RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 571

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$).

Preço do produto (em R\$). Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

1,0

Espaço	Localização	Preço
14	0	7
20	0	5
24	0	11
30	0	11
14	1	8
20	1	8
24	1	11
30	1	5
	14 20 24 30 14 20 24	14 0 20 0 24 0 30 0 14 1 20 1 24 1

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados \rightarrow Análise \rightarrow Análise de Dados \rightarrow Regressão e realize a regressão considerando E, L e P como variáveis independentes e Q como variável dependente. Se não tiver a ferramenta de análise do Excel: Escreva a matriz Z, a matriz transposta Z' e a matriz Y. Obtenha os resultados Z'Z e Z'Y. Obtenha a matriz inversa: $(Z'Z)^{-1}$.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

(3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 572

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o

Preço do produto (em R\$). Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

1,0

Quantidade	Espaço	Localização	Preço
206	24	0	10
228	28	0	9
263	34	0	12
280	38	0	10
231	24	1	7
254	28	1	10
277	34	1	6
299	38	1	11
	<u>-</u>	·	

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**′ e a matriz **Y**. Obtenha os resultados **Z**′**Z** e **Z**′**Y**. Obtenha a matriz inversa: (**Z**′**Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

(3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 573

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o

Nome:

Preço do produto (em R\$). Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

1,0

Quantidade	Espaço	Localização	Preço
135	9	0	11
162	14	0	7
188	19	0	10
211	24	0	10
153	9	1	6
179	14	1	8
204	19	1	8
225	24	1	11

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**′ e a matriz **Y**. Obtenha os resultados **Z**′**Z** e **Z**′**Y**. Obtenha a matriz inversa: (**Z**′**Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

(3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0

RAD1408 - Estatística Aplicada à Administração

Lista 07 cód. 574

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$).

Nome:

Preço do produto (em R\$). Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

1,0

Quantidade	Espaço	Localização	Preço
156	14	0	11
180	19	0	6
206	24	0	12
239	29	0	12
185	14	1	5
206	19	1	5
229	24	1	8
250	29	1	8
	•		

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E, L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**′ e a matriz **Y**. Obtenha os resultados **Z**′**Z** e **Z**′**Y**. Obtenha a matriz inversa: (**Z**′**Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

(3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 575

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o

Nome:

Preço do produto (em R\$). Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

Espaço	Localização	Preço
11	0	8
16	0	7
21	0	12
26	0	12
11	1	11
16	1	11
21	1	5
26	1	5
	11 16 21 26 11 16 21	11 0 16 0 21 0 26 0 11 1 16 1 21 1

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**′ e a matriz **Y**. Obtenha os resultados **Z**′**Z** e **Z**′**Y**. Obtenha a matriz inversa: (**Z**′**Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 - Estatística Aplicada à Administração

Lista 07 cód. 576

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na

Nome:

Preço do produto (em R\$). Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

frente (Localização = 1) do corredor e o

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

1,0

-13-1	-1,3-	- (/3- \ //
Quantidade	Espaço	Localização	Preço
204	23	0	12
232	29	0	10
251	33	0	10
284	39	0	11
220	23	1	5
255	29	1	5
273	33	1	9
310	39	1	12
·	·	·	·

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**′ e a matriz **Y**. Obtenha os resultados **Z**′**Z** e **Z**′**Y**. Obtenha a matriz inversa: (**Z**′**Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

(3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0

RAD1408 - Estatística Aplicada à Administração

Lista 07 cód. 577

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$).

Considere os valores apresentados na Tabela 1 e determine as seguintes relações - entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

	,, ,		
Quantidade	Espaço	Localização	Preço
142	11	0	5
164	15	0	10
195	21	0	11
218	25	0	8
168	11	1	11
185	15	1	6
214	21	1	5
235	25	1	8

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**′ e a matriz **Y**. Obtenha os resultados **Z**′**Z** e **Z**′**Y**. Obtenha a matriz inversa: (**Z**′**Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 - Estatística Aplicada à Administração

Lista 07 cód. 578

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$).

Considere os valores apresentados na Tabela 1 e determine as seguintes relações - entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

		- (
Quantidade	Espaço	Localização	Preço
122	6	0	9
140	11	0	7
174	16	0	11
196	21	0	7
140	6	1	12
160	11	1	5
188	16	1	12
216	21	1	5

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**' e a matriz **Y**. Obtenha os resultados **Z'Z** e **Z'Y**. Obtenha a matriz inversa: (**Z'Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 579

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome: A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$). Considere os valores apresentados na

entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

estabelecimentos escolhidos de forma	Quantidade	Espaço	Localização	Preço
aleatória. Para cada estabelecimento foi	188	20	0	10
registrado a Quantidade vendida no dia; o	222	26	0	8
espaço na prateleira (dado em pés); a	235	30	0	11
Localização do produto, se ele está	271	36	0	11
posicionado no fundo (Localização = 0) ou na	214	20	1	10
frente (Localização = 1) do corredor e o	243	26	1	8
Preço do produto (em R\$).	263	30	1	12
Considere os valores apresentados na	289	36	1	8
Tabela 1 e determine as seguintes relações				

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização.
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E. 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 . (2.a) Obtenha a equação para estimativa de Q:
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável E influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização.
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando E, L e P como variáveis independentes e Q como variável dependente. Se não tiver a ferramenta de análise do Excel: Escreva a matriz Z, a matriz transposta Z' e a matriz Y. Obtenha os resultados Z'Z e Z'Y. Obtenha a matriz inversa: (Z'Z)-1. 1,0
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo (Resíduo, $=Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x). 1,0

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 580

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$).

Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

Tabada (a be	70/) =00a::=a.ga	o (o . aa.) =a.	107011030 (117)
Quantidade	Espaço	Localização	Preço
142	10	0	5
168	16	0	9
185	20	0	8
217	26	0	9
158	10	1	11
193	16	1	10
214	20	1	10
238	26	1	8

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**' e a matriz **Y**. Obtenha os resultados **Z'Z** e **Z'Y**. Obtenha a matriz inversa: (**Z'Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 581

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$).

Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

-13- (- 1	- // 3 -	- (/3- () /
Quantidade	Espaço	Localização	Preço
165	16	0	8
191	21	0	10
216	26	0	9
250	31	0	10
193	16	1	9
218	21	1	5
244	26	1	6
270	31	1	10

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**′ e a matriz **Y**. Obtenha os resultados **Z**′**Z** e **Z**′**Y**. Obtenha a matriz inversa: (**Z**′**Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 582

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$).

Considere os valores apresentados na

Tabela 1 e determine as seguintes relações

entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

1,0

Quantidade	Espaço	Localização	Preço
147	12	0	5
180	18	0	6
199	22	0	10
234	28	0	8
171	12	1	5
200	18	1	5
215	22	1	10
252	28	1	9
	•		

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**′ e a matriz **Y**. Obtenha os resultados **Z**′**Z** e **Z**′**Y**. Obtenha a matriz inversa: (**Z**′**Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

(3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 583

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$).

Preço do produto (em R\$). Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

Quantidade	Espaço	Localização	Preço
149	11	0	6
175	16	0	9
193	21	0	10
217	26	0	11
168	11	1	7
192	16	1	6
211	21	1	5
236	26	1	11

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**' e a matriz **Y**. Obtenha os resultados **Z'Z** e **Z'Y**. Obtenha a matriz inversa: (**Z'Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 584

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$).

Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

	,,	,	<u> </u>
Quantidade	Espaço	Localização	Preço
198	21	0	8
228	27	0	12
242	31	0	5
272	37	0	8
212	21	1	9
249	27	1	11
263	31	1	11
295	37	1	7

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**′ e a matriz **Y**. Obtenha os resultados **Z**′**Z** e **Z**′**Y**. Obtenha a matriz inversa: (**Z**′**Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 585

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o

Nome:

Preço do produto (em R\$). Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

	,, ,		
Quantidade	Espaço	Localização	Preço
214	25	0	7
234	29	0	8
261	35	0	9
281	39	0	5
233	25	1	5
254	29	1	6
285	35	1	6
306	39	1	10

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**' e a matriz **Y**. Obtenha os resultados **Z'Z** e **Z'Y**. Obtenha a matriz inversa: (**Z'Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 586

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$).

Preço do produto (em R\$).

Considere os valores apresentados na

Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

Quantidade	Espaço	Localização	Preço
169	16	0	5
196	21	0	6
224	26	0	12
250	31	0	11
193	16	1	7
210	21	1	6
241	26	1	9
270	31	1	10
	•		•

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P. 1,0
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**' e a matriz **Y**. Obtenha os resultados **Z'Z** e **Z'Y**. Obtenha a matriz inversa: (**Z'Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 - Estatística Aplicada à Administração

Lista 07 cód. 587

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$).

Considere os valores apresentados na Tabela 1 e determine as seguintes relações - entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

Quantidade	Espaço	Localização	Preço
195	21	0	10
219	25	0	9
248	31	0	6
264	35	0	6
214	21	1	12
236	25	1	5
269	31	1	8
286	35	1	12

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**' e a matriz **Y**. Obtenha os resultados **Z'Z** e **Z'Y**. Obtenha a matriz inversa: (**Z'Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 588

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$).

Considere os valores apresentados na

Tabela 1 e determine as seguintes relações

entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

Quantidade	Espaço	Localização	Preço
161	14	0	5
186	19	0	11
214	24	0	12
232	29	0	7
177	14	1	12
203	19	1	10
225	24	1	10
250	29	1	7

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**' e a matriz **Y**. Obtenha os resultados **Z'Z** e **Z'Y**. Obtenha a matriz inversa: (**Z'Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 589

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$).

Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

	-11 3	- (
Quantidade	Espaço	Localização	Preço
133	8	0	11
155	12	0	7
180	18	0	6
201	22	0	11
153	8	1	7
170	12	1	7
199	18	1	10
218	22	1	9

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**′ e a matriz **Y**. Obtenha os resultados **Z**′**Z** e **Z**′**Y**. Obtenha a matriz inversa: (**Z**′**Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 590

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome: A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$). Considere os valores apresentados na

entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

estabelecimentos escolhidos de forma	Quantidade	Espaço	Localização	Preço
aleatória. Para cada estabelecimento foi	142	10	0	5
registrado a Quantidade vendida no dia; o	157	14	0	12
espaço na prateleira (dado em pés); a	187	20	0	8
Localização do produto, se ele está	205	24	0	5
posicionado no fundo (Localização = 0) ou na	155	10	1	11
frente (Localização = 1) do corredor e o	176	14	1	6
Preço do produto (em R\$).	213	20	1	11
Considere os valores apresentados na	225	24	1	10
Tabela 1 e determine as seguintes relações				

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização.
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E. 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 . (2.a) Obtenha a equação para estimativa de Q:
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável E influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização.
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando E, L e P como variáveis independentes e Q como variável dependente. Se não tiver a ferramenta de análise do Excel: Escreva a matriz Z, a matriz transposta Z' e a matriz Y. Obtenha os resultados Z'Z e Z'Y. Obtenha a matriz inversa: (Z'Z)-1. 1,0
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo (Resíduo, $=Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x). 1,0

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 591

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$).

Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

-13- (- 1	-1/	- (/3- \ //
Quantidade	Espaço	Localização	Preço
203	22	0	7
228	28	0	11
252	32	0	11
279	38	0	9
216	22	1	12
249	28	1	11
272	32	1	9
301	38	1	11
	<u>-</u>	•	

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**′ e a matriz **Y**. Obtenha os resultados **Z**′**Z** e **Z**′**Y**. Obtenha a matriz inversa: (**Z**′**Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 592

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$).

Preço do produto (em R\$). Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

Quantidade	Espaço	Localização	Preço
180	18	0	5
202	23	0	11
227	28	0	7
258	33	0	9
203	18	1	8
220	23	1	8
252	28	1	10
273	33	1	10
		•	•

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**' e a matriz **Y**. Obtenha os resultados **Z'Z** e **Z'Y**. Obtenha a matriz inversa: (**Z'Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 593

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome: A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$). Considere os valores apresentados na

entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade), Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

estabelecimentos escolhidos de forma	Quantidade	Espaço	Localização	Preço
aleatória. Para cada estabelecimento foi	159	13	0	6
registrado a Quantidade vendida no dia; o	180	17	0	10
espaço na prateleira (dado em pés); a	210	23	0	9
Localização do produto, se ele está	225	27	0	9
posicionado no fundo (Localização = 0) ou na	177	13	1	9
frente (Localização = 1) do corredor e o	194	17	1	9
Preço do produto (em R\$).	226	23	1	8
Considere os valores apresentados na	242	27	1	11
Tabela 1 e determine as seguintes relações				_

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização.
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E. 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 . (2.a) Obtenha a equação para estimativa de Q:
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável E influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização.
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando E, L e P como variáveis independentes e Q como variável dependente. Se não tiver a ferramenta de análise do Excel: Escreva a matriz Z, a matriz transposta Z' e a matriz Y. Obtenha os resultados Z'Z e Z'Y. Obtenha a matriz inversa: (Z'Z)-1. 1,0
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo (Resíduo, $=Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x). 1,0

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 594

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$).

Considere os valores apresentados na Tabela 1 e determine as seguintes relações - entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

	,,		<u> </u>
Quantidade	Espaço	Localização	Preço
135	10	0	5
168	15	0	10
194	20	0	8
214	25	0	5
165	10	1	6
187	15	1	7
214	20	1	8
232	25	1	7

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P. 1,0
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização.

 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**′ e a matriz **Y**. Obtenha os resultados **Z**′**Z** e **Z**′**Y**. Obtenha a matriz inversa: (**Z**′**Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 - Estatística Aplicada à Administração

Lista 07 cód. 595

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$).

Preço do produto (em R\$).

Considere os valores apresentados na

Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

Quantidade	Espaço	Localização	Preço
157	13	0	10
181	19	0	11
205	23	0	12
238	29	0	11
178	13	1	5
202	19	1	6
221	23	1	12
256	29	1	6

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**′ e a matriz **Y**. Obtenha os resultados **Z**′**Z** e **Z**′**Y**. Obtenha a matriz inversa: (**Z**′**Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 596

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$).

Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

-13- (- 1	- // 3 -	- (/3- () /
Quantidade	Espaço	Localização	Preço
207	23	0	10
235	28	0	10
254	33	0	12
282	38	0	5
229	23	1	9
247	28	1	8
277	33	1	9
298	38	1	5
<u> </u>			

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**′ e a matriz **Y**. Obtenha os resultados **Z**′**Z** e **Z**′**Y**. Obtenha a matriz inversa: (**Z**′**Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 - Estatística Aplicada à Administração

Lista 07 cód. 597

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$).

Preço do produto (em R\$).

Considere os valores apresentados na

Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

Quantidade	Espaço	Localização	Preço
168	16	0	7
205	22	0	6
215	26	0	8
245	32	0	9
195	16	1	7
224	22	1	6
238	26	1	12
273	32	1	7
	·	<u> </u>	

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**′ e a matriz **Y**. Obtenha os resultados **Z**′**Z** e **Z**′**Y**. Obtenha a matriz inversa: (**Z**′**Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 598

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o

Preço do produto (em R\$). Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

Quantidade	Espaço	Localização	Preço
220	26	0	11
247	32	0	7
267	36	0	5
299	42	0	5
245	26	1	6
273	32	1	9
291	36	1	11
317	42	1	6

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**' e a matriz **Y**. Obtenha os resultados **Z'Z** e **Z'Y**. Obtenha a matriz inversa: (**Z'Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 599

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome: A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$). Considere os valores apresentados na

entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

1,0

•		,,	,	, , , , ,
estabelecimentos escolhidos de forma	Quantidade	Espaço	Localização	Preço
aleatória. Para cada estabelecimento foi	223	26	0	5
registrado a Quantidade vendida no dia; o	241	30	0	7
espaço na prateleira (dado em pés); a	266	36	0	6
Localização do produto, se ele está	289	40	0	8
posicionado no fundo (Localização = 0) ou na	240	26	1	5
frente (Localização = 1) do corredor e o	262	30	1	9
Preço do produto (em R\$).	294	36	1	8
Considere os valores apresentados na	310	40	1	9
Tabela 1 e determine as seguintes relações				

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização.
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E. 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 . (2.a) Obtenha a equação para estimativa de Q:
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável E influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização.
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando E, L e P como variáveis independentes e Q como variável dependente. Se não tiver a ferramenta de análise do Excel: Escreva a matriz Z, a matriz transposta Z' e a matriz Y. Obtenha os resultados Z'Z e Z'Y. Obtenha a matriz inversa: (Z'Z)-1. 1,0
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

(3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 600

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$).

Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

Quantidade	Espaço	Localização	Preço
126	8	0	12
160	13	0	11
179	18	0	6
206	23	0	5
147	8	1	9
175	13	1	9
200	18	1	7
222	23	1	7
·	·	·	·

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E, L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**′ e a matriz **Y**. Obtenha os resultados **Z**′**Z** e **Z**′**Y**. Obtenha a matriz inversa: (**Z**′**Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 601

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o

Nome:

Preço do produto (em R\$). Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

Quantidade	Espaço	Localização	Preço
176	17	0	11
191	21	0	10
228	27	0	8
250	31	0	5
199	17	1	10
220	21	1	5
247	27	1	7
265	31	1	8

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E, L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**′ e a matriz **Y**. Obtenha os resultados **Z**′**Z** e **Z**′**Y**. Obtenha a matriz inversa: (**Z**′**Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 602

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$).

Preço do produto (em R\$). Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

Quantidade	Espaço	Localização	Preço	
116	6	0	5	
142	10	0	6	
170	16	0	9	
187	20	0	9	
140	6	1	5	
164	10	1	11	
192	16	1	10	
212	20	1	7	
·	·	·	· · · · · · · · · · · · · · · · · · ·	

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P. 1,0
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**' e a matriz **Y**. Obtenha os resultados **Z'Z** e **Z'Y**. Obtenha a matriz inversa: (**Z'Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 603

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome: A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$). Considere os valores apresentados na

entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

	-1 2 - / - 1	-11 3 -	- 1	13 - 1 1 1
estabelecimentos escolhidos de forma	Quantidade	Espaço	Localização	Preço
aleatória. Para cada estabelecimento foi	190	20	0	8
registrado a Quantidade vendida no dia; o	212	24	0	10
espaço na prateleira (dado em pés); a	243	30	0	6
Localização do produto, se ele está	259	34	0	9
posicionado no fundo (Localização = 0) ou na	208	20	1	9
frente (Localização = 1) do corredor e o	232	24	1	7
Preço do produto (em R\$).	263	30	1	6
Considere os valores apresentados na	279	34	1	9
Tabela 1 e determine as seguintes relações				

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização.
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E. 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 . (2.a) Obtenha a equação para estimativa de Q:
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável E influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização.
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando E, L e P como variáveis independentes e Q como variável dependente. Se não tiver a ferramenta de análise do Excel: Escreva a matriz Z, a matriz transposta Z' e a matriz Y. Obtenha os resultados Z'Z e Z'Y. Obtenha a matriz inversa: (Z'Z)-1. 1,0
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo (Resíduo, $=Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x). 1,0

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 604

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o

Nome:

Preço do produto (em R\$). Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

Espaço	Localização	Preço
19	0	8
25	0	9
29	0	11
35	0	9
19	1	10
25	1	6
29	1	11
35	1	12
	19 25 29 35 19 25 29	19 0 25 0 29 0 35 0 19 1 25 1 29 1

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**′ e a matriz **Y**. Obtenha os resultados **Z**′**Z** e **Z**′**Y**. Obtenha a matriz inversa: (**Z**′**Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 605

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o

Preço do produto (em R\$). Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

Quantidade	Espaço	Localização	Preço
178	18	0	7
212	24	0	10
234	28	0	5
259	34	0	5
205	18	1	6
234	24	1	12
252	28	1	12
283	34	1	10
252	28	-	12

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**' e a matriz **Y**. Obtenha os resultados **Z'Z** e **Z'Y**. Obtenha a matriz inversa: (**Z'Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 606

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o

Preço do produto (em R\$). Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

Quantidade	Espaço	Localização	Preço
155	13	0	7
178	18	0	11
209	23	0	9
229	28	0	12
174	13	1	10
196	18	1	11
221	23	1	6
248	28	1	12

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**′ e a matriz **Y**. Obtenha os resultados **Z**′**Z** e **Z**′**Y**. Obtenha a matriz inversa: (**Z**′**Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 607

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$).

Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

Quantidade	Espaço	Localização	Preço	
122	7	0	5	
146	12	0	10	
172	17	0	5	
196	22	0	10	
150	7	1	12	
165	12	1	8	
191	17	1	12	
217	22	1	5	

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**' e a matriz **Y**. Obtenha os resultados **Z'Z** e **Z'Y**. Obtenha a matriz inversa: (**Z'Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 608

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$).

Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

Quantidade	Espaço	Localização	Preço	
201	23	0	12	
225	27	0	5	
254	33	0	10	
270	37	0	7	
230	23	1	7	
241	27	1	12	
276	33	1	11	
300	37	1	11	
·	·	·	·	

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**′ e a matriz **Y**. Obtenha os resultados **Z**′**Z** e **Z**′**Y**. Obtenha a matriz inversa: (**Z**′**Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 609

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preco do produto (em R\$).

Preço do produto (em R\$).

Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

Quantidade	Espaço	Localização	Preço
155	12	0	10
177	17	0	6
201	22	0	9
226	27	0	10
168	12	1	7
192	17	1	9
222	22	1	11
245	27	1	11

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**′ e a matriz **Y**. Obtenha os resultados **Z**′**Z** e **Z**′**Y**. Obtenha a matriz inversa: (**Z**′**Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 610

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$).

Preço do produto (em R\$). Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

-13-1-		- (/3- () /
Quantidade	Espaço	Localização	Preço
139	10	0	5
169	15	0	5
194	20	0	12
210	25	0	5
164	10	1	5
189	15	1	6
206	20	1	7
239	25	1	11

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**′ e a matriz **Y**. Obtenha os resultados **Z**′**Z** e **Z**′**Y**. Obtenha a matriz inversa: (**Z**′**Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 611

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o

Nome:

Preço do produto (em R\$). Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

Quantidade	Espaço	Localização	Preço
152	12	0	5
172	16	0	5
204	22	0	10
220	26	0	5
168	12	1	5
190	16	1	5
222	22	1	5
243	26	1	5
·	•		

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E, L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**′ e a matriz **Y**. Obtenha os resultados **Z**′**Z** e **Z**′**Y**. Obtenha a matriz inversa: (**Z**′**Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 612

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$).

Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

Quantidade	Espaço	Localização	Preço	
129	7	0	5	
142	11	0	11	
180	17	0	5	
195	21	0	8	
142	7	1	12	
170	11	1	6	
200	17	1	10	
215	21	1	11	

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**′ e a matriz **Y**. Obtenha os resultados **Z**′**Z** e **Z**′**Y**. Obtenha a matriz inversa: (**Z**′**Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 613

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome: A Tabela 1 apresenta uma amostra aleatória Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade), de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$). Considere os valores apresentados na

Tabela 1 e determine as seguintes relações

entre as variáveis:

Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)				
Quantidade	Espaço	Localização	Preço	
116	5	0	12	
145	10	0	5	
167	15	0	9	
186	20	0	6	
133	5	1	11	
157	10	1	5	
182	15	1	5	
206	20	1	8	

Nro USP

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização.
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E. 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 . (2.a) Obtenha a equação para estimativa de Q:
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável E influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização.
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando E, L e P como variáveis independentes e Q como variável dependente. Se não tiver a ferramenta de análise do Excel: Escreva a matriz Z, a matriz transposta Z' e a matriz Y. Obtenha os resultados Z'Z e Z'Y. Obtenha a matriz inversa: (Z'Z)-1. 1,0
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo (Resíduo, $=Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x). 1,0

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 614

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$).

Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

-13-1	-1,3-	- (/3- \ //
Quantidade	Espaço	Localização	Preço
220	25	0	5
241	31	0	10
261	35	0	10
300	41	0	9
238	25	1	9
260	31	1	5
287	35	1	12
313	41	1	12

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**′ e a matriz **Y**. Obtenha os resultados **Z**′**Z** e **Z**′**Y**. Obtenha a matriz inversa: (**Z**′**Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 - Estatística Aplicada à Administração

Lista 07 cód. 615

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$).

Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

	,, ,		
Quantidade	Espaço	Localização	Preço
141	11	0	11
172	17	0	12
200	21	0	6
225	27	0	6
166	11	1	10
196	17	1	6
219	21	1	12
242	27	1	12
·		·	·

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**′ e a matriz **Y**. Obtenha os resultados **Z**′**Z** e **Z**′**Y**. Obtenha a matriz inversa: (**Z**′**Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 616

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$).

Preço do produto (em R\$).

Considere os valores apresentados na

Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

1,0

0	F	1 1' ~ -	
Quantidade	Espaço	Localização	Preço
167	15	0	5
183	19	0	7
214	25	0	12
240	29	0	8
181	15	1	5
204	19	1	12
236	25	1	9
260	29	1	11

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**′ e a matriz **Y**. Obtenha os resultados **Z**′**Z** e **Z**′**Y**. Obtenha a matriz inversa: (**Z**′**Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

(3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0

RAD1408 - Estatística Aplicada à Administração

Lista 07 cód. 617

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$).

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade), Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

1,0

Quantidade	Espaço	Localização	Preço
186	20	0	9
216	25	0	10
237	30	0	9
266	35	0	8
212	20	1	6
233	25	1	11
262	30	1	11
284	35	1	5

Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**' e a matriz **Y**. Obtenha os resultados **Z'Z** e **Z'Y**. Obtenha a matriz inversa: (**Z'Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

(3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 618

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$).

Considere os valores apresentados na Tabela 1 e determine as seguintes relações - entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

-13-1	-1/3-	- (,3- \
Quantidade	Espaço	Localização	Preço
138	9	0	7
152	13	0	12
186	19	0	11
205	23	0	11
155	9	1	10
177	13	1	10
200	19	1	10
225	23	1	5

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**′ e a matriz **Y**. Obtenha os resultados **Z**′**Z** e **Z**′**Y**. Obtenha a matriz inversa: (**Z**′**Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 - Estatística Aplicada à Administração

Lista 07 cód. 619

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na

Preço do produto (em R\$). Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

frente (Localização = 1) do corredor e o

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

Quantidade	Espaço	Localização	Preço
172	16	0	9
194	20	0	12
219	26	0	5
236	30	0	10
193	16	1	12
211	20	1	9
238	26	1	12
265	30	1	12

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**′ e a matriz **Y**. Obtenha os resultados **Z**′**Z** e **Z**′**Y**. Obtenha a matriz inversa: (**Z**′**Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 - Estatística Aplicada à Administração

Lista 07 cód. 620

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na

Nome:

Preço do produto (em R\$). Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

frente (Localização = 1) do corredor e o

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

	,,		, , , , ,
Quantidade	Espaço	Localização	Preço
221	27	0	9
255	33	0	12
276	37	0	8
304	43	0	7
241	27	1	6
275	33	1	10
295	37	1	11
327	43	1	8

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E, L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**′ e a matriz **Y**. Obtenha os resultados **Z**′**Z** e **Z**′**Y**. Obtenha a matriz inversa: (**Z**′**Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 621

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na

Nome:

Preço do produto (em R\$). Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

frente (Localização = 1) do corredor e o

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

Quantidade	Espaço	Localização	Preço
207	24	0	9
235	30	0	8
260	34	0	10
293	40	0	5
232	24	1	8
258	30	1	9
277	34	1	5
311	40	1	6

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**′ e a matriz **Y**. Obtenha os resultados **Z**′**Z** e **Z**′**Y**. Obtenha a matriz inversa: (**Z**′**Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 622

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o

Preço do produto (em R\$). Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

1,0

Espaço	Localização	Preço
19	0	6
24	0	6
29	0	5
34	0	12
19	1	7
24	1	8
29	1	8
34	1	6
	19 24 29 34 19 24 29	19 0 24 0 29 0 34 0 19 1 24 1 29 1

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**′ e a matriz **Y**. Obtenha os resultados **Z**′**Z** e **Z**′**Y**. Obtenha a matriz inversa: (**Z**′**Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

(3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 623

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome: A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$). Considere os valores apresentados na

entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

•		,,	, ,	, , , , ,
estabelecimentos escolhidos de forma	Quantidade	Espaço	Localização	Preço
aleatória. Para cada estabelecimento foi	179	18	0	11
registrado a Quantidade vendida no dia; o	201	22	0	6
espaço na prateleira (dado em pés); a	229	28	0	11
Localização do produto, se ele está	249	32	0	6
posicionado no fundo (Localização = 0) ou na	201	18	1	8
frente (Localização = 1) do corredor e o	220	22	1	6
Preço do produto (em R\$).	245	28	1	7
Considere os valores apresentados na	271	32	1	10
Tabela 1 e determine as seguintes relações				

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização.
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E. 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 . (2.a) Obtenha a equação para estimativa de Q:
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável E influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização.
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando E, L e P como variáveis independentes e Q como variável dependente. Se não tiver a ferramenta de análise do Excel: Escreva a matriz Z, a matriz transposta Z' e a matriz Y. Obtenha os resultados Z'Z e Z'Y. Obtenha a matriz inversa: (Z'Z)-1. 1,0
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo (Resíduo, $=Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x). 1,0

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 624

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome: A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$). Considere os valores apresentados na

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade), Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

estabelecimentos escolhidos de forma	Quantidade	Espaço	Localização	Preço
aleatória. Para cada estabelecimento foi	180	17	0	12
registrado a Quantidade vendida no dia; o	203	23	0	6
espaço na prateleira (dado em pés); a	229	27	0	7
Localização do produto, se ele está	254	33	0	12
posicionado no fundo (Localização = 0) ou na	197	17	1	11
frente (Localização = 1) do corredor e o	230	23	1	11
Preço do produto (em R\$).	249	27	1	8
Considere os valores apresentados na	275	33	1	8
Tabela 1 e determine as seguintes relações				_

entre as variáveis:

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização.
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E. 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P. 1,0
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 . (2.a) Obtenha a equação para estimativa de Q:
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável E influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização.
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando E, L e P como variáveis independentes e Q como variável dependente. Se não tiver a ferramenta de análise do Excel: Escreva a matriz Z, a matriz transposta Z' e a matriz Y. Obtenha os resultados Z'Z e Z'Y. Obtenha a matriz inversa: (Z'Z)-1. 1,0
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

(3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 625

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome: A Tabela 1 apresenta uma amostra aleatória Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade), de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$). Considere os valores apresentados na Tabela 1 e determine as seguintes relações

entre as variáveis:

Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)				
Quantidade	Espaço	Localização	Preço	
165	15	0	6	
190	20	0	5	
216	25	0	10	
238	30	0	9	
185	15	1	9	
213	20	1	12	
237	25	1	8	
264	30	1	10	

Nro USP

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização.
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E. 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P. 1,0
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 . (2.a) Obtenha a equação para estimativa de Q:
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável E influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização.
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando E, L e P como variáveis independentes e Q como variável dependente. Se não tiver a ferramenta de análise do Excel: Escreva a matriz Z, a matriz transposta Z' e a matriz Y. Obtenha os resultados Z'Z e Z'Y. Obtenha a matriz inversa: (Z'Z)-1. 1,0
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo (Resíduo, $=Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x). 1,0

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 626

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$).

Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

-13- (- 1	-1,3-	- (/3- (1/
Quantidade	Espaço	Localização	Preço
153	12	0	10
175	17	0	12
204	22	0	8
222	27	0	7
169	12	1	9
191	17	1	12
222	22	1	9
241	27	1	12

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**' e a matriz **Y**. Obtenha os resultados **Z'Z** e **Z'Y**. Obtenha a matriz inversa: (**Z'Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 627

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$).

Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

Espaço	Localização	Preço
13	0	11
18	0	6
23	0	12
28	0	6
13	1	12
18	1	12
23	1	10
28	1	9
	13 18 23 28 13 18 23	13 0 18 0 23 0 28 0 13 1 18 1 23 1

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**' e a matriz **Y**. Obtenha os resultados **Z'Z** e **Z'Y**. Obtenha a matriz inversa: (**Z'Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 - Estatística Aplicada à Administração

Lista 07 cód. 628

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o

Nome:

Preço do produto (em R\$). Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

Quantidade	Espaço	Localização	Preço
200	22	0	11
228	27	0	11
255	32	0	8
277	37	0	5
216	22	1	11
248	27	1	11
272	32	1	11
291	37	1	10
	·	·	·

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**' e a matriz **Y**. Obtenha os resultados **Z'Z** e **Z'Y**. Obtenha a matriz inversa: (**Z'Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 629

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$).

Considere os valores apresentados na Tabela 1 e determine as seguintes relações - entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

1,0

	,,	,	, , , , ,
Quantidade	Espaço	Localização	Preço
172	17	0	9
201	22	0	5
227	27	0	9
255	32	0	12
194	17	1	7
219	22	1	10
246	27	1	8
270	32	1	6

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**′ e a matriz **Y**. Obtenha os resultados **Z**′**Z** e **Z**′**Y**. Obtenha a matriz inversa: (**Z**′**Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

(3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 630

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$).

Considere os valores apresentados na

Tabela 1 e determine as seguintes relações

entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

1,0

Quantidade	Espaço	Localização	Preço
180	19	0	11
202	23	0	11
235	29	0	7
259	33	0	6
204	19	1	5
220	23	1	11
257	29	1	5
273	33	1	8

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**' e a matriz **Y**. Obtenha os resultados **Z'Z** e **Z'Y**. Obtenha a matriz inversa: (**Z'Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

(3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 631

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$).

Considere os valores apresentados na

Tabela 1 e determine as seguintes relações

entre as variáveis:

Tabela 1. V	/endas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em	n pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Quantidade	Espaço	Localização	Preço
220	27	0	8
250	31	0	8
278	37	0	8
297	41	0	11
242	27	1	12
269	31	1	11
295	37	1	10
314	41	1	7

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**′ e a matriz **Y**. Obtenha os resultados **Z**′**Z** e **Z**′**Y**. Obtenha a matriz inversa: (**Z**′**Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 - Estatística Aplicada à Administração

Lista 07 cód. 632

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$).

Preço do produto (em R\$). Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

======================================				
Quantidade	Espaço	Localização	Preço	
165	15	0	5	
198	21	0	5	
217	25	0	6	
242	31	0	12	
182	15	1	6	
211	21	1	6	
238	25	1	12	
270	31	1	11	

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P. 1,0
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**′ e a matriz **Y**. Obtenha os resultados **Z**′**Z** e **Z**′**Y**. Obtenha a matriz inversa: (**Z**′**Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

(3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 633

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome: A Tabela 1 apresenta uma amostra aleatória Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade), de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$). Considere os valores apresentados na

Tabela 1 e determine as seguintes relações

entre as variáveis:

Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)				
Quantidade	Espaço	Localização	Preço	
198	22	0	11	
220	26	0	11	
249	32	0	8	
268	36	0	12	
223	22	1	12	
235	26	1	11	
275	32	1	10	
288	36	1	10	

Nro USP

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização.
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E. 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P. 1,0
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 . (2.a) Obtenha a equação para estimativa de Q:
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável E influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização.
- (2.c) Para cada valor observado i determine o resíduo dado por: $\mathrm{Residuo}_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando E, L e P como variáveis independentes e Q como variável dependente. Se não tiver a ferramenta de análise do Excel: Escreva a matriz Z, a matriz transposta Z' e a matriz Y. Obtenha os resultados Z'Z e Z'Y. Obtenha a matriz inversa: (Z'Z)-1. 1,0
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo (Resíduo, $=Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x). 1,0

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 634

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$).

Considere os valores apresentados na Tabela 1 e determine as seguintes relações - entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

	,, ,		, , , , , ,
Quantidade	Espaço	Localização	Preço
197	21	0	7
221	26	0	6
250	31	0	8
265	36	0	11
211	21	1	11
235	26	1	7
269	31	1	5
291	36	1	9

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E, L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**′ e a matriz **Y**. Obtenha os resultados **Z**′**Z** e **Z**′**Y**. Obtenha a matriz inversa: (**Z**′**Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 635

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome: A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$). Considere os valores apresentados na

entre as variáveis:

Tabela 1.	. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (e	em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

estabelecimentos escolhidos de forma	Quantidade	Espaço	Localização	Preço
aleatória. Para cada estabelecimento foi	157	14	0	12
registrado a Quantidade vendida no dia; o	176	18	0	12
espaço na prateleira (dado em pés); a	210	24	0	12
Localização do produto, se ele está	229	28	0	10
posicionado no fundo (Localização = 0) ou na	184	14	1	10
frente (Localização = 1) do corredor e o	203	18	1	9
Preço do produto (em R\$).	227	24	1	10
Considere os valores apresentados na	246	28	1	7
Tabela 1 e determine as seguintes relações				_

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização.
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E. 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 . (2.a) Obtenha a equação para estimativa de Q:
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável E influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização.
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando E, L e P como variáveis independentes e Q como variável dependente. Se não tiver a ferramenta de análise do Excel: Escreva a matriz Z, a matriz transposta Z' e a matriz Y. Obtenha os resultados Z'Z e Z'Y. Obtenha a matriz inversa: (Z'Z)-1. 1,0
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo (Resíduo, $=Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x). 1,0

RAD1408 – Estatística Aplicada à Administração

Lista 07 cód. 636

Atenção: Resolva a lista com o código atribuído ao teu nome no arquivo disponibilizado no e-Disciplinas

Nome:

A Tabela 1 apresenta uma amostra aleatória de vendas de sabão em pó em 8 estabelecimentos escolhidos de forma aleatória. Para cada estabelecimento foi registrado a Quantidade vendida no dia; o espaço na prateleira (dado em pés); a Localização do produto, se ele está posicionado no fundo (Localização = 0) ou na frente (Localização = 1) do corredor e o Preço do produto (em R\$).

Preço do produto (em R\$). Considere os valores apresentados na Tabela 1 e determine as seguintes relações entre as variáveis:

Tabela 1. Vendas de sabão em pó: Quantidade Vendida (unidade),
Espaço (em pés), Localização (0 = Fundo; 1 = Frente) e Preço (R\$)

Nro USP

Quantidade	Espaço	Localização	Preço
164	15	0	10
189	20	0	5
210	25	0	8
240	30	0	11
189	15	1	9
212	20	1	7
231	25	1	8
255	30	1	11
·	·	·	·

- (1) Investigue a correlação linear entre as variáveis Quantidade (Q), Espaço (E), Localização (L) e Preço (P):
- (1.a) Faça um gráfico de dispersão com a variável Q no eixo-y e E no eixo-x e outro gráfico com a variável Q no eixo-y e a variável P no eixo-x. Utilize símbolos diferentes para os diferentes tipos de Localização. 1,0
- (1.b) Obtenha o desvio padrão de cada variável (Q, E, L e P) e a matriz de correlação entre elas. Indique quais coeficientes de correlação possuem significância estatística ao nível 0,05. Comente sobre a correlação linear entre as variáveis Q e E.

 1,0
- (1.c) Obtenha a matriz de covariância entre as variáveis Q, E, L e P.
- (2) Suponha um modelo linear no qual a quantidade Q seja uma função de E:
- (2.a) Obtenha a equação para estimativa de Q: $\hat{Q} = b_0 + b_1 E$, ou seja, determine b_0 e b_1 .
- (2.b) Faça um gráfico de dispersão igual ao gráfico feito em (1.a) e acrescente a linha reta obtida pela equação estimada. Como a variável *E* influencia a Quantidade vendida diária? Comente também, com base na análise gráfica, a influência da variável Localização. 1,0
- (2.c) Para cada valor observado i determine o resíduo dado por: Resíduo $_i = Q_i \hat{Q}_i$. Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Espaço (eixo-x).
- (3) Investigue a influência tanto do Espaço (E) como também da Localização (L) e preço (P) na quantidade vendida através de um modelo de regressão linear múltipla. Para tanto:
- (3.a) Utilize a Ferramenta de Análise de dados no Excel: Dados → Análise → Análise de Dados → Regressão e realize a regressão considerando *E*, *L* e *P* como variáveis independentes e *Q* como variável dependente. <u>Se não tiver a ferramenta de análise do Excel</u>: Escreva a matriz **Z**, a matriz transposta **Z**′ e a matriz **Y**. Obtenha os resultados **Z**′**Z** e **Z**′**Y**. Obtenha a matriz inversa: (**Z**′**Z**)⁻¹.
- (3.b) Obtenha os valores dos b's, da análise do Excel ou então por $\beta = (\mathbf{Z}'\mathbf{Z})^{-1}(\mathbf{Z}'\mathbf{Y})$ e escreva a equação para estimativa da Quantidade, ou seja, substitua os valores dos b's na equação

$$\hat{Q} = b_0 + b_1 E + b_2 L + b_3 P. 1,0$$

- (3.c) Interprete o significado da equação: Como E, L e P influenciam a Quantidade vendida diária? 1,0
- (3.d) Determine o resíduo ($\operatorname{Resíduo}_i = Q_i \hat{Q}_i$). Faça um gráfico de dispersão dos resíduos (eixo-y) com os valores de Quantidade (no eixo-x).