methods are ultimately based on the idea that individuals
seek to optimise their utilities choosing the best among available alternatives. In practice, human be-
haviour actually recognises the costs of information acquisition, information representation, information
processing, and decision making. The new methods seek to represent behaviour and negotiations within
this framework and are grouped under the name of Computational Process Models (CPM).

CPM are also microsimulations due to their disaggregate nature, the sequential decision process and
the use of heuristics. However, the heuristics employed by CPM involve ‘if-then’ rules rather than utility-
maximizing decision criteria. Models in this line of research are SCHEDULER (Golledge et al. 1994),
AMOS (Kitamura and Fujii 1998), ALBATROSS (Arentze and Timmermans 2004) and PlanomatX
(Feil et al. 2009).

Although these models have seen a number of applications, because of their nature they will remain
experimental for a while. There are significant differences in the way these models handle the search
for improved activity schedules and these rely on assumptions about behaviour and the nature of intra-
household negotiations that are difficult to transfer from one context to another. The area of behavioural
science is progressing very fast and we are likely to see better models implemented first in a research
environment before general adoption for transport decision making and policy development.
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15
Key Parameters, Planning
Variables and Value Functions

This chapter covers three important aspects of transport modelling. The first is the forecasting of planning
variables. These are variables like future population, employment, school places, shopping areas and
income distribution, which are needed to make predictions with transport planning models. Sometimes
these variables are provided externally to the study; in others they must be estimated as part of the
planning exercise. In either case, they play a key role in determining the forecasting ability of the models
discussed in this book.

General approaches to obtain these planning variables for aggregate models are discussed in Section
15.1. These are key inputs to a more disaggregate approach to synthesise populations as discussed in
Chapter 14. A particular approach to develop these estimates is the use of Land Use Transport Interaction
(LUTI) models that aim to capture the mutual influence between changes in accessibility and land use
allocation; these are outlined briefly in section 15.2.

One of the most important planning variables is car ownership and this is the subject of section 15.3.
Both time-series and econometric models to forecast car ownership are discussed, together with some
more recent approaches.

Finally, we refer to value functions used in social project evaluation. First, many issues surrounding
the concept, estimation and application of the value of time are presented in section 15.4. Then, section
15.5 discusses the concept and methods used to value external effects of transport, such as accidents and
pollution. The book would not have been complete without this discussion.

15.1 Forecasting Planning Variables
15.1.1 Introduction

As discussed in Chapter 1, modellers always distinguish between endogenous variables, i.e. those to be
forecast as part of the modelling exercise like flows, and exogenous or independent variables. The latter
are required to run the models but are supposed to originate externally to the models themselves. Typical
examples in the transport field are population, employment, car ownership and income. Values for these
variables should be provided for the base year and for each of the years for which forecasts are needed
from the transport model.

Modelling Transport, Fourth Edition. Juan de Dios Ortúzar and Luis G. Willumsen.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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The level of detail and disaggregation required for these variables depends on the type of model
being used. In general terms an aggregate demand model makes fewer requirements than a disaggregate
one in this sense. For example, at the trip generation level an aggregate, zone-based, linear regression
model may only require population, car ownership and average income by zone; a cross-classification or
category analysis model, on the other hand, will need the number of households in each of the categories
used, typically 108 per zone, as we saw in Chapter 4, when the model is stratified by income (6 levels),
household structure (6 levels) and car ownership (3 levels).

The importance of these variables in influencing the accuracy of the whole modelling exercise is very
high, as established by Mackinder and Evans (1981) in a study of 44 British urban transport studies. It
was found that all the models overestimated key indicators of performance but that the most important
element in explaining this overestimation was errors in the values used for the planning variables. Model
specification errors played a much lesser role in the overall inaccuracies. It appears that the planning
variables were often wrong because they followed official global forecasts which were also wrong in the
first place.

There are some very good reasons why forecasting planning variables is so difficult. The values of
many of them in the future depend on complex interactions with other actors and influences that are
very difficult to predict. This is certainly the case with the allocation of population and employment to
geographical areas; these future allocations are influenced by interactions among factors such as:

� Population, income and car ownership.
� Levels of employment and their type.
� Land Use Master Plans, zoning and building regulations that affect what can be done, where and at

what densities.
� Parking standards (minimum or maximum) for new developments.
� Land parcels available for development (green and brown fields) and their cost.
� The actions of developers regarding new and second hand properties, and the evolution of their

‘land banks’.
� Local politicians and decision makers adapting plans and regulations to changing conditions.
� Changing views about what are considered desirable lifestyles and work practices.
� International and local trends on how best to tailor retail and services to a changing population.

The question then arises: how can we reduce as much as possible the errors in these planning variables?
This is a difficult problem with no simple or single answer. A full discussion of the techniques available
for forecasting these variables is outside the scope of this book; for practical methods the reader may
consult England et al. (1985). However, we will discuss some of the ideas behind these techniques to
appraise their strengths and weaknesses.

15.1.2 Use of Official Forecasts

The apparently simplest option in dealing with planning variables is to use official forecasts. In the UK,
for example, there are estimates, at the District Council (and London Borough) level, of:

� population, households, employed residents and employment;
� number of households owning 0, 1 and 2 or more cars;
� private-vehicle trip ends by journey purposes.

The Department of Transport also produces forecasts, from time to time, of future demand expressed
as expected vehicle kilometres for different types of vehicles. Other official institutions will provide
other types of forecasts for planning variables, at least at a highly aggregate level.
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Of course, these forecasts are seldom at a sufficient level of disaggregation to be directly usable in a
detailed modelling exercise; however, they do reduce the amount of work needed to generate the required
values for the planning variables at zone level. Some of the techniques to achieve this are discussed in
the next section.

To some extent the problem with using official forecasts is that they sometimes reflect the expected
effect of economic and regional policies whose success may actually depend on other uncontrollable
factors like international trade and cooperation. Mackinder and Evans (1981) found that errors in fore-
casting these global indicators were at the root of the problem of mistakes for the planning variables at
the local level.

We shall come back to this problem again. How can we accurately forecast transport activity if there
are significant errors in some of the key inputs used in our transport models?

15.1.3 Forecasting Population and Employment

Whenever forecasts of these planning variables are not provided for cities or districts, the planning team
will need to develop methods for their estimation. There are several methods that can be used to this end,
some more appropriate than others for each particular application.

15.1.3.1 Trend Extrapolation

The direct extrapolation of current trends is the simplest but least satisfactory procedure, even if it
is only applied at the level of the whole study area. Trend extrapolation does not take into account
decisions already made about the availability of land for future development; it does not value new
regional development policies nor does it consider the expected growth in employment in the study area.
In addition to this, it does not provide any information about the age structure of the population, an
important element in, for example, trip generation modelling.

15.1.3.2 Cohort Survival

A more detailed technique considers deaths, births and immigration, in and out of a study area, to forecast
future population:

Pt1 = Pt0 + Bt0 t1 − Dt0 t1 + NIt0 t1 (15.1)

where Pt1 is population at time t1; Pt0 is population at time t0; Bt0 t1 are surviving births in the period t0

to t1; Dt0 t1 are deaths in the same period, and NIt0t1 is the net migration in the same period.
Used in this very aggregate fashion, equation (15.1) ignores the age structure of the population and

could under or over-estimate, for example, the corresponding fertility rates. For this reason the method
is usually applied to subgroups of the population, or cohorts, and the method becomes a cohort survival
approach. This involves the following stages:

1. The population is separated into cohorts; males are separated from females and each sex group divided
into age strata (usually of five years) to give a population structure for the base year.

2. Fertility rates are then applied to females of child-bearing age.
3. The new-borns are added up and ‘sexed’ in known proportions.
4. The female and male babies make up the first cohort at the next round of calculations.
5. Survival rates are applied to females and males in all cohorts, starting from the youngest generation;

survivors are then ‘aged’, that is moved forward to the next cohort.
6. The process is repeated, re-starting from stage 2 until the forecasting period has been reached.
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If migration of population is to be treated in the forecasts, additional information regarding the sex
and age structure of migrants is required. It is easy to see how the method may be adapted to include that
new input.

The information demanded by this technique includes the initial number, age/sex structure of the
population, and its associated survival, fertility and migration rates. The main source of uncertainty lies
in the prediction of the rates, in particular fertility and migration rates.

15.1.3.3 Transitional Probabilities

An interesting alternative approach to cohort survival methods is to follow family cycles and use transi-
tional probabilities reflecting the chances of moving from one stage in the cycle to another, for example,
from married couple with no children to married couple with one child under school age, and from there
to married couple with two children, and so on. A whole matrix of transitional probabilities is then built
and processed to obtain the population in households at different stages in the family cycle in the forecast
years. This approach certainly offers the potential of providing a very detailed account of population
growth, very much at the level required for trip generation modelling. However, the uncertainty in the
estimation and stability of the transitional probabilities is likely to be greater than that associated with
fertility and migration rates in cohort survival methods.

Both cohort survival and transitional probability approaches can be usefully adapted to a continuous
planning framework, where periodically collected data about fertility, migration and survival rates, and/or
probabilities of changing family cycle status, permit the updating of previous estimates of population in
the future and hence the changing of trip generation rates, and so on.

When forecasting employment change we are faced with similar problems. General trends in em-
ployment depend on economic policy, international trade and regional incentives. At a more local level
aspects like the availability of land and qualified labour force in the study area, play an important role as
well as the type of economic activity prevailing there. Moreover, the type and levels of employment also
play a key role in determining the levels of income available to the households in the study area, which
in turn influence car ownership and trip making behaviour.

15.1.3.4 Economic Base

A useful distinction in employment forecasting is that of basic and non-basic activities. Non-basic
activities are those which are created in response to local demands whereas basic activities are those
which require an external stimulus of some kind. Basic activities produce goods or services which are
exported to other areas and regions. Non-basic activities produce goods and services to attend the needs
of the local population. It is believed that the growth of basic activities creates additional non-basic ones
(shops, banks, services, and so on) to satisfy the needs of additional population. The basic activities of
a region constitute its economic base and strengthening it would result in economic, employment and
population growth.

15.1.3.5 Input-Output Analysis

Finally, in forecasting the growth of a particular activity one should also follow the concomitant growth
it generates in other industries providing inputs to it. Some of these will be based outside the study area
whilst others may be located inside it. The use of an input-output matrix is the traditional method of
following these linkages at national or regional levels. Such a matrix depicts how much input from other
sectors of the economy is needed to increase output from one particular activity. The availability of such
matrices at local level is questionable; the lowest level of disaggregation seems to be a regional one.
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15.1.4 The Spatial Location of Population and Employment

Having estimated population and employment (in different subgroups) for the study area, it becomes
necessary to allocate them to specific zones in order to apply our transport models. This work is
usually carried out in conjunction with local planning authorities who have established plans for future
development and re-allocation of land uses to zones in the study area. The use of age or life-cycle specific
forecasts is helpful in this process as different types of housing development are more likely to attract
different types of families.

The location of employment depends on its nature; for example, industrial development, commercial
services, consumer services, and so on. Major changes in the location of economic activities should
probably be discussed with those involved in carrying them out. Industrial development may require
special sites, good availability of water services and access to major roads and railway/port terminals.
In the absence of restrictive planning controls, office employment tends to be located close to good
communication facilities and as close as possible to other office developments.

These two examples show that in the final analysis the location of population and employment is
not independent of the transport system. Changes in accessibility are likely to affect the potential for
development of different parts of a study area. This can be taken into account in the discussions with
planning authorities, or more formally, in a more comprehensive model, as outlined in the next section.

In summary, the allocation of population and employment to zones usually requires a combination
of formal models and discussions with planning authorities. The practical ways in which these tasks
are carried out owes much to heuristic approaches and context-dependent choices. It seems difficult to
eliminate current uncertainties about national, regional and local forecasts for these planning variables
and this has important implications for the whole planning process.

The issue of disaggregating these allocations at an individual or household level has already been
discussed in Chapter 14.

15.2 Land-Use Transport Interaction Modelling
There is an almost universal recognition that transport, in particular via accessibility, and land use are
interrelated. One attractive approach to forecasting population and employment and allocating them to
zones is, therefore, to internalise these exogenous planning variables in an integrated model of land use
and transport. This has been an active area of research since the early 1960s; see for example McLoughlin
(1969), Wilson et al. (1977), Foot (1981), de la Barra (1989), Echeñique et al (1990) and Simmonds
(2001). After an initial period of optimistic claims about the success of such models, researchers became
more modest in their aspirations (see Mackett 1985).

The importance of the interaction between transport and land use is twofold. First, if transport strategies
significantly change accessibility this will change demand for land and generate new development in
some areas; these will in turn affect the pattern of trips (trip matrices) and therefore have an impact
on the performance of the transport system. These interactions are illustrated in Figure 15.1. Second,
changes in the attractiveness of some areas will affect the price of land there; this can be interpreted as
the capitalisation of user benefits into land prices and implies a transfer of benefits to land owners. This
capitalisation issue raises the question of who gains and who loses as a result of a transport scheme and
how a local authority can recover from land owners some of the increase in land prices.

The complexity of the relationships involved and their still fluid theoretical underpinnings have led
to a situation where models and software are almost inseparable; an indication, perhaps, of the lack of
consensus on what constitutes a good approach. It is impossible to do justice to this specialist modelling
area in a book like this; the reader is directed to reviews like those of Wegener (2004) and Hunt
et al. (2005).
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Figure 15.1 Transport and Land Use interactions

Although the basic design structure is similar for most land use models, there are at least four
fundamental design features handled differently in them:

� Behavioural or structure-explaining approach.
� Bid-rent or discrete choice approach.
� Aggregate or microsimulation approach; and
� Emphasis in equilibrium or change dynamics.

Behavioural approaches treat relevant behaviour explicitly, for example birth, marriage, job change
or relocation. Structure-explaining approaches attempt to model the outcome directly, for example
distribution of jobs, without dealing with the processes that lead to that particular distribution. In
practice, many models are somewhere between these two approaches.

The bid-rent theory assumes that every actor on the land use market is making bids for a piece of
land, and the bidder with the highest offer gets it. Because of transport costs, everybody is willing to
bid more for a location with good accessibility and whoever values this more highly, often businesses,
gets the most accessible land, usually city centres. In the discrete choice approach households, firms,
and developers make choices among a finite set of alternatives for locations, jobs and land, for example.



P1: TIX/XYZ P2: ABC

JWST054-15 JWST054-Ortuzar February 24, 2011 12:2 Printer Name: Yet to Come

Key Parameters, Planning Variables and Value Functions 495

It has been suggested (NCHRP 2010) that bid-rent approaches work best in markets that are highly
competitive and transparent and discrete-choice approaches in markets that react with some time lag and
in which users make decisions with imperfect information.

Aggregate models aggregate actors into certain groups (for example households by household type
or firms by industry type) and these are assumed to have homogenous preferences. As we have seen in
Activity Based Modelling, microsimulation approaches offer advantages in terms of model development
and in treating interactions explicitly.

Finally, some modelling approaches are underpinned by general equilibrium considerations whereas
others emphasise the fact that change, and the rate at which it happens, is an inherent feature of land use,
business and transport markets.

We try to identify here some of the most distinct theoretical components that support this type
of model.

15.2.1 The Lowry Model

Many practical applications in the past have followed the lines put forward by Lowry (1965) in the 1960s.
His model considers the spatial characteristics of an urban area in terms of three broad sectors of activity:
employment in basic industries, employment in population-serving industries, and the household or
population sector.

The Lowry model starts by allocating exogenously specified basic employment to zones and then the
spatial distribution of households and non-basic employment are assigned using endogenous relation-
ships. In addition, there are constraints on the maximum number of households for each zone (according
to local regulations) and on the service employment thresholds for any zone; different types of service
employment are assumed to have different minimum thresholds for their viability in any one zone.

The basic equations of the Lowry model can be written as:

P = EA (15.2)

ES = PB (15.3)

E = Eb + ES (15.4)

where P is a vector of population in each zone i; E is a row vector for total employment in each zone
i, Eb and ES are row vectors for basic and non-basic (service) employment in each zone i; A and B are
zone-to-zone matrices of workplace-to-household and household-to-service-centre accessibilities.

The accessibility variables have two components, one corresponding to the participation rate in each
zone (households per employee for A and service employment per household for B) and a second
corresponding to proper accessibility indices. These are normally calculated as:

A′
ij = E j exp (−βCij)∑

ij
E j exp (−βCij)

(15.5)

B ′
ij = ES

j exp (−αCij)
∑

ij

E S
j exp (−αCij) (15.6)

which are accessibility indices derived directly from the gravity model; see Chapter 5.
Lowry (1965) proposed a sequential solution to this problem including the constraints and thresholds

mentioned above. More recent research efforts have emphasised the simultaneous solution of the same
model and its extensions. Most of the latter have to do with additional disaggregation into different
person and household types and their treatment over space. For example, certain types of person may be
more willing (or capable) to pay for increased accessibility than others, thus influencing land prices and
the type of development to be undertaken in different zones.
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The integrated land-use and transport model has been implemented in a number of computer suites.
In order to keep the problem tractable, some compromise in the level of detail of the transport part of the
model is necessary; the hope is that what is lost in richness in the representation of the transport sector
is more than compensated for by gains in the forecasting of employment, population and household
development in the study area. An important problem of these models, however, is that they may
suffer greatly from convergence problems in their extremely complex equilibration mechanisms. For
a comparison of different implementations and extensions to this approach the reader should consult
Webster et al. (1988).

15.2.2 The Bid-Choice Model

A more contemporary approach has been put forward by Martı́nez (1992) and implemented in a so-
phisticated package called MUSSA (www.mussa.cl) with several applications in Chile and the USA.
The approach follows two modelling streams; the first one, originally proposed by Alonso (1964), is a
bid-auction model where land is assigned to the highest bidder. The proportion Ph/i of customers type
h making a successful bid for a given location i depends on whether h’s willingness-to-pay WPhi is the
highest among the bidders g ∈ H. The assumption that WPhi is a function of real estate and neighbourhood
attributes of the location and socio-economic characteristics of the bidder plus an IID EVI distributed
error term, leads to a MNL expression:

Ph/i = Hh exp (μ WPhi)∑
g Hg exp (μ WPgi)

(15.7)

where μ is the usual scaling parameter of the distribution of error terms. The expected market price pi is
equal to the expected maximum bid from potential buyers, given by

pi = (1/μ) log

{
∑

g

Hg exp (μ WPgi)

}
(15.8)

The second modelling stream is a maximum consumer surplus model or choice model, equivalent to Anas
(1982)’s maximum utility model. The consumer surplus CShi of individual h from choosing location i is
given by the difference between its willingness-to-pay and the price of the location:

CShi = WPhi −pi

Under some simplifying assumptions the proportion Ph/i of consumers h choosing location i is given by:

Ph/i = Si exp [μ(WPhi −pi )]∑
j

S j exp [μ(WPhj −pi )]
(15.9)

Martı́nez (1991) then proves that the distribution of households and firms obtained from the bid-auction
model in equations (15.7) and (15.8) is identical to that obtained from the choice version in equation
(15.9). His bid-choice model is then summarised in these equations. These in turn can be simplified
further when used at an aggregate level.

The transport system is represented by suitable accessibility (to destinations) and attractiveness (with
respect to origins) indices which are included as location attributes in the willingness-to-pay function.
The next task is to specify the WP functions; this must be done more or less on a case by case basis as the
best function will depend on the availability of data and consumers’ behaviour. Real estate developers
are assumed to maximise profit, calculated as the price (pi) minus the development costs (ci), with profit

http://www.mussa.cl
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assumed IID EVI with scale parameter λ, such that the proportion of development allocated to a given
zone is a MNL model:

Pi = exp λ(pi − ci )∑
i

exp λ(pi − ci ) 
(15.10)

MUSSA calculates the random bidding and supply market equilibrium (Martı́nez and Henrı́quez 2007),
where the total number of consumers (households and firms) equals the total number of location units
(for residential and non residential use). Each consumer is allocated at one location; consumer behaviour
is affected by other consumers’ choices (i.e. social externalities and agglomeration economies), and both
suppliers and consumers are constrained by external regulation or zoning schemes using a constrained
multinomial logit model (Martı́nez et al. 2009).

The whole model system has been integrated as the Land module in the transport package Cube
(www.citilabs.com) which is used in several countries.

15.2.3 Systems Dynamics Approach

Models based on the two formulations above seek, at least to an extent, to achieve equilibrium conditions.
The Systems Dynamics (SD) approach places more emphasis on the rate of change and the processes
of positive and negative feedback that sometimes result in erroneous insights. The models are based on
the pioneering work of Forrester (1969) updated thanks to the availability of low cost software capable
of implementing the approach on a wider scale and with refined resolution. We follow here the ideas
of Swanson (2003) whose Urban Dynamics Model (UDM) has seen many practical applications, in
particular relating transport investment to urban regeneration.

In common with previous models, SD focuses on accessibility as a key driver of the attractiveness of
a location to business and residents. A good location provides people access to the activities outside the
home (including work) they wish to take part in; it provides businesses access to customers, a workforce
and markets. A SD model of land use transport interactions will focus on a few features that make a
location attractive adding markets for jobs, transport, building residences and business premises.

From the point of view of residents, a location will be more attractive if it provides good access to
suitable employment and offers adequate housing. From the point of view of business the main features
would be access to a suitable workforce, the availability of adequate premises, and access to markets
and suppliers. The combined effect is illustrated in Figure 15.2, which shows the feedback between
households and businesses: as the number of households rises, the accessible workforce also rises,
increasing the attractiveness of a location for businesses. This will tend to attract more businesses and
increase the number of accessible jobs, making areas with good accessibility more attractive to live in.
This is an example of positive feedback, as increases in population lead to more business activity that
in turn attracts additional households. Of course, other constraints would start to apply, as the supply of
premises runs out, accessible land becomes fully utilised and/or congestion becomes severe.

Houses are seen as infrastructure ‘stock’; they are built and remain in place for many years, occupying
land and providing accommodation either to owners or renters. Houses are built by developers who
consider how attractive a location is and whether it will lead to a reasonable financial return; this in turn
will depend on their assessment of current and future demand for residences. A similar process applies
to the construction or refurbishment of business premises whether they are built by developers or by
companies seeking places to expand or to relocate.

Construction will tend to rise as an area becomes more attractive, but there will be delays in the
response by developers. Builders need planning permission, land must be prepared, and houses and
business premises take time to build. There will be lags, counted in years, between attractive conditions
arising and new premises and houses becoming available in the marketplace.

http://www.citilabs.com
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Figure 15.2 Access to business and residences

Such processes of change, their causes and effects, are what SD models are designed to address. Using
modern software they are able to distinguish between different person, household and job types, different
businesses and their land requirements and different modes of transport. The transport component of
the Urban Dynamic Model can handle most of the responses in the classic aggregate transport model
including hierarchical mode choice and congested assignment, and it generates a variety of responses in
the model: Figure 15.3 illustrates some of the sequences of cause and effect the full UDM recognises. The
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Figure 15.3 Relationships in a Dynamic Urban Model
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focus on dynamic change provides some valuable insights into policy development and implementation
and a useful tool to track the evolution of markets, businesses and residential location.

15.2.4 Urban Simulation

The advent of powerful computers and low-cost software has led to the development of many modelling
approaches based on microsimulation for dynamic assignment and activity based modelling. In the case
of land-use transport interactions, the responses of interest with pre-specified probability distributions
are analogous to those described above. What microsimulation can offer is the power to incorporate a
number of dimensions of both individuals and their choice processes which would otherwise require
an excessive amount of disaggregation in model-based accounts. Microsimulation models are relatively
easy to understand and implement, and permit tracking of individuals, households, business and parcels
of land. The latter feature is, to an extent, misleading as the models will always leave out many variables
that are necessary (but even then, never sufficient) to explain individual behaviour.

The MASTER model, developed in the UK by Mackett (1990) and UrbanSim, developed at the
University of Washington by a team led by Paul Waddell (Waddell 2002; Waddell et al. 2003) are two
examples of this type of approach. MASTER, for example, considers households one at a time allowing
first for demographic processes including aging, giving birth, dying, divorce, and marriage. Marriage and
divorce lead to the creation of new households with divorcees becoming one class of ‘forced movers.’
Voluntary movers include newly married couples, singles leaving the parental home, and wholly-moving
households influenced by changes in life cycle. Both public and private housing markets are recognised,
and dwelling occupancies are tracked from one period to the next. Choice of residence zone is based on
a weighted function of generalised travel to work costs for the head of household.

UrbanSim simulates households, employees, developers and real estate prices with a similar degree
of refinement. Location decisions are based on multinomial logit models. To select a location, a uniform
distribution is used to randomly sample a set of nine alternatives in addition to the site with the highest
utility. The final location is selected from these ten alternatives. Land values are updated by hedonic
regression that estimates how much the individual characteristics of the land contribute to its value.

These are examples of powerful and flexible models. They respond to an urgent need to look closer into
the issues of transport and land-use interaction, recovery of surpluses and distribution of benefits, in addi-
tion to changes in trip patterns. The widespread availability of general-purpose model estimation software
has made possible the development of these models and their increasing application to practical problems.

It has been argued that this type of model is likely to work better where there are fewer constraints to
the land market and type of development permitted by local authorities. This is probably the case in many
developing countries, as reported by Chadwick (1987). However, as we have seen above, forecasting
of planning variables is far from being accurate and its internalisation into an integrated land-use and
transport model is unlikely to make it more reliable or robust. Our degree of understanding in this area
is probably even more limited than in the transport sector alone. This problem highlights again the
advantages of a continuous planning approach where regular updating of forecasts and plans reduces the
risk of inaccurate predictions.

15.3 Car-Ownership Forecasting
15.3.1 Background

Although the total number of passenger cars active on the road in industrialised countries almost doubled
between 1970 and 1986 (see for example de Jong 1989), the rate of growth was dramatically higher in
developing countries and has continued increasing well into the new century. For example, the fall in
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import duties for small cars of less than 850 cc in Chile (from 120 to only 10%) in 1977, meant that
average car ownership in Santiago went up by more than 100% in only five years (see Fernández et al.
1983); more recently, a comparison of 1991 and 2001 data for Santiago revealed that car ownership has
continued growing at a rate higher than 3% per year (DICTUC 2003). Even if the annual mileage per
vehicle had remained constant in this period, it must be noted that the total increase in passenger-car km
represents a high cost to society in terms of accidents, fuel, pollution, increased traffic congestion and
additional road construction and maintenance costs.

One problem faced by planners of vastly different nations is that forecasts of the number of cars and/or
vehicle kilometres for, say, the year 2040, imply that these adverse effects may assume catastrophic
proportions. In fact, by the end of the 1980s there were already cities like Athens, Los Angeles, Mexico,
Sao Paulo, Seoul and Tokyo which had become notorious for their congestion and pollution problems.

Models to predict changes in car ownership, an essential input to transport planning, have been under
development since the early 1940s. It can be said in general that these efforts have been made with the
following three different purposes in mind:

� Market research studies for vehicle manufacturers and petrol companies which are of limited interest
to transport modellers, as they are more concerned with vehicle attributes like size, engine capacity,
and so on.

� Government-sponsored studies seeking to determine the need for new infrastructure (basically high-
ways) at a national level; until the end of the 1970s simple time-series models were used for
this task.

� Local studies, which are usually part of strategic transport studies, and which have made use of more
advanced econometric methods with either cross-sectional and/or longitudinal data.

We will not attempt to cover all aspects of the car-ownership forecasting problem here, as whole books
and theses have been devoted to the subject (see for example Mogridge 1983; Train 1986; de Jong 1989).
Here we briefly discuss the two following basic methods:

� Time-series extrapolations using aggregate data at a national or regional level (basically the seminal
work of John Tanner at the British Transport and Road Research Laboratory).

� Econometric methods using disaggregate data at the household level, as it has been argued that the
decision to acquire a car cannot be modelled correctly at the strictly individual level or at the zone
level (see for example Bates et al. 1978).

Modern methods sometimes incorporate features of both approaches and extend estimates to car
usage as well. Critical reviews of these and other methods have been given by Button et al. (1982) and
de Jong (1989).

15.3.2 Time-series Extrapolations

It seems clear that car ownership rates (e.g. cars/head of population) should not increase indefinitely in
time (i.e. in general people with a driving licence are not going to indulge in several cars each); for this
reason the increment curves which are usually put forward to model this phenomenon are S-shaped. If
the number of cars/person in the USA and in the UK are plotted against time, one can find approximately
the shapes depicted in Figure 15.4.
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Figure 15.4 Shape of car-ownership increase

One curve which has proved popular in this field is the logistic, pioneered by Tanner (1978). The
following three parameters are needed to adjust it:

� C0, the car-ownership rate in the base year (cars/person);
� g0, the rate of increase of the car-ownership rate in the base year given by 1

C
dc
dt evaluated at t = 0; and

� S, the saturation level of car ownership.

In logistic curves we have that:

dC

dt
= aCt (S − Ct ) (15.11)

where a is a constant. Solving this differential equation yields:

Ct = S

1 + b exp (−aSt)
(15.12)

where b is an integration constant. To find the values of a and b we can resort to the boundary conditions
at t = 0; from (15.11) and (15.12) we obtain respectively:

g0 = a(S − C0) and C0 = S

1 + b

and replacing these values in (15.12) we finally get:

Ct = S

1 + [(S − C0)/C0] exp [−g0St/(S − C0)]
(15.13)

Therefore, knowledge of C0 and g0 for one year taken as a base allow us to extrapolate Ct for any
future year if S is known; however, S is not known but must be estimated. Tanner’s method consists of
fitting the following regression line (Figure 15.5):

g = α + βCt

Saturation corresponds by definition to that instant when the rate of change in the number of cars per
capita (g) is zero; in this case we get S = −α/β, and as we would expect α to be positive and β less than
zero, we can deduce that S > 0.
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Figure 15.5 Determining the saturation level

Unfortunately constructing the graph of Figure 15.5 with data for the USA and the UK yields
Figure 15.6; this implies that the method could work in the latter case, but it is much more doubtful in
the former. For this and other reasons, the method was heavily criticised by Button et al. (1982).

Figure 15.6 Saturation rates for USA and the UK

With the above data, Tanner (1974) estimated S as 0.45 for Great Britain. Table 15.1 compares
predictions for 1975 made at different years with the observed figure of 0.25 cars/head in that year. As
can be seen, the method is not very reliable.

In summary, the main objections to the logistic extrapolation method are as follows:

1. The model is not sensitive to policy variables. It is impossible to study the effects on car ownership
of changes in car prices, road tax and import duties, fuel costs, and so on. Neither does it consider the
influence of economic variables; therefore if the correlation among these variables changes in time,
perverse results may be obtained (i.e. consider the effect in car-ownership increase brought about
by the petrol crisis in 1973, or the aforementioned effect of the reduction of import duties in Chile
in 1977).
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Table 15.1 Errors in prediction using extrapolation

Cars per person Predicted growth

Base year In base year Predicted for 1975 Actual growth

1960 0.11 0.28 1.14
1964 0.16 0.32 1.57
1966 0.18 0.31 1.67
1968 0.20 0.30 1.84
1969 0.21 0.28 1.66
1971 0.22 0.27 1.62
1972 0.23 0.26 1.48

2. S is assumed to be a constant; however, this may not be true in practice as attitudes tend to change
with time.

3. The model does not yield information about different types of cars or, more importantly for planning
purposes, the proportion of people belonging to households with 0, 1 and 2 or more cars.

15.3.3 Econometric Methods

These methods attempt to explain consumer behaviour directly rather than looking at general trends,
and normally employ cross-sectional data. We will consider only two methods out of several which have
been proposed; for a more comprehensive review see de Jong (1989).

15.3.3.1 The Method of Quarmby and Bates (1970)

This method uses just two independent variables, income and residential density, although it recognises
the existence of several other factors of interest, such as household size and vehicle price. The basic
relations of the model are:

P0

1 − P0
= α0 I −b0 Dc0 (15.14)

P2

P1
= a1 exp (b1 I )D−c1 (15.15)

P0 + P1 + P2 = 1 (15.16)

where I is annual family income (thousands of $), D is the number of residents per acre and Pi is the
probability of owning 0, 1 and 2 or more cars; ai, bi and ci are parameters to be estimated.

Substituting P1 from (15.16) into (15.15) and taking logarithms we get:

log{P2/(1 − P0 − P2)} = log(a1) + b1 I − c1 log(D) (15.17)

Now, because D is a discrete variable for any given segment it may be considered a constant and
(15.17) reduces to:

log{P2/(1 − P0 − P2)} = b1 I + constant

It is instructive to consider that as income (I) increases, so does the left-hand side term of equation
(15.17); therefore one can deduce that (1 − P0 − P2) tends to zero or, what comes out to be the same,
P2 tends to (1 − P0). However, as P0 is nearly zero for high incomes, that would mean that P2 would
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tend to 1 and this is obviously incorrect as one would expect a lower limit for it. This upper bound, or
saturation level (S) of P2, may be incorporated to the model by adjusting (15.17), yielding:

log{P2/ [S(1 − P0) − P2]} = log(a1) + b1 I − c1 log(D) (15.18)

where S must be determined empirically; now, as this may be difficult in practice, the usual procedure
involves trying different values in a sensitivity analysis. The types of curves obtained by this method are
illustrated in Figure 15.7.

Figure 15.7 Car ownership versus income

Example 15.1 Consider the data in Table 15.2 and assume a value of S = 0.78; the problem is to estimate
the parameters of the Quarmby and Bates’s model for a fixed residential density value.

Table 15.2 Car ownership proportions by income

Income P0 P1 P2

1 0.61 0.34 0.05
2 0.35 0.47 0.18
3 0.22 0.44 0.34
4 0.16 0.37 0.47
5 0.10 0.30 0.60
6 0.08 0.24 0.68

If we take the logarithm of (15.14) for fixed D (i.e. c0 is of no interest) we get:

log{P0/(1 − P0)} = log(a0) − b0 log(I )

and fitting a regression line to the data we obtain a0 = 1.74 and b0 = 1.60. On the other hand, if we
replace the value of S in equation (15.18) for constant D, we get:

log{P2/ [0.78 (1 − P0) − P2]} = log(a1) + b1 I

and fitting another regression line to the data we finally obtain a1 = 0.10 and b1 = 0.84.
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15.3.3.2 The Regional Highway Transport Model (RHTM) Method

This method (Bates et al. 1978) combines the best features of the previous two approaches. First, it is
necessary to define the following variables:

� P(1+) = percentage of households with one or more cars, with a saturation level of S (1+);
� P(2+) = percentage of households with two or more cars, with a saturation level of S(2+).

Therefore the previous method’s values can be derived as:

P0 = 1 − P(1+)

P1 = P(1+) − P(2+)

P2 = P(2+)

but it must be noted that the saturation levels are different from those of Tanner. The model takes the
following form:

Pt (1+) = S(1+)

1 + exp {−a1(It/pt )−b1 } (15.19)

Pt (2+) = S(2+)

1 + exp {−a2 − b2(It/pt )} (15.20)

where (It/pt) is annual family income (£/week) deflated by a car price index. The model was calibrated
using British data for the period 1969–75, yielding the following parameter values:

a1 = −7.76 b1 = 2.26 S(1+) = 0.95

a2 = −3.76 b2 = 0.04 S(2+) = 0.60

To forecast it is necessary to assume a certain distribution of income (for example, one of the Gamma
type); also, to convert the modelled results to cars/person (Cp) it is necessary to use census data. For
example, Bates et al. (1978) postulated the following conversion rule:

Cp = P (1+) + 2.17P (2+)

To obtain cars/household we finally require information about the future average number of persons
per household.

15.3.3.3 Joint Models of Car and Motorcycle Ownership and Use

Some authors have argued that car ownership should not be considered in isolation of other processes
like motorcycle ownership, mode choice or at least car usage as the latter is more critical than ownership.
Train (1980) has developed a structured Logit Model of car ownership and mode choice. The work of
de Jong has always emphasised the need to model jointly car ownership and use (kilometrage) using
different approaches, for example indirect utility (de Jong, 1990) and discrete choice (de Jong 1996).

In a different context, Khan and Willumsen (1986) argued that in developing countries growth in car
ownership (and use) commits future resources to additional investment in roads and road maintenance.
They insisted that car ownership should be considered as a policy variable rather than an exogenous
factor; in order to support these ideas, they developed policy-sensitive models of car ownership and use,
and calibrated those using data from different countries and time periods. They studied a number of
functional forms, one of the most useful models being:

log C1000 = −361 + 70.5 log GNPH − 0.373 log PURTAX − 2.58 log OWNTAX

−0.682 log IMPDUTY − 29.4 log FUELPR − 2.04 log POPDEN

R2 = 0.86
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where C1000 is the number of cars per 1000 inhabitants, GNPH is the gross national product per capita,
PURTAX is the purchase tax associated with cars, OWNTAX is the associated ownership tax (road
licence), IMPDUTY is the important duty for cars, FUELPR is the price per litre of fuel and POPDEN
is the population density.

A second model was developed to estimate annual mileage per car, KM/C. One such model was:

log KM/C = 5.76 − 0.434 log GNHP − 0.368 log FUELPR − 0.67 log ROADPOP

where ROADPOP is the paved road length per head of population.
Finally, Khan and Willumsen (1986) developed an ‘analysis’ model where the total number of cars,

car-km, fuel consumption, tax revenues, and road maintenance and investment costs are calculated for one
or more years in the future. Alternative policies regarding taxation, import duties and road construction
can then be compared in terms of their implied costs to the country. The general structure of these models
is shown in Figure 15.8.

Figure 15.8 Khan and Willumsen’s ‘analysis’ model

It is surprising how little work has been carried out in the modelling of motorcycle ownership.
Motorcycles are a much maligned mode of transport despite their importance in many countries, including
some in Europe. They have a poor safety record but offer a low cost and efficient mode of transport
with smaller requirements for road and parking space than cars. The use of four-stroke engines makes
them less polluting than cars and in their modern incarnation as electric two-wheelers they deserve
considerably more attention.

One can assume a degree of substitution between motorcycle and car ownership but this cannot be
complete. Motorcycles are present in all countries, even in those where car ownership has reached
saturation levels. This suggests that the best way to model motorcycle ownership must be jointly with
cars. A simple model would assume that the saturation level of motorcycle ownership must be related
to the actual level of car ownership: the higher current car ownership the lower the saturation level of
motorcycle ownership. One of the authors of this text has developed such a model, out of necessity, to
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forecast future metro patronage in an Indian city; as the running costs of motorcycles was very similar
to the proposed fare of the metro, understanding how motorcycle ownership was likely to evolve was
critical to mode choice. Consider, for instance, the context where the saturation level for car ownership is
500 cars/1000 inhabitants, the maximum for motorcycles is 350/1000 and this saturation level declines at
half the car ownership level; this will produce a final saturation level for motorcycles of 100 motorcycles
per 1000 inhabitants as shown in Figure 15.9.
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Figure 15.9 Car and motorcycle ownership in an emerging country

Of course, it is possible to use econometric models like those discussed above and link the two levels
of ownership through Income (and vehicle prices) but this would require additional data and research.

15.3.4 International Comparisons

Energy use in the transport sector grows faster than in any other sector of the global economy. Of that
growth, an increasing proportion originates in emerging countries. This is a reflection of the low levels
of car ownership in these countries and the near saturation levels achieved in nations like the United
States. It is therefore important to understand better how increases in wealth affect car ownership and
use, and how these in turn will affect energy consumption and (until hydrogen becomes commonplace
fuel) emissions and greenhouse gases.

Dargay and Gately (1999) have produced comprehensive studies into the effect of income level on
car ownership, including international comparisons as part of this process. They used income and car
ownership data for the period 1960 to 1992 from 26 countries ranging from the United States to India
and China (data was not available for all these years in all countries). Then they searched for suitable
functional forms to model car ownership as a function of income level. After experimenting with a
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number of functional forms, they chose a Gompertz model. The Gompertz equation for long-run vehicle
ownership V

∗
as a function of per capita income I can be written as:

V ∗ = γ exp (αeβ I ) (15.21)

where α and β are negative values. The parameter γ defines the saturation level since for β > 0:

lim
I→∞

V ∗ = γ

The parameter α specifies the value of the function at I = 0, that is:

V ∗
I=0 = γ eα

Since the saturation level γ cannot be equal to 0, the value of the Gompertz function approaches 0 as α

increases negatively.
The Gompertz function has a long-run elasticity that can be calculated by appropriate differentiation:

ηL R = αβ I eβ I (15.22)

The income level that produces the maximum elasticity is obtained by setting the derivative of the
elasticity to 0:

IME = −1/β (15.23)

And the maximum elasticity is defined by:

ηM = −αe−1 = −0.3678α (15.24)

Dargay and Gately (1999) recognised that vehicle ownership cannot change instantly; there are lags and
inertia effects that must be taken into account. They postulated a simple partial adjustment mechanism
to account for these lags:

Vt = Vt−1 + θ (V ∗
t − Vt−1)

where θ is the speed of adjustment (0 < θ < 1) and Vt is vehicle ownership at time t. That converts into:

Vt = γ θ exp (αeβ It ) + (1 − θ )Vt−1 (15.25)

For a number of theoretical and practical reasons the authors restrict the values of α, θ and γ to be the
same for all countries and allow β to be country-specific. The model then becomes:

Vjt = γ θ exp (αeβ j I j t ) + (1 − θ )Vjt−1 (15.26)

where the subscript j represents a given country.
Using their data sets they found a common saturation level γ = 0.85 vehicles per person (and 0.65

cars per person) and a value of α = −5.9. They also found the value of θ = 0.09, indicating that 9% of
the total response to income takes place within one year. The values of β range from −0.3 to −0.2 in
different countries.

From the model, one can estimate the maximum income elasticity to be about 2.4 for cars; this is
attained at per capital income levels of about $5000 (US dollars at their 1985 value) for countries with
β = −0.02.

Given the range of countries in their database, the models developed by Dargay and Gately (1999)
are quite useful for application in different countries where there are limited time series available for car
ownership forecasting.
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15.4 The Value of Travel Time
15.4.1 Introduction

The question ‘has time a value?’ is answered in the affirmative by most people. A more serious problem
is ‘what value?’ and under what circumstances it can or must be measured.

This theme has generated an enormous debate in the literature for more than 30 years (see for
example Bruzelius 1979) simply because time savings continue being the single most important benefit
of transport improvement projects all over the world. However, and in spite of its importance, a consensus
has not been reached about the size and nature of the values to be used in project evaluation. We will
not attempt to review the subject in great detail here, but refer the reader to Jara-Dı́az (2007) for a
deeper discussion.

For example, in Great Britain (and other countries, such as Chile) social values of time corresponding
to a fixed proportion of the average hourly rate are recommended for project appraisal. On the other
hand, in the USA increasing values for three ranges of time savings (0–5 min, 5–15 min and 15 or more
minutes) have been recommended (AASHTO 1977). Clearly the use of linear or non-linear valuation
functions should lead to different benefits and hence to different investment priorities. For example, the
British norm tends to favour schemes generating small time savings while the American norm above
favours schemes generating more substantive time savings.

Most studies distinguish between subjective (or behavioural) and evaluation values of time. The first
corresponds to, for example, the value of the parameter associated with in-vehicle travel time in the
generalised cost functions we studied in Chapter 5 and which should have been derived by estimating,
typically, a discrete choice demand model with real disaggregate data. The evaluation value is that used,
as the name implies, to compare alternative schemes which produce different levels of time and other
resource savings. It is argued, therefore, that the behavioural value of time reflects mostly the ability of
the traveller to pay and not the intrinsic value of a particular time saving. This is why very often the
value of time used for evaluation purposes is an equity value, taken as being the same for all travellers,
independently from their age or socioeconomic group, as we will see below.

On the other hand, it may be argued that the use of different ‘values of time’ for evaluation and demand
modelling purposes introduces inconsistencies of approach at different stages of the same exercise. This
was, for example, one of the criticisms levelled at the controversial implementation of the Transantiago
public transport system in 2007 (see Muñoz et al. 2009) as the low social-equity values of waiting time
were confronted with normal operators earnings in a complex optimisation program used as part of the
system design. There is little dispute, however, that the subjective values of time are heavily dependent on
model specification and data (see Gaudry et al. 1989); this is an undesirable property because consistent
evaluation of projects is sought over a wide range of models and areas.

15.4.2 Subjective and Social Values of Time

The utility function estimated from discrete travel choice models can be used to calculate the subjective
value of time saving (SVT) or, equivalently, the willingness to pay to reduce travel time (in-vehicle,
walking or waiting) by one unit. As shown in Jara-Dı́az (2000), because travel utility is in fact a
conditional indirect utility function, the SVT can be given a microeconomic interpretation which depends
upon the arguments that are assumed to enter the utility function and the type of constraints considered;
see also Bates (1987).

Time valuation analysis comes from three sources: the pure time allocation theories, the home produc-
tion framework and the literature on travel demand. Everything started with Becker’s (1965) approach
based upon the idea of utility depending on the amount of ‘final goods’ (i.e. a prepared meal) consumed,
each of which requires market goods and time as inputs; this was the origin of a time value equal to
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hourly income, because ‘time can be converted into money’ by spending more time at work and less
in consumption. This elementary result was soon proved limited, after the successive analysis by John-
son (1966), Oort (1969), DeSerpa (1971) and Evans (1972), because work time should enter utility as
an argument.

Later on, the fixed-income approach to mode choice models, introduced earlier as the expenditure rate
approach (Jara-Dı́az and Farah 1987; Jara-Dı́az and Ortúzar 1989), also supported a travel time value
that is not necessarily related to the wage rate. The result of this stream of papers was a framework in
which the economic actions of the individual are looked at as if they maximised a utility function that
depends upon all types of activities undertaken and on all goods consumed, subject to three types of
constraints: a money budget, a time constraint, and a set of technical relations between goods and time
(Jara-Dı́az 1998; 2007).

Up to now, the SVT has been shown to reflect the value of relaxing the minimum time requirement
on travel. Analytically, this is the ratio of the multiplier on that constraint over the marginal utility of
income (MUI) and can be shown to be equal to the resource value of time (or, equivalently, the value of
leisure) minus the value of the marginal utility of travel. The former represents the value of reassigning
the travel time saved to other activities, and is analytically given by the ratio of the multiplier of the
time constraint over the MUI. The latter is the lost value, in direct utility terms, because of less travel,
and is expected to be negative. Thus, the SVT adds up the value of a gain in leisure plus the value of
a reduction in an unpleasant activity (see the discussion and the extra references provided by Jara-Dı́az
2007). It is important to note that if individuals choose the work schedule (hours at work) at a given wage
rate, they will adjust that schedule until the value of leisure equals the value of work; this is given by the
addition of the money earned (the wage rate) plus the value of the marginal utility of work (which can
be positive or negative). Jara-Dı́az and Guevara (2000), and Munizaga et al. (2006) among others have
managed to estimate simultaneous models of travel and activities, obtaining not only the SVT but also its
component elements.

Finally, a word on the price of travel time that should be used for social appraisal of projects (the
evaluation or social value of time). There is no reason for society to value an individual’s reassignment
of travel time at the individual’s SVT. For the analysis of discretionary travel, the state of the art is the
work by Gálvez and Jara-Dı́az (1998), who show that a proper social price of time (SPT), consistent
with a social appraisal framework within the field of welfare economics, should be equal to the ratio of
the marginal utility of time over what they call ‘social utility of money’. This is given by a weighted
sum of individuals’ MUI, with the weights given by the proportion of marginal taxes paid by the
corresponding group.

This approach advocates for potentially different SPT by group, which are generally different from
each group’s SVT. It is important to note that these authors show analytically that accepting the SVT
as SPT is equivalent to assigning to each group a social weight that increases with income. This has
important and generally undesired policy implications, but sadly it reflects the approach usually taken
in practice.

15.4.3 Some Practical Results

Heggie (1983) argued that the value of time debate was more empirical than theoretical. The enormous
practical difficulties associated with measuring values of time encouraged the use of indirect methods such
as the discrete choice approach mentioned above. However, this method generates the usual empirical
problems such as:

� how to choose an appropriate sample, i.e. one which basically contains people with a real choice
among clearly defined alternatives in terms of time and cost of travel;
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� how to measure the travel attributes, i.e. avoiding aggregation, perception and other sources of bias;
� which demand function to use that is consistent with the situation under study.

All these problems suggest that values derived from models estimated with revealed preference data
(the large majority of cases) may be suspect.

Perhaps the most complete study ever undertaken about the value of travel time savings was performed
between 1981 and 1986 by a consortium of consultants and academic experts in Britain, using a series
of models estimated with revealed preference and stated preference data for various choice situations in
several areas of Great Britain (Bates and Roberts 1986). Its principal recommendations (Department of
Transport 1987) were:

1. The value of working time (i.e. trips made during or as part of work) is equal to the gross hourly
income of the traveller, including all additional costs to the employer.

2. The trips for all other purposes, including trips to work, increased their valuation from 27% to 43%
of the average hourly income of full-time employed adults (this is an increment of 85%).

3. For the majority of cases a single equity value of time should be used; however, in cases where
the proportion of children, pensioners or employed adults is judged to differ significantly from the
national average, an ad hoc equity value of time should be estimated using the individual values for
each of these groups.

4. To update these values, information about real hourly incomes on each year should be used; to
forecast, these incomes should be estimated as a function of the domestic per capita product.

5. The values of waiting and walking time should be taken as twice the value of in-vehicle travel time;
bicycle users should be treated as pedestrians in this sense.

6. Small time savings should be valued equally as more significant savings.

In 1994 the UK Department of Transport commissioned a new value of time study (Accent and HCG
1996). In what follows we summarise some of their most interesting conclusions, which are broadly in
line with the findings of an earlier study done in Holland (HCG 1990) using the same methodology:

1. For any level of variation around the original journey time, travel time gains are valued less than
losses. For non-work-related journeys, variations up to five minutes in journey times are generally
ignored. Business travellers are more sensitive to gains and losses than commuters, who in turn are
more sensitive than those on non-work-related journeys.

2. There is a clear relationship between income and SVT (as was found in 1986) which is monotonically
increasing but not directly proportional. At the same income levels, the 1994 SVT values are signifi-
cantly lower than those recorded in 1986. This may have been caused by changes in the composition
of the car-using population (those with high SVT were earlier to acquire and use cars) with the growth
in usage then biased towards market segments with lower SVT.

3. SVT values under congested conditions are significantly higher than for trips done under free-flow
conditions. However, the types of road mix (i.e. percentage of time travelling on motorways, trunk
and other roads) were not significantly different. Finally, regular users of motorways are relatively
indifferent to number of lanes, but appear to be very sensitive to travelling with lorries in the traffic,
and clearly dislike roads with no shoulders (the strongest effect of all).

4. In relation to peak shifting, it was found that the disutility of departing earlier increases linearly
with the time difference. This was also true for later departures up to one hour as, curiously, they
found that the burden did not increase much beyond that hour; see also the discussion in Bianchi
et al. (1998).
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15.4.4 Methods of Analysis

15.4.4.1 The Revealed Preference Approach

To estimate the willingness to pay (WTP) for savings in travel time (i.e. the SVT) in the classic transport
microeconomic literature, modellers need to measure the trade-offs between travel time and cost faced
by a target population represented by a statistical sample (e.g. individuals commuting from certain
suburbs to the CBD). The SVT corresponds to the marginal rate of substitution between perceived times
ti (in-vehicle, walking or waiting time) and costs ci of travel at constant utility (Gaudry et al. 1989),
yielding the following expression:

SVT = − dCi

dti

∣∣∣∣
v

= ∂Vi/∂ti

∂Vi/∂ci
(15.27)

As the representative utility function in our most classical models is assumed to be linear and additive in
the (fixed) marginal utility parameters, under this assumption the SVT corresponds to the ratio between
the estimated parameters, θ t and θ c, of the attributes travel time and cost; for example, in the case of the
popular wage rate (w) specification (Train and McFaden 1978), this simply yields:

SVT = wθt

θc
(15.28)

From (15.28) one can easily see that the ratio θ t/θ c represents SVT as a percentage of income.
For the linear-in-parameters expenditure rate (g) specification (Jara-Dı́az and Farah 1987), where g is

given by (8.7), equation (15.27) yields:

SVT = g θt

θc
(15.29)

In the non-linear Box–Cox case (8.3) with wage rate specification we get, instead:

SV T = wθi t
τi −1
i

θc(Ci/w)τc−1
(15.30)

which will clearly vary across alternatives if τ k is not equal to 1. This latter formula implies that if both
τ ’s are equal and they are less than one (i.e. as required by their micro-economic conditions), the model
will necessarily yield higher value of time estimates for modes which are more expensive per minute;
however, this may not be the case if the τ ’s differ (Gaudry et al. 1989).

Now, as θ t and θ c are estimates of the ‘true’ model parameters, they are not really constants but
random variables with a certain probability density function (PDF). For this reason the ‘SVT point
estimate’ (i.e. θ t/θ c) is also a random variable with an unknown PDF, and it is appropriate to examine the
consequences of replacing this single value by the construction of a confidence interval given a certain
level of confidence. A simpler but less appropriate way out consists in judging the significance of the SVT
by means of a pseudo t-ratio test. Jara-Dı́az et al. (1988) show that by making a first- order expansion of a
Taylor series for the random variable θ t/θ c around its mean value (the ratio of the estimated coefficients),
the following t-ratio may be constructed:

ttc =
(

σ 2
t

θ 2
t

+ σ 2
c

θ 2
c

− 2Cov(θt , θc)

θtθc

)−1/2

(15.31)

where σ t and σ c are the standard errors of the estimated coefficients. Daly and de Jong (2006) have given
a fresh look at this formula, arguing that due to the asymptotic properties of the maximum likelihood
estimator, it would be an exact measure in the immediate vicinity of the maximum.

We know that the maximum likelihood parameters are asymptotically distributed multivariate Normal.
Now, if a vector of random variables (in our case the parameter estimates) converges asymptotically to a
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joint distribution (in our case the multivariate Normal), then any continuous function of the parameters,
such as the ratio, converges in distribution (to the ratio of two Normal variables), according to the
continuous mapping theorem (see theorem 5 in Mann and Wald 1943).

Consequently, the SVT point estimate is a random variable governed by a probability distribution
(i.e. that for the ratio between two Normal distributed variables) without an explicit form (Fieller 1933;
Hinkley 1969; Shanmugalingam 1982) and that may turn out to be unstable (Meijer and Rouwendal 2000).
In the special case of two Normal variables with mean zero the ratio follows a Cauchy PDF (Arnold and
Brockett 1992), but this has an indefinite variance and its mean does not have an analytical expression.

Given these facts it is highly likely that the ratio between the parameters θ t and θ c, which are
components of a general multivariate Normal population, will be governed by an unyielding PDF (the
only exception being when the coefficient of variation of θ c approaches zero, in which case the ratio
approximates the Normal distribution). It is necessary then to find an econometric procedure to make
statistical inference on this ratio without resorting to the direct use of the associated PDF.

To solve this problem, several methods have been proposed in the literature. For example, Ettema et al.
(1997) discuss a general method to construct confidence intervals for the SVT even in cases where the
parameters of travel time and cost are allowed to interact with other segmentation variables. Simulation
is used to simultaneously calculate the parameters from a multivariate Normal distribution, defined by
the covariance matrix of the estimated travel time and cost parameters. Values for these are generated a
sufficiently large number of times and the confidence interval is constructed on the basis of the mean and
variance estimates of the generated sample; it is possible to simulate values for the parameters of travel
time, waiting time, walking time and cost simultaneously. Finally, by simply calculating the 0.025 and
0.975 percentiles, the limits of the confidence interval at the 95% level are obtained.

An advantage of this method is that it does not need to introduce additional assumptions (other than
normality for the maximum likelihood estimators). In addition to being applicable to any type of utility
function specification, it considers the variance of the parameters and the correlation between them.
The results of Ettema et al. (1997) suggest that when the correlation increases, the size of the intervals
decreases, indicating that we may obtain extreme results when correlation is not considered.

Further advances on this method and an application to an RP/SC model including interactions in the
utility specification and the introduction of intangible variables, such as comfort, were done by Espino
et al. (2006). Their results indicate that the size of the confidence interval is affected by the outliers
of the simulation as well as by the magnitude of the simulated parameters. The estimated parameters
should be consistent in relation to all the microeconomic principles underpinning the model, i.e. the
marginal utilities of the different attributes must have a correct sign for every individual in the sample
(i.e. before applying, in their case, sample enumeration to obtain the corresponding SVT); otherwise,
such individuals should be removed from the calculation. They found that elimination of outliers in
two steps (first, from the simulated multivariate Normal distribution and second, from the simulated
distribution of the SVT), as well as the removal of individuals with inconsistent marginal utilities, was
the simulation strategy that provided narrower confidence intervals. Further, in this case the amplitude
of the intervals remained constant as the number of simulations (up to 100 000) was increased.

Armstrong et al. (2001) discuss two further methods. The first one is called the asymptotic t-test
method and is based on the following null hypothesis:

H0 : θt − V T θc = 0 (15.32)

where VT represents the SVT point estimate (i.e. the ratio between the parameters of time and cost in
a linear utility). The confidence interval is given by the set of VT values for which it is not possible to
reject H0 at a given level of significance. The corresponding statistic is:

t = θt − V T θc√
Var(θt − V T θc)
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This expression distributes Normal for linear models and asymptotically Normal for non-linear models
like the MNL (Ben-Akiva and Lerman 1985). Armstrong et al. (2001) also derived the upper and lower
bounds for the interval as follows:

VU,L = V T

(
tc

tt

)
(tt tc − ρt2)

(t2
c − t2)

± V T

(
tc

tt

) √
(ρt2 − tt tc)2 − (t2

t − t2)(t2
c − t2)

(t2
c − t2)

(15.33)

where tt and tc correspond to the t-statistics for θ t and θ c respectively and ρ is the coefficient of correlation
between both parameter estimates. Equation (15.33) is a real number only if the radical argument is non-
negative; it can be shown that this condition is met when the parameters θ t and θ c are statistically
significant (so that tc and tt are greater than t). This condition assures positive upper and lower bounds.

Furthermore, it can be observed that the confidence interval derived from this formulation is not
symmetrical with respect to the SVT point estimate (VT), and that the interval’s midpoint is greater than
VT as well. Another feature is that the value of ρ has a strong influence; for example, the interval size
decreases with the value of ρ and vice versa. The size of the interval also narrows as the t-statistics get
more significant.

Finally, note that for large samples the following equality holds:

lim
N → ∞

tt , tc → ∞

VU,L = V T (15.34)

which agrees with the intuition that the larger the sample size, the smaller should be the interval size.
The second approach proposed by Armstrong et al. (2001) is called the likelihood ratio test method.

It is based on imposing the linear restriction (15.32) to the maximum likelihood estimation process and
comparing the statistical efficiency of the estimation with respect to the unrestricted case. The procedure
is to search for values of VT for which the linear restriction is valid given a certain significance level.
The null hypothesis is still the same as in the previous case, but the test is performed according to the
following statistic:

LR = −2[l(θr ) − l(θ )] (15.35)

where l(θ r) and l(θ ) represent the logarithm of the likelihood function for the restricted and unrestricted
models respectively. LR is distributed χ2 with one degree of freedom (corresponding to the single
restriction imposed).

Example 15.2 Let us consider the following systematic utility function to be estimated:

Viq = θt tiq + θCCiq +
∑

k

θk xkiq

where tiq and Ciq are the travel time and cost for individual q; xkiq are attributes (different from travel
time and cost) for individual q, and θ k are their corresponding parameters. Replacing the ratio of θ t and
θC by VT in the above equation, the following utility function is obtained:

Viq = θC (V T tiq + Ciq ) +
∑

k

θk xkiq

These two equations allow us to compute the unrestricted and restricted log-likelihood functions, l (θ )
and l (θ r/VT). Clearly, if the SVT is equal to VT then l (θ ) = l (θ r/VT), but different values of VT will
yield different values of the restricted log-likelihood function. This method requires a search for the
maximum and minimum values of VT for which the following inequality holds:

−2[l(θr/V T ) − l(θ )] ≤ χ 2
1,1−α
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An advantage of this method over the asymptotic t-test method (15.33) is that it is not restricted to linear
utility functions. However, the process of constructing the intervals is more tedious because it requires
an iterative procedure to obtain each limit. Armstrong et al. (2001) present the results of using all the
above methods for various cases of interest.

The subjective values of the time and their confidence intervals (both bounds and size) vary strongly
with model specification (i.e. they are strongly dependent on the functional form assumed for the
representative utility and on the model structure). But with cross-sectional data it is not easy to give a
clear rejection of any reasonable model form; see the discussion in Jara-Dı́az and Ortúzar (1989).

15.4.4.2 Special Problems Brought In by the Use of More Flexible Models

If tastes are assumed to be homogeneous, as in the classical MNL or NL models, it is possible to
derive a single willingness-to-pay (WTP) value for a fictitious average individual. In this case it is
also straightforward to examine if the model satisfies the required micro-economic conditions. But
this assumption can be too restrictive, as WTP may vary from one person to another depending not
only on observable social and economic characteristics, but also on unobserved variables or attributes
which are difficult to measure. For this reason it is important to study the distribution of preferences
in the population to obtain more accurate measurements.

As we saw in Chapters 7 and 8, advances in the field have enabled analysts to use increasingly
complex models, such as Mixed Logit (ML) that allow one to define broader behavioural patterns
(Train 2009). However, these models have been infrequently applied to evaluation studies and a
consensus on the correct way to interpret their results has not yet been reached (Hensher and Greene
2003; Sillano and Ortúzar 2005). Further, most applications have been limited to estimating just the
mean and spread of the distribution of population parameters and not individual parameter values.
Now, the estimation of WTP values involves taking ratios of stochastic variables and in this case
the problem we discussed in the previous section is compounded by the fact that not only the
estimates, but the parameters themselves, are random variables and this is not a trivial issue (Meijer
and Rouwendal 2000).

Amador et al. (2005) analysed individual preference heterogeneity with different methods and
compared their benefit measures. To capture heterogeneity they used two approaches discussed
in Chapter 8. First, systematic taste variations as in equation (8.17) where each level-of-service
parameter is allowed to be a function of observed socio-economic characteristics (i.e. age, sex,
income, vehicle ownership). Second, capturing random taste variations through the specification of
a ML model (see section 8.6). Both approaches can also be used in a single model allowing us to
incorporate non-observed heterogeneity as well as systematic variations in preferences.

Amador et al. (2005) compared subjective values of time (SVT) computed from a MNL imposing
preference homogeneity and from various specifications allowing for taste variations (see Table
15.3). They found that the values derived from a model with homogeneous preferences (MNL-1)
were similar to those obtained when systematic variations in tastes were considered (MNL-2);
however if travel time tastes were allowed to vary randomly, significant differences appeared (i.e. up
to 40% increase in SVT) even when a systematic variation for gender was allowed for as in model
ML-2. This suggests that using a restrictive specification may lead to an underestimation of the value
of travel time savings.

However, previous experience suggests that conclusions actually depend on the nature of the
data and specifications used in each study. For example, Hensher (2001a; b) also found that more

(continued)
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restrictive models tend to underestimate the value of time; notwithstanding, other authors have found
no significant differences between values produced by different models (Train 1998; Carlsson 2003),
and in some cases even lower SVT values have been obtained when ML (Algers et al. 1999) or more
flexible models than the MNL are specified (i.e. Box-Cox Logit, see Gaudry et al. 1989). Finally,
Alpizar and Carlsson (2001) found that the SVT could be underestimated or overestimated depending
on the chosen mode.

Table 15.3 Subjective values of travel time1

Men Women Mean

MNL-1 – – 14.9
(14.3 – 15.6)

MNL-2 10.4
(10.0 – 10.8)

18.7
(17.9 – 19.4)

15.32

ML-1 – – 21.4
(20.4 – 22.4)

ML-2 17.0
(16.4 – 17.6)

24.7
(23.7 – 25.9)

21.52

1Following Armstrong et al. (2001), confidence intervals for SVT at the
95% level are presented in parenthesis;

2Weighted averages considering that the sample was composed of 204 men
and 290 women (Amador et al. 2005).

One possible explanation for the empirically observed discrepancies is the re-scaling that all
parameters undergo when moving from a fixed specification to one where some parameters are
allowed to vary randomly (see Example 8.8). But if all parameters were re-scaled in the same
proportion the SVT should not be affected by changing the specification. However, empirical evidence
shows that not all parameters are re-scaled by the same magnitude. Sillano and Ortúzar (2005) suggest
that an intuitive explanation for this would be that the explicit treatment of parameter variation
over the population into the systematic utility component is equivalent to the incorporation of an
explanatory variable previously left out in the original (MNL) model. This is analogous to one of the
misspecification problems discussed in section 3.2.1.4 and would lead to the restructuring of the utility
parameters to compensate for the extra explanation accounted for. Thus, depending on the variables
included in the model, the functional form chosen for the indirect utility function and the nature of
the data, a fixed parameters model may lead to over/under estimates of the true values of time.

In what follows, we will discuss some econometric aspects of four different methods to achieve
WTP estimates from parameter distributions. These methods can be applied to jointly distributed
parameters but we will assume independent distributions for simplicity. However, in many case
results are coincidental (Sillano and Ortúzar 2005).

Ratios of Population Means The simplest way to derive WTP values is to take the ratio of the
means of the parameter distributions involved. In other words, if

θt ∼ f (μt , σt ) ∧ θc ∼ g(μc, σc) then
θt

θc
→ μt

μc
(15.36)

This is not the mean value of the WTP, but a WTP value derived from the coefficients of
the ‘average individual’ for each parameter. Therefore, this interpretation should not be used in
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cost-benefit analysis, and the calculation of this index may only be used as a means of testing model
specification. Also, as the method disregards the rest of the distribution it considers a unique value
for the parameters neglecting all information about heterogeneity in the population. So, at the end,
the model is treated almost as a MNL, making in some sense the extra estimation effort worthless.

Simulation This method has been applied to construct confidence intervals (Ettema et al 1997;
Armstrong et al 2001) as we saw in the previous section, and has been also used to derive WTP
values from ML models by Hensher and Greene (2003) and Espino et al. (2006). It is a first approach
to construct a WTP distribution over the population using information neglected by the previous
method. An important feature of this method is that no assumptions are needed about the resulting
distribution of the of parameter ratios.

However, one problem of the method is that it can yield rather large spreads for the distributions
as the simulation process may involve drawing values that are close to zero. Hensher and Greene
(2003) discuss the effect of removing parts of the simulated distributions of WTP, and compare this
action with constraining the distributions. But in relation to the validity of this method, the real
issue is not whether or how to constrain the distribution to make it theoretically correct. Hensher
and Greene (2003) acknowledge that the mere fact of applying statistic distributions – which are
already analytical constructs – to behavioural parameters governed by an unknown logic, make
constraining (or removing parts of) the parameters or WTP distributions neither better nor worse than
an unconstrained distribution, unless there is a theoretical rationale behind.

A consistent rationale for cutting off the tails of the distributions is that there are no real people
with such extreme values to fill in the tails we are cutting. So, when applying this method the analyst
must remember that the final goal is to estimate WTP values for the sampled population, and for
sample sizes smaller than infinity this is a finite set of values. Therefore, the real problem with
simulating WTP distributions from sampled values is not how to constrain them in a right way, but
the fact that we are simulating countless numbers of values for people who do not even exist.

Log-Normal Distribution for WTP The use of Log-Normal distributions for the parameters over
the population in ML models has been proposed by many authors, as this would constrain their signs
to be consistent; further, it would yield an analytical expression for the resulting WTP distribution
since the ratio of two Log-Normal distributed variables is also Log-Normal.

Consider a random variable x such that x∼N(μx, σ x). Then a variable defined as X = exp(x),
has a Log-Normal distribution with mean exp (μx + σ x

2/2), and standard deviation given by exp
(μx + σ x

2/2)·√(exp(σ x
2) − 1). Now consider the ratio of two Log-Normal variables, say X/Y , then:

X

Y
= exp(x)

exp(y)
= exp(x − y) = WTP

where

WTP ∼ log N

(
exp

(
μwtp + σ 2

wtp

2

)
, exp

(
μwtp + σ 2

wtp

2

)
·
√

exp(σ 2
wtp) − 1

)
(15.37)

As x and y are Normal variables, their difference is also Normal with:

(x − y) ∼ N(μx − μy, σ
2
x + σ 2

y − 2σxy)

(continued)
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Since we are assuming independent parameters, in this case the covariance term disappears.
Then replacing the above expression in (15.37) we get that an expression for the log-normal WTP
distribution is:

WTP ∼ log N

(
exp

(
(μx − μy) + (σ 2

x + σ 2
y )

2

)
, exp

(
(μx −μy) + (σ 2

x + σ 2
y )

2

)
·
√

exp(σ 2
x + σ 2

y ) − 1

)

(15.38)

This expression can be used to calculate cumulative proportions and confidence intervals. How-
ever, both Hensher and Greene (2003), and Sillano and Ortúzar (2005) found that in the case of
this distribution there are considerable differences between taking the ratios of the means and the
means of the ratios; this brings in new evidence to the discussion. The ratios of the means do not
yield the WTP for the mean individual household, but for a virtual one who perceives the mean
marginal utility of the population for each attribute (i.e. an ‘individual household’ who has the
mean parameter for, say, travel time and also the mean parameter for cost). The existence of this
household is not a fact but a mere coincidence, and even if it existed, its WTP value would not
be representative.

An analytical explanation for this difference can be easily derived. Consider two independently
distributed Log-Normal structural parameters θ t and θ c with associated Normal means b and c and
variances st

2 and sc
2 respectively. The ratio of their means can be expressed as a function of the

coefficients of the underlying Normal distributions:

θ̄t = exp

(
b + s2

t

2

)

θ̄c = exp

(
c + s2

c

2

)

⎫
⎪⎪⎬

⎪⎪⎭

θ̄t

θ̄c
= exp

(
b − c + s2

t − s2
c

2

)
(15.39)

And from (15.38) we can express the mean of the WTP log-normal distribution in terms of the
same coefficients:

wtp = exp

(
b − c + s2

t + s2
c

2

)
(15.40)

From here we can derive the relation:

wtp =
(

θ̄t

θ̄c

)
exp

(
s2

c

)
(15.41)

Thus, the ratio of the means of Log-Normal parameters is equal to the mean WTP value deflated
by the exponential of the variance of the Normal distribution underlying the Log-Normal cost
coefficient (i.e. the parameter in the denominator of the WTP ratio). In other words, the WTP mean
and the ratio of parameter means are scaled by a proportionality factor which, by the way, is fixed
for the model (i.e. the three attributes considered in this example are scaled by the same factor).
The logic of this effect is the following: the larger the variance of the cost coefficient, the larger
the portion of the denominators’ mass that will be near to zero, and hence the mean WTP will
grow larger.

The use of Log-Normal distributions for valuation purposes is not recommended. Their wide
tail tends to give extremely large WTP values with high probabilities yielding large portions of
cumulative mass close to zero distorting the analysis. Its main appeal is that it allows constraining
the parameters to be strictly positive (for negative coefficients, they enter with a negative sign in the
utility formulation). However, as we saw in Example 8.8 the relative easiness of the estimation with
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Normal distributions may also lead to structural parameters with correct theoretical signs. Thus, it is
not worthwhile to undergo the effort to estimate the model with Log-Normal distributed parameters,
since even if the individual values show a large portion of incorrectly signed people, the right course
of action should be to investigate them for consistency, and perhaps remove them from the sample.

Fixing the Cost Coefficient Another method which has been used considers fixing the cost co-
efficient and thus letting the WTP distribution to follow the distribution of the numerator; if the
parameter in the numerator follows a Normal distribution the resulting WTP distribution would be
simply given by:

θt ∼ N (μt , σt )
θc fixed

}
θt

θc
∼ N

(
μt

θc
,
σt

θc

)
(15.42)

Revelt and Train (2000) cite three reasons for fixing the cost coefficient:

� it effectively solves the problem under discussion;
� the ML model tends to be unstable when all coefficients vary over the population, and identification

issues arise (Ruud 1996); and
� the choice of an appropriate distribution for the cost coefficient is not straightforward, since the

Normal and other distributions allow for positive values, and the Log-Normal is both hard to
estimate and give values close to zero, as discussed above.

Notwithstanding, there is one drawback of this method that needs attention.

Example 15.3 Table 15.4 compares estimates of WTP derived from a MNL with those of a ML
model with a fixed cost coefficient in a residential location choice experiment (Sillano and Ortuzar
2005). As can be seen, the means of the resulting WTP distributions (for travel time to work, travel
time to study and an environmental attribute, days of alert, defined as the number of days when the
air quality requires additional car restraint) are considerably higher than the MNL point estimates, a
result that has also been reported by Algers et al (1999) and Revelt and Train (1998).

Table 15.4 Mean WTP estimates for fixed cost coefficient ML and MNL

Willingness-to-Pay

Attributes MNL ML

Travel time work (Ch$/min) Mean 36.0 51.0
Std. Dev. 54.8

Travel time study (Ch$/min) Mean 22.0 31.0
Std. Dev. 47.5

Days of Alert (Ch$/DA per year) Mean 124,362 126,160
Std. Dev. 107,430

Hensher (2001a; b; c) have also found higher mean WTP values for heteroskedastic and au-
torregressive specifications; this could indicate that ML models (with any error structure) tend to
overestimate WTP values. But, these works did not explore the possibilities that by constraining only

(continued)
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part of the error structure they could be causing an unbalanced growth in the model coefficients,
hence producing higher welfare estimates.

In Example 8.8 we explained why larger means for ML parameters, in relation to the MNL, should
be expected because of the extra variance explained by the random parameters; we have also discussed
above possible reasons for obtaining uneven enlargement factors. The fact is that constraining a taste
coefficient to be fixed over the population, may make it grow in a less-than-average proportion (i.e.
the parameters that are allowed to vary grow more than the parameters that should vary over the
population, but are constrained to be fixed). Note that this is not the case of parameters which are
eventually fixed because its standard deviation was originally estimated and found not significant
(see the discussion by Sillano and Ortúzar 2005 on this issue).

Willingness-to-Pay Estimation from Individual Level Parameters In section 8.6 we discussed
two forms to estimate individual level parameters for ML models, both involved the use of Bayesian
statistics. The estimation of individual taste parameters eliminates the issue of analysing the WTP
distribution resulting from the division of two random variables over the population. Instead individual
level WTP point estimates can be computed, along with their individual confidence intervals.

Example 15.4 Figure 15.10 presents frequency charts for the valuation of the two attributes the
distribution of which was shown in Figure 8.5. The charts show high concentrations on each edge
of the axis accounting for extremely large positive and negative WTP values. It is important to
mention that notwithstanding the sign of the WTP value, all implausibly large values belong to
individual households in the sample with non-significant cost (rent in the case of this location choice
example) parameters. That is, the denominator of the WTP ratio is statistically close to zero yielding
an inordinately large value.

It is also important to mention that in Figure 15.10a the only negative WTP values are also associated
with extreme cases. In fact, they correspond to the few observations with an incorrect sign for
the Rent parameter; but as it was also not significant in those cases, it caused the ratio to grow
disproportionably.

This suggests paying special attention to observations with a cost parameter statistically equal to
zero. In these cases the WTP ratio grows to implausibly large monetary valuations for reductions in
the corresponding attribute. On the other hand, as the individual household does not place any weight
on the cost attribute, we can debate whether those observations do not consider the cost attribute
at all, or whether the weight they place on it is negligible in relation to the rest of the attributes. If
the latter is the case, the interpretation of an extremely large WTP value would be correct. If not,
monetary valuations cannot be computed for these observations. Further theoretical development is
necessary to define criteria to help answering this question, but note that it is case specific (i.e. it
depends on the survey design, the underlying microeconomic model and the characteristics of the
valued attributes).

The estimation of individual level WTP values is as close as we can get to the correct method
of valuation inference from ML models. However, for project evaluation and cost-benefit analysis
we usually need data for different groups or strata in the population. One beauty of individual-level
data is that an analysis at the level of a given stratification can simply be performed averaging the
WTP values of those individuals present in each strata, along with their cluster variance. In fact,
thresholds (or strata boundaries) can even be defined ex-post in order to minimise the variance of
the WTP values across the group, and hence be able to define more homogeneous segments for
project evaluation and detailed analysis. Sillano and Ortúzar (2005) discuss this and other points in
more detail.
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(a) Travel time to work individual valuation 
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(b) Days of alert individual valuation 
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Figure 15.10 Individual level WTP point estimates

15.4.4.3 The Transfer Price Approach

In the context of travel demand analysis, transfer price has been understood as the amount by which
the cost of one option would have to be varied to equalise its overall attractiveness with that of another
predefined option (see Bonsall 1983).

A typical application of the method involves asking individuals, for example, by how much should
the fare of their currently preferred option increase to persuade them to switch to another alternative. It
is clear that an important problem of the technique (in common with other forms of stated-preference
analyses, and in particular contingent valuation which is the closest one) has to do with the reliability
that the analyst can associate with such a data set. On the other hand, a strong advantage of the method,
if it works, is that it makes it possible to know not only the direction of individual preferences but also
the difference (in preference terms) among the various available options. Thus in theory, and in common
with other SP studies, less data than for an RP study are required to obtain a model of similar accuracy.
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We will not attempt to discuss the method in detail here, but interested readers are referred to Gunn
(1984) for a good discussion of its advantages and problems, in particular its general inconsistency with
conventional random utility theory.

Example 15.5 Consider a random utility model such as (7.2) in a binary-choice situation and assume
that the transfer price (TP) corresponds to the difference between the utility of the chosen alternative
(Uc) and the other (Ur), i.e. it represents the increment in the cost of the chosen one that would made the
traveller indifferent to both options. Thus we have:

TP = Uc − Ur

However, the expected value of (Uc − Ur) is precisely the difference in representative utilities
(Vc − V r); so assuming these to be linear in the parameters, as usual, we can form the following linear
regression system:

TP(observed) = θ1(X1c − X1r) + θ2(X2c − X2r) + . . .

which should allow us to estimate the unknown parameters θ knowing the attributes X for both options.
Furthermore, different values of time for time savers and cost savers may be calculated with this method
(see Lee and Dalvi 1969).

One important problem, first noted by Hensher (1976), concerns the treatment of habit in transfer
price models. Gunn (1984) shows that specifications which use TP as a dependent variable but restrict
its sign (i.e. by modelling the options separately or by switching the observable characteristics to reflect
the difference between chosen and rejected option) cannot easily be made consistent with conventional
random utility theory (see also the discussion in Chapter 8).

15.4.4.4 The Stated Preference Approach

Stated preference (SP) methods, as discussed in depth in Chapter 8, have become the most used method to
estimate values of time in recent years. For example, in their final report to the Department of Transport,
the consultants for the ground-breaking 1994 UK value of time study note that ‘evidence has amassed
during the last ten years sufficient to have confidence that a well-mounted SP survey with a well-designed
questionnaire and proper analysis can yield reliable results, though this is preferable with a supporting
base in RP data if actual forecasts of levels of demand are to be made’ (Accent and HCG 1996). An
interesting discussion related to the use of SP methods in location choice and the implications for the
value of time is given by Pérez et al. (2003).

We do not review the large number of SP-based value of time studies reported in the literature during
the last few years, but we do mention some of the latest European reports on national studies. Besides
the new UK study, it is interesting to have a look at those for Finland (Kurri and Pursula 1995); Holland
(HCG 1990) and Sweden (Lindquist and Algers 1998). Other studies have been involved with important
issues such as the estimation of randomly distributed values of time (Ben-Akiva et al. 1993; Gopinath
and Ben-Akiva 1995), or with estimating time values using SP data allowing for interaction effects
(Ortúzar et al. 2000c; Rizzi and Ortúzar 2003). These cover new areas and use state-of-the-art models
and specifications as discussed in Chapters 7 and 8.

15.5 Valuing External Effects of Transport
15.5.1 Introduction

In many countries of the developed world, willingness-to-pay (WTP) methods have been used for the
monetary valuation of a range of external effects of transport such as accidents, pollution, noise, visual
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intrusion and amenity loss. Several examples have been compiled by Hansson and Markham (1992),
OECD (1994a), Mauch and Rothengatter (1995), Litman (1995), Maddison et al. (1996), Friedrich et al.
(1998) and ECMT (1998). The thrust of this work has been to establish the full social costs of transport
as a basis for efficient pricing in this sector and to extend the scope of social cost-benefit analysis (SCBA)
for improved project appraisal.

Although there has been much academic enthusiasm for the monetary valuation of these non-market
goods, this has been challenged on principle and practical grounds; a good expression of the nature of
this dissent can be found in Adams (1992) and Whitelegg (1993). However, there is considerable force
in the argument that, while empirically well-founded monetary values are difficult to achieve and may be
valid only in specific contexts, their expression will help to ensure that externalities are not marginalised
or understated in project and programme planning. This is particularly important in the contexts of
road investment appraisal and resource allocation for accident counter-measures and pollution control
strategies. Indeed, in the 1980s and 1990s, the attribution of monetary values to accidents of different
severity was an important stimulus to increasing the resources towards road safety and establishing
priorities over different safety measures in many countries of the world (Allsop 1999).

Also, as part of the expectation to respond to increasingly challenging environmental standards and
targets, many national and local governments have been establishing, extending or refining databases
relating to accidents, noise, and a variety of gaseous pollutants. These are intended for use in monitoring
changes over time and for evaluating fiscal, regulatory and investment policies. In many developed
countries this process is already established, while for most developing countries it is currently at a
relatively early stage of development, and the scope and quality of such data vary considerably (Chesnut
et al. 1997).

Now, although sufficient evidence was amassed over the 1990s, the economic costs of accidents, noise
and pollution are all subject to considerable variation, partly due to the different sources of data and
methods of measurement. For example, Quinet (1994) noted that for all forms of transport pollution,
estimates based on WTP provided the highest numerical values of a statistical life (VOSL), a feature
long known in the case of accident costing. For example, the UK government replaced the human capital
approach to fatality costing by the WTP approach in 1988, and this was extended to non-fatal accidents in
1994, drawing on the national studies of Jones-Lee et al. (1985, 1992). However, in the case of fatalities,
the government was not persuaded to accept the considerably higher values emerging from the former
WTP study and instead it implemented a compromise value (Dalvi 1988), thereby exercising an element
of caution in the face of a radical change of methodology (Department of Health 1999).

Until the mid 1990s, monetary valuation of environmental externalities was seldom given official
support (OECD 1994b; Lee and Kirkpatrick 1996). However, the situation changed rapidly afterwards
and surveys of ‘official’ transport appraisals (Bristow et al. 1998; DETR 1998) suggested that monetary
values for noise, air pollution and (to a lesser extent) barrier effects, were increasingly used in many
European countries by the new century. However, the appraisal of road investments undertaken or
supported by national authorities still involves a limited cost-benefit analysis (with unit monetary values
confined to savings in time, accidents and operating costs), applied in conjunction with an environmental
and socio-economic impact assessment. For example, in his survey of US state agencies responsible
for highway developments, Waters (1992) noted that relatively few embraced a sophisticated SCBA,
preferring rather simpler needs-based or cost-effectiveness approaches.

Although several academic studies have urged the extension of the SCBA framework to embrace a
wider range of impacts (Bateman et al. 1993; Willis et al. 1998), governments have remained cautious
about its formal extension to pollution, noise, visual intrusion, amenity loss and ecosystem damage.
This is partly because of gaps in knowledge, both in impact assessment and economic valuation (Mullen
1997), and partly because the site-specific nature of some of the impacts inhibits the use of standardised
unit values. These are universal concerns.

It remains a considerable research challenge to integrate environmental impact assessment, cost-
benefit and multi-criteria analysis traditions (Commission of the European Communities 1994; OECD
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1994c; Lee and Kirkpatrick 1996; Nardini 1997) in a context in which environmental objectives are
assuming increasing importance. Efforts include new ways of assembling and presenting qualitative and
quantitative information to minimise bias against non-monetary valuation items, and the construction
of appraisal frameworks which establish a ‘level playing field’ between different modes and allow
transport problems to be addressed with less emphasis on highway solutions (Price 1999; Glaister 1999).
Monetisation will increasingly be applied in multimodal settings with heavier demands on data.

15.5.2 Methods of Analysis

There are several taxonomies for valuation methods available in the literature, and a much larger economic
discussion than we could attempt here (ECMT 1996; Mauch and Rothengather 1995, Nash 1997; Verhoef
1994). In this section we will just quickly review, for the sake of completeness, two methods, the human
capital approach and the contingent valuation method, as it is probably fair to say that currently the
method which clearly dominates the field is our old acquaintance, the stated preference approach, fairly
well reviewed in Chapters 3 and 8 (see Rizzi and Ortúzar 2003 for a well-designed methodology that
has been used already as far as Australia and Norway).

15.5.2.1 Human Capital Approach

It is based on the assumption that the value of an individual is what they produce, and this is usually
measured by the gross salary perceived at work (i.e. before taxes in order to include the government and
hence society). If the person dies this production is lost. This, almost 30-year-old approach (Landefeld
and Seskin 1982) postulates that the value of preventing the death of an individual aged t is equal to the
net present value (PVt) of their expected earnings for the rest of their life:

PVt =
T −t∑

i=1

πt+i Et+i

(1 + r )i
(15.43)

where π t+i is the probability that the individual will survive from age t to age t + i, Et + i are the expected
earnings of the individual at age t + i, r is the discount rate and T is the retirement age.

The method has been heavily criticised as being the antithesis of the conventional premises of welfare
economics. Discussion has also touched on how to value production of individuals that are not in the
labour market (i.e. housewives), or what discount rate should be used to calculate PV (a sensitive issue
in the case of children and young adults); classical rates ranged from 6% to 10%, but nowadays values
below 5% are preferred in order to avoid punishing any age stratum in excess. Table 15.5, taken from
Landefeld and Seskin (1982), shows the effects of age and discount rate on the human capital value
of life.

Table 15.5 Net present value by age and discount rate

Net Present Value (US$)

Age group discount = 2.5% discount = 6.0% discount = 10.0%

1 to 4 years 761 047 205 101 59 859
20 to 24 years 967 221 534 799 320 114
40 to 44 years 625 508 454 972 338 232
65 to 69 years 47 506 40 886 35 304
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Due to difference in wages, if applied strictly, the human capital approach would yield smaller values
for the life of women than for the life of men; and smaller values may also have to be assigned to
non-Caucasians. Zero values would be assigned to retired individuals or to those incapacitated either by
illness or for any other reason. For this reason, as in the case of the value of time, the proper methodology
should be to estimate a single equity value to be used in project evaluation. Notwithstanding, it is widely
accepted that as this approach does not consider pain and suffering by the victim and their relatives, its
values constitute an underestimate of the true value of the social loss and therefore its use should just
allow us to establish a lower bound for the value of life.

Example 15.6 Knowledge of the wages corresponding to different age and sex categories allows us
to estimate net present values by sex and age given a discount rate using (15.43). Table 15.6 shows
estimates of the average net present values of earnings lost by premature death by different age groups
in the Santiago Metropolitan Region (Holz and Sánchez 2000).

Table 15.6 Net present value by age and sex

Net Present Value (US$)

Males Females

Less than 1 year 241 258 174 954
1 to 4 years 250 569 181 706
5 to 9 years 268 246 194 525
10 to 19 years 296 964 214 330
20 to 44 years 275 951 183 573
45 to 64 years 154 876 90 305
65 to 79 years 53 248 25 349
80 years and over 19 780 4 553

As can be seen the values are higher for males due to their higher wages. The net present value
diminishes with more mature ages because the life horizon shortens.

In order to obtain a unit cost for mortality, Holz and Sánchez (2000) calculated the percentage of
deaths for each age stratum for male and females using death statistics for 1997 in Chile (as disaggregate
data by gender was not available for the first three age strata, it was assumed that mortality was evenly
distributed). These percentages were multiplied by the respective net present values (Table 15.7), yielding
the participation of the various age groups in the unit cost. The sum of these participations equals the
average unit cost of a premature death in 1998 in Santiago, and this was estimated as US$53 224. This
value assumes a measure that would affect uniformly the mortality rate of the whole population.

15.5.2.2 Contingent Valuation

As mentioned in section 3.4.1, this is a technique for eliciting values for goods which are not or cannot
be bought and sold in a normal market. People are asked for their value of a good, contingent on a
market existing for it. A hypothetical market is created and described to the respondent, who is then
asked to make a market (purchase) decision. Contingent markets define the good or amenity of interest,
the existing level of provision, possible increments or decrements, the institutional structure under
which the good is to be provided, and the method of payment. Mitchell and Carson (1989) provide a
comprehensive explanation of the theoretical foundations of the contingent valuation (CV) technique,
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Table 15.7 Contributions to unit cost by age and sex

Male deaths
(%)

Unit cost
contribution

Female deaths
(%)

Unit cost
contribution

Contribution to
total unit cost

Less than 1 year 0.017 1 091 0.017 846 1 936
1 to 4 years 0.003 201 0.003 156 385
5 to 9 years 0.003 188 0.003 146 428
10 to 19 years 0.008 604 0.004 256 1 476
20 to 44 years 0.076 6 007 0.028 1 708 15 461
45 to 64 years 0.125 10 377 0.078 5 016 19 453
65 to 79 years 0.179 15 620 0.145 9 809 11 159
80 years and over 0.118 10 778 0.195 13 885 2 947

Total 53 244

methodological issues and practical application. Overviews are provided by Bateman and Turner (1993)
and Haneman (1994).

CV questions can ask for people’s willingness-to-pay (WTP) values or for their willingness-to-accept
(WTA) compensation values. The WTP value is the income an individual would forego to achieve an
increase in the level of a good and remain at the same level of utility, and WTA is the inverse. A problem
here is property rights; WTP assumes that these belong to the consumer and WTA the contrary. However,
WTP is most commonly used because it resembles familiar consumer purchase decisions (although
in cases of environmental deterioration, for example, WTA should be the correct theoretical value to
obtain). Thus, CV attempts to measure the change in income necessary to offset a change in amenity,
while leaving utility unchanged.

There are three main methods of eliciting CV values:

� Open-ended questions, where respondents are just asked how much they would be willing to pay for
a good.

� Iterative questions, where respondents are asked first whether they would be willing to pay a specified
amount; if they answer yes, the question is repeated with small increments in the cost until they say
no, then the cost is reduced by smaller decrements until a final figure is reached (and vice versa, if
they start by saying no to the original figure).

� Referendum questions, also known as dichotomous choice questions, where respondents answer yes
or no to a WTP question with a specified payment; the double-bounded dichotomous choice question
has an extra question after the first.

The referendum approach is the most attractive because it presents scenarios similar to those which
respondents, as consumers, encounter in day-to-day market transactions. The payment mechanisms
for actually buying or selling the good can include property taxes, income or sale taxes, utility bills,
community charges, fares, entry fees, subscription schemes or even an abstract instrument. Since its early
application in the 1970s the CV approach has been used to value a wide range of non-market goods.
Carson et al. (1995) provides a bibliography of CV studies containing 1400 references, indicating the
wide applicability of the method.

On the other hand, a strong critical assessment is provided in a collection of conference papers edited
by Hausman (1993) and Diamond and Hausman (1994), who believe that the evidence suggests that CV
surveys do not measure the preferences they attempt to measure, and that changes in survey methods are
unlikely to alter this. However, the method is still popular and has certainly been used in many important
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works related to valuing externalities in the transport sector (e.g. Jones-Lee et al. 1992; Feitelson
et al. 1996).

Example 15.7 Ortúzar et al. (2000a) report on the use of a CV questionnaire to obtain the WTP for
risk of death reductions (loosely related to environmental pollution effects) designed to overcome some
problems found in typical CV studies, namely that some respondents fail to understand the basic notion
of probability, attributing similar WTP to different reductions of risk, and that respondents may give zero
WTP to reduce future risks of death due to lack of understanding of the commodity being valued. Their
approach differed from previous CV studies of risk reduction in the following ways: (i) the timing of
risk reductions and the attention given to timing of payment and (ii) the proposal of a baseline risk that
has to be accepted by respondents as their own, according to age and gender.

After familiarising respondents with the concept of risk of death and its perception, their questionnaire
drew attention to the main causes of death by age and gender, and about common measures to mitigate
these causes and their costs. Then they introduced age- and gender-specific baseline risks (based on
actual data), and checked whether respondents accepted them as their own. After this they sought WTP
(using an open-ended payment method) for reductions in the risk of death in the next ten years; proposed
reductions were 1 and 5 in 1000, and were presented graphically using a matrix of a 1000 circles (which
presented the baseline risk as black circles), asking respondents to rub out the reductions valued. The
method worked very well in the sense that surveyed individuals acquired a proper understanding of the
questions asked.

After establishing the baseline risk (and having it accepted by the respondent), the fundamental
question of the survey took the following form:

The measures needed to achieve a reduction in premature deaths in the next decade involve certain
costs as we saw earlier in the questionnaire. Taking these into account please answer the following
questions:

How much money would you be willing to pay monthly for the next ten years in order to decrease
your own possibility of dying by 1 in 1000?

$/month. . .. . .. . .. . .. . .. Nothing (why?). . .. . .. . .. . .. . ..

How much money would you be willing to pay monthly for the next ten years in order to decrease
your own possibility of dying by 5 in 1000?

$/month. . .. . .. . .. . .. . .. Nothing (why?). . .. . .. . .. . .. . ..

How certain are you that you would pay that amount and not another?

(a) very sure . . . (b) reasonably certain . . . (c) not very sure . . .

Table 15.8 shows results from a sample of 94 respondents. Note that the ratio of WTP for risk reductions
of 5 and 1 in 1000 is close to 4, and this is consistent with expectations giving the decreasing marginal
utility of risk reductions; it also suggests that people are indeed capable of distinguishing between rather
small reductions in risk. And note that the VOSL is close to five times higher than that obtained with the
human capital approach, consistent with findings elsewhere (e.g. Cropper and Freeman 1991).
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Table 15.8 Implicit value of a statistical life per risk reduction

Risk reduction
Median WTP

(US$ per month)
Net present value

of WTP (US$)
Implicit value of

statistical life (US$)

1 in 1000 3.0 285.1 285 113
5 in 1000 12.0 1127.0 225 400

In the case of road accidents, the two most feared outcomes are to die or to become a severely injured
victim. Not surprisingly road project appraisal practice in most industrialised countries has given those
two outcomes the highest economic values; fatalities being more valued than severe injuries.

Conventional practice until the end of the 90s was to elicit WTP values for preventing both fatalities
and severe injuries using contingent valuation (CV) and risk-risk trade-offs (or standard gambling)
methods (Jones Lee et al. 1993; 1995). But CV basically involved a trade-off between money and risk
expressed as a tiny probability. Usually a question was posed to respondents asking for their willingness
to pay to buy some special safety device designed to reduce only the likelihood of a particular outcome
of a road crash; e.g. the likelihood of becoming a fatal victim or the likelihood of suffering – say – a
head concussion.

The risk-risk trade-off, on the other hand, demanded respondents to exchange the risk of one likely
trauma outcome of a road crash for another one. Usually respondents had to assume they were already
a road accident victim suffering a particular trauma; then they were offered the alternative of a medical
intervention that, with probability p, would return them to their health state before the crash and, with
probability 1 – p, they would end up in a health state worse than the current hypothetical one – this state
was usually death. Respondents had to state the value of p that would make them undertake the medical
intervention. Hence, it was possible to ‘chain’ different risks with the risk considered in the CV survey,
allowing the researcher to monetise risks others than that considered in the CV exercise. The reader may
ask why not use the CV to put a monetary value on all types of risk. The reason was that money-risk
trade-offs were deemed unstable, so researchers would rather avoid the overuse of CV.

15.5.2.3 The Stated Choice Approach

Although the above methods may work as a first empirical approximation, they do not address the issue
under analysis (i.e. risk of a road accident) in its proper dimension. First, the road safety schemes an
authority wants to evaluate are of a public-good nature. It is about reducing a public risk; that is, a risk
that displays no-rivalry in consumption since the benefits of the scheme accrue to all drivers on that
particular stretch of road. The safety device considered in the CV approach is a private good, not a public
one (but this could be corrected by substituting a public good for the private good, and this critique
would lose substance). Second and more important, a road safety scheme is about decisions on ex ante
risk management, in the sense of what can be done to prevent road crashes or to mitigate the impact
of a road crash. However, the risk-risk trade-off is akin to a post-trauma alternative medical treatment,
associated with decisions to be taken after the accident has occurred. This information should be more
relevant for health insurance companies than for public road agencies.

So, if WTP values are required for appraising road safety projects stated choice (SC) methods are a
superior elicitation approach (Rizzi and Ortúzar 2003; Iragüen and Ortúzar 2004; Hojman et al. 2005;
Rizzi and Ortúzar 2006; Hensher et al. 2009). This technique places the respondent in the correct context,
for example, having to choose between two routes with different levels-of-service (i.e. travel time, toll,
number of fatalities and number of severely injured victims). This way, people implicitly reveal WTP
not only for safety improvements, but also for travel time savings, probably the most important trip
attribute. The quota of increased realism afforded by the SC approach is necessary to uncover the value
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people actually place on safer roads. It also avoids the problem of embedding (Sælesminde, 2003), since
both the reduction of fatalities and severely injured victims are valued, together with travel time, in an
integrated framework where the individual is always conscious of her budget constraint.

As a caveat, SC methods are not without problems. As with CV, the hypothetical nature of the choice
scenarios is the main disadvantage of any stated preference survey, as we have discussed in Chapters
3 and 8. However, we strongly believe that SC surveys outdo conventional CV surveys with respect to
increasing realism.

Example 15.8 Hojman et al. (2005) designed a route SC survey for car trips between the cities of
Santiago and Valparaı́so, and another for car trips between Santiago and Rancagua (i.e. the capital
and two important Chilean cities respectively). The distance between Santiago and these two cities
is around 120 km via Class A roads (Routes 68 and 5-South respectively), which are fairly safe for
Chilean standards.

After a detailed experimental design phase, including focus groups and two pilots, the final survey
instrument contained five parts. The first asked for the driving experience on interurban roads and on
Routes 68 and 5 in particular. A question was included about the last time the respondent drove on any
of these routes; if the answer was more than a year ago, the survey ended. The second part included
the choice experiment itself (which varied according to the purpose of the trip and the route where the
driver had more experience), and the third part different types of questions, some related to the choices
themselves and others to road crash experience and attitudes. The fourth part enquired about socio-
economic data and the fifth allowed respondents to give their personal definition of what constitutes a
severe injury.

When respondents are asked to examine a series of choice situations it is important to set up a realistic
context. According to the answer given in the first part of the survey, people were asked to consider they
had to travel from Santiago to Valparaı́so or to Rancagua. Invoking a recent trip to either destination was
a way to reduce to a minimum the problem of not including as a third alternative the option of not doing
the trip at all (see section 3.4.2.6). The trip to either city had the following characteristics (the underlined
parts could vary across contexts):

� you drive your car;
� you travel during a regular weekend (without extra holiday days);
� you pay for the total cost of the trip, including the toll;
� you start the trip in the morning and is raining;
� you have to choose between two routes (both are similar to Route 68), taking into account the following

four elements: 1) toll charge, 2) travel time, 3) number of fatal victims per year and 4) number of
severely injured victims per year’.

A short explanation was also given on what was considered a fatal victim and a severely injured victim.
In explaining the latter, several road-crash severe traumas were mentioned, so that respondents focused
their attention on these types of traumas. These definitions were analysed at the focus groups and pre-
test surveys. Finally, statistical data was also given about the number of fatalities and severely injured
victims, and the total annual flow on Routes 68 and 5 during the previous year. Nothing was said about any
accompanying member within the car; hence, a question asked whether or not the driver was considering
travelling alone or with someone else.

As can be seen the context was clearly defined: the day, the time of day and the purpose of the trip
were all specified; it was assumed that the person who answered the questionnaire was the driver and
s/he was also assumed to pay for the toll. Many highways operate under a private toll system in Chile,
thus people were already familiar with toll charges. In particular, as safety is related to a particular trip
taken by the respondent there was little room for an altruistic choice.
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So, as it was in the best interest of respondents to give a truthful answer, this way they managed to
increase the ‘realism’ of the hypothetical choice context to a plausible maximum, reducing the possibility
of strategic bias.

The statistical design used made it possible, in principle, to estimate different parameters for the safety
variables of each alternative route. One parameter was considered for lower numbers of crashes and
another for higher values. The aim was to test the prospect theory hypothesis (Kahneman and Tversky
1979) that increases in the level of danger are valued differently (once the sign is taken into account)
than improvements in the level of safety; thus, it was expected that the modulus for higher numbers of
crashes to be greater than that for lower numbers. However, as this result did not show up at the pilot
study phase, they considered only one parameter in the final survey.

The survey was programmed in a web page (http://www2.ing.puc.cl/∼phojman/) following the excel-
lent results obtained in a previous experience (Iragüen and Ortúzar 2004). To recruit respondents, key
officials at several institutions (both public and private) were contacted who accepted to cooperate with
the study. Then, these officials sent e-mails to employees enticing them to participate. Hojman et al.
(2005) obtained approximately 500 answers, 250 for each route, but did not calculate the response rate
since (for confidentiality reasons, they did not register the e-mail of respondents and did not enquire
how many people were contacted at each institution). Most individuals in the survey were middle to
high-income people by Chilean standards, as car possession is low compared to European or US levels
and cars are most usually owned by middle to high-income people.

Using this data, a variety of models was estimated – ranging from the simple MNL to MNL-like
models allowing for systematic taste variations and ML. Hojman et al. (2005) concluded that the WTP
values estimated from their data were between 10 to 15 times higher than the values used in social
project evaluation in Chile at the time (computed from the human capital approach). Their values were
also compared with values obtained in other countries using both similar and different methods, finding
that – in general – the Chilean values differed from the others in more than what could be accounted
for by income differences. In fact, they concluded that . . . ‘our values should also be more relevant for
road planners in developing nations than transferring values from industrialised nations (i.e. Miller 2000
derived a value of risk reductions for Chile in a range of two to three times higher), since accounting for
differences in risk aversion is by no means an easy task’.

Exercises
15.1 Consider the following simple econometric model to determine car ownership as a function

of income:

P0/(1 − P0) = α I β

P2/[0.8 (1 − P0) − P2] = 0.09 exp (0.751)
P0 + P1 + P2 = 1

(a) Calibrate the model using the data in the table below (Hint: do it graphically)

I P0 P1 P2

1 0.60 0.35 0.05
2 0.40 0.50 0.10
3 0.25 0.55 0.20
4 0.20 0.45 0.35
5 0.15 0.35 0.50

http://www2.ing.puc.cl/%E2%88%BCphojman/
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(b) Indicate what proportions with 0, 1 and 2 or more cars would the model predict for an annual
income of six monetary units.

15.2 The following table presents the results of a transfer price survey made on the sample of eight
individuals in Exercise 9.3; TP indicates the reported increment in the monetary cost (expressed in
time units after deflating by income) of the currently chosen mode that would leave each individual
indifferent to both alternatives. The study assumed that only time (t) and cost/income (c) were
relevant variables.

Individual Chosen option TP t1 (min) t2 (min) c1 (min) c2 (min)

1 1 8.0 47.5 83.2 14.8 7.0
2 1 6.5 30.2 45.0 10.4 5.0
3 1 2.5 22.0 30.4 12.6 4.0
4 2 0.5 45.0 50.6 8.2 5.0
5 2 1.5 15.3 20.5 50.0 17.0
6 1 8.5 34.8 50.2 55.0 35.0
7 2 130.0 65.5 100.5 200.3 53.5
8 2 6.0 12.0 14.0 44.6 17.0

(a) Use the data to estimate the individuals’ subjective value of time. Discuss the role, size and
sign of the intercept of the transfer price linear regression equation (Hint: if you do not have
available a calculator with a linear regression facility, do it graphically assuming the coefficient
of time, θ t is known and equal to −0.03).

(b) If the revealed preferences parameter for the time variable is indeed −0.03 and the mode
specific constant of option 1 is 1.35, estimate the subjective value of time using another
method. Compare your results and discuss.
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Pricing and Revenue

16.1 Pricing, Revenue and Forecasting
16.1.1 Background

The pricing of transport infrastructure and services is becoming a more important issue in policy
development partly because of the increasing role of the private sector in their provision. This chapter
will discuss some of the issues involved in this task as they put specific requirements to modelling
and reporting.

Pricing transport services is not only more critical but it is also more complex than in the last century.
We are now accustomed to using period or season public transport tickets and to variable pricing on air
travel and in a number of other services including rail, parking, congestion-charging and tolling. The
prevalence of variable pricing is likely to continue and even extend its reach in transportation. Moreover,
many of these prices are converted into revenue by means of smart cards, electronic tags and even mobile
phones. This poses some difficult questions in the field of modelling, namely:

(a) Is all money perceived the same by travellers? Has the money being paid for fuel or deduced as a
road tax the same quality and invokes the same perception as that paid for tolls or parking?

(b) Is the de-coupling of use and payment an issue affecting behaviour?
(c) What is the best way of modelling willingness-to-pay (WTP) for transport services and how is this

affected by the two questions above?
(d) How is this WTP affected by the legibility of the pricing signal?

Modelling the impact of price on demand is important as it is calculating the revenues that will result
from new prices. This adds some additional considerations to our modelling effort.

We focus this chapter on the issues surrounding projects where the private sector takes some degree of
revenue risk. These may be toll roads, public transport concessions or simply the opportunity to acquire
or merge with an existing transport business the value of which will depend significantly on its future
revenue stream. As such, this chapter focuses more on the practice of model application than on theory.
Some of the concepts, however, are relevant to other type of modelling efforts; this is certainly the case
of our discussion of uncertainty and revenue risk.

Modelling Transport, Fourth Edition. Juan de Dios Ortúzar and Luis G. Willumsen.
© 2011 John Wiley & Sons, Ltd. Published 2011 by John Wiley & Sons, Ltd.
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16.1.2 Prices and Perceptions

Prices come in all sort of guises and sometimes they are purposely designed to be obscure, to encourage
us to spend more money that we think we should. The ‘crispier’ concept of price should materialise
when we need to take money out of our pocket or handbag to pay for a toll or to a parking attendant.
From then on other versions of charging start to de-couple usage from payment: the use of credit cards,
payment for period tickets, electronic payment via smart cards or tags, video tolling charged directly to
your bank account and so on.

The costs of operating a car are even ‘fuzzier’ to the owner. It is generally believed that the nearest
thing to the perceived cost of running a car is the fuel, other costs like maintenance, taxes and depreciation
are mostly perceived as sunk (not variable with usage) costs. However, most of us cannot quote what
this perceived fuel cost per kilometre is likely to be; we only know that filling up the tank is more or
less expensive than some time ago and may adopt some change in travel behaviour as a result. The
combination of crisp money (e.g. tolls) and fuzzy money (running costs per km) in assignment models
is therefore a difficult task unless one uses several user classes or stochastic methods. Hensher (2010)
provides an interesting discussion of this issue in the context of WTP calculations using generalised cost
models.

There is evidence (see for example, Ariely 2009) that we are neither very rational nor very consistent
when making decisions that involve prices, in particular for completely new services or products (i.e. the
grass is greener on the other side). But we often value our ‘rights’ more than those of somebody else.
This is why any attempt to curtail the use of my car, as opposed to their motorcycle or bus, generates
such an outrage. The loss of a perceived right or service, say free parking, is not compensated by an
equivalent tax break, in this case covering the cost of paid parking: the point elasticity of demand to a
gain is not the same as that of a loss.

Presumably, our reaction to a price signal is influenced by how much we value it compared to a cash
equivalent. If we feel that a change in electronic toll is less onerous than the actual payment in cash then
our behavioural response will be different. The perception and impact of different forms of payment is
an issue that will take some time to be resolved in modelling terms partly because it reflects different
levels of price awareness.

16.1.3 Modelling and Forecasting

In Chapter 1 we distinguished the activities of modelling to compare alternatives and forecasting future
demand. Modelling is about developing and using analytical tools that are sensitive to the policies of
interest and respond logically to changes in key variables. Good modelling requires an ability to provide
useful and timely information during the decision-making process, even if there may be certain caveats
or limitations for that information. For example, the issues of payment media and the build up of demand
may not have a critical role in the comparison of alternatives.

Forecasting requires visualising and quantifying future conditions. It normally requires projecting
future travel demand and, in the case of projects involving pricing, the resulting revenue streams over
time. We consider here the role of models in forecasting, but recognise that models alone are not good
enough to provide sufficient evidence of future revenues to support the significant risks usually associated
to these projects. Given the uncertainty about the future, it is preferable to use complementary approaches
and supporting evidence to buttress any future revenue projections. The differences in outcomes must
be interpreted in light of the experience of the forecaster, reasonability of the results, confidence in
the model and underlying data, and the assumptions about the stability of the behaviour and trends
implicit in the model. The quality of a forecast can only be objectively assessed through before and
after studies.
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Forecasting is, therefore, a more demanding task than modelling when comparing alternative plans or
strategies. This chapter tries to address these issues and provide some guidelines to assist those embarking
in producing revenue projections, either for the public or private sectors. In the case of forecasting, it is
best to identify the factors most likely to affect the projections and focus on getting them right. In fact,
the issues of risk and uncertainty are central to the business of revenue forecasting and we discuss them
later in the chapter.

16.2 Private Sector Projects
16.2.1 Involvement of Private Sector in Transport Projects

The twenty-first century has seen a significant increase in the involvement of the private sector in the
design and delivery of transport infrastructure and services. We do not discuss here the reasons for this
involvement; there is plenty of literature on that topic. Our focus is on how the different tools discussed
in this text should be applied to such projects. The basic tools of analysis are broadly the same as those
developed for our erstwhile public sector clients. However, the questions being asked are different and
the approach we need to adopt must be significantly changed to provide the advice our new clients need;
there is also a stronger requirement for accountability.

Many transport projects today are implemented through some sort of concession where the private
sector invest in constructing and operating a facility and then transfers it to the public sector at the end
of the contract period (usually between 20 and 40 years). The sponsor of such a project, usually the
government, is interested in the success of a bidding process for such a concession whilst the private
investors would like to ensure they do not lose money in delivering the contract.

The overarching issue in forecasting for private sector projects is that of risk. Uncertainty has always
been present in our modelling and forecasting work but the involvement of private investors and financial
institutions has given a clear monetary value to the issue of risk. In terms of demand modelling, private
investors and financial institutions are interested in a revenue stream, year after year for the duration of
a concession, and the degree of confidence that can be associated to these figures. These risks change
over time and to understand this we need to start by considering the different actors and processes that
are central to private sector projects. Figure 16.1 shows a nominal and simplified profile of risks over the
time of a project.

The main sources of risk during the bid preparations are:

� Is all the right of way required to be released to the concession in time for construction?
� Are all construction costs sufficiently well defined and known?
� Are the ground conditions sufficiently investigated, including the possible need to displace utilities?
� Are the costs of operating and maintaining (O&M) the future assets well known and quantifiable?
� How confident can one be about the future traffic and revenue (T&Revenue) streams?
� How long and steep will be the period of transition between starting operations and the time when

stable traffic levels materialise? This is known as the ramp-up period.

As can be seen from Figure 16.1, all of these risks are higher before construction starts. During
construction most of these risks are reduced so when the project starts operating the only remaining
risks will be some hidden faults in construction, traffic and revenue, residual O&M and ramp up.
Finally the project will reach maturity when traffic levels stabilise and the only remaining risk will be
associated with the level of growth and the possibility that a competing facility is provided some time in
the future.
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Figure 16.1 Idealised risk profile for a private sector transport project

16.2.2 Agents and Processes

Many agents, professionals and advisors play key roles in the process of developing a transport project
from conception to successful implementation by the private sector. We simplify these here into three
main participants:

� the sponsor, usually the government, who identifies a project, develops it and takes it to
the marketplace;

� bidders, often consortia of construction companies, operators and their advisors, who prepare offers
for a concession to build, operate and eventually transfer the asset back to the sponsor;

� financial institutions, often a combination of banks, infrastructure and other funds, who would either
invest in the concession or lend money under different forms of debt to the concessionaire.

We recognise the role of other agents like insurance companies, monoline insurers, rating agencies
and pension funds who may take some degree of risk and/or influence the outcome of the transaction.

Figure 16.2 provides a simplification of the process and the role and concerns of the three main agents:
banks and financial institutions, bidders and sponsors. We look at each stage in turn.

Project preparation The Sponsor/Government tries to define a concession that will provide significant
benefits to its people whilst offering an attractive role for the private sector. In doing this, the Sponsor
will identify and assess the risks involved and allocate each to whoever has greater capacity to manage it
(to do something about it). Although the acceptance of a risk costs money, those who can do something
to manage and mitigate it are likely to charge less for accepting responsibility. Traffic and revenue risk
is, in most cases, transferred to the concessionaire because it is in the best position, through the provision
of a good service, to manage it. At this stage the Sponsor will try to provide a clear and transparent view
of risks in order to get good competitive and comparable bids.
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Figure 16.2 Simplified project development process

Bidding process At this stage each consortium studies the project and its terms of reference in order
to decide how much to ask for accepting the risks, obligations and compensating revenue streams
on offer. The nature of the revenue risk will depend on a number of factors including the conditions
of the concessions, the award criteria (on toll levels, duration, minimum subsidy/maximum payment,
discounted value of revenue stream). The consortia will try to get a clear view of the risks and determine
whether they have a special competitive advantage (faster construction, better finance) that could be
exploited in the bid.

Negotiations Sometimes these are very short as the conditions of the bid would have specified the
project fully. More often there is a period of negotiation once a preferred bidder has been selected; this
period is used to refine the Concession Contract and its conditions taking into account variations that
may have not been envisaged originally. It usually deals mostly with risks other than traffic but it may
involve obtaining stronger guarantees from the Government that unexpected alternative routes/services
will not be provided in the future. At this stage the concession is assigned to a Special Purpose Vehicle
or company, set up by the consortium to build and operate the project until it is transferred back to the
Government. The financial institutions, in turn, will try to share and spread the risk among different
banks and to press the sponsor and consortium for guarantees. Rating agencies may play a key role here
in assessing project risks.

Financial close Here all the funds needed to implement the project are finally secured and made
available. This often involves obtaining a loan to cover the construction/rehabilitation period plus one or
two years into operation. The Sponsor provides the rest of the finance as equity. The repayment of this
loan is often structured around a lower-cost longer-term finance once the project is well into operation.
Therefore, the financial institutions would like to be confident that this second stage finance is assured.
There may be a grant provided by the Sponsor to strengthen the financial viability of the project. In the
case of existing assets that need rehabilitation and operation over many years, the consortium may offer
a payment to the government in compensation.
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Second stage finance Once the project is in operation all risks are much reduced and therefore it should
be possible to obtain finance at lower rates. Often the main remaining risk is associated to the future
revenue stream. A review of previous traffic and revenue projections may be needed to offer additional
confidence in revenue projections. The outcome may be a lower-cost long term loan, a bond issue or
some other long term financial instrument.

Third stage finance Once the project is operating well and its long-term financial structure is in place,
it is possible to offer equity participation in the market, totally or in part, depending on the conditions
of the concession and the strategy of the concessionaire. This may take the form of an Initial Public
Offering (IPO) or just a private agreed opportunity to invest in the Special Purpose Vehicle holding the
concession. This injection of capital will enable the release of some capital of the original investors that
they could use in another concession.

16.2.3 Some Consequences of the Process

The process just described is fairly different from the usual consideration of projects and strategic
transport planning for the public sector. The number of agents or stakeholders is significant and each is
concerned with risks but from different perspectives. The forecasting of traffic, patronage and revenue is
central to these concerns and becomes the most important risk as the project matures.

Traffic and revenue forecasting is produced for each of these key stakeholders and in each case their
different perspectives are brought to bear. It is not surprising, therefore, that what is considered important
and included in the model may vary and so would the traffic and revenue projections.

Given the variety of agents and the sums of money at stake the need for transparency becomes
paramount; model black boxes are not just unacceptable but are seen as a source of additional risk. The
ability to explain a traffic model and deliver a compelling narrative relying on several complementary
sources of evidence to support revenue projections becomes essential.

16.3 Risk
16.3.1 Uncertainty and Risk

The concepts of uncertainty and risk are obviously related but are not the same. Uncertainty may involve
things that are completely unknown, whereas risks are often understood via calculable probabilities; an
example, often quoted to illustrate risk, is betting on a colour at the roulette where the risk of losing is
slightly above 50%.

We use here the idea of uncertainty as our failure to ascertain a present or future event with certainty.
It is a reflection of our lack of knowledge and it is, in principle, impossible to quantify. Pure uncertainty
is not very helpful in deciding whether to invest in a particular scheme or not; but it may be inevitable.
For example, it is uncertain whether human beings will eventually abandon the idea of owning a private
car and adopt the policy of renting such vehicles by the hour as and when needed. Such a change would
affect car usage and traffic and would probably strengthen demand for public forms of transportation.
However, the probability and timing of such a change is, at present, practically impossible to estimate.

On the other hand, we may be able to assign probabilities to the level of economic growth in the future
for a particular region and from this infer future levels of traffic in a specific road section. Risk is, in this
sense, quantifiable uncertainty; moreover, it may be possible to assign a monetary value to a variation
over an expected future revenue stream. J P Morgan studied 14 pre-opening toll road studies in the USA
and compared them with the traffic achieved after opening (Muller 1996). They found that in two cases
the original studies underestimated traffic and revenue by between 10 to 30%. In four cases there were
moderate over-estimations of revenue of between 12 to 25%. There were, however, 8 cases (57%) where
the over-estimation of revenue was from 45 to 75%.
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The main reasons for this over-estimation of revenue were considered to be:

� poor analysis of alternatives;
� poor or no analysis of willingness to pay tolls to save time;
� overoptimistic growth rates, mostly based on overestimation of generated traffic through

new developments.

Similar results have been found on other markets and countries as documented by Bain (2009) in
the case of toll roads and Flyvbjerg et al. (2005) for public works. There are many reasons for this,
some of them outside the control of the traffic forecaster (for example an unforeseen economic recession
that escaped even the banks financing these facilities). However, many of the criticisms levied to the
craft of demand forecasting remain valid. Too often, the modelling approach adopted mirrors the classic
approach employed on behalf of the public sector for the past 30 years and fails to identify and isolate
the key drivers of traffic (and revenue) in a way that recognises the associated risks.

These risks relate to four main sources:

� the size of the relevant market that can possibly be attracted to the new facility (in-scope traffic);
� the estimation of capture rates for that market;
� the development of reliable growth models (including where appropriate induced traffic); and
� consideration of future new alternatives to the new facility that may affect the effective traffic and

revenue capture.

16.3.2 Risk Management and Mitigation

Before discussing the implications of all of the above for modelling it is useful to consider what
concessionaires can do in order to manage and mitigate risks. Bidders can, of course, request better
guarantees from sponsors. This may take the form of explicit, or sometimes implicit, minimum revenue
guarantees over the life of the concession. Other assurances include: automatic adjustment of tolls or
fares in line with inflation or other formula, and commitment that no competing facility will be provided,
at least for the initial years of the project.

During construction, the consortium can ensure minimum opposition from locals by a good commu-
nications strategy that should also help to smooth the transition into paying for the use of the new facility.
The concessionaire can ensure that a good service is provided at all times and that a good relationship is
developed with users and clients. The provision of complementary services (fuelling stations, food and
rest facilities at toll roads, and newsstands and refreshments in the case of public transport services) is
also important to attract and support customers.

Rapid response to incidents and emergencies, and quick restoration of services after a force majeur
event are meant to be defining characteristics of private sector involvement in transport projects. Mar-
keting can play a useful role in identifying those users that given the right information or encouragement
would start using the new facility. This is important for road haulage companies that are not always fully
aware of the reduction in risks and operating costs that result from using a better, if paid, road.

16.4 Demand Modelling
16.4.1 Willingness to Pay

WTP plays a key role in the estimation of patronage and revenue collection. Willingness-to-pay is usually
represented through the Subjective Value of Travel Time Savings (SVTTS) ascertained through stated



P1: TIX/XYZ P2: ABC

JWST054-16 JWST054-Ortuzar February 22, 2011 13:53 Printer Name: Yet to Come

540 Modelling Transport

(SP) and revealed preference (RP) surveys (see section 15.4). One of the problems with RP data is that
this is often related to different ‘types of money’ and the use of SP is often unavoidable for new toll roads.

In this respect, the use of a single SVTTS is not reliable enough as will tend to exaggerate, one way or
another, the real capture rate of any facility. Segmentation is very important and this can be done on the
joint basis of journey purpose and income levels. Trip purpose may be important if differential growth is
expected in the future. Income levels are strongly correlated with SVTTS. An additional and important
segment of the travelling population are those who have their costs, including tolls and fares, covered
by somebody else, usually their employer; they have a high but not unlimited WTP within the travel
policies of their companies.

In the case of trucks, WTP depends on a number of factors including the size and type of goods
hauled, the type of contract for each shipment (for example just in time arrangements), company policy
and legal requirements (dangerous goods are often required to use the safest road, normally a tolled one)
and, ultimately, opportunistic decisions by the driver. Some road haulage companies, in particular one-
man operations, are not fully aware of their operating costs and may be more cash sensitive; these will
display a lower willingness to pay for tolls to save time and operating costs than an objective evaluation
would suggest.

In the case of urban schemes one must also consider that many trips will be made day after day and
the impact of tolls or fares over the monthly budget may not be insignificant. Income effects will have
to be considered in these cases. The attractiveness of new public transport facilities is also influenced by
WTP, especially if the new mode is more expensive and better than existing services.

WTP is also influenced by the quality of the service or the road provided. One is willing to pay more
to reduce the time spent under less comfortable conditions, for example heavy congestion or the need to
stop at junctions as opposed to free flow on a good highway. This is sometimes referred as a ‘motorway
premium’ or a ‘standard road malus’ and it is generally a difference of between 20 and 40% of the
SVTTS depending on each case.

It is generally recommended to use at least 10 categories for WTP for toll roads including at least four
for trucks. In the case of public transport, the level of segmentation would be less as freight is not an
important component of that market.

WTP is likely to grow in line with income levels of the relevant population. This may be just the car
owning population that would be the wealthier proportion of the total in an emerging country. The rate
of growth of SVTTS with per capita income is somewhat uncertain and in dispute. The prevalent view
is that SVTTS will grow at between 0.5 and 0.9 times the rate of growth of income per capita of the
relevant population, see for example Wardman (2001) and Accent and HCG (1996).

16.4.2 Simple Projects

A small number of projects can be handled using simple models on a spreadsheet. This may be the case
for some new estuarial crossings where there are only one or at most two alternatives. If the alternatives
are clear and limited, it is possible to use a logit formulation to consider them and the effect of introducing
a new one.

Depending on the nature of the new alternative this can be incorporated as another choice in a MNL
or in a nested structure if it is, for example, a new shorter bridge to compete with a longer road and
ferry crossings. Whatever the case, the alternative specific constants are always going to be contentious
and should be supported by evidence complementary to SP extracted values. The need to incorporate as
many service and personal attributes as possible in the choice structure should reduce the importance of
these constants.

Note also that segmentation remains important even if a simple logit formulation is used. Simple cases
will tend to be predominantly inter-urban ones and therefore choices might be modelled on a full day
basis. The exception will be cases with significant variations in travel times during the day either because
of congestion or the availability of some alternative only at certain times.
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16.4.3 Complex Projects

Most transport concessions will require the development and implementation of a network model and
in many cases a multi-modal one. It is very difficult to separate and distinguish the sources of revenue
risk in a conventional model: the size of in-scope traffic, growth, traffic capture and the true elements of
choice: willingness-to-pay and the relative advantages of each alternative. These issues are confounded
in a large-scale model with less relevant material and a full range of behavioural responses. In order to
de-construct the components of future demand it is useful to adopt an approach as depicted in Figure 16.3.
Here we extract from a conventional transport model the main components of in-scope trips, benefits of
the new facility compared to alternatives, WTP for these benefits and growth. Each of these will have
risks associated with them and it is the task of the modeller to identify and reduce them to provide a
more reliable forecast.

IN
SCOPE
TRIPS

CAPTURETRANSPORT
MODEL

TRAFFIC
AND

REVENUE

WILLINGNESS
TO PAY

BENEFITS OF
NEW MODE

Revenue from new mode/road

GROWTH

Figure 16.3 Estimation of traffic and revenue from a new facility

Traffic revenue depends on the size of the relevant travel market, its future growth, the choice
mechanisms available to users and their own preferences. When faced with a new facility, users can
have the following main responses:

� change their route;
� change mode;
� change their destination to one easily reachable using the new system;
� change their trip making frequency (generated/suppressed traffic);
� change the time of travel as a result of price and congestion profiles.

How many of these responses will be important depends on the new facility and on the alternatives
available now and in the future. Experience with similar schemes and a bit of experimental modelling
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can help in deciding how many of these responses should be included in revenue projections. These will
also help in identifying the scope of the traffic that could be captured by the new facility.

In-scope traffic is the traffic that might be attracted to the project. As such, it can be considered as
the target market for the route operator. With a toll road or bridge, it can normally be considered as the
traffic that would use the route if no charge were made. For public transport links, it represents an initial
judgement on the traffic that could be captured both from other competing public transport services and
potentially attracted from other modes under the most favourable circumstances.

The most reliable way to estimate this potential demand is to undertake a battery of transport surveys
(passengers and freight). Investors are more convinced by actual on the ground data than by any outputs
from elegant and sophisticated models. Origin-destination (O-D) surveys, traffic counts and travel time
surveys, undertaken probably at different times of the year and days of the week, and for at least 16 hours
per day, would be ideal. These should be combined with some permanent traffic counting methods to
obtain a suitable profile of demand throughout a year.

In order to add the greatest comfort, investors should be provided with a real description of this traffic,
with an understanding not merely of traffic levels but of who is travelling where and for what reason.
This understanding helps them form their own judgement – in their own terms – of the function of the
road, and gives them also greater confidence in predictions of growth and of capture.

Most toll roads can be modelled using just the assignment stage in a commercial package capable
of handling multiple user classes. It is important that these models are handled in terms of generalised
costs of travel and because of their final use it is convenient to quantify these in monetary units (see the
discussion by Hensher 2010).

Three alternative approaches can be used here. The most common is to employ 10 or more user
classes with equilibrium assignment during different time periods; if this is an uncongested area, it may
be sufficient to model an average hour or day. A second related approach is to use fewer user classes and
adopt a stochastic assignment model; the main problem with this approach is the difficulty in justifying
the scaling or spread parameter(s). A third approach consists in identifying, for each O-D pair, the best
two routes, one using the tolled facility and another using only untolled roads. Then, a discrete choice
model is used to split demand among the alternative routes. A problem with this approach is that only
two routes are identified for each O-D pair, when in practice more may be used by savvy drivers seeking
to optimise the combination of tolled and untolled roads.

Some projects introduce interesting complexities that tax the ingenuity of the modeller, for example
capping the toll for a facility to encourage use by long distance trips or establishing a minimum toll
to discourage shorter trips. Variable pricing in high occupancy and tolled (HOT) lanes are particularly
difficult to model, and one may have to rely on micro-simulation or dynamic assignment techniques.

Public transport projects, new metro, LRT, rail or BRT schemes, are more complex to model as they
inevitably involve mode choice and other behavioural responses. Nevertheless, the same principles apply:
the identification of in-scope traffic, transparent representation of choices, in-depth WTP analysis and
consideration of present and future alternatives.

Whatever the modelling approach is adopted, the traffic advisor will need to prepare a Base Case
(expected scenario) and Downside and Optimistic scenarios. Sometimes the Downside case will be
called Financial Case as the debt bearing capacity of a project would be based on that revenue stream.
The assumptions behind each scenario should be well documented and agreed by stakeholders in advance.

We discuss now how these different modelling approaches are influenced during the different stages
in the process of implementing private sector participation in a transport project.

16.4.4 Project Preparation

The government is usually interested in offering a concession that transfers a significant element of risk
to the private sector. It is also interested in tapping into the creativity and good management of the private
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sector to secure intelligent design, innovative financial packages and to offer a high level of service
throughout the concession.

To achieve this, the sponsor requires a competitive and transparent tendering process over a well-
designed Concession Package. This will be assisted by low bidding costs and wide international promo-
tion of the concession programme if appropriate. The government should retain those elements of risk
that it is best equipped to handle, for example securing the right of way in a timely manner.

Revenue risk is very often transferred to the concessionaire as it can handle it best through good
service and pricing. Even then, in order to facilitate financial close the government may be persuaded
to offer some measures to reduce revenue risk. The main instruments available to provide manageable
revenue risk are the containment of future competition, minimum revenue guarantees (MRG), the choice
of decision rules for awarding the concession and the provision of a well-documented database.

MRG are sometimes offered over the first few years of the concession and at a level below that of
the Base Case scenario. The level of this guaranteed revenue stream is important in determining the
debt/equity ratio for the concession.

If the future is very uncertain, for example when the government does not want to commit to not
building alternatives in the future, some concessions have been awarded to the bidder requesting the
lowest present value (LPV) of the revenue stream discounted at a pre-determined rate. In this way
if the revenue stream is below expectations, the result is just an extension of the concession up to a
pre-determined limit. Revenue risk is therefore reduced. Revenue projections are still needed in order to
secure financial backing for the project, but they become less important than in concessions awarded on
the basis of lowest toll level or minimum duration. However, LPV concessions have some undesirable
side effects. In them, the focus is on reducing construction costs to the minimum and there is no incentive
to offer good levels of service as any increase in O&M costs simply reduces profit.

Bid costs are generally high and naturally consortia would like to recover them through successes in
their bidding programmes. The sponsors are, therefore, interested in reducing bidding costs as much as
feasible without compromising the quality of the concession agreements. Traffic and revenue studies are
an expensive element of bidding for a concession. There are significant advantages for the sponsor to
undertake a good Reference Study:

� Undertaken to international standards; this means either an international company or at least a technical
audit by one.

� Transparent and well documented; data should be collected with good quality assurance and provided
both processed and in raw (e.g. interview records) form.

� Data should cover the relevant periods and be segmented generously; at least some traffic/person
counts should be continuous over a whole year.

� If software packages are used to process the data and model demand, they should be internationally
and commercially available.

� The provision of geo-coded data and the whole database on electronic format is highly desirable.

Travel surveys are expensive and time consuming. They do not fit well within the timescales and
budgets available for bidding for a concession. Therefore, it is highly desirable that these are undertaken
as part of the Reference Study for the sponsor in preparation for the concession. To be of use, they should
be well documented and made available to all bidders on a transparent format including the processed
and raw data. Geocoding these data provides an added benefit of allowing consortia to develop their own
zoning systems. The bidder would like to confirm this information with its own traffic counts and other
observations, seeking, at the same time, to identify opportunities to obtain a competitive advantage over
other consortia.
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16.4.5 Forecasting Demand and Revenue during a Bid

The viewpoints of the bidder and financial institutions are similar, although the second focuses on default
risk and the first on the probability of achieving a significant surplus after debt coverage. Both benefit
from looking at revenue projections in the context of the risks associated to each contribution. One way
of handling this is to build different scenarios for the future: Optimistic, Base Case and Downside are
commonly used and must be clearly defined.

It is very important here to adopt a multi-evidence approach. The survey-supported transport model
will not provide enough evidence on its own to enable bidders and their financial advisors to estimate
risks and potential upsides. The traffic advisor should be able to demonstrate a thorough understanding of
the drivers behind the revenue figures: what are the main economic activities of the region and how they
depend on national and international trends, what threats are posed by alternative modes or facilities,
what opportunities are offered to increase revenues in the future through complementary services or
pricing strategies, etc.

The financial strength of a project of this nature will depend on a number of factors. An often critical
one is the Debt Service Coverage Ratio (DSCR). This is the ratio of revenue from operations to principal
and interest obligations; that is, payments due to lenders at each period. The most critical stage will be
the earlier year of the project. When a project is implemented in stages, it will be important to model
them separately and to provide estimates that incorporate ramp up effects from the outset.

The ability of the traffic advisor to explain the workings of the model to non-specialists and to
demonstrate in-depth understanding of the underlying drivers of its financial success, are critical to a
successful bid preparation.

16.4.6 Ramp Up, Expansion, Leakage

There are a number of little issues that do not figure significantly in public works projects but have great
importance in private sector projects. The ramp up, or transitional period, represents one of them as it
was never considered particularly important for public works projects. However, revenue collections of
the first few years of a concession play a significant role in their financial viability. This is why quick
implementation and good estimation of this transitional period is essential. During ramp up, potential
users learn about the new facility and the advantages it may offer to their journeys. There is often strong
resistance to the introduction of a new tolled facility instead of an equivalent untolled one. This resistance
may result in a slow adoption rate even if the advantages more than compensate the imposed toll. The
adoption of good communication and marketing strategies should help in reducing the length of this
transitional period.

Nobody has come up yet with a good theory to support the estimation of ramp up durations. We know
that this will depend on issues like:

� The frequency of trip making in the area; the more frequent repeated trips are the shorter the ramp up
period will be.

� The significance of the advantages offered by the new facility; a major time saving will result in shorter
ramp ups.

� Information on the new facility and the advantages it will offer.
� The local tolling culture; if people are used to toll roads then it will be easier to adopt a new one.
� The provision of a short period when the new mode or facility is provided without a charge may

facilitate its appreciation, but may generate a backlash when price is introduced; these periods should
be short and well communicated.
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In the absence of a good theory one must rely on benchmarking transitional periods with other similar
facilities and contexts. Anything between six months to several years is possible depending on the
characteristics above.

A second issue is the expansion from the modelled periods to a full year of operation. This is tricky for
green field new facilities as there will be little evidence about the demand profile over time for a tolled
road or a new rail service. One must assume that the information contained in permanent automatic
traffic counters is a reliable source for considering seasonal variations along the year. This will provide
limited comfort if there are real seasonal variations in the structure of the trip matrices, for example
because agricultural produce movements are significant.

Whenever congestion plays a role in the capture rate of a new facility or service, it will be necessary to
model different periods of the day (and sometimes of the week) to ascertain their corresponding different
capture rates. The expansion task is now dependent on the number of hours a year that are represented
by each modelled period.

It is generally not practical to model every year of operation using a full transport model. Common
practice is to model only those years when significant changes in the network, or in prices, are expected
and interpolate the other years. Years that are far in the future are sometimes extrapolated from the last
year modelled with confidence. Latter years bear little influence on the financial strength of a project.

Not every penny that is collected at the toll plaza or fare box reaches the coffers of the concessionaire.
There are inevitable losses in the trail from transaction to bank account, even when electronic fare and
toll collection are dominant. Some losses are the result of straight avoidance on the part of users, others
may be due to technical failures, misclassification of vehicles and human error. And some money reaches
the wrong pockets.

In most projects the expected loss rates are reasonably well known. However, when new technology is
introduced the traffic advisor must take a view on the likely levels of revenue leakage that will materialise
when the concession is in operation.

Finally, some projects will offer fares or toll rates that are shared among different suppliers of services,
for example metro and feeder buses. In this case, it will be necessary to perform additional calculations
to correctly allocate revenue to these different agents and concessions. This is also the opportunity to
account for most discounts, period tickets and concessions (free passes, exempt users) that will influence
the final revenue stream figures.

As stated in previous chapters, modelling is mostly useful when benefiting from good interpretation of
results. In the case of private sector projects, sound interpretation of results is of paramount importance.
The ability to understand and communicate modelling results is based on the capacity to track influences
from inputs to outputs. This is where good understanding of the theories underpinning the models is
essential. Explanations should be delivered in the language and conceptions of the interested parties, not
those of the modeller.

16.5 Risk Analysis
Although the Reference Study prepared by the sponsor will identify the main revenue risks, urgent
consideration of these will only start in preparation for the bidding process. A traffic and revenue study
for a bidding consortium will normally consider first the production of a comprehensive Risk Register.
This will contain also the revenue risks and they will serve to focus the attention and the data collection
effort for the traffic study.

It is difficult, even undesirable, to generalise on these risks but they are likely to include:

� poor estimation of in-scope demand;
� overestimation of willingness to pay;
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� overestimation of growth prospects;
� ignoring future changes to the network;
� underestimating the importance of technology or trend changes.

Some risks are inherently difficult to identify. These are the ‘black swans’ of Taleb (2007), events that
are almost impossible to foresee like the impact of oil prices on the price of tortillas in Mexico via biofuel
production in the US. Oil prices are indeed very difficult to forecast and they do have an influence on
travel behaviour in particular when they take the form of a significant shock. Experience has shown that
forecasts of economic growth and recessions are also very uncertain.

There are two basic ways of handling the issue of risk in traffic and revenue projections: sensitivity
analysis and stochastic simulations.

16.5.1 Sensitivity and Sources of Risk

Sensitivity analysis is performed to identify how much model outputs depend on small changes in model
parameters and inputs. It is used for two reasons: first, to ensure that the model responses are reasonable
and explainable; second, to identify what are the key risk sources that are most likely to affect the
financial strength of a project.

Sensitivity tests are usually undertaken at least for: SVTTS, growth rates usually linked to GDP, timing
of competing projects and toll or fare levels. Variations of +/− 10 or 20% on SVTTS are useful to assess
how dependent are the estimated revenues on our evaluation of these parameters. Financial institutions
linked to the project should be able to provide estimates of possible variations of future GDP growth.
These will affect incomes and therefore car ownership and traffic and revenue.

Toll and fare level sensitivity tests are also important, even if these are fixed in the concession contract,
because one would like to be confident that increasing them will increase revenue. This sensitivity tests
may prove that toll or fares have been set too high and that more revenue (and benefits) would be collected
with lower rates. An example of this type of toll sensitivity tests is shown in Figure 16.4.

The figure shows that the optimal toll rate, in terms of maximising revenue, is around 0.70 pesos per
km. The sponsor would have fixed the toll at some 0.5 or 0.6 pesos per km to protect user benefits.

Different aspects of our transport models generate different levels of confidence in their outputs. We
tend to believe more in the results of an assignment model because when it fails on the base years this
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is very easy to diagnose. Our confidence on mode, destination and frequency of travel choices is less
strong because of the difficulties in performing such a diagnostic test quickly and effectively enough.

Moreover, the drivers for some component of demand capture by the new service may be different
from other contributors. For example, in analysing future patronage of a high speed rail concession,
capture from air travel may depend on the pricing policies of low-cost airlines that are difficult to predict;
capture from other rail services or car users may be more certain as their pricing policies are better
understood and predictable.

A useful way of presenting these results is to de-construct the outputs of a traffic model in a manner that
enables the interested party to assign their own risk indices to different components of future demand.
This is illustrated in Figure 16.5 for a hypothetical high-speed rail link. The figure shows the different
contributions of Induced and Redistributed Traffic plus the traffic captured from alternative modes. A
bidder who has good information about long distance bus/coach operations will be more confident of
this particular component of future demand capture.
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Figure 16.5 Revenue profile for a idealised HSR concession

16.5.2 Stochastic Risk Analysis

Stochastic risk analysis involves the use of Monte Carlo simulations usually implemented as an ad-on
to a standard spreadsheet. In this case, the first step is to agree with stakeholders the few input or
model variables that will be considered to be stochastic rather than fixed and relate the outputs from
the model to them. Conventional model runs will be needed to identify, for example, how variations in
GDP growth affect revenues. Most of these would have been undertaken as part of the sensitivity tests
mentioned previously.

The next step would be to adopt some probabilistic distribution around the mean expected values of
these variables, for example SVTTS. It is tempting to assume that these would be Gaussian, i.e. Normal
distributions. However, we should be warned that the probabilistic distributions of some key variables
(GDP is a good example) would have ‘fat tails’; that is, they will display more extreme values more often
than in a Normal distribution, see the extensive discussion on this issue by Taleb (2007). Some variables
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will not accept negative values that are possible in a Normal distribution. A log-normal distribution could
be used in this case.

The next step is to construct a model where this handful of variables influences revenue outcomes
and where their probabilistic distributions are sampled repeatedly in a Monte Carlo simulation. Note
that in most cases these distributions are assumed to be independent. This is convenient but may be
more difficult to accept in the case of the accepted relationship between GDP and SVTTS. Each run
of the Monte Carlo simulation reflects one possible revenue path diverging from the Base Case. This is
illustrated in Figure 16.6, where each path represents a diversion from the expected Base Case assumed
to be unity; a revenue factor value of 0.95 in one year implies that collections in that case would be only
95% of the Base Case for that year.
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Figure 16.6 Monte Carlo revenue paths on a toll road

The end result is a distribution of revenue outcomes over the life of the project. Of these ranges,
lenders would be more interested in the so called P90 or P75 revenue streams, which are the revenues
that will be exceeded 90 or 75% of the time. P50 is the expected or Base Case revenue stream. Equity
investors might be interested in P40, i.e. revenues that have only a 40% probability to materialise but
represent a significant upside of the project. Figure 16.7 illustrates the distribution of values for a toll
road with extremes of P90 (the lower band) and P10 (the upper one).

16.6 Concluding Remarks
Traffic and revenue risks have existed well before tolled facilities and public transport concessions
became prevalent; given their importance in establishing the financial viability of such projects they
have become explicit and more important. This type of analysis is now permeating mainstream transport
modelling and will end up assisting decision making for complex and large projects. Accountability
requires modellers to provide investors with results which have associated confidence intervals estimated
with sensible tools as discussed in Chapter 9.

Risks are perceived differently by different agents and stakeholders of the concession process; allo-
cating them to those who can understand and manage them best is essential, as is reducing the costs of
dealing with risks.
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Figure 16.7 P90 Revenues after Monte Carlo risk analysis

The provision of a good, international standard, reference study is a major contribution to reducing
bid costs and attaining the full benefits from a concession. The early identification of sources of revenue
risk should enable to allocate modelling resources where they would add more value.

Understanding and reducing revenue risk requires transparent and traceable models with appropriate
segmentation of in-scope demand. Large-scale conventional models are therefore seldom appropriate
and often obscure rather than clarify risks and potential pitfalls.

Traffic and revenue projections often over-estimate economic performance because they fail to identify
in-scope markets, use too coarse market segmentation coupled with inappropriate choice models and
over-optimistic growth.

Willingness to pay studies based on suitable market segmentation, are key to a robust estimation of
traffic capture and revenue projections. They should be supported by benchmarking against other studies
and international evidence.

Ramp-up risk can be managed to some extent. There is good scope for employing and adapting
marketing techniques to help price and sell tolled facilities and new transport services.

It is desirable to de-construct model results so that the level of risk associated to each contribution to
total revenue can be separately ascertained. Induced and generated traffic should only be included with
great caution and with a high degree of uncertainty associated to them compared with demand transferred
from other routes or modes.

Risk Analysis Techniques are an element of good traffic and revenue projections; their value depends
on the quality of the base modelling effort and the depth of understanding of the potential market for the
facility; it is never an alternative to good traffic projections.
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Echeñique, M.H., Flowerdew, A.D.J., Hunt, J.D., Mayo, T.R., Skidmore, I.J. and Simmonds, D.C. (1990) The
MEPLAN models of Bilbao, Leeds and Dortmund. Transport Reviews 10, 309–322.

ECMT (1996) The Valuation of Environmental Externalities. European Conference of Ministers of Transport, Paris.
ECMT (1998) Efficient Transport for Europe: Policies for Internalisation of External Costs. European Conference of

Ministers of Transport, Paris.
Economic Software, Inc. (1995) LIMDEP, Version 7.0. Bellport, NY.
Eilon, S. (1972) Goals and constraints in decision making. Operations Research Quarterly 23, 3–15.
England, J., Hudson, K., Masters, R., Powell, K. and Shortridge, J. (eds.) (1985) Information Systems for Policy

Planning in Local Government. Longman, Harlow.
Erlander, S. and Stewart, N.F. (1990) The Gravity Model in Transportation Analysis: Theory and Extensions. VSP,

Utrecht.
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Spiess, H. (1987) A maximum likelihood model for estimating origin-destination matrices. Transportation Research
21B, 395–412.

Spiess, H. and Florian, M. (1989) Optimal strategies: a new assignment model for transit networks. Transportation
Research 23B, 82–102.

Steenbrink, P.A. (1974) Optimisation of Transport Networks. John Wiley & Sons, Inc. New York.
Steer Davies Gleave (2000) Diseño Operacional del Sistema Transmilenio: Proyecto de Transporte Urbano para
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Accessibility, 493–9
Activity based models, 473–87

ABM, 478–9
structure, 482–4
solving, 484–5

Aggregate
data, 344–5
model, 18–19, 158–9, 163, 495

Aggregation
bias, 334–5
of alternatives, 68

Aggregation methods, 338–41
artificial sample enumeration method, 339–40
classification approach, 340–1
naive aggregation method, 338, 345
sample enumeration method, 338–9

Alternative-specific constant, 228, 281, 288
Arithmetic progression, 34
Assignment, 349–89

all-or-nothing, 359–60, 369, 398–9, 436
Burrell, 361–2, 365, 402, 436, 439
congested, 367–73, 403
Dial, 363–4
dynamic, 383, 411–20
equilibrium, 392–403
hard and soft speed-change methods, 369
incremental, 369–70
junction interaction, 414–15
proportional, 362–4
public-transport or transit, 373–80
stochastic, 361–6
successive averages, 370–2

Box–Cox transformation, 210, 272–3, 438
Box–Tukey transformation, 273
Bid-Choice model, 496–7

Calibration, 16–17, 153, 158–9, 182, 191–3, 196,
217–19, 385, 436–7

Car ownership
forecasting, 499–508
international comparisons, 507–8
stratification, 64, 81, 137, 162

Category analysis, 157–63
classical model, 157–62
equivalence with linear regression, 159–61
person-category approach, 162–3

Central limit theorem, 49, 58, 84, 170
Centroid, 130–1, 358, 387
Centroid connector, 130–1, 201, 380, 444
Choleski decomposition, 50–2
Coefficient of correlation, 48, 68, 163, 514
Cohort

study, 91
survival method, 491–2

Common lines, 375–6, 379–80
Composite

alternative, 240, 325
cost, 212–16, 380

Confidence level, 58–9, 80–1, 325
Congestion, 5

charging, 8, 169, 177, 369
externality, 5–6, 396
pricing, 369, 545

Contingent valuation, 95, 521, 525–8
Continuous valuation, 11, 46, 414, 424–5
Continuous

model, 131, 251, 304
planning, 23–6

CONTRAM, 416
Cordon, 85
Corridor models, 453
Cost, see Generalised cost
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Cost–flow relationship, 351–2, 355, 382, 394, 417–18
Covariance matrix, 48, 50, 235, 250–2, 254–5,

293–295, 513
Convergence, 325, 357, 397–9, 402, 410–11
Cross-sectional

data, 16, 19–20, 90, 168, 259, 270
survey, 90–3

Cross-classification analysis, 157–63

Data
cross-sectional, 16, 19–20, 90, 168, 259, 270
longitudinal or time series, 20, 90–3

Data collection, 23, 55, 71–94, 97, 413, 425, 463–5
Data correction, 86–8
Decision making

context, 11, 129
strategies, 23–4
styles, 8–10, 24

Decision theory, 9, 24
choice by elimination, 258
compensatory rule, 257–8
satisficing, 258

Delay models, 412, 414
Departure time choice, 420–5
Descriptive statistics

coefficient of variation, 48
mean, 47
median, 47
mode, 47
standard deviation, 48
variance, 47–8

Deterrence function, 182–3, 187–8, 195–6, 437
Direct demand models, 207, 219–22

abstract mode model, 2
SARC model, 220

Disaggregate demand models, 228–30
Discrete choice models

choice-set determination, 270–1
equally likely model, 283
estimation, 275–308
functional form, 272–5, 309–10
market share model, 282–3
model aggregation, 338–41
model specification, 251–4
model structure, 235–7
model transferability, 272–3, 341–3
properties, 234–5, 241–8
statistical tests, 275–85
theoretical framework, 230–2
updating with aggregate data, 344–5
updating with disaggregate data, 343–4

Dummy variables, 105, 155–6, 159–60, 275, 278–9,
378, 421

Economic base, 492
Ecological correlation, 229
Elasticity, 43–4, 221, 431–2, 508

cross, 43, 235, 432
direct, 43, 235

EMME/2, 379, 403, 434
Employment, 490,

forecasting, 491–2
spatial location, 493

Entropy-maximizing approach, 184–91
Equilibrium assignment, 377, 387, 392, 395

combined distribution and assignment, 406
combined distribution, mode choice and assignment,

406
combined mode choice and assignment, 406–9
limitations of classic methods, 380–4
practical considerations, 384–8
social equilibrium, 396
stochastic equilibrium, 401–2
user equilibrium, 396, 401–2, 408, 415–16

Equilibrium in transport systems, 404–11
multimode network equilibrium, 350
road network equilibrium, 350
system equilibrium, 350, 404

Errors
aggregation, 68, 130, 133
computational, 67
measurement, 65–6
sampling, 66
specification, 67
transfer, 67–8
variation of error with complexity, 70

Expenditure rate, 274, 320, 510
Experimental design, 97, 99–104, 107–13, 120, 147
Exponential function, 39–40
Externalities, 8, 523
Extreme value, 50–1, 239, 248, 366

First preference recovery, 283–4
Frank–Wolfe, 371, 396, 398–9, 449, 470
Free-flow

cost, 351, 408
speed, 133, 349

Freight
charges, 463
movements, 198, 437, 461–2, 464, 468

Freight demand modelling, 461–2, 466–70
assignment, 468–9
disaggregate approaches, 470–1
distribution models, 466–8
equilibrium, 469–70
generations and attractions, 466
mode choice, 468
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Function
asymptote, 33
concavity and convexity, 41
limit, 33, 37
maximum and minimum values, 40–1
point of inflexion, 40–1

Furness method, 180–1, 380

Gaming simulation, 456–8
Generalised cost, 134, 164, 177–8, 208–10, 213, 217,

274, 354, 356, 374–5, 387, 403, 467–8
Geometric progression, 35
Global positioning systems (GPS), 1, 94, 235, 411,

425
Gradient, 33, 37–8
Gravity model, 182–4, 186–8

bi-proportional algorithm, 186–7
calibration, 191–3
generalisations, 198–9
partial matrix techniques, 196
properties, 188–90
tri-proportional calibration method, 193–7
validation, 191–2

Growth-factor methods, 178–82
advantages and limitations, 181–2
doubly constrained methods, 180–1
singly constrained methods, 179–80
uniform method, 178–9

GUTS, 457

Habit and hysteresis, 258–9
Halton sequences, 305–6
Hessian [matrix], 43
Heteroskedasticity, 366, 424
Hierarchical logit model

internal diagnosis, 240
limitations, 241
model structure, 235–7
sequential estimation, 288–9
simultaneous estimation, 289

Human capital approach, 524–5

Imputation methods, 88–9
Incremental elasticity analysis, 431–3
Incremental models, 433–5
Independence of Irrelevant Alternatives (IIA), 234
Inertia, 67, 259, 263–5, 320
Information technology, 1
Input–output, 492
Integration weighting, 87–8
Intervening opportunities model, 199–200
Intra-zonal trips, 201–2

Journey, 140–1, 166, 177, 191, 202, 208, 413–14,
511

Journey purpose, 191, 202

K factors, 202, 435

Lagrangian multipliers, 42
Land-use and transport model, 493–9
Latent variables, 227, 265–6, 288–91
Level of service, 6, 76, 220, 289, 308, 350, 432
Likelihood

function, 52, 275, 298, 324, 514
ratio, 342
ratio test, 279–81

Line section, 376, 380
Linear regression model, 52, 144–51

coefficient of determination, 149–50
estimation, 146–7
F test, 148–9
household-based regression, 153–4
intercept, 146, 152
multicollinearity, 150
multiple regression, 150–1
non-linearity problem, 154–6
t-test, 148
zonal-based regression, 151–3

Link, 133–4
delay, 134
perceived cost, 362
properties, 133–4
transfer link, 374
walk link, 133, 374
Log-likelihood, 255, 261, 281–2, 291, 296–7, 325,

342, 344
Longitudinal

data, 20, 90–3
survey, 91, 93

Logarithmic function, 39–40
Lowry model, 495–6

Marginal demand model, 454–6
Matrix

basic operations, 36–7
diagonal matrix, 36
inverse of a matrix, 36
symmetric matrix, 37
see also Trip matrix

Maximum likelihood, 51–2, 275, 277, 288, 293–4, 448,
512

ME2, 441–2, 446–9
Microsimulation, 11, 387, 484–7, 495, 499
Mixed logit model, 250–6, 295–308
Modal split, 21–2, 77
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Modal-split models, 22
calibration, 217–19
joint distribution/modal-split, 211–14
multimodal, 214–16
pivot point, 433–5
simplified, 433–5
trip-end, 209
trip interchange, 209–11

Model
calibration, validation and use, 16–17
complexity, 65, 68–71
physical model, 414, 456
specification, 15–16, 157–8, 163, 251–4
structure, 15, 111, 118, 215, 235–7, 328
structural model, 8, 430
updating, 341–7
variable specification, 16
with panel data, 259–65

Monitoring function, 24, 26
Monte Carlo methods, 112, 203, 305, 362, 481–2, 484–5
Motorcycle ownership, 505–7
Muddling through, 9
Multinomial logit model, 232–5

functional form, 238, 243–4
properties, 234–5

Multinomial probit model, 248–50, 292–5

Nested logit model
see Hierarchical logit model

Network
definition, 128, 133
link, 133–4
private network, 350
public-transport network, 133, 350, 374

Node, 130–3, 358–9, 362–3, 376, 378–81, 399–401,
444

Normal distribution, 48–50, 119, 228, 249, 277, 301,
513, 519

Null zones, 152

Ordinal probit, 318,
Origin–destination (O–D) survey

data correction, 86–8
questionnaire design, 77–9
sample size, 80
survey period, 74, 85
validation of results, 90

Panel data, 90–3, 259–65, 307
Panel survey, 90–1

rotary panel, 90
sources of error, 92–3
split panel, 90

Parameter, 16, 30
Perception of price, 534
Pivot-point logit, 433–5
Planning variables, 24, 71, 479, 489–93
Policy variables, 15, 278
Population

forecasting, 491–2
spatial allocation, 167, 493
synthesis, 477, 479–81

Private sector projects, 535–8
Probability, 44–5, 60–3, 165, 199, 239–40, 249, 251,

259–65, 285–7, 289, 366, 448, 528
Probit model, 50, 248–50, 270, 292–5, 321–2
Public transport

line, 376
route, 374, 376–9

Quadratic form, 49–50, 148
Questionnaire design, 77–9

Ramp-up, 535
Random utility theory, 230–2
Random variable, 46–8, 512
Representative individual, 477
Revealed preferences, 20, 94, 413, 422, 512–15
Regression analysis, 144–57, 313
Rho squared index, 282
RHTM, 504–5
Risk

identification, 539, 545
management, 539
mitigation, 539

Route
choice, 117, 356–7, 359, 366, 373–9, 403, 416, 436,

449, 468
section, 376, 379–80

Sampling method, 56–7
choice-based, 57
random, 56
stratified, 56

Sampling theory, 55–64
population of interest, 56
sample design, 56, 81
sample expansion, 89
sample size, 57–9
sample size for continuous survey, 82–3
sampling bias, 57
sampling error, 57

SATURN, 416–18, 420, 449
Scalar, 35
Scenarios, 22, 327, 526, 542
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Screen lines, 74–5, 85, 386
Sensitivity analysis, 205, 455–6, 546
Series, 34–5, 44

Taylor’s expansion, 44, 336, 398
Maclaurin’s series, 44
Significance level, 148, 161, 278

Simulated maximum likelihood, 289, 293–4, 296,
305

Sketch planning models, 430–1
Speed–flow relationship, see Cost–flow relationships
Stated preference, 20

attribute level balance, 102
blocking of designs, 110–11
choice, 96–9
data, 310–22
D-optimal design, 108
D-efficient design, 108–9
dummy coding, 105–7
effects coding, 105-7
experimental design, 107–11
fractional factorial design, 103–5
interactions and independence, 103
labelled experiment, 102
lexicographic responses, 101
modelling, 308–9
non purchase alternative, 97–8, 113
orthogonal coding, 105–7
orthogonal design, 107–8
payment mechanism, 95
pivot design, 114
ranking, 95–6
rating, 95–6
repeated observations, 92–3
sample size, 94, 109–10
survey, 94–128
use of computers, 115–16
mixed RP–SP estimation, 322–31

Strategy, 11, 13, 75, 81–2, 129, 192, 257–8, 334, 337–9,
403, 539

Study-area definition, 72, 74
external cordon, 74
internal cordons, 74
screen lines, 74
zones, 68, 74
Subjective value of time, 100, 312, 509
Substantive rationality, 9–10

Survey
cordon, 85
intercept, 74
O–D, 73–4, 76, 80–1, 85–90, 172
panel, 90–1
roadside interviews, 83–5
scope, 74

screen-line, 85–6
stated preference, 94–128
travel diary, 483
travel time, 75, 93–4
workplace interviews, 75

Synthetic model, 198–200, 211–19
see also Gravity model

System dynamics, 497–9

Taste variation, 67, 249–50, 279, 515
Time of day choice, see Departure time choice
Time series

data, 20, 83, 326, 432
extrapolation, 500–3

Tours, 140, 164–5, 474–7, 482–4
Traffic counts, 444–6

inconsistency of, 444
independence of, 444

Traffic and revenue risk, 536
Transfer index, 342–3
Transfer price, 521–2
Transferability, 169–70, 341–3, 431
Transitional probability approach, 492
Transport supply, 4–5
Travel time reliability, 413–14
Tree-building algorithm, 358–9, 380

D’Esopo, 358
Dijkstra, 358
Moore, 358

Tree logit model
see Hierarchical logit model

Trend extrapolation, 491
Trip

attractions, 140, 143, 157
classification of, 141–2
generations, 22, 151, 157, 161–2, 164–71
home-based, 165
non-home-based, 164–5
productions, 140, 142–3, 158

Trip distribution modelling, 175–206
Trip generation, 22

Bayesian updating, 170–1
factors affecting, 142–3
forecasting variables, 167–8
frequency choice logit model, 165–6
geographic stability of parameters, 169–70
modelling, 139–73
temporal stability of parameters, 168–9

Trip matrix
estimation from traffic counts, 435–52
sparse matrices, 201

Trip length distribution (TLD), 184, 190, 192, 195–6,
441
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UDM, 497
UMOT, 430–1
Utility function, 118, 232, 237, 239, 242, 249, 252, 290,

304, 422, 509, 512
Urban simulation, 499

Validation sample, 284–5
Value of time, 178, 243, 509–22
Valuing external effects, 522–31
Variable

dependent, 31, 43, 69, 154, 326
endogenous, 15, 26–7, 489
exogenous, 12, 25

generic, 233, 244
independent, 95, 162, 310, 413, 503

Vector, 35–6

Wardrop’s equilibrium, 367–9
first principle, 367
second principle, 368–9

Willingness-to-pay, 95, 496, 512, 515–23, 526–9,
539–40

Zone centroid, 130, 477
Zoning

criteria, 130–1
system, 128–35
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