MAT0334 - Quarta Lista de Exercícios

Duais e Biduais

1. Considere as funções $\varphi, \psi : \mathcal{C}[a,b] \to \mathbb{K}$ definidas por

$$\varphi(f) = f(c)$$
 e $\psi(f) = \int_a^b f(t)dt$,

sendo $c \in [a,b]$ um ponto fixado. Mostre que φ e ψ são funcionais lineares contínuos e calcule suas normas.

- 2. Se $1 \le p < \infty$, mostre que $\ell_p^* \equiv \ell_q$, onde q é o conjugado de p.
- 3. Mostre que se X^* for separável então X será separável. A recíproca é verdadeira? Dica: Tome um conjunto enumerável denso em S_{X^*} . Para cada elemento φ_n deste conjunto, escolha $x_n \in S_X$ tal que $|\varphi_n(x_n)| > \frac{1}{2}$. Mostre que $\overline{[x_n : n \in \mathbb{N}]} = X$.
- 4. (Convergência fraca) Uma sequência $(x_n)_n$ em um espaço normado X converge fracamente para $x \in X$ se para cada $\varphi \in X^*$ a sequência de escalares $(\varphi(x_n))_n$ converge para $\varphi(x)$ em \mathbb{K} .
 - (a) Mostre que toda sequência convergente em X é fracamente convergente, mas que a recíproca não é verdadeira.
 - (b) Verifique que uma sequência $(x_n)_n = ((x_n^i)_i)_n$ em c_0 converge fracamente para $x = (x^i)_i$ então x_n^i converge para x^i em \mathbb{K} para cada $i \in \mathbb{N}$.
 - (c) Mostre que a recíproca do item anterior é verdadeira se supusermos $(x_n)_n$ limitada.
- 5. Caracterize os elementos de c_0^* que atingem sua norma. Mostre que o conjunto de tais funcionais é denso em c_0^* . Isso é um caso particular do Teorema de Bishop-Phelps que diz que se X um espaço de Banach, o conjuntos dos elementos de X^* que atingem a norma é denso em X.
- 6. (a) Verique que a aplicação $T\mapsto T^*$ é uma imersão isométrica de $\mathcal{L}(X;Y)$ em $\mathcal{L}(Y^*;X^*)$.
 - (b) Mostre que não pode existir um isomorfismo de $\mathcal{L}(\mathbb{K};c_0)$ sobre $\mathcal{L}(c_0^*;\mathbb{K}^*)$. Conclua que a imersão do item (a) nem sempre é sobrejetora, ou seja, existem operadores entre duais que não são adjuntos de ninguém.

2 MAT0334

7. Mostre que $L_{\infty}[0,1]$ contém uma cópia isométrica de ℓ_{∞} . Conclua que $L_{\infty}[0,1]$ não é reflexivo.

- 8. Se *X* é reflexivo e *M* é um subespaço fechado de *X*, mostre que *X*/*M* também é reflexivo. *Dica: Analise o dual*
- 9. Mostre que se existe uma aplicação linear contínua sobrejetora de um espaço reflexivo *X* sobre um espaço de Banach *Y* , então *Y* também é reflexivo.
- 10. Prove que um subconjunto A de um espaço normado é limitado se, e somente se, $\varphi(A)$ é limitado em $\mathbb K$ para todo $\varphi \in X^*$. Dica: Princício da Limitação Uniforme