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Sex differences in fear responses: Neural circuits 

Elizabeth P. Bauer 
Departments of Biology and Neuroscience & Behavior, Barnard College of Columbia University, 3009 Broadway, New York, NY, 10027, United States  

A B S T R A C T   

Women have increased vulnerability to PTSD and anxiety disorders compared to men. Understanding the neurobiological underpinnings of these disorders is critical 
for identifying risk factors and developing appropriate sex-specific interventions. Despite the clear clinical relevance of an examination of sex differences in fear 
responses, the vast majority of pre-clinical research on fear learning and memory formation has exclusively used male animals. This review highlights sex differences 
in context and cued fear conditioning, fear extinction and fear generalization with a focus on the neural circuits underlying these behaviors in rodents. There are 
mixed reports of behavioral sex differences in context and cued fear conditioning paradigms, which can depend upon the behavioral indices of fear. However, there is 
greater evidence of differential activation of the hippocampus, amygdalar nuclei and the prefrontal cortical regions in male and female rodents during context and 
cued fear conditioning. The bed nucleus of the stria terminalis (BNST), a sexually dimorphic structure, is of particular interest as it differentially contributes to fear 
responses in males and females. In addition, while the influence of the estrous cycle on different phases of fear conditioning is delineated, the clearest modulatory 
effect of estrogen is on fear extinction processes. Examining the variability in neural responses and behavior in both sexes should increase our understanding of how 
that variability contributes to the neurobiology of affective disorders. 

This article is part of the Special Issue on ‘Fear, anxiety and PTSD’.   

1. Introduction 

Post-traumatic stress disorder (PTSD) is twice as common in women 
as in men following a traumatic experience (Breslau, 2009; Kessler et al., 
1995). This increased risk among women persists even when controlling 
for variables such as the cause and severity of trauma (Olff et al., 2007; 
Kessler et al., 2012). Furthermore, women are up to 60% more likely to 
suffer from an anxiety disorder such as panic attacks and phobias 
compared to men (de Jonge et al., 2016; McLean et al., 2011). The 
reasons for this increased disease burden arise from multiple in-
teractions between neurobiological, physiological and sociocultural 
factors (Tolin and Foa, 2006). PTSD and anxiety disorders can be 
characterized by abnormalities in fear learning and extinction (Roth-
baum and Davis, 2003; Mahan and Ressler, 2012). Indeed, altered fear 
inhibition, processing of contextual information, fear extinction and fear 
generalization are all hallmarks of PTSD (Wessa and Flor, 2007; Blechert 
et al., 2007; Milad et al., 2008; Jovanovic et al., 2009, Rouge-
mont-Bücking et al., 2011). However, the majority of preclinical studies 
elucidating the neural circuitry and molecular mechanisms of fear 
conditioning have used male rodents (Prendergast et al., 2014; Leb-
ron-Milad and Milad, 2012). Delineating sex differences in fear learning 
and memory processes will ultimately contribute to the development of 
effective therapeutic interventions for both sexes. 

Associative fear learning and its neural substrates have been subjects 
of intense investigation for the past 40 years (reviewed in Pape and Pare, 

2010; Herry and Johansen, 2014). This type of learning is rapid, robust, 
readily quantified, and its stimulus parameters tightly controlled. While 
fear conditioning involves coordinated activity across multiple brain 
regions, this review emphasizes the neural structures and pathways 
which are differentially recruited by male and female rodents (Fig. 1). 
The amygdala integrates sensory information about both discrete cues 
and context with aversive input in both rodents and humans (Delgado 
et al., 2006). Context fear conditioning and both cued and context fear 
extinction require interactions between the cortex, hippocampus and 
amygdala (Yavas et al., 2019). In rodents, these cortical regions include 
the prelimbic cortex (PL) and infralimbic cortex (IL) of the medial pre-
frontal cortex. In humans, the analogous cortical regions are the dorsal 
anterior cingulate cortex and the ventromedial prefrontal cortex, 
respectively (Phan et al., 2002). Importantly, both men and women with 
PTSD show altered activity of these regions in imaging studies (Shin 
et al., 2005; Williams et al., 2006; Frewen et al., 2011). Indeed, PTSD 
can be characterized by hyperactivation of the amygdala to aversive 
stimuli and hypoactivation of the ventromedial prefrontal cortex in 
regulating the amygdala (Milad and Quirk, 2012). 

In humans, sex differences result from a combination of biological 
sex and gender, a term for both self and societal perception of sex 
(McCarthy, 2016). Gender is influenced by both psychological and 
cultural factors (Mauvais-Jarvis et al., 2020). In rodents, sex differences 
are due to biological sex alone, which is driven by sex chromosomes. 
Indeed, sex differences can be viewed as a proxy for factors such as 
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sex-linked genes, or hormones (Maney, 2016). While examining how sex 
differences in fear responses are manifested at the neuronal level in 
animal models has considerable translational significance, the distinc-
tion between these responses of the brain and body and the conscious 
feelings of fear and anxiety cannot be directly explored using animals. 
While non-human animals can detect threats and respond defensively, 
we cannot determine whether they also experience subjective conscious 
feelings of fear (LeDoux and Pine, 2016). With these caveats in mind, 
this review highlights recent advances in our understanding of sex dif-
ferences in context and cued fear conditioning, fear extinction, and fear 
generalization, with an emphasis recent developments in understanding 
the neural circuitry underlying these behaviors. 

2. Context fear conditioning 

Context can be broadly defined as the external environment and 
internal physiological state of an animal (Spear, 1973). Deficits in 
context processing can lead to inappropriate behavioral responses. PTSD 
is perhaps the most representative example, as memories of the trau-
matic event are experienced in neutral or safe environments (Ressler and 
Mayberg, 2007). In Pavlovian fear conditioning, animals are placed in a 
conditioning chamber which serves as an environmental context. When 
aversive stimuli are delivered (usually electric footshocks), animals form 
an association between the context and the aversive unconditioned 
stimulus (US). When they are returned to the conditioning chamber, 
conditioned responses such as freezing, occur (reviewed in Maren et al., 
2013). 

In order for this context-US association to occur, animals must first 
form a representation of the context, and then must associate this 
encoded context with an aversive stimulus. In this first step, elements of 
an environment (lighting, sounds, odorants, space) become bound into a 
unitary contextual representation (Rudy and O’Reilly, 2001; Rudy, 
2009). There is evidence that females have slower acquisition of context 
representations: short time intervals between exposure to the context 
and the delivery of the footshock selectively impair learning in females 
(Wiltgen et al., 2001). The idea that males are better able to encode 
context representations is supported by studies showing that males 
display stronger context fear conditioning than females (Maren et al., 
1994; Pryce et al., 1999; Poulos et al., 2015; Mizuno et al., 2012; Gre-
sack et al., 2009), even at longer (14 day) retention intervals (Colon 
et al., 2018). 

Others, however, report no behavioral sex differences in context fear 
conditioning (Dachtler et al., 2011; Kosten et al., 2005; Urien et al., 
2021), or observe sex differences only under specific experimental 
conditions (Wiltgen et al., 2001) or in specific strains (Pryce et al., 
1999). Furthermore, others find stronger context fear conditioning in 

females (Moore et al., 2010; Keiser et al., 2017). Reconciliation of these 
apparently conflicting results takes into account sex differences in the 
behavioral expression of fear, the estrous cycle of females and differ-
ential activation of the neural circuits underlying context fear condi-
tioning in males and females. 

One explanation for the reduced levels of freezing in females to an 
aversive context might involve different behavioral responses to the 
context. For example, when rats are given the chance to avoid an 
aversive context, females show more entries into the non-shock arm of a 
Y-maze (Shanazz et al., 2002). This suggests that females might express 
fear memory of a context with a more active avoidance response. This 
sex difference in the behavioral expression of fear memory is also seen 
during cued fear conditioning (see below). There are also numerous 
examples of male and female rodents using different learning strategies 
to solve spatial navigation tasks (Hawley et al., 2012; Grissom et al., 
2013). 

During human and rodent estrous cycles, both estrogen and pro-
gesterone levels fluctuate (Fig. 2). In rodents, the estrous cycle consists 
of four approximately 12–24 h long stages: proestrus, estrous, metestrus 
and diestrous, which can be characterized by fluctuations in levels of the 
potent biologically active estrogen 17β estradiol (E2). E2 levels are 

Fig. 1. Schematic representation of neural structures and pathways underlying 
fear responses with differential activity in males and females. The structures 
discussed in the text which contribute to differences in fear behaviors include 
the basolateral nucleus of the amygdala (BLA), the central nucleus of the 
amygdala (CE), the bed nucleus of the stria terminalis (BNST), the hippocampus 
(HPC), and the prelimbic (PL) and infralimbic (IL) prefrontal cortices. Arrows 
denote pathways which are differentially activated in males and females. 

Fig. 2. Estradiol (E2) and progesterone levels vary across the human menstrual 
cycle (top) and rodent estrous cycle (bottom). The complete cycle in humans is 
28 days, while the cycle in rodents is 4 days. In humans, E2 and progesterone 
levels peak on different days, while in the rodent both hormones peak in the 
proestrus phase. 
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elevated during proestrus and early estrous, they plunge during metes-
trus, and begin to rise again during diestrus (reviewed in Taxier et al., 
2020). In humans, the menstrual cycle has an average twenty-eight day 
duration with fluctuating levels of estrogen and progesterone. The 
follicular phase begins on the first day of menstruation and ends at 
ovulation on Day 14, followed by the luteal phase. E2 peaks in the late 
follicular phase and rises again during the mid-luteal phase whereas 
progesterone peaks in the mid-luteal phase. Both E2 and progesterone 
levels are lowest in the early follicular and late-luteal phases (Guyton 
and Hall, 2006). 

Numerous studies have examined the neurophysiological effects of 
E2 on the hippocampus. Exogenous E2 increases dendritic spine density 
on pyramidal neurons in the CA1 region (Woolley and McEwen, 1993) 
as well as in the amygdala (de Castilhos et al., 2008) and the prefrontal 
cortex (Khan et al., 2013). Within the hippocampus, E2 increases 
glutamate binding to NMDA receptors (Woolley et al., 1997) and en-
hances long-term potentiation at CA3-CA1 synapses (Foy et al., 1999; 
Smith and McMahon, 2005). Several excellent reviews describe the ef-
fects of E2 on hippocampal-dependent learning and memory, and the 
mechanisms of E2 signaling (Taxier et al., 2020; Frick, 2015). 

The effects of E2 on context fear conditioning seem to depend on 
dose and treatment duration. Long-term estrogen treatment in ovariec-
tomized mice enhances context fear conditioning and fear-potentiated 
startle, and increases corticotropin-releasing hormone mRNA expres-
sion in the central nucleus of the amygdala (CE; Jasnow et al., 2006; 
Hiroi and Neumaier, 2006). This effect seems to be dose-dependent, as 
high chronic levels of E2 (either 1000 nM or 50 μg) increase context fear 
conditioning and anxiety-like behavior on the elevated plus maze, while 
low doses (either 200 nM, 0.05 μg, or 5 μg) do not (McDermott et al., 
2015; Matsumoto et al., 2018). To test the chronic effects of E2, it is 
usually administered via drinking water, or via capsule implantation in 
ovariectomized females. However, when E2 is administered as one in-
jection prior to behavioral testing, the opposite behavioral effects are 
observed. Indeed, one injection of a high level of E2 (10 μg, s.c.) either 
30 min or 4 h before training impairs context fear conditioning (Barha 
et al., 2010; Gupta et al., 2001), while low levels (0.3 μg, s.c.) of E2 
facilitate context fear conditioning as well as spatial working memory 
(Barha et al., 2010). In naturally cycling females, the proestrus phase, 
which coincides with high levels of E2, can be associated with lower 
levels of context fear conditioning (Cushman et al., 2014), including fear 
responses to a sustained cue (Vantrease et al., 2022). However, others 
find no effect of estrous cycle on context fear conditioning (Keiser et al., 
2017). Further research is needed to clarify how naturally cycling levels 
of E2 affect the acquisition and consolidation of context fear 
conditioning. 

3. Context fear conditioning: neural circuits 

The neural structures and molecular mechanisms underlying context 
fear conditioning are beyond the scope of this article, but several 
excellent reviews provide these details (Maren et al., 2013; Chaaya et al., 
2018). In brief, the hippocampus is essential for encoding the spatial 
properties of the context (Holland and Bouton, 1999; Fanselow and 
Dong, 2010), consistent with its role in spatial representation and nav-
igation. The basolateral amygdala (BLA), composed of the lateral (LA) 
and basal (BA) nuclei is crucial for integrating context representations 
with somatosensory information about the US (Anagnostaras et al., 
2001). The prelimbic region (PL) of the prefrontal cortex processes as-
pects of both the spatial and emotional aspects of context fear condi-
tioning (Zelikowsky et al., 2014). The experiments detailing the 
contribution of these structures to context fear conditioning have been 
conducted almost entirely in male rodents (rats and mice) or in both 
males and females but without explicitly analyzing sex differences, 
except as described below. 

Both male and female rodents recruit the dorsal hippocampus during 
consolidation of context fear conditioning (Keiser et al., 2017). Both 

protein kinase A and cAMP response element binding protein (CREB) are 
required in both sexes for long term fear memories (Abel et al., 1997; 
Bourtchuladze et al., 1994). However, males show greater phosphory-
lated extracellular signal-regulated kinase (ERK) and phosphorylated 
CREB in the dorsal hippocampus during context fear conditioning 
acquisition and consolidation (Gresack et al., 2009; Kudo et al., 2004). 

Indeed, evidence suggests that during the expression of context fear 
conditioning in rodents, males shift towards hippocampal activation and 
females shift towards BLA activation (Fig. 3A). The hippocampus and BA 
compete during context fear conditioning (Biedenkapp and Rudy, 
2009). Context fear retrieval increases FOS in both the proximal and 

Fig. 3. Schematic representation of neural circuits underlying conditioned fear 
responses in rodents. Line thickness denotes greater activity within a structure 
or within a pathway. A) Context fear conditioning is associated with greater 
HPC activation and increased activity in the BLA-BNST and BNST-CE pathways. 
In females, context fear conditioning is associated with greater BLA activity. B) 
Cued fear conditioning is associated with PL and BLA activity in females. C) 
Modulation of cued fear extinction in female rodents by estrous phase and E2. 
Metestrus, or low levels of E2, is associated with increased activity in the BLA. 
Proestrus, or high levels of E2, is associated with increased IL and CE activity 
during cued fear extinction recall. 
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distal CA1, and the CA3 and dentate gyrus regions of the hippocampus in 
male mice more than in females (Colon and Poulos, 2020; Keiser et al., 
2017). In contrast, the BLA is activated in response to footshock and 
context exposure to a greater extent in females than in males (Colon and 
Poulos, 2020). Moreover, context fear expression increases FOS activity 
in the BA in females more than males (Keiser et al., 2017). If males rely 
on hippocampal processes more than females, training paradigms that 
favor hippocampal processing should produce greater fear conditioning 
in males. Indeed, when the interval between exposure to the context and 
the delivery of the footshock is shortened, male mice acquire context 
fear conditioning more than females (Wiltgen et al., 2001). The balance 
between activating hippocampal and amygdala circuits during context 
fear conditioning also has implications for generalization of context fear 
(see below). 

4. Extended amygdala circuits 

Differential activation of the bed nucleus of the stria terminalis 
(BNST) in males and females also affects the expression of context fear 
conditioning. Indeed, there are volumetric and neurochemical differ-
ences in the BNST of males and females (del Abril et al., 1987; Allen and 
Gorski, 1990; Hines et al., 1992). The BNST plays a role in sex-specific 
behaviors such as aggression in males (Trainor et al., 2010; Masugi--
Tokita et al., 2016) and maternal behavior (Klampfl et al., 2014). 
Moreover, areas of the BNST that are involved in reproductive behavior 
have different patterns of connectivity in males and females, which are 
attributable to different hormonal influences (Polston et al., 2004; Ste-
fanova and Ovtscharoff, 2000). In male rodents, lesions and temporary 
inactivation of the BNST have established that the dorsal anterior 
portion is necessary for the expression but not acquisition of context fear 
(Sullivan et al., 2004; Duvarci et al., 2009; Pelrine et al., 2016). More-
over, both FOS and ARC expression are increased in the anterolateral 
BNST following context fear expression in males. However, this increase 
in immediate-early gene activity is not seen in females (Urien et al., 
2021; Urien and Bauer, 2022). 

Three neurophysiologically distinct cell types have been identified 
within the anterolateral BNST (Daniel et al., 2017). These can be 
distinguished based on their spiking and rectification properties and 
responses to depolarizing and hyperpolarizing current injection (Ham-
mack et al., 2007; Rodríguez-Sierra et al., 2013). They also differ in their 
expression of serotonin receptor subtypes, and corticotropin releasing 
factor (CRF) (Dabrowska et al., 2013; Guo et al., 2009). As CRF acts 
within the BNST to increase anxiety-like behaviors (Sahuque et al., 
2006), CRF + Type III neurons are thought to be “anxiety on” neurons, 
while Types I and II are “anxiety off” (Dabrowska et al., 2013; Daniel 
and Rainnie, 2016). There is evidence that there are more 
CRF-containing neurons in the anterolateral BNST in females (Uchida 
et al., 2019), and that the overall number of neurons in the female 
anterolateral BNST is greater than the male (Guillamon 1988). CRF +
neurons also differ in the timing of their responses to noxious stimuli in 
males and females (Yu et al., 2021). Electrophysiological characteriza-
tion of Types I and II BNST neurons reveals no effect of estrous cycle and 
no difference in firing properties between males and females (Smithers 
et al., 2018). However, when correlating neuronal activity with 
behavior, sex differences are observed. For males, time spent in the open 
arms of the elevated plus maze correlates with lower resting membrane 
potentials of Type I neurons and higher firing rates of Type II neurons. 
No correlations between neuronal activity and behavior are seen in fe-
males (Smithers et al., 2018). Finally, serotonin differentially affects 
neuronal excitability and behavior in males and females. Although 
5HT-1A receptor protein levels do not significantly differ between males 
and females, knockdown of these receptors in the BNST increases exci-
tation and fear responses in males only, not in females, without affecting 
anxiety-like behaviors (Marcinkiewcz et al., 2019). 

The BNST receives strong glutamatergic input from the basal nuclei 
of the amygdala, with the basolateral nucleus projecting to the 

anterolateral portion and the basomedial nucleus projecting the ante-
romedial portion (Krettek and Price, 1978; Dong et al., 2001). The 
anterolateral BNST sends robust projections to the CE, which are mainly 
GABAergic (Sun and Cassell, 1993; Poulin et al., 2009). Several recent 
studies suggest that these circuits are differentially activated during 
context fear expression in males and females. When animals are exposed 
to a sustained 8 min auditory stimulus followed by an aversive foot-
shock, males exhibit greater fear expression than females when tested 4 
days later (Vantrease et al., 2022). Fear responses to sustained cues, or 
diffuse environmental threats paired with aversive stimuli are depen-
dent on the BNST (Walker et al., 2009; Torrisi et al., 2018). When the 
specific BLA-BNST pathway is inhibited, using chemogenetic tech-
niques, fear expression to the sustained cue is reduced, but only in males 
not in females (Vantrease et al., 2022). This indicates that the BLA-BNST 
pathway is active during sustained fear responses, but only in males. 

Regardless of estrous cycle, BLA neurons in females have higher 
spontaneous firing rates compared to males (Blume et al., 2017, 2019). 
Moreover, the frequency and amplitude of mEPSCs, as well as the 
number of spines in both the LA and BA are higher in pyramidal neurons 
of females compared to males (Blume et al., 2017). When both pyra-
midal and stellate neurons are examined, others find no sex differences 
in mEPSCs and spine density, but increased spine length in females 
(Guily et al., 2022) However, when BLA neurons specifically projecting 
to the BNST are examined, the opposite pattern is observed. Males have 
greater spontaneous activity in BNST-projecting BLA cells, and these 
neurons are more excitable by depolarizing current injections. These 
physiological properties correspond to smaller IAHPs in these neurons in 
males compared to other BLA subpopulations (Vantrease et al., 2022). In 
contrast, BNST-projecting neurons in females have lower spontaneous 
activity than other subpopulations of BLA neurons, and the decreased 
excitability of these neurons corresponds with larger IAHPs (Vantrease 
et al., 2022). Finally, there are fewer BNST-projecting BLA neurons 
overall in females compared to males (Vantrease et al., 2022). Together, 
these findings identify a specific sexually dimorphic pathway within the 
extended amygdala (Fig. 3A). 

The BNST and CE are reciprocally connected (Dong et al., 2001; Sun 
and Cassell, 1993). They both receive glutamatergic inputs from the BLA 
and their efferents target the same brain stem structures (Dong et al., 
2001; Krettek and Price, 1978; Holstege et al., 1985). Indeed, the BNST 
has been classified as belonging to the extended amygdala complex 
(Alheid, 2003; Walker and Davis, 2008). FOS protein expression in-
creases in the male BNST during the expression of context fear (Lemos 
et al., 2010; Urien and Bauer, 2022, but see Sasaki Russell et al., 2020). 
However, neither FOS nor ARC expression increases in the female BNST 
following context fear expression (Urien et al., 2021; Urien and Bauer, 
2022). Furthermore, when analysis of ARC expression is restricted to 
CE-projecting BNST neurons, only males continue to exhibit increased 
activity following context fear expression (Urien et al., 2021). Activity in 
the BNST-CE pathway does not increase in female rodents. Taken all 
together, these data suggest that in males but not females, context fear 
expression activates both a BLA-BNST and BNST-CE circuit. Interest-
ingly, a study of resting-state fMRI effective connectivity shows greater 
connectivity in both the BLA-BNST and BNST-CE pathways in men 
compared to women (Hofman and Straube, 2019). Whether these 
pathways are differentially activated in men and women during fear 
conditioning tasks is currently not known. 

It should be noted that neurotoxic lesions of the BNST do impair the 
expression of context fear conditioning in both males and females (Urien 
et al., 2021). This suggests that a subpopulation of neurons within the 
BNST of females does contribute to context fear expression, or that 
neurons outside the specific anterodorsal BNST may be recruited in fe-
males. Clearly, the behavioral function of the BLA-BNST and BNST-CE 
circuit in females requires further study. 

In sum, while there are mixed reports of behavioral sex differences in 
context fear conditioning, there is more evidence of different neural 
circuit recruitment in male and female rodents. To enhance 
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reproducibility and allow comparisons between experiments, nearly all 
studies of context fear conditioning use freezing as a behavioral index of 
fear. However, both the BNST and CE project to multiple downstream 
targets including brainstem areas involved in behavioral responses, 
hypothalamic areas involved in autonomic modulation and the para-
brachial nucleus (Radley et al., 2009; Dong et al., 2001; Petrovich and 
Swanson, 1997). As described above, the BNST and CE may be differ-
entially activated in males and females during context fear conditioning. 
This suggests that a broader characterization of fear expression might 
reveal differences between males and females. Indeed, as described 
below, multiple behavioral measures of fear expression are used in cued 
fear conditioning experiments. 

5. Generalization of context fear expression 

In humans, many anxiety disorders and PTSD are characterized by an 
inability to reduce fear responses in non-threatening contexts (Jova-
novic and Ressler, 2010). Instead, fear responses are generalized to 
neutral or safe contexts (Lissek et al., 2010; Lopresto et al., 2016). In 
animal models, one way this can be represented is by a generalization of 
fear responses to a neutral context which is different from the condi-
tioning context. As described above, context fear conditioning requires 
the animal to form a representation of the context and then associate it 
with an aversive stimulus. When exposure times to these contexts are 
reduced, or the interval between exposure context and shock delivery is 
reduced, animals form incomplete representations of each context and 
generalization occurs (Westbrook et al., 1994). Lengthening the time 
between training and retrieval by weeks or months also leads to an in-
crease in fear responses to neutral contexts (Wiltgen and Silva, 2007). 

Female rodents exhibit greater fear generalization to neutral contexts 
than males (Keiser et al., 2017; Asok et al., 2019). At long (3 weeks), but 
not short (1–2 days) time intervals between training and testing, females 
exhibit greater fear responses in the neutral context when they are tested 
in the neutral context before the conditioning context (Keiser et al., 
2017; Asok et al., 2019). Females rodents are thus predisposed to freeze 
more in a neutral context when it is presented before the training 
context, while male rodents do not exhibit this bias. However, 
pre-exposing female rodents to the training context prior to training 
reduces fear generalization (Keiser et al., 2017; Asok et al., 2019). These 
data suggest that generalization in females occurs when the represen-
tation of the training context is weak, and that preexposure can allow 
them to form a more detailed context representation (Fanselow, 1990; 
Urcelay and Miller, 2014). 

The effects of estrogen on generalization of context fear are not 
straightforward. In naturally cycling females, estrous cycle does not 
affect fear generalization (Keiser et al., 2017). However, when ovari-
ectomized females are administered E2 (15 μg, s.c.) prior to training, 
they generalize their fear to neutral contexts (Lynch et al., 2014). This 
effect is mediated by cytosolic estrogen receptors in the dorsal hippo-
campus (Lynch et al., 2016). 

6. Generalization of context fear conditioning: neural circuits 

As described above, context fear retrieval may recruit different 
neural circuits in males and females, with males shifting towards hip-
pocampal activation and females shifting towards BLA activation. 
Indeed, during aversive memory tasks, hippocampal activity and 
amygdala activity can suppress each other (Biedenkapp and Rudy, 2009; 
McDonald and White, 1995; McIntyre et al., 2002). In males but not 
females, both context fear retrieval and generalization increase FOS 
expression in both the CA1 and CA3 regions of the hippocampus (Keiser 
et al., 2017; Colon and Poulos, 2020). Conversely, in females but not 
males, exposure to both the training context and the neutral context 
enhance FOS activity in the BA. When animals are pre-exposed to the 
training context prior to training, context fear conditioning is enhanced 
in males only, and fear generalization is reduced in females only (Keiser 

et al., 2017). To date, the contribution of the BNST to context fear 
generalization in males and females has not been studied. The effects of 
sex on context fear conditioning and context generalization are thus 
complex. If different neural circuits are responsible for context fear 
retrieval, then the optimal conditions for retrieval may differ in males 
and females (Lynch et al., 2014; Wiltgen et al., 2001). Alternatively, 
males and females may use different strategies during context fear 
conditioning and retrieval (Pellman et al., 2017; Shansky et al., 2018). 

7. Cued fear conditioning 

In classical Pavlovian cued fear conditioning, animals acquire an 
association between an aversive US and a conditioned stimulus (CS) 
such as a tone or light. This association is dependent on contingency, or 
the ability of the CS to predict US occurrence (Rescorla, 1968). After-
wards, when presented alone, the CS elicits responses characteristic of 
fear including autonomic (increased heart rate and blood pressure) and 
behavioral responses (LeDoux, 2000). 

Numerous studies have revealed that when freezing to the CS is used 
as an index of fear, there are no behavioral sex differences (Baran et al., 
2009; Clark et al., 2019; Fenton et al., 2014; Greiner et al., 2019; Day 
and Stevenson, 2020), although some have found reduced (Baran et al., 
2010; Pryce et al., 1999) or enhanced (Gresack et al., 2009; Chen et al., 
2014) cued fear conditioning in females. Interestingly, sex differences in 
passive vs. active fear responses have been reported, with females using 
an active “darting” response to the conditioned stimulus during testing 
(Gruene et al., 2015; Colom-Lapetina et al., 2019). Females also exhibit 
more diverse behavioral patterns of responses in other tasks such as the 
forced swim test (Colom-Lapetina et al., 2017). However, active vs. 
passive coping strategies in females do not necessarily predict behaviors 
in other tasks (Colom-Lapetina et al., 2019; Kent et al., 2017). More 
recently, ultrasonic vocalizations (USVs) have been used as an index of 
affective state in rodents to model affective disorders (Knutson et al., 
2002; Sangiamo et al., 2020; Burgdorf et al., 2020). USVs in the 18–32 
kHz range are emitted during fear conditioning (Borta et al., 2006; Litvin 
et al., 2007), while USVs in the 32–70 kHz range are generally produced 
during rewarding behaviors (Brudzynski, 2021). Analysis of 22 kHz 
USVs reveals that females vocalize less frequently than males during 
cued fear retrieval (Shumake et al., 2014; Willadsen et al., 2021). 
However, females vocalize more than males at 50 Hz (Tryon et al., 
2021). Reliance on one measure of fear responses thus misses the 
complexity of an animal’s range of behaviors. Further, there may be 
sex-specific responses to aversive stimuli that result from variability 
within subsets of populations. 

There are mixed reports of the effects of estrous cycle on cued fear 
conditioning in rodents. Animals conditioned during the proestrus 
phase, characterized by high levels of E2, show no difference in cued 
fear acquisition compared to animals conditioned during the metestrus 
phase, characterized by low E2 levels (Milad et al., 2009). Others, 
however, find that proestrus is associated with lower levels of cued fear 
(Blume et al., 2017). Female rodents do show more anxiety-like be-
haviors during the metestrus and diestrus phases, characterized by low 
estrogen (Marcondes et al., 2001). In ovariectomized females, however, 
long-term E2 treatment using capsule implantations enhances cued fear 
responses (Jasnow et al., 2006, Morgan and Pfaff, 2001), as well as 
fear-potentiated startle (Hiroi and Neumaier, 2006). As with the effects 
of estrogen on context fear conditioning discussed above, it is difficult to 
reconcile data from naturally cycling females with data from females 
receiving hormone replacement. Changes in E2 levels are accompanied 
by variations in progesterone levels. When ovariectomized mice are 
injected with progesterone alone, they show increased freezing during 
both cued and context fear retrieval (Frye and Walf, 2008). In healthy 
women, there is no strong association between menstrual phase and 
cued fear conditioning (White and Graham, 2016; Milad et al., 2006). 

Fluctuating estrogen levels may also impact fear- and anxiety-like 
behavior through epigenetic mechanisms. Women with PTSD have 
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increased methylation of CpG sites in the HDAC4 gene which encodes 
histone deacetylase 4 (Maddox et al., 2018), an HDAC associated with 
learning and memory (Wang et al., 2011; Kim et al., 2012). Cued fear 
conditioning in mice increases Hdac4 mRNA expression in the amygdala 
during low-estrogen phases of the estrous cycle in mice (Maddox et al., 
2018). While sex differences in gene expression, and the genetic factors 
underlying sex differences in affective disorders are gaining more 
attention (Oliva et al., 2020; Ponomareva and Ressler, 2021), preclinical 
studies including both sexes are necessary. Most rodent GWAS and 
large-scale transcription studies exploring changes in gene expression 
related to affective disorders have focused only on male animals (Gray 
et al., 2014; Muhie et al., 2015). 

8. Cued fear conditioning: neural circuits 

During auditory fear conditioning, sensory information converges in 
the LA where associative plasticity underlies fear conditioning (Sears 
et al., 2014; Rogan et al., 1997; Kim and Cho, 2017). The BA receives 
input from the hippocampus and integrates relevant contextual infor-
mation (Calandreau et al., 2005). The central amygdala (CE), itself a site 
of plastic changes during fear learning, is also the main output nucleus of 
the amygdala (Ehrlich et al., 2009; Ciocchi et al., 2010). The prelimbic 
region (PL) of the prefrontal cortex is active during fear memory recall 
and its outputs to the BLA are necessary for fear retrieval (Do-Monte 
et al., 2015). 

Neurons in the LA respond to both auditory and aversive stimuli 
(Romanski et al., 1993), and show significant increases in firing in 
response to auditory stimuli after fear conditioning (Quirk et al., 1995). 
Long-term potentiation occurs at input synapses to the LA, and phar-
macological blockade of LTP prevents fear conditioning (Rogan and 
LeDoux, 1995; Bauer et al., 2002). These experiments were conducted 
entirely in male rats and mice, except as described below. 

Excitatory input to the LA and synaptic plasticity is stronger in fe-
males than in males, (Blume et al., 2017; Chen et al., 2014, Fig. 3B). 
Similarly, an fMRI study in humans revealed greater changes in acti-
vation of the amygdala during fear conditioning in females compared to 
males (Lebron-Milad et al., 2012). Orchiectomy in males enhances cued 
fear conditioning and LTP at input synapses to the LA. This enhancement 
is reduced when supplemental testosterone is administered. In contrast, 
ovariectomy in females reduces fear conditioning and LTP in the LA 
which is restored by E2 administration (Chen et al., 2014). The synthesis 
of E2 can be blocked using drugs that inhibit the P450 enzyme aroma-
tase. In the hippocampus, the inhibition of aromatase impedes LTP (Di 
Mauro et al., 2015). Aromatase is also expressed in the amygdala 
(Wagner and Morrell, 1996). In both the hippocampus and amygdala, 
pharmacological inhibition of aromatase decreases spine density and 
LTP in females but not in males (Vierk et al., 2012). This suggests that 
neuron-derived E2 modulates synaptic plasticity in the amygdala in fe-
males only. Together these findings suggest that in females, E2 enhances 
synaptic plasticity in the LA which could contribute to enhanced cued 
fear conditioning. 

Sex differences in GABAergic interneuron activity within the BLA 
also have the potential to influence cued fear conditioning. The calcium- 
binding proteins parvalbumin (PV) and calbindin (CB) are expressed in 
about 50% of BLA GABAergic neurons (Mascagni et al., 2009; McDonald 
and Mascagni, 2001). PV + neurons preferentially synapse on the soma 
of their target cells and provide the main source of inhibition to BLA 
excitatory neurons (Muller et al., 2006). Roughly 25% of GABAergic 
neurons containing calretinin (CR); these cells target other interneurons 
(Mascagni et al., 2009). Finally, a minority of GABAergic interneurons 
contain somatostatin (SOM; McDonald and Pearson, 1989). 

PV + interneuron activity has direct effects on the magnitude of fear 
learning (Wolff et al., 2014). During presentations of the CS, PV +
neurons are excited and enhance auditory responses in BLA neurons 
through inhibition of SOM + interneurons which disinhibits the prin-
cipal excitatory neurons (Wolff et al., 2014). During the low E2 phase of 

diestrus, the number of PV + neurons in the female BLA increases 
(Blume et al., 2017). This could contribute to the facilitation in cued fear 
learning and anxiety-like behavior seen during the diestrus phase. The 
number of SOM + interneurons depends on sex chromosomes, with XX 
chromosomes increasing SOM expression (Puralewski et al., 2016). As 
SOM + neurons regulate cued fear responses (Wolff et al., 2014), these 
neurons may contribute to sex differences in cued fear. Finally, female 
guinea pigs have a higher density of calbindin-containing interneurons 
within the BLA (Równiak et al., 2015). Given the enhancing effects of E2 
on synaptic plasticity in the LA, and the contribution of GABAergic 
transmission to increased excitatory activity in the LA, it is surprising 
that most find no difference in cued fear conditioning in males and fe-
males. Perhaps focusing on freezing behavior as a measure of fear misses 
the variability of fear responses in females. Or compensatory activity in 
other amygdala regions in males yields equivalent behavioral responses. 

The PL is also a site of plasticity during fear learning and is active 
during fear memory recall (Sotres-Bayon and Quirk, 2010). In vivo 
electrophysiological recordings from the PL reveals that females show 
sustained activity in this area which parallels increased fear expression 
(Fenton et al., 2014). Gamma oscillations in the PL are specifically 
stronger during cued fear recall in females compared males (Fenton 
et al., 2016). Interestingly, chemogenetic inhibition of PL cortical en-
sembles does not affect freezing behavior to conditioned cues, but does 
reduce conditioned suppression of food seeking in females but not males 
(Giannotti et al., 2019). This suggests that the contribution of PL to 
sex-dependent fear expression depends on the behavioral task. 

Unlike context conditioning, cued fear conditioning is not 
hippocampal-dependent (Kim and Fanselow, 1992). However, trace 
conditioning involves a temporal separation of the cue from the US and 
does depend on hippocampal activity (McEchron et al., 1998). Trace 
conditioning also requires persistent neuronal firing in the prefrontal 
cortex to maintain the representation of the cue across the trace interval 
and link it with an outcome during memory formation (Gilmartin and 
Helmstetter, 2010). In males, prefrontal activity during the trace inter-
val requires cholinergic signaling. Trace conditioning can be disrupted 
by a low dose of a muscarinic antagonist in males, but only at higher 
doses in females in estrus or metestrus. Females in proestrus are insen-
sitive to the effects of muscarinic receptor antagonism in the prefrontal 
cortex (Kirry et al., 2019). In contrast, inhibition of PACAP receptors in 
the prefrontal cortex impairs trace cued conditioning in females (Kirry 
et al., 2018). Thus, while there appears to be no difference in the 
magnitude of fear expression in trace conditioning tasks between males 
and females, this set of studies offers an example of males and females 
engaging different neuromodulatory systems within the prefrontal cor-
tex during fear expression. Further, the contribution of these modulatory 
systems to trace fear conditioning are regulated by the estrous cycle in 
female rodents. 

9. Generalization of cued fear conditioning 

The inability to inhibit fear is a phenotype of several anxiety disor-
ders and PTSD (Jovanovic et al., 2012; Pitman et al., 2012). Fear inhi-
bition processes include fear extinction, safety learning, and fear-safety 
discrimination (Milad and Quirk, 2012; Marshall et al., 2014; Day et al., 
2016). Fear generalization occurs when cues that resemble the initial CS 
also elicit fear responses. While some generalization of fear responses 
provides an adaptive benefit for an animal’s survival, overgeneralization 
to harmless stimuli is seen in anxiety disorders and PTSD (Lissek, 2012). 
Several recent excellent reviews provide details on the behavioral and 
neural mechanisms of fear generalization (Dunsmoor and Paz, 2015; 
Asok et al., 2019). 

Most studies of fear generalization use a CS + which is paired with an 
aversive stimulus and predicts threat, and a CS- which is unpaired with 
the aversive stimulus and predicts safety. Generalization is defined by 
equivalent freezing to the CS+ and CS-, whereas discrimination pro-
duces greater freezing to the CS + than the CS-. Recent studies of sex 
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differences in cued fear discrimination in rodents have produced mixed 
results. Some show successful discrimination in both males and females 
(Clark et al., 2019; Gilman et al., 2015). Others show more generaliza-
tion in females (Day et al., 2016; Aranda-Fernandez et al., 2016; Greiner 
et al., 2019), or more generalization in males (Foilb et al., 2017). When 
animals are trained using CSs that are explicitly unpaired with the US, 
females show greater fear responses than males to the unpaired CS 
(Urien and Bauer, 2022). Training protocols can also differentially affect 
fear generalization. After one day of training, females show greater 
discrimination, but after two or three days, males show greater 
discrimination between CS+ and CS- (Day et al., 2016). In contrast, 
research in humans suggests that females show reduced discrimination 
between CS+ and CS- compared to males (Lonsdorf et al., 2015; Gam-
well et al., 2015). Very little research has examined the effects of estrus 
or menstrual cycle on fear discrimination and generalization in either 
rodents or humans. There is some evidence that women in the luteal 
phase of the menstrual cycle associated with higher levels of estrogen 
and progesterone, discriminate between the CS+ and CS- better than 
either men or women in the follicular phase (Merz et al., 2012; Glover 
et al., 2013). In contrast, one study found no effect of menstrual cycle 
phase or contraceptive use on fear discrimination in healthy females 
(Lonsdorf et al., 2015). In rodents, however, estrogen replacement in 
gonadectomized male and female impairs conditioned inhibition, a form 
of safety learning (Toufexis et al., 2007). Conditioned inhibition occurs 
when both the fear and safety cues are presented simultaneously, 
resulting in reduced fear responses (Rescorla, 1969). A recent review 
compares rodent and human clinical sex differences in conditioned in-
hibition responses (Krueger and Sangha, 2021). 

10. Cued fear generalization: neural circuits 

As described above, individual LA neurons encode the association 
between the CS and the aversive US and enhance their responsiveness to 
the CS after fear conditioning (Quirk et al., 1995). Neuronal activity in 
the LA is also necessary for the generalization of fear (Ghosh and 
Chattarji, 2015). Further, as animals shift their behavior from cue 
discrimination to generalization, a larger proportion of LA neurons fail 
to distinguish between the CS+ and CS- (Ghosh and Chattarji, 2015). 
When FOS is used as an index of neuronal activity, there is no correlation 
between FOS expression in the BLA and discriminative ability, and no 
sex differences (Foilb et al., 2021). Although the BNST is not necessary 
for cued fear conditioning, lesions of the BNST reduce fear generaliza-
tion (Duvarci et al., 2009). In both males and females, fear discrimina-
tion is associated with increased FOS expression in the BNST, but this 
increase is greater in males than in females (Foilb et al., 2021). Regions 
of the CE also regulate fear generalization (Ciocchi et al., 2010). 
Changes in inhibitory input from the lateral portion of the CE to neurons 
in the medial portion can affect fear responses to both the CS+ and CS- 
(Ciocchi et al., 2010). However, these studies were conducted only in 
male rodents. When fear discrimination is correlated with FOS expres-
sion in the CE, no sex differences are observed (Foilb et al., 2021). Thus 
to date, there are no clear behavioral sex differences in cued fear 
discrimination in rodents and very few studies of the differential 
contribution of neural structures to fear discrimination in males and 
females. 

11. Cued fear extinction 

When animals are presented with a CS that was previously paired 
with a US, they learn that the CS no longer predicts the US. This phe-
nomenon, cued fear extinction, is a new type of learning that inhibits the 
original fear memory (Bouton et al., 2006; Myers and Davis, 2002). 
Since it forms the theoretical basis for exposure therapy, the psycho-
logical and neurobiological mechanisms of fear extinction have been the 
subject of intense research over the past decades (Singewald and 
Holmes, 2019; Tovote et al., 2015). In PTSD and anxiety disorders, fear 

extinction processes are disrupted (Sevenster et al., 2018; Zuj and 
Norrholm, 2019). 

Cued fear extinction can be divided into two phases: within-session 
extinction when the CS is repeatedly presented, and between-session 
extinction when recall of the extinction memory is tested, usually 24 h 
after the extinction procedure. Females show reduced within-session 
extinction when compared to males, manifested as increased freezing 
behavior (Baker-Andresen et al., 2013; Baran et al., 2009; Clark et al., 
2019). This deficit persists to between-session recall, as females exhibit 
more resistance to extinction (Fenton et al., 2014; Clark et al., 2019). 
Moreover, females show more spontaneous recovery of fear over time 
(Fenton et al., 2014; Matsuda et al., 2015). 

Cued fear extinction in female rodents is clearly influenced by 
estrous cycle. During metestrus and diestrus when E2 levels are low, 
female rodents show reduced fear extinction recall compared to proes-
trus when E2 and progesterone levels are high (Milad et al., 2009; Chang 
et al., 2009; Gruene et al., 2015; Blume et al., 2017). Ovariectomy and 
hormonal contraceptives which reduce circulating E2, also reduce fear 
extinction in rats (Parrish et al., 2019). To establish a causal relationship 
between E2 levels and extinction learning, females in metestrus given E2 
(15 μg/kg, s.c.) show enhanced extinction recall, whereas blocking es-
trogen signaling in females in proestrus reduces extinction recall (Maeng 
et al., 2017; Milad et al., 2009). Finally, E2 treatment enhances fear 
extinction in a dose-dependent manner (Graham and Scott, 2018). 

A similar pattern of results is seen in human studies. Women with 
high E2 levels exhibit greater cued extinction recall than women with 
low E2 levels, as measured by E2 serum levels (Zeidan et al., 2011; 
Graham and Milad, 2013; Hwang et al., 2015). Low levels of estrogen 
are associated with impaired extinction in women with PTSD compared 
to non-traumatized controls (Glover et al., 2012). In addition, women 
with PTSD report more severe anxiety and re-experiencing symptoms 
during low-estrogen phases of their menstrual cycle (Bryant et al., 2011; 
Glover et al., 2012; Maeng and Milad, 2015). Lower estrogen levels are 
also associated with impaired fear inhibition in both traumatized and 
healthy women (Glover et al., 2013). Further, E2 levels modulate overall 
arousal levels in women with PTSD, with low E2 levels increasing this 
impairment while higher E2 levels might be protective (Sartin-Tarm 
et al., 2020). To establish a causal relationship between E2 levels and 
extinction recall, administration of E2 in naturally cycling 
early-follicular phase women prior to extinction learning enhances 
recall of extinction (Graham and Milad, 2013). Thus, E2 levels have a 
clear modulatory effect on fear extinction. 

12. Cued fear extinction: neural circuits 

The BLA is a critical site of plasticity for the acquisition and storage 
of cued extinction memory (Quirk and Mueller, 2008; Pape and Pare, 
2010). This plasticity includes NMDA- and MAPK/ERK-dependent 
plasticity of principal neurons, as well as an increase in perisomatic 
inhibition of principal neurons (Sotres-Bayon et al., 2007; Herry et al., 
2006; Trouche et al., 2013). Subpopulations of neurons within the BA 
targeting the infralimbic subdivision (IL) of the prefrontal cortex are 
recruited and exhibit plasticity during fear extinction (Senn et al., 2014). 
The IL itself is necessary for the retrieval of extinction of auditory fear 
conditioning memories (Quirk et al., 2000; Sierra-Mercado et al., 2011). 
Groups of intercalated neurons located between the BLA and CE receive 
input from the prefrontal cortex and contribute to the expression of fear 
extinction (Likhtik et al., 2008). 

Using iontophoretic application of GABA or glutamate, the inhibi-
tion/excitation ratio of LA and BA neurons across the estrous cycle can 
be ascertained (Blume et al., 2017). During proestrus when estrogen 
levels are high, there is a shift towards stronger inhibition in the LA. This 
parallels faster extinction learning compared to the diestrus phase when 
there is less inhibition in the LA (Blume et al., 2017, Fig. 3C). Further, E2 
treatment has been shown to reduce EPSP amplitude in BLA neurons in 
vitro (Womble et al., 2002). When E2 (15 μg/kg, s.c.) is injected prior to 
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extinction learning in low-estrogen metestrus rats, it enhances extinc-
tion and reduces c-FOS expression in the amygdala (Zeidan et al., 2011). 
Together these data suggest that the effects of the estrous cycle on fear 
extinction are at least partly mediated by reduced excitation and 
enhanced inhibition of BLA neurons by E2. 

Fear extinction recall depends on the IL and interactions between the 
IL and the amygdala (Senn et al., 2014; Sierra-Mercado et al., 2011). E2 
treatment induces greater activity in the IL during extinction memory 
recall, as indexed by FOS expression (Zeidan et al., 2011; Maeng et al., 
2017, Fig. 3C). E2 itself potentiates intrinsic excitability of IL neurons 
(Yousuf et al., 2019). Similarly, in humans, women with high E2 levels 
exhibit greater activation of the ventromedial prefrontal cortex and 
amygdala compared to low E2 women (Zeidan et al., 2011). 

The CE can be subdivided into lateral (CeL) and medial (CeM) por-
tions which mediate fear responses. Neurons within the CeL can be 
classified as “fear on” or “fear off” neurons, which are reciprocally 
connected, differ in their neurochemical profiles, show plastic changes 
during fear learning and extinction, and gate fear expression and 
generalization (Ciocchi et al., 2010; Haubensak et al., 2010). The CeM is 
regulated by the CeL and functions as the main output of the CE to 
regulate behavioral fear responses (Duvarci and Pare, 2014). 
E2-mediated enhancement of fear extinction learning is associated with 
increased FOS expression in the CeL (Maeng et al., 2017). Twenty-four 
hours later, when fear extinction recall is assessed, animals receiving 
E2 injections (15 μg/kg, s.c.) show reduced FOS expression in the CeM 
and greater extinction recall (less freezing). Moreover, examining the 
ratio between FOS activation in the CE and IL reveals that E2 modifies 
interactions between the two regions. Extinction learning produces 
stronger CE modulation while extinction recall produces stronger IL 
modulation (Maeng et al., 2017). The IL also sends excitatory pro-
jections to the BLA which mediate fear extinction (Likhtik et al., 2005; 
Herry et al., 2008). When the morphology of neurons within the IL 
projecting to the BLA are examined, males with faster rates of extinction 
show increased dendritic arborization of these neurons and lower spine 
density (Gruene et al., 2015). Despite similar behavioral responses 
during extinction, females do not exhibit these structural changes. In-
teractions between the prefrontal cortices and amygdala subnuclei thus 
exhibit some differences depending on sex and E2 levels. As 
extinction-based therapies are used to treat many types of anxiety dis-
orders and PTSD, parsing out these interactions has the potential to 
inform treatments. 

13. Conclusion 

Sex differences in fear responses are nuanced and complex. The 
neural structures discussed above contribute to multiple processes, and 
the behavioral responses are interdependent. For example, fear extinc-
tion will depend not only on extinction processes themselves, but on the 
strength of the original fear memory. In general, studies of fear learning 
in females have proceeded from the fiction that males are the default sex 
and that females must be compared to males using the same behavioral 
tasks and analyzing the same behavioral responses and neural circuitry. 
Nevertheless, it is possible to draw a few conclusions from the experi-
ments described above. 

First, it is clear that a broader range of behaviors, and possibly other 
measures such as autonomic arousal, can be used to more completely 
assess behavioral differences between male and female rodents. Indeed, 
in human fear conditioning studies, skin conductance response (SCR) is 
often used as a measure of fear, rather than freezing. These differences in 
readouts of fear can make it difficult to compare rodent and human fear 
conditioning studies. Recent experiments in which animals are given the 
opportunity to avoid an aversive stimulus (Shanazz et al., 2002), or in 
which active responses and USVs are analyzed in addition to freezing 
responses (Gruene et al., 2015; Tryon et al., 2021) are examples of this 
type of experiment. 

Second, it is difficult to draw conclusions about the effects of estrus 

and menstrual cycles on context and cued fear conditioning. One notable 
exception is cued fear extinction in which female rodents and women at 
high E2 phases of their cycles show greater fear extinction recall 
compared to low E2 phases. The estrus cycle of rodents and the men-
strual cycle of women differ in two important ways. First, the proestrus 
phase in rodents is characterized by both high E2 and high progesterone 
levels. In the menstrual cycle, E2 and progesterone levels peak on 
different days. Second, the duration of each phase in the estrus cycle is 
12–24 h. Thus, when female rodents are conditioned on one day and 
tested 24 or 48 h later, they will be tested in a different estrous phase. 
Indeed, there is recent evidence that rats conditioned in the diestrus 
phase and tested in proestrus exhibit lower levels of context fear than 
animals conditioned and tested in the same estrus phase (Blair et al., 
2022). Possible state-dependent effects of estrous cycle phase on fear 
processes are less of a concern in human studies where the follicular and 
luteal phases of the menstrual cycle last several days. 

Finally, a more nuanced assessment of sex differences will ask what 
information is encoded by neural circuits and how males and females 
might use different strategies in approaching behavioral tasks (Tronson, 
2018; Shansky, 2018). These types of studies have the potential to un-
cover variability in neural responses and behavior in both sexes, and 
increase our understanding of how that variability contributes to the 
neurobiological underpinnings of affective disorders. 

Funding 

This work was supported by NIH grant 1R15MH122969-01. 

Data availability 

No data was used for the research described in the article. 

References 

Abel, T., Nguyen, P.V., Barad, M., Deuel, T.A., Kandel, E.R., Bourtchouladze, R., 1997. 
Genetic demonstration of a role for PKA in the late phase of LTP and in 
hippocampus-based long-term memory. Cell 88, 615–626. 

Alheid, G.F., 2003. Extended amygdala and basal forebrain. Ann. N. Y. Acad. Sci. 985, 
185–205. https://doi.org/10.1111/j.1749-6632.2003.tb07082.x. 

Allen, L.S., Gorski, R.A., 1990. Sex difference in the bed nucleus of the stria terminalis of 
the human brain. J. Comp. Neurol. 302, 697–706. https://doi.org/10.1002/ 
cne.903020402. 

Anagnostaras, S.G., Gale, G.D., Fanselow, M.S., 2001. Hippocampus and contextual fear 
conditioning: recent controversies and advances. Hippocampus 11, 8–17. https:// 
doi.org/10.1002/1098-1063(2001)11:1<8::AID-HIPO1015>3.0.CO;2-7. 
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