Global and Planetary Change 157 (2017) 244-258

journal homepage: www.elsevier.com/locate/gloplacha

Contents lists available at ScienceDirect

Global and Planetary Change

A comparison of simultaneous temperature and humidity observations from
the SW and NE slopes of Kilimanjaro: The role of slope aspect and

@ CrossMark

differential land-cover in controlling mountain climate

Nicholas C. Pepin*, Gary Pike, Martin Schaefer, Clare M. Boston, Harold Lovell

Department of Geography, Buckingham Building, Lion Terrace, University of Portsmouth, PO1 3HE, UK

ARTICLE INFO ABSTRACT

The recession of the current ice fields near the summit of Kilimanjaro has been shown to be controlled largely by
climate. Despite detailed research into summit climate, including mass and energy balance modelling, under-
standing Kilimanjaro as a whole has been limited by lack of observations on the mountain slopes. Analysis of
hourly air temperatures, relative humidities and vapour pressures from 22 weather stations installed between
September 2012 and 2015 across the mountain from south-west to north-east are presented for the first time.
Moisture is shown to move upslope on both sides of the mountain during the afternoon. The north-east slope is
less humid and warmer on average than the south-west slope. Temperature differences between slopes reach
4-5 °C during the morning in the rainforest zone (2000-2500 m) and on the crater wall (5000-5550 m). Slope
differences are broadly similar in size to local contrasts within the south-west slope caused by the rainforest (at
1890 m) and ice fields (at 5800 m). Although both slopes show similar moisture regimes, there are contrasts in
moisture content particularly in the zone just above the current rainforest limit (3000-3200 m). This decoupling
extends up to 5000 m in the afternoon because the upslope transport of moisture is both weaker and delayed on
the NE slope. At night the upper slopes are highly correlated implying that free-air moisture is the dominant
source. Very moist events at crater level tend to be associated with widespread moistening across the whole
mountain. These results can be used both to argue for and against the role of deforestation being an important
influence on summit climate and therefore ice field recession.
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1. Introduction

Kilimanjaro is the largest free standing mountain in Africa, reaching
a peak of 5895 m (above sea level) and emerging from a surrounding
plain at ~1000 m. The summit region is high enough to be one of the
few locations near the equator covered with snow and ice. Recent re-
search has largely been concerned with the decline in the summit ice
fields over the last century or more (Hastenrath and Greischar, 1997,
Molg et al., 2003, 2008, 2009b, Molg and Kaser, 2011). The most recent
estimate for the date of disappearance of current summit ice is 2040
(Cullen et al., 2013). The reasons for the current decline are a con-
sequence of changes in the mountain climate, particularly a drying of
the upper atmosphere (Molg et al., 2008, 2010; Kaser et al., 2010),
which has resulted in a negative mass balance due to increased sub-
limation and reduced accumulation.

Although there are good records of weather observations on the
summit ice field itself (Molg and Hardy, 2004), there has been less
analysis of conditions on the mountain slopes. In the tropics especially,
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mountains act as an integrated system. The slopes act as a heat source
in the daytime, becoming warmer than the free atmosphere (Richner
and Phillips, 1984; Pepin and Seidel, 2005), which allows air to flow
upslope through the formation of a thermal circulation. The reverse
occurs at night when the slopes cool in comparison with the free at-
mosphere and air sinks downslope. The summit region therefore is
subject to import of moisture from the lower slopes during the day.
Despite past work demonstrating daytime upslope vapour transport
based on a transect of 10 stations on the south-west (SW) slope (Pepin
et al., 2010), there has been no detailed comparison with processes on
other slopes of the mountain due to a lack of data.

This paper examines climate data from the north-east (NE) side of
the mountain for three years (2012-2015) and for the first time com-
pares this with simultaneous observations from the SW slope (Fig. 1).
The coherence in temperature patterns and moisture transport on the
two sides of the mountain is examined. In particular, we examine
contrasts between the slopes that result from the differential timing of
and amount of direct solar radiation, and from land-cover differences.
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Fig. 1. Map showing the location of 22 temperature sta-
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The NE slope receives direct sunlight much earlier in the day and heats
up more quickly than the SW slope. By the time the sun has moved
round to the western slope during the afternoon, cloud build-up is
usually substantial (Meyer, 1890, 1891), and this leads to an asym-
metry in the current climate, causing glaciers to extend to lower ele-
vations (~5000 m) on the western slopes compared to being con-
strained to the crater rim (> 5500 m) in the east (Gillman, 1923;
Cullen et al., 2013). The rainforest zone is well-developed on the SW
slope, with extensive rainforest extending from 1800 to 3000 m. By
contrast, the NE slope is much drier and has a relatively small forest
zone (~2200-2500 m). In addition, deforestation for crop cultivation is
taking place on the NE slope immediately outside the national park
(~2000 m) near the Rongai Gate and coniferous plantations have re-
placed the natural rainforest in many areas on this side of the mountain
(Altmann et al., 2002).

This paper first examines the mean diurnal signals of air tempera-
ture, vapour pressure and relative humidity at all stations (comparing
each slope) before examining elevational, diurnal and seasonal patterns
of slope differences. Local scale differences created by vegetation at the
rainforest edge (at 1890 m) and the Northern Ice Field (NIF) (at
5800 m) provide context to understanding the importance of these
slope differences. The NE slope is shown to be warmer and drier (less
humid) in general. We also use satellite data to examine cloud differ-
ences between the two slopes, and compare these with observed dif-
ferences in relative humidity. Most of the heavy snowfall at crater level
that contributes to ice accumulation falls in a few events. Therefore the
next section examines conditions on the mountain slopes for days on
which frequent cloud and/or snowfall was observed at crater level
(n = 40). This shows how conditions on the rest of the mountain cor-
relate with these high intensity precipitation events at summit level.
This analysis allows us to discuss the relevance of the observed slope
moisture patterns for the current summit ice-field mass balance and,
through comparison with modelling studies, to draw conclusions about
the effects of slope aspect and land-cover contrasts on summit climate.

1.1. The climate and ice fields of Kilimanjaro

The climate of Kilimanjaro was of interest in the 19th century when
explorers first climbed the mountain (Meyer, 1890, 1891), with the
reported presence of snow on a mountain in the tropics/at the equator
leading to intense debate (Cooley, 1852; Bridges, 1976). Following this,

tions across Kilimanjaro. The SW slope stations are named
Mach1l-Mach10 (ice field) and the NE stations
Rongl-Rong9 (crater wall). Additional stations are situated
at Moshi (991 m), Mbahe Farm (1839 m) and Albion
(5794 m). The squares represent 1km X 1km MODIS
pixels used for the cloud mask (see text). Stations are lo-
cated on the Rongai (Rong) and Machame (Mach) trekking
routes. Inset shows the summit stations and location and
size of the ice fields in 2015 (NIF = Northern Ice Field,

SIF = Southern Ice Field, FW = Furtwangler Glacier,

EIF = Eastern Ice Field).
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the first model of the thermal circulation on a tropical mountain was
put forward by Troll and Wien (1949) based on Mount Kenya and has
since been adapted for Kilimanjaro (Duane et al., 2008; Molg et al.,
2009a). This showed that most of the moisture is on the lower slopes of
the mountain, trapped below a semi-permanent temperature inversion
around 3000 m (Findlater, 1977). Thus, rainfall peaks around 2200 m
at 2000-3000 mm per year dependent on location (Rghr and
Killingtveit, 2003; Schuler et al., 2014). The wettest slopes face south
and south-west (Hemp, 2006) which is strange given that the prevailing
winds in the upper atmosphere are from the east. However, the
southern and western flanks of the mountain are thought to be prone to
moisture convergence which is dynamically forced (Molg et al., 2009a).
During the day, solar heating causes upslope air movement on all slopes
which transfers moisture upwards towards the summit crater. However,
at higher altitudes frequent strong northerly or easterly winds often
prevent the moisture on the SW slope from reaching crater level, the
mechanical free-air strength suppressing the upslope flow (Whiteman,
1990), and elevations above 4500 m are therefore arid. The free air
itself is extremely dry, and it is surprising that under such present
conditions any ice fields exist on the crater at all. They would certainly
not form in today's climate (Kaser et al., 2004) and are therefore
thought to be a remnant of a much moister regime in the near past
(Kaser et al., 2010).

There has been extensive effort to assess both the current rate of
recession of the summit ice fields (Cullen et al., 2006; Winkler et al.,
2010; Cullen et al., 2013; Pepin et al., 2014; Bohleber et al., 2016) and
the causes of this, in particular the relative importance of the various
climate influences (air temperature, precipitation, cloud patterns, solar
radiation) (Molg and Hardy, 2004; Molg et al., 2008, 2009b). Most of
the work has been concerned with the Northern and Southern ice fields
(NIF and SIF) (Fig. 1 inset) which are the largest ice masses remaining
(as at 2015). Although temperatures have increased over the last cen-
tury (Stocker et al., 2013), not least due to anthropogenic enhancement
of the greenhouse effect, the mean air temperatures at crater level re-
main well below freezing (Duane et al., 2008; Molg and Hardy, 2004;
Molg et al., 2009b), with sublimation dominating over melting in the
mass balance equation (Molg et al., 2008). Therefore the main cause of
current decline is largely agreed to be a drier climate, with direct solar
radiation playing a pivotal role in controlling ice-field morphology of
the NIF for example (Winkler et al., 2010; Pepin et al., 2014). The
importance of moisture in dominating mass balance is broadly similar
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to Mount Kenya, even though temperatures there at glacier elevations
are slightly warmer (Prinz et al., 2016). The causes of drying in East
Africa are thought to be related to changes in Indian Ocean sea-surface
temperatures (SSTs) (Chan et al., 2008; Molg et al., 2009b), even
though many future climate models predict wetter conditions in general
(see Shongwe et al., 2011, Cook and Vizy, 2013). There has also been
research into the influence of deforestation on the mountain slopes
(Fairman et al., 2011; Molg et al., 2012), but despite modelling efforts,
the extent to which local scale (e.g. deforestation) and/or regional scale
factors (e.g. changing SSTs) are contributing to the drying climate is
still unclear. The prevailing wind is from the east so the free air is in-
deed influenced by the Indian Ocean, especially during the wet seasons,
but how this free air interacts with the mountain is still not fully un-
derstood (Molg et al., 2009a; Pepin et al., 2010).

The main peak of Kilimanjaro (Kibo) (Fig. 1) is an isolated cone and as
such the air does not tend to flow over the summit crater but around it,
with the windiest locations being on the NW and SE sides where the air is
funnelled as part of a split flow pattern (Schar, 2002; Molg et al., 2009a).
The saddle between Kibo and Mawenzi on the east side of the summit
crater is particularly prone to strong northerly winds as a consequence.
Since the southern (and SW) slopes of the mountain are much moister than
the northern (and NE) side (Coutts, 1969), the traditional orographic
model with opposing windward and leeward effects (Daly et al., 1994;
Roe, 2005) is not appropriate. Added to the isolated cone-like topography
is the fact that the air is typically stable above the trade wind inversion
(Hastenrath, 1991) and this, along with relatively weak upper level flow
(in comparison with mid-latitudes), prevents substantial orographic rain-
fall from developing, at least in the traditional sense. Conversely, the
heaviest precipitation at crater level appears to form when upper level
winds are weak, which allows the thermal heating of the mountain slopes
to draw up moisture from the lower slopes. However, whether this is a
symmetrical process on all slopes is not known. Particularly intense rain-
fall is sometimes recorded on the upper parts of the SW slope where
convergence between the upper level split flow and a thermal upslope
flow can develop (Molg et al., 2009a).

The mountain lies almost on the equator and thus sunrise is at ap-
proximately 0630 and sunset at 1830 EAST (East African Standard
Time) throughout the year. The daily cycle in both temperature and
humidity is more influential than the annual one, although there are
two distinct wet seasons. The long rains fall between March and May
and bring heavy rainfall to all elevations (Camberlin and Phillipon,
2002), and the short rains occur in November and December but are
more showery (convective) in nature. The atmosphere remains unstable
into the January/February dry season, and lapse rates on the mountain
are much steeper at this time (Duane et al., 2008). The most stable
period is the long dry period from July to September/October when
cloud-free conditions are common above a mid-level temperature in-
version around the treeline (3000 m).

A fundamental limitation to a more detailed understanding of
mountain climate on Kilimanjaro has been the lack of climate ob-
servations from across the whole mountain. There are high quality
weather stations on the NIF (Molg and Hardy, 2004), and also next to
its vertical walls (Winkler et al., 2010). Thus, the local energy balance
on the ice field and some adjacent slope glaciers is fairly well under-
stood (Molg et al., 2003; Cullen et al., 2007; Molg et al., 2008, 2009b,
2009c). In addition to summit observations, one transect of weather
stations was installed on the SW slope in 2004 (Machame route), which
enabled the tracking of moisture up that slope (Duane et al., 2008), and
there are also some temperature and precipitation observations be-
tween 1900 m and 3200 m nearby on the southern slopes (Schuler
et al., 2014). A large number of stations have been installed recently as
part of ecological monitoring on the southern slopes up to around
4000 m (Appelhans et al., 2016). Their comparison with our original
SW transect (Duane et al., 2008) shows broadly similar seasonal and
elevational patterns in temperature (e.g. lapse rates) and similar
moisture decline and increase in moisture variability towards higher
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elevations. Until recently, as far as we know there have been no sys-
tematic observations on the NE side of the mountain and there is no
study covering the whole elevational range from plains (~1000 m) to
summit crater (5800 m). The NE slope (Rongai route) (Fig. 1) can be
viewed as the windward slope, and the SW slope (Machame route) as
the leeward. There are only slight variations between the seasons.
During the austral summer/winter the upper flow has more of a
northerly/southerly component, but during both wet seasons (MAM
and OND) upper level flow comes most frequently from the sector
45-90° (Fairman et al., 2011; Molg et al., 2009a).

2. Methods

22 stations (9 on each slope, 2 in the crater and 2 on the surrounding
plains) were instrumented using Hobo Pro v2 U23-001 data loggers
measuring air temperature and relative humidity every hour. Data runs
from September 2012 to September 2015. All times are East African
Standard Time (EAST or UTC + 3 h). Each transect runs from the plains
(~1000 m) through the six ecological zones characteristic of Kilimanjaro
(Fig. 2) up to and including the summit crater (5800 m). These zones in-
clude a) cultivated belt, b) montane cloud forest (rainforest), c) giant
heather, d) alpine moorland, e) alpine desert and f) ice field. Sensors were
placed at approximately 400 m elevational intervals on each slope, and at
equivalent elevations on each side of the mountain (Table 1 and Fig. 1) to
enable easy comparison. However, this means that sensors at equivalent
elevations may not always be in the same ecological zone because zones
are somewhat compressed on the NE slope.

Data loggers were screened using white PVc tubing open at both
ends, with the open ends facing north and south to prevent direct solar
radiation from entering the tube. All measurements were taken at 2 m
above ground level. The (almost) horizontal angle of the tube prevents
reflected radiation (from snow or the ground) reaching the sensor, but
prevents air from stagnating in the tube. This method of screening has
been tested through calibration against an aspirated shield at the
summit station on the NIF (see Fig. 2f for equipment set-up) and dif-
ferences in observations were minimal (Duane et al., 2008). The data
logger specification has been assessed by Whiteman et al. (2000) as
suitable for local scale climate monitoring. Typical sensor accuracy is
quoted as = 0.21 °C from 0 to 50 °C.

After basic diurnal patterns on each slope are examined, the dif-
ference between the two slopes is calculated by subtracting the NE
station value from the SW station (at the equivalent elevation). With the
exception of the first station on each transect, elevation differences are
very small (Table 1) and thus have not been compensated for. Positive/
negative temperature differences mean that the SW slope is warmer/
cooler, and positive/negative relative humidity or vapour pressure
differences mean that the SW slope is moister/drier. Vapour pressures
were calculated using the equations of Kuemmel (1997) above a water
surface. Cloud frequencies were estimated using observed relative hu-
midity data (RH > 95%) and also obtained from MODIS MYD11A2
LST cloud mask data (AQUA) for the 1 km pixels (Fig. 1) corresponding
to the weather stations (for more details see Pepin et al., 2016).

At Albion station on the crater (5794 m), a downward facing Hobo
Pendant light sensor measured reflected shortwave radiation. Values
over 30,000 Lux (237 W/m?) at 1100 EAST (when there is usually a
lack of cloud) led to the day being classified as snow-covered (~43% of
total days) (Pepin et al., 2016). A change from a non-snow covered day
to a day with snow cover was identified as a day with significant
snowfall at crater level (n = 40). Although there may be some un-
certainty in this proxy measurement, rapid increases were usually ex-
tremely distinct, with reflected radiation dramatically increasing from
one day to the next and then decreasing gradually over subsequent
days. Significant snowfall days are thus easy to identify.
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3. Results

3.1. Mean diurnal temperature/humidity patterns on each slope

A comparison of mean air temperatures for each slope based on the

Table 1
Station details.
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Fig. 2. Photographs of the vegetation zones of Kilimanjaro.
a) cultivated belt (up to 1850 m), b) montane cloud forest
(1850-3100 m), ¢) giant heather zone (3100-3900 m), d)
alpine moorland (3900-4500 m), e) alpine desert
(> 4500 m), f) ice field on summit crater (5800 m).
Elevations of zones are given for the SW slope. Zones are
slightly compressed on the NE slope. The data logger
screening and set up is illustrated in Fig. 2f (horizontal PVc
tube fixed to mast).

whole 3 year period shows that in general the NE slope is warmer, par-
ticularly by day, and that the freezing level reaches above Rong9 (5457 m)
during the afternoon, in contrast to the SW slope where it remains at
around 5500 m (Fig. 3). A similar slope comparison based on hourly mean
vapour pressures (Fig. 4) shows that on both slopes there is a fairly regular

Station Latitude Longitude Elevation Missing data (%) Pixel elevation Elevation difference Vegetation zone
N °E metres metres (SW-NE)
Moshi —3.316 37.316 991 0 989 n/a Savannah
Mbahe —3.243 37.507 1839 0 1903 n/a Cultivated
Machl -3.170 37.237 1890 68 1871 -120 Rainforest
Mach2 —3.130 37.246 2340 11 2288 +2 Rainforest
Mach3 —3.108 37.259 2745 47 2777 -19 Rainforest
Mach4 —3.092 37.270 3178 24 3137 +2 Heather
Mach5 —3.082 37.280 3610 32 3527 - 36 Heather
Mach6 —-3.070 37.289 4039 17 3966 — 54 Moorland
Mach7 - 3.067 37.323 4555 17 4434 -21 Moorland
Mach8 -3.071 37.339 4973 26 5134 +7 Desert
Mach9 —3.069 37.346 5469 7 5134 +12 Desert
Mach10 —3.059 37.346 5803 0 5479 +9 Ice Field
Albion —3.061 37.346 5794 0 5479 +9 Desert
Rong9 -3.075 37.372 5457 0 5636 +12 Desert
Rong8 —-3.073 37.381 4966 55 5188 +7 Desert
Rong7 —3.065 37.391 4576 0 4688 -21 Desert
Rong6 —3.049 37.405 4093 0 3993 —54 Moorland
Rong5 —3.023 37.415 3646 33 3662 -36 Moorland
Rong4 —3.003 37.424 3176 22 3091 +2 Heather
Rong3 —2.986 37.442 2764 0 2796 -19 Heather
Rong2 —2.974 37.471 2338 43 2372 +2 Rainforest
Rongl —2.961 37.498 2010 25 2032 -120 Cultivated
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a

L Fig. 3. Mean air temperature (°C) for each hour of the day
for a) the SW slope and b) the NE slope, based on the sta-
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decrease in mean vapour pressure with elevation. However there is also an
increase in vapour pressure during the day at all elevations, and vapour
pressures are generally higher on the SW slope.

The difference between the two slopes of air temperature (panel a)
and vapour pressure (panel b) over the mean diurnal cycle are shown in
Fig. 5. The SW slope is generally cooler and moister than the NE. On
average this would be expected because Kilimanjaro is in the southern
hemisphere (thus slopes with a northerly component should be
warmer), and also in a convective regime direct radiation will be sup-
pressed on slopes facing the afternoon sun. The biggest cooling effect on
the SW slope is seen around midday (1200 EAST) in the rainforest zone
(2000-3000 m) but also there are large differences during the early
morning at around 5000 m. At the higher elevation there is no vege-
tation, so aspect (including shading) effects on the crater wall must be
responsible. Vapour pressure differences between the two slopes are
mostly positive (i.e. moister on the SW slope) but there are some un-
expected negative differences in the rainforest zone (2000-2500 m)
during the morning and on the crater wall (~5000 m), mostly coin-
ciding with areas which are also cooler on the SW slope.

Elevation - metres

Elevation - metres

1200

o1 |

tions on that slope only. Because the stations Moshi and
Mbabhe are to the SW of the mountain they are included in
the SW panel which consequently extends to lower eleva-
tions. The same grey scale is used on both panels.

1800

Time: EAST

Relative humidity provides a good representation of the likelihood
of cloud cover since in theory cloud will form at station level when the
relative humidity nears 100%. Our data (Fig. 6) demonstrates that
mean relative humidities are particularly high on the SW slope, espe-
cially around 2000 m. The zone of almost perpetual cloud cover is
displaced to slightly higher elevations (2500 m) on the NE slope and is
much reduced in strength, especially in the afternoon. Both slopes also
show a surge of moisture upslope in the afternoon, but relative hu-
midities are much higher on the SW slope, the mean 80% isohume
reaching over 5000 m from 1200 to 1800 EAST, as opposed to 4000 m
on the NE slope. The moisture surge also appears somewhat later in the
day on the NE slope, with humidities peaking as late as 1800 EAST
around 3500-4000 m.

The mean diurnal cycle is represented for five elevation bands in Fig. 7
for air temperature (panel a), vapour pressure (panel b) and relative hu-
midity (panel c). The ecological zonation is slightly different on the two
slopes, the zones being compressed and at lower elevations on the NE side.
Thus, as far as possible we have chosen elevation bands where the same
zones overlap. Most locations are cooler and moister on the SW slope. This

Fig. 4. Mean vapour pressure (kPa) for each hour of the day
for a) the SW slope and b) the NE slope - similar format to
Fig. 3.

-

.6\

1500

1000

600 1200

Time: EAST

1800

1200

Time: EAST

248

1800



N.C. Pepin et al.

4000

Elevation - metres

@
o
B
]
€
2 €
k3
2
2
]

Global and Planetary Change 157 (2017) 244-258

Fig. 5. Differences in a) air temperature (°C) and b) vapour
pressure (kPa) between equivalent elevations on the SW
and NE slope. Positive/negative values represent warmer/
cooler and moister/drier conditions for the SW slope re-
spectively.
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difference is not restricted to the rainforest zone (represented by 2339 m).
Some of the largest differences in moisture are seen just above in the
heather zone (3177 m), where the vapour pressure difference reaches a
maximum of 0.2 kPa late morning, and relative humidity differences re-
main high all night. The strong positive difference in relative humidity at
3177 m implies a lower mean cloud base on the NE slope during the
nocturnal hours. At a few elevations, namely the heather zone (3177 m),
but also especially on the crater wall (5463 m), opposite contrasts in
temperature can be seen early morning and late afternoon as the low angle
sunlight will illuminate one slope but not the other. As expected, the NE
slope is warmer in the early morning (0800 EAST) and SW slope in the late
afternoon (1700 EAST).

Similar graphs were created for January (NE monsoon: austral
summer), April (long rains), July (SE monsoon: austral winter) and
October (Figs. 8-10). Temperature differences are broadly consistent
throughout the year, although they are subdued during the long rains, and

Time: EAST

249

Fig. 6. Mean relative humidity (%) for each hour of the day
for a) the SW slope and b) the NE slope - similar format to
Fig. 3.

the high level aspect effects early and late in the day are strongest during
July when there is a lack of cloud. The humidity differences are also
broadly consistent between seasons, with the exception that the asym-
metry in nocturnal cloud base (higher on the SW slope) tends to be en-
hanced in the July dry season. Daytime vapour pressure differences in the
giant heather zone are largest during the NE monsoon (January) when the
SW slope shows enhanced vapour pressure in comparison to the NE slope.

3.2. Local scale differences

To set some of the slope differences in context, we evaluate tem-
perature and vapour pressure differences between

i) two stations at ~1890 m at the edge of the rainforest on the SW
slope (Fig. 1): Mach1 (natural forest) and Mbahe (cultivated land)
(Fig. 11a, b).
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Fig. 7. Mean diurnal patterns in slope differences
(SW minus NE slope) in a) air temperature (°C),
b) vapour pressure (kPa), c) relative humidity
(%). Five different elevation bands are shown.
The summit difference represents the effect of ice
versus no ice.
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ii) two stations on and off the ice field in the crater: Mach10 (on ice)
and Albion (off ice) (Fig. 11c, d).

Elevation differences are small in both pairings. Both the rainforest
and the ice field show strong diurnal signals in the size of the cooling
effect with local cooling of 34 °C typical during the afternoon hours. At
night, the rainforest is slightly warmer than the cultivated area, pre-
sumably due to reduction in longwave radiation loss due to canopy
protection, but the ice field becomes approximately the same tem-
perature as the non-ice area. When it comes to moisture differences
however, the rainforest shows a daily signal (panel b), with a slight
drying in the early morning changing to substantial moistening during
the afternoon. The moister regime remains all night. During the wet
season (April/May), the rainforest is moister all day, and night-time

differences are sometimes up to 0.3 kPa. Moisture differences induced
by the ice field (panel d) are much smaller (typically up to 0.03 kPa),
and appear to be more strongly controlled by season rather than time of
day. During the wet seasons (particularly March-May) the ice field is
less moist than the comparable station off the ice, whereas during the
long dry period of June-September the air above the ice field is moister
than at the neighbouring station, suggesting that active sublimation is
occurring. Interestingly this moisture excess above the ice field lasts all
day and night, despite being of relatively small magnitude.

3.3. Relative humidity and cloud patterns

Cloud patterns are also obtainable through use of the MODIS cloud
mask for the 8-day MYD11A2 product for 2004-2015 (see Fig. 1 for pixel
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locations). Tables 2 (0200 EAST) and 3 (1400 EAST) are contingency ta-
bles of the frequencies of the number of cloud-free days in each 8-day
composite for pixels representing stations on opposing slopes. In this way
the extent to which cloud development is synchronous on the two slopes
can be quantified. We restrict analysis to stations Mach4/Rong4 (3177 m)
just above the rainforest level, and stations Mach9/Rong9 (5464 m) on the
crater wall. At night (0200 EAST) the two slopes are generally synchro-
nous (meaning that when there are cloudy conditions on one slope they
are also cloudy on the other) and cloudy conditions are relatively rare on
both slopes. This is true at both high and low elevations. During the day,
cloud presence/absence is typically more synchronous at the upper sites
than lower down on the mountain near the rainforest limit. For example,
at 1400 EAST at the lower elevation station there are much higher fre-
quencies of cloud cover on the SW slope when the NE slope is inter-
mittently cloudy (represented by frequencies to the right and above the
diagonal of the table). However, at the higher station there is much greater
correspondence between slopes, apart from when there are no cloud free

days on the SW slope (top row) when cloud free conditions are still pos-
sible on the NE slope. This suggests that afternoon cloud development at
the higher stations is more likely to be on both slopes at the same time
rather than lower down the mountain just above rainforest level, where
there are distinct differences in simultaneous cloud frequencies between
the slopes.

We also analysed our relative humidity data to assess if it was
correlated between both slopes (Table 4). On a long term basis the
correlation between equivalent elevation stations (station pairs) is sig-
nificant for all elevations, but r increases above 5000 m - reaching
0.923 at the two summit stations (Albion and Mach10) for the daily
mean relative humidity (final column). However, these two stations are
close (~200 m apart) because the transects converge and this could
therefore be expected. High correlations on the opposing aspects of the
crater wall however (e.g. Mach8/Rong8 and Mach9/Rong9 pairings)
are not necessarily expected, especially if a typical orographic model is
assumed (Roe, 2005), with ascending and descending air on opposing
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sides of the crater leading to contrasting cloud patterns on either side.
However, correlations over 0.9 are common at night.

Table 4 also shows that although night-time humidities are mostly
highly correlated (probably driven by common free air moisture content),
there is a significant daytime deterioration in correlation (see figures in
bold) at many sites. For example, correlations fall below 0.5 at station
pairs 7 and 8 between 1100 and 1700 EAST, and also at pair 9 at 1400
EAST. Thus, afternoon convection and upslope moisture entrainment and
cloud formation appear to show some decoupling between the two sides of
the crater. Some low correlations are also shown lower down the moun-
tain at the upper limit of the rainforest. The lowest correlations are at night
at site pairs 3 and 4 (e.g. 0.212 at site 4 at 2000 EAST), suggesting there is
often a different nocturnal cloud base level in the vicinity of the treeline on
the two sides of the mountain.

Generally similar results appear for correlations on vapour pressures
recorded on the two slopes (not shown). Night-time values are mostly
strongly correlated between slopes, especially at the higher elevations,
suggesting that free atmospheric moisture content is important,
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Fig. 11. Local-scale air temperature (left panels: °C) and
vapour pressure (right panels: kPa) differences: a) and b)
rainforest minus cultivated zone (top row), ¢) and d) crater
ice field minus non-ice station (bottom row). Stations are at
approximately the same elevations. Positive/negative dif-
ferences mean that the rainforest or ice-field is warmer/
cooler or moister/drier.
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whereas daytime values show a dip at all stations, as low as 0.241 at
1100 at pair 4 (3177 m).

3.4. Slope conditions during periods of extensive cloud and/or snowfall at
crater level

Because most of the accumulation on the summit ice fields occurs
during short periods (Molg et al., 2009a), case studies of high moisture
content at crater level were examined in more detail. Based on webcam
analysis at station Mach10 on the NIF, Duane et al. (2008) deemed that
relative humidities (RH) above 95% were more likely than not to be as-
sociated with the development of cloud cover at the station elevation. The
match is not perfect but allows us to estimate a high probability of cloud
cover at an individual station when RH is > 95%. Using this assumption,
we classify a cloudy hour as 1 and absence of cloud as 0 at each station
separately. Adding up all the cloud indices for a slope produces an overall
slope cloud index ranging from O to 10. Missing data were compensated
for, i.e. if only 9 stations recorded data at a particular hour the slope index
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Table 2
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Contingency table of number of cloud free days in MODIS MYD11A2 composites for 0200
EAST for SW slope (rows) vs NE slope (columns). Bold figures represent similar values on

each slope.

a) Station 9 frequency on each slope (5465 m).

NE | 0 1 2 3 4 5 6 7 Total
SW
0 1 0 0 0 0 0 0 0 1
1 0 1 0 1 0 0 0 0 2
2 0 0 4 2 1 0 0 0 7
3 0 0 3 14 2 0 0 0 19
4 0 0 1 9 33 8 1 0 52
5 0 0 0 2 15 56 8 1 82
6 0 0 0 0 2 24 109 6 141
7 0 0 0 0 0 5 38 159 202
Total 1 1 8 28 53 93 156 166 506
b) Station 4 frequency on each slope (3177 m)

NE | 0 1 2 3 4 5 6 7 Total
SW
0 1 0 0 0 0 0 0 0 1
1 0 2 2 0 0 0 0 0 4
2 0 1 3 6 0 2 0 0 12
3 0 2 5 15 6 3 1 0 32
4 0 0 2 11 26 16 2 0 57
5 0 0 0 1 18 41 26 5 91
6 0 0 0 0 3 32 57 28 120
7 0 0 0 0 0 8 40 141 189
Total 1 5 12 33 53 102 126 174 506

Table 3

Contingency table of number of cloud free days in MODIS MYD11A2 composites for 1400
EAST for SW slope (rows) vs NE slope (columns). Bold figures represent similar values on

each slope.

a) Station 9 frequency on each slope (5465 m)

NE | 0 1 2 3 4 5 6 7 Total
SW
0 43 55 51 48 37 18 4 1 257
1 17 12 21 19 10 4 3 0 86
2 8 10 12 8 7 5 0 0 50
3 5 10 11 8 B 9 1 0 49
4 6 5 7 2 9 2 3 0 34
5 2 1 2 3 5 2 0 0 15
6 0 2 1 3 1 3 2 1 13
7 0 0 0 0 0 0 2 0 2
Total | 81 95 105 91 74 43 15 2 506
b) station 4 frequency on each slope (3177 m)

NE | 0 1 2 3 4 5 6 7 Total
SW
0 7 7 7 2 1 0 0 0 24
1 4 13 11 17 5 2 0 0 52
2 0 5 17 26 25 15 2 0 90
3 2 7 13 20 30 22 7 0 101
4 0 1 6 21 31 25 16 2 102
5 0 0 2 3 12 26 29 4 76
6 0 0 0 3 4 7 25 11 50
7 0 0 0 0 0 4 5 2 11
Total |13 33 56 92 108 101 84 19 506

Table 4

Correlations between relative humidity at equivalent elevations on each slope (SW versus
NE) - figures in bold are < 0.5.

EAST | 0200 |0500 |0800 |1100 |1400 |1700 |2000 |2300 |Mean

Daily
1 0.514 |0.579 |0.585 |0.680 |0.676 |0.686 |0.672 |0.533 |0.617
2 0.545 | 0.577 |0.549 |0.640 |0.615 |0.673 |0.646 |0.563 |0.625
3 0.377 10.386 | 0.363 | 0.540 | 0.463 |0.580 |0.433 |0.305 |0.546
4 0492 |0.536 | 0498 |0.532 [0.395 |0459 |0.212 |0.352 |0.395
5 0.679 10.693 |0.653 |0.503 |0.373 |0.424 |0.464 |0.641 |0.579
6 0.720 | 0.766 |0.752 | 0.500 | 0.475 |0.487 |0.519 |0.688 |0.649
7 0.621 |0.664 |0.589 |0.319 [0.302 [0.339 |0.381 |0.558 |0.519
8 0.808 | 0.805 |0.767 |0.485 |0.324 |0.327 |0.666 |0.792 |0.658
9 0932 0929 [0.880 |0.530 |0.459 |0.536 |0.901 |0.930 |0.805
10 0.954 ]0.962 |0.948 |0.866 |0.821 |0.893 |0.941 |0.955 |0.923
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Fig. 12. Diurnal changes in mean cloud index for
each slope: a) climatological mean (SW slope), b)
climatological mean (NE slope), ¢) occasions with
cloud cover at crater level only (SW slope), d) occa-
sions with cloud cover at crater level only (NE slope).
The cloud index shows the number of stations (scaled
to between 0 and 10) recording relative humidity >
95% at any one time.
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Table 5

Cross-tabulation between cloud indices on each slope (defined by number of stations with
relative humidity above 95%). Chi-squared X2 = 0.000. Bold values represent the same

cloud index on each slope.

Rongai

Mach | 0 1 2 3 4 5 6 7 8 9 10 Total
0 1280 | 297 | 68 7 6 0 2 1 0 0 0 1661
1 773 233 133 |201 |21 2 6 1 0 0 0 1370
2 983 1909 |300 |214 |54 6 11 4 1 0 0 2482
3 1382 | 1515 | 1023 | 430 | 183 |11 50 30 19 1 0 4634
4 1131 | 1108 | 1296 | 917 477 | 113 |91 47 17 5 0 5202
5 271 300 [389 [247 |169 |134 |58 15 |5 2 0 1590
6 513 | 467 662 |598 |431 |112 [200 | 117 |46 18 5 3169
7 321 293 [303 [352 [341 |141 |286 |[178 |84 41 11 2351
8 192 | 162 |[179 |171 | 181 |116 |210 |216 |143 |104 |39 1713
9 132 [ 118 |91 87 133 |55 119 165 | 175 |157 | 113 | 1345
10 6 18 26 32 42 19 58 97 127 | 149 | 154 | 728
Total | 6984 | 5420 | 4470 | 3256 | 2038 | 709 | 1091 | 871 | 607 | 477 |322 | 26245

was multiplied by a factor of 10/9 for that hour only. Therefore an index
of 10 means that RH is above 95% at all (available) stations, and a value of
1 at 10% of stations (usually one station).

Mean cloud indices for each slope are plotted against time of day
and season (month) in Fig. 12. The top row shows long term average
cycles in cloud frequency for the January and July dry seasons and long
(April) and short (November) rains for the SW (panel a) and NE slope
(panel b). As expected, the SW slope is cloudier and values are higher in
the wet seasons, particularly the long rains when cloud is widespread.
The diurnal cycle is such that there is an early morning minimum in
cloud extent occurring between the persistent stratiform cloud of the
night (particularly on lower slopes) and the afternoon convective cloud
which forms after midday. The morning minimum appears strongest on
the SW slope and during January. Cloud development during the
afternoon is weakest during July. The NE slope also shows a morning
minimum but slightly later and there is weaker and slower convective
development during the afternoon. The bottom panels (Fig. 12c and d)
show the same information but only for occasions when cloud is re-
ported in the crater at the ice field station. This shows much higher

cloud amounts all over the mountain, particularly on the SW slope.
Thus, crater level cloud formation is not divorced from wider scale
development and moistening of the whole mountain. This is particu-
larly true in the wet seasons. In the July dry season, however, it is
possible for a cloudy crater to be surrounded by a less cloudy mountain,
particularly during the afternoon (typical cloud indices around 4 on SW
and 2-4 on NE slope).

It is also of interest to look at a contingency table between the cloud
indices calculated for each slope (based on > 95% RH) (Table 5). In
general there is a strong correlation (chi squared value is highly sig-
nificant at < 0.001), but on many occasions the SW slope has higher
values than the NE, whilst it is very unusual for the opposite to occur.
When the NE slope is extremely cloudy (9 or 10) then it is likely that the
SW is as well. Thus, there is a high correspondence between extreme
moisture/cloudy episodes on the two sides of the mountain.

Finally, mean daily cloud indices are also calculated for each station
based on the number of hours with RH > 95%. A cloudy hour is given
a value of 1, and non-cloudy — 1. The values are summed over a
24 hour period (midnight to midnight). Table 6 lists daily cloud indices
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Table 6

Mean daily cloud indices for days with and without snowfall at crater Albion station
(5794 m). The p value shows the significance of the difference in mean cloud index at
each station. Cloud indices were calculated by taking the average of the 24 hourly values
(1 = cloud present, —1 = cloud absent, 0 = missing data). A value of zero therefore
means that 50% of the day has cloud cover, and a negative value < 50%.

Mean cloud index 1100 EAST

No snowfall (n = 1051) Snowfall (n = 40) p value
Moshi —0.60 -0.52 0.203
Mbahe —-0.48 —0.40 0.394
Machl 0.33 0.59 0.038
Mach2 0.65 0.81 0.092
Mach3 0.52 0.80 0.003
Mach4 0.15 0.55 0.0001
Mach5 -0.25 0.25 0.000
Mach6 -0.14 0.05 0.004
Mach7 -0.33 0.23 0.000
Mach8 —-0.51 —0.44 0.000
Mach9 -0.75 -0.32 0.000
Mach10 -0.73 -0.26 0.000
Albion -0.73 -0.26 0.000
Rong9 —0.65 -0.39 0.0004
Rong8 -0.63 —-0.38 0.001
Rong7 —-0.70 -0.21 0.000
Rong6 -0.39 -0.17 0.005
Rong5 —-0.50 —0.09 0.000
Rong4 —0.60 —-0.28 0.0001
Rong3 —-0.15 0.46 0.000
Rong2 —-0.07 0.39 0.000
Rongl —0.69 -0.31 0.000

* Significant difference at 0.05.

at each station for days reporting significant snowfall at crater level
(change in surface snow cover from no snow to snow as measured by
reflected radiation — see Methods) compared with all other days. Since
significant snowfall is quite rare, the number of snowfall days (n = 40)
is much lower than the non-snowfall category. In all cases (i.e. at all
stations) the mean cloud index is higher for snowfall days, and this
difference is significant at all stations on the NE slope, and above
Mach2 (2340 m) on the SW slope. Thus, snowfall at crater level is as-
sociated with significantly more cloudy conditions across nearly the
whole mountain.

4. Discussion

The basic differences in temperature and vapour pressure between
the two slopes (NE slope warmer and less humid than the SW on
average) are as would be expected due to contrasts in both land cover
and solar loading due to aspect/latitude. First, since the SW slope has a
much denser and vertically extensive rainforest zone, this will both
depress air temperatures due to the protective effect of the canopy, and
increase vapour pressure, particularly during the daytime due to in-
creased latent heat flux. It is therefore unsurprising that large amounts
of cooling (up to 5 °C) and increases in vapour pressure (up to 0.25 kPa)
are found at elevations representative of the rainforest (2000-3000 m)
and part of the giant heather zone (3000-3500 m) immediately above.

Second, there is also a large cooling effect found higher up the
mountain at around 5000-5500 m which at least in part can be related
to shading effects. The SW slope at 5000 m is protected from incoming
sunlight until around 0900 EAST by the crater wall and the cooling
effect at this elevation will therefore be largest during the hours im-
mediately following sunrise. By late afternoon the SW slope faces the
sun and the NE slope is in shadow and eventually the SW slope becomes
slightly warmer (1700 EAST at 5500 m, for example). Most of the time
however, increased afternoon cloudiness keeps the SW slope cool, thus
corroborating the early findings of Meyer (1891) and Gillman (1923)
who recognised the unequal distribution of glaciers on Kilimanjaro
(lower extent on the SW slope) as a response to increased afternoon

255
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cloud cover. Our data shows that the moisture content over most of the
SW slope is increased throughout most of the day, but there is an ex-
ception in the morning in some areas. This is again a result of aspect
effects as the rising sun would start evaporation earlier on the NE slope,
leading to a slightly drier SW slope atmosphere for a short period (a
couple of hours) after sunrise. In summary, observed slope differences
can be explained by a combination of land-cover and aspect driven
effects, the latter becoming more important at the higher elevations
where vegetation becomes minimal and the slopes are steeper.

We also examined the differences in temperature and vapour pres-
sure within the crater (ice versus no ice) and at the rainforest edge on
the SW slope. Temperature differences were seen to be of broadly si-
milar magnitude to those reported between slopes (i.e. a cooling of up
to 4-5 °C). Thus, it is likely that vegetation differences contribute in
part to the slope differences in temperature. The same is broadly true
for vapour pressure differences, although in this case the difference due
to the rainforest within the SW slope (Fig. 11b) can be slightly larger
than differences observed between slopes (Fig. 5b). This implies that
without differences in vegetation, the NE slope could have been more
humid than the SW. Since the NE (windward) slope is exposed to free-
atmospheric moisture this is not unsurprising. Clearly differences in
vegetation are a reasonable explanation for much of the existing con-
trast between the two slopes of the mountain.

In addition, the ice fields induce local scale cooling on the crater of
3-4°C in the afternoon, acting as a heat sink (increased latent heat
flux). Although mean air temperatures recorded at Mach10 on the NIF
average around — 6 °C during 2012-2015 from our data and — 7 °C
from AWS3 on the crater rim during 2005-2007 (5873 m) (see Molg
et al., 2008), daytime temperatures recorded away from this ice field
are often 3—4 °C warmer (Fig. 11c). Although still below freezing for the
majority of the time, this brings afternoon air temperatures much
nearer to the 0 °C threshold and therefore more significant melting
could conceivably occur in future given modest warming coupled with
the expected reduction of the heat sink effect as the ice fields recede.

Beyond differences in slope climatology, we are also interested in
the synchronicity or lack thereof in moisture transport on the two
slopes on a synoptic timescale. Since day-to-day contrasts in vapour
pressure on the two slopes are highly correlated this suggests that large
scale advective influences are important in controlling moisture avail-
ability on the mountain, in particular free atmospheric changes as a
result of synoptic disturbances (Hastenrath, 2001; Chan et al., 2008).
On occasions when variance is decoupled on the mountain sides, this is
evidence that local scale mountain phenomena are also at work. In
general, inter-slope correlations across the three-year period (Table 4)
are high, meaning that there are significant common synoptic controls,
corroborating the findings of Mélg et al. (2009a) and Chan et al. (2008)
that extensive heavy precipitation events tend to be associated with
widespread moistening of the free atmosphere. However, the strongest
correlations occur at night and not in the daytime when most pre-
cipitation would be expected to fall in a traditional convective regime.
The high values over 0.9 for relative humidity and vapour pressure at
high elevation stations (> 5000 m) on opposing sides of the crater
during night time hours are notable. Examination of the diurnal cycle of
precipitation on the summit crater would be informative here but such
data is as yet unavailable.

The strong coupling between slopes sometimes reduces, most im-
portantly during the afternoon when differential solar heating of the
two slopes (and therefore differential moisture stores) appear to induce
differential amounts of upslope moisture transport. The lowest corre-
lations between mean daily vapour pressure on the two slopes are seen
at the rainforest limit (around 2800-3200 m), showing that a depres-
sion in the treeline on the NE slope, in comparison with the SW slope,
influences moisture availability most profoundly at that elevation.
During the afternoon, however, the zone of greatest decoupling moves
upslope to around 4500-5000 m, meaning that differences between
slopes become apparent in the daytime moisture regime in the alpine
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desert. Even at 5500 m, the afternoon moisture patterns are different on
the two sides, but to a lesser extent. In many debates about summit
moisture supply (Molg et al., 2009a, 2012) there are traditionally
thought to be two moisture sources, that of the free atmosphere (in-
fluenced by SSTs in the Indian Ocean), and that of the lower slopes of
the mountain (influenced by land-cover). In reality it might be more
complex than this as each slope can behave independently of the other
on occasion. There are also additional un-instrumented slopes in be-
tween our measurements (the mountain is a cone) for which there is no
information. For continued presence of the ice fields, there could be
advantage in diversity of moisture sources for maintaining mass bal-
ance as slope contrasts could in theory act as a buffer for change (i.e.
when one source is reduced another could compensate). More research
is required to determine whether this has occurred in reality.

It is also important to compare the observed decoupling of the re-
lative humidity and cloud regimes on the slopes with the modelling
results of Molg et al. (2009a). In Molg et al. (2009a), the typical ‘flow-
around’ regime induces convection on the leeward slope and the up-
slope flow of moisture on the SW slope is shown to be dynamically
forced. However, the extent to which moisture in this upward flow is
influenced by upwind free-atmospheric moisture content, as opposed to
moisture from the leeward slope itself, is unanswered. Our observations
do not contradict this model of dynamic forcing, but because slope
decoupling in moisture content is strongest during the afternoon, this
suggests that moisture on the leeward slope itself may supplement any
upwind source carried around the mountain from the NE slope.

Notwithstanding the afternoon decoupling of relative humidity re-
gimes, cloud patterns on the two slopes as demonstrated through use of
the MODIS cloud mask, however, appear to be fairly well correlated both
by day and night. During the afternoon (Table 3), the low level stations
may be somewhat decoupled, but the higher elevations are much more
consistent. Thus cloud tends to be reported on both slopes at the same time
by MODIS, even though relative humidity readings can become de-
coupled. The reasons for this require more research. MODIS cloud mask
data (which records cloud cover at or above the station) is not the same as
in situ humidity data (which records cloud solely at station level).

Finally, a disproportionately large number of moist events with
heavy snowfall at crater level are associated with high humidity at all
other points and extensive cloud, both for the slope as a whole
(Table 5), and at most individual stations (Table 6). Thus, significant
humidity/precipitation events at crater level that create snow accu-
mulation do not occur in isolation, but usually moisten the whole
mountain, which adds support to the role of widespread free-air dis-
turbances in supplying moisture to the crater level (Chan et al., 2008).

Our comprehensive analysis of moisture patterns on the mountain al-
lows us to make comments relevant to the debate about the effect of de-
forestation on the summit ice fields. We find evidence both to support and
to refute the hypothesis that deforestation is an important control. On the
supporting side, the increased moisture recorded on the SW (forested)
slope in comparison with the NE (less-forested) slope extends all the way
to crater level, and the fact that local-scale differences between forested/
non-forested sites are broadly similar to larger-scale differences between
slopes supports the idea that differences in land-cover have a strong in-
fluence both on local climate and in creating these slope differences on a
regional scale. The upslope moisture transport is also clearly stronger and
more rapid on average on the forested SW slope than on the NE slope.
Thus if forest on the SW slope was removed it would have a significant
effect not only on in situ conditions, but also on upslope moisture trans-
port. On the other hand, the fact that heavy snow accumulation at crater
level is associated with increased moisture all over the mountain (rather
than strongly correlated with individual slope moisture sources) implies
that slope contrasts cannot solely account for summit precipitation con-
trasts under the specific synoptic conditions leading to substantial accu-
mulation events at crater level.

In a modelling study, Molg et al. (2012) simulated the effect of
deforestation (land cover change - LCC) on the mass balance of the
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summit ice fields and glaciers and found that the various ice masses,
e.g. SIF and NIF, behaved in different ways. Although the main con-
clusion was that there was “limited forcing of glacier loss (p. 1)”, there
certainly were changes for individual ice-masses, albeit not consistent.
On the south side of the mountain, the Kersten glacier, “suffered ad-
ditional seasonal mass loss in the range 0-27% due to LCC since the
1970s (p. 2)”, not an insignificant change. However for the other
summit ice masses, including the NIF, the change was less consistent,
and even an increase in mass balance due to LCC could not be ruled out.
This implies that different parts of the summit could be influenced by
different precipitation regimes. The justification given by Molg et al.
(2012) was that highly-localised moisture convergence zones accounted
for most precipitation at high elevations. Such zones could shift posi-
tion due to LCC and thus lead to heterogeneous outcomes across the
crater. Our findings which suggest that NIF snowfall is associated with
widespread cloud cover across the mountain may initially appear to go
against the highly localised nature of high intensity events, but ob-
servations of widespread cloud cover do not mean that during such
events the relative density of moisture content (and precipitation) could
not still be dependent on specific moisture sources, which in turn would
impact the overall amount of snowfall and influence its exact spatial
signature. Clearly, any interpretation of our observations in this context
requires more thought, and a detailed comparison with model simula-
tions is highly recommended.

5. Summary and conclusions

We summarise our main findings as follows:

Both slopes of the mountain show an upward transport of moisture
from the lower slopes during the afternoon but this process is
weaker and delayed on the NE slope compared to the SW slope
(Figs. 4, 6).

The SW slope is much cooler (up to 4-5°C) and moister (up to
0.2 kPa) than the NE slope at an equivalent elevation. Temperatures
are reduced most strongly in the first half of the day (Fig. 5a).
Aspect differences on the crater wall create opposing differences in
temperature and moisture content at around 5000-5500 m in the
early morning (NE warmer and moister) and late afternoon (SW
warmer and moister) (Fig. 5a).

There is a temporary moisture deficit on the SW slope during the
morning because evaporation starts earlier on the NE slope. This
reverses in the afternoon (Fig. 5b).

The largest differences in vapour pressure, relative humidity and
cloud between the slopes tend to be around the upper limit of the
rainforest (~3100-3200 m), both in cloud development during the
daytime and in the level of the nocturnal cloud base (Fig. 7).
Seasonal changes in the slope differences are subtle but in general,
differences are bigger and more variable in the dry seasons
(Figs. 8-10).

Local scale differences in temperature due to forest (up to 3-4 °C)
and vapour pressure (up to 0.3 kPa) within the SW slope are roughly
of similar magnitude to the differences between slopes (Fig. 11a and
b). Ice field differences (up to 3—4 °C and 0.03 kPa) are similar for
temperature, but much smaller for vapour pressure (Fig. 11c and d).
Daytime cloud development on the upper slopes tends to be more
synchronous than lower down the mountain (Table 3). Night time
cloud formation tends to be synchronous at all levels (Table 2).
The relative humidity regimes are highly correlated on the two
slopes at night, particularly on the crater walls, but some differences
emerge on the higher slopes during the afternoon (Table 4). Very
cloudy conditions on both slopes tend to occur at the same time
(Table 5).

For periods characterised by high humidity and cloud development
at the crater, there is often extensive cloud development over the
whole mountain, but particularly on the SW slope and in the wet
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seasons (Fig. 12). Thus, moist periods at the crater do not occur in
isolation from the rest of the mountain. Days with snowfall at crater
level are also significantly more cloudy at nearly all sites on both
mountain slopes (Table 6).

This paper presents the basic patterns of observed moisture varia-
bility on opposing slopes of Kilimanjaro, and further work is required to
compare these with detailed model simulations (Molg et al., 2009a;
Fairman et al., 2011; Molg et al., 2012). In particular, there is a need to
understand the effects of local scale land-cover change on the hydro-
logical cycle in a mountainous context (Lambrechts et al., 2002), in-
cluding the consequences for agriculture and population on the lower
slopes (Hemp, 2005; Soini, 2005).

Although only 3 years of data are used in this paper, currently our
observations on the SW slope extend back to 2004, and those on the NE
back to 2012. A longer record and more extensive observations from
across the mountain is critical to allow us to validate future model si-
mulations but also to gain a better appreciation of inter-annual varia-
bility due to synoptic factors such as El-Nifio Southern Oscillation, ex-
amine temperature trends at a range of elevations to identify elevation-
dependent warming (e.g. Pepin et al., 2015), and increase our under-
standing of the longer-term interactions inherent within tropical
mountain ecosystems.
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