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1 Introduction

Planning is important to an agent because its current and upcoming choices of
actions can intentionally establish, or accidentally undo, the conditions that later
actions depend upon to reach desirable states of the world. Hence, planning in
single-agent systems is concerned with how an agent can efficiently model and
select from alternative sequences of actions, preferably without considering ev-
ery possible sequence. In a multiagent setting, the added complication is that
decisions an agent makes about near-term actions can impact the future actions
that other agents can (or cannot) take. Similarly, knowing what actions other
agents plan to take in the future could impact an agent’s current action choices.
And, unlike single agents, multiple agents can act concurrently. Therefore an
agent’s choice of action at any given time can impact and be impacted by the ac-
tion choices of other agents at the same time. Because the space of possible joint
courses of action the agents could take grows exponentially with the number of
agents (as we will detail later), planning in a multiagent world is inherently in-
tractable, a problem that is compounded in dynamic, partially-observable, and/or
non-deterministic environments. Yet, when agents are cooperative, as we will as-
sume in this chapter, then they should strive to make decisions that collectively
over time achieve their joint objectives as effectively as possible.
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The above paragraph captures in a simplistic way the themes of this chap-
ter. By multiagent control, we refer to how agents in a multiagent system can
be provided with and utilize information to make better decisions about what to
do now so that their joint actions can further the achievement of joint objectives.
Multiagent planning focuses not just on current decisions, but also on sequences
of decisions, allowing an agent to “look ahead” so as to establish conditions for
another agent that allow it to achieve desired shared goals. From the cooperative
perspective, an agent should be willing to incur local cost if by doing so it en-
ables other agents to achieve benefits that more than offset that cost. Multiagent
execution extends and in some senses combines multiagent planning and control,
where agents both proactively plan their (inter)actions to guide the evolution of
their shared environment, but also reactively control their behaviors in response
to emergent or unlikely events.

In single-agent planning, a key to getting traction on solving hard problems is
to exploit structure, typically involving notions of locality and composition. An
agent’s state is typically composed of features (for example, propositions about
what facts are true in the agent’s environment), and an action the agent can take
typically involves only a small subset (locality) of features. By focusing only
on features of interest and the actions that involve them, an agent can focus its
search only on a much smaller space of relevant plans. Similarly, as we will
see in this chapter, solving multiagent planning and control problems can depend
critically on exploiting problem structure, where that structure extends to locality
of interacting agents (e.g., an agent’s action choices only directly affect a few other
agents), and locality of involved features (e.g., few agents can directly affect any
particular feature, and/or only a few of the features an agent cares about can be
affected by others). Agents can exploit such structure to formulate their joint plans
through composition: the solutions for the different localities can be combined
(relatively) straightforwardly into a comprehensive multiagent solution.

This chapter builds on the topics of the previous chapters to describe the con-
cepts and algorithms that comprise the foundations of multiagent control, plan-
ning, and execution. We assume that the reader is already familiar with protocols
of interaction; here those protocols are used in the context of coordinating coop-
erative multiagent action. We also assume the reader is familiar with traditional
Al search techniques, planning algorithms and representations, and models for
reasoning under uncertainty. We make liberal use of the relevant concepts as we
delve into their multiagent analogues.
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2 Characterizing Multiagent Planning and Control

As with many topics in multiagent systems (and artificial intelligence, and com-
puter science ...), a phrase like “multiagent planning” or “multiagent control” can
mean different things to different people. We do not claim that our characteriza-
tion here is necessarily the consensus opinion of the community, but it should give
the reader of this chapter a sense of the problems that are (and are not) within the
space of problems considered here.

Multiagent planning is something of an ambiguous term, because it is unclear
exactly what is “multiagent.” It could be that the operative issue is that, as a
consequence of possibly centralized planning, a plan is formulated that can be
distributed across and acted upon by a set of agent systems. Alternatively, the
operative issue could be that the planning process should itself be multiagent,
whether or not the resulting plan(s) are. Or perhaps both issues are of interest.

In this chapter, we consider both multiagent plans and multiagent plan forma-
tion as requirements. The case where neither holds is simply traditional single-
agent planning. The case where multiple agents cooperatively generate a single-
agent plan (such as where a set of planning specialists can contribute to the forma-
tion of a plan for the manufacture of an artifact [34], is effectively an instance of
cooperative problem solving, where the problem being solved is the construction
of a plan. Depending on the nature of the plan being devised, techniques such as
distributed constraint satisfaction [67], distributed constraint optimization (Chap-
ter 12), or distributed search [62] can be employed to jointly construct such a plan.
Finally, consider the case where a centralized planner builds a detailed collection
of plans to distribute among the agents, such that the behavior of each agent is
precisely dictated. While beautifully coordinated behavior can ensue, the agents
are stripped of any autonomy, and are thus arguably not agents in any interesting
sense any more. In essence, this is multi-effector planning, rather than multiagent
planning.

If the centralized planner provides less detailed guidance, however, then agents
can exercise their “agent” attributes to utilize local awareness of the world, along
with local preferences, knowledge, and capabilities, to more autonomously and
individually decide on current actions, and even to plan future actions. When this
occurs, then the multiagent plan and the plan formation process are both inher-
ently distributed among agents: no single agent forms or even might be aware of
the entire joint plan, since different agents may have made their own local plan
elaborations and refinements.

What happens if there is no centralized planner, and hence no centralized guid-
ance, at all? This is an interesting question. If we say that the agents could co-
operatively converge on an effective (distributed) joint plan without a centralized
planner, where did the guidance come from to do so? Typically, some central-
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izing entity (an agent, a human system designer, a group of people comprising
a standards body) will have devised and disseminated some guidelines, such as
interaction plans (aka protocols) and the rules for using them, which the agents
count upon to communicate and cooperate with each other. How and whether the
environment can itself provide the structure to allow dissimilar agents to converge
on cooperative plans for non-trivial problems, or can engender the unguided emer-
gence of languages and protocols that enable cooperation, is beyond the scope of
this chapter.

The preceding thus sets the table for our exploration of multiagent planning
and control techniques in this chapter. We begin in Section 3 with looking at the
process of creating centralized guidelines that push agents to make good control
decisions (about current actions) and/or planning decisions (about sequences of
actions). As we shall see, in some cases these guidelines can guarantee that the
control decisions or plans that each agent makes in adherence to the guidelines
must be jointly coordinated. In such cases, coordination precedes planning.

We then turn to the opposite (Section 4), when planning precedes coordination,
where the guidelines are weaker (typically, more general-purpose) and hence do
not constrain the space of joint plans much. Instead, each agent can elaborate its
own plan to achieve its assigned goals, and then these plans are coordinated by,
for example, adjusting the timing of agents’ activities to preclude interference.

Unfortunately, for a variety of interesting problems, including problems where
unexpected events can occur at runtime, (local) planning of individual actions
and (multiagent) coordination of interactions need to be done together, in an
interleaved manner. In Section 5, we look at how such multiagent sequen-
tial decision-making problems can be formulated as decentralized (partially-
observable) Markov decision processes, and describe techniques for finding opti-
mal and approximately-optimal solutions (joint plans) in such problems.

Finally, finding good joint plans is only useful if agents can successfully ex-
ecute them. Since planning is done using a model of the environment, and that
model might not correctly represent the actual environment at the time the plan is
executed, agents should monitor the progress of their plans against expectations,
and repair their joint plans in response to deviations. These ideas are familiar
(though still challenging) in the single-agent planning world; we conclude this
chapter (Section 6) describing strategies to handle similar problems in the multi-
agent setting.

3 Coordination Prior to Local Planning

Developers of distributed systems typically anticipate how entities within a sys-
tem might need to interact, and predefine interaction plan templates for the en-
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tities to fill in and follow. Examples of such interaction plan templates abound
in this book. These templates can take the form of interagent protocols, defining
the possible sequences of communicative acts between agents, where the content
of these acts can be domain dependent. For example, agents solving a distributed
constraint satisfaction problem follow protocols for exchanging information about
tentative assignments of values to variables, or of no-good assignments that col-
lectively violate constraints [67]. As another example, agents solving a resource
allocation problem can work within auction mechanisms that have been designed
to cause information exchanges to converge on efficient allocations (Chapter 7).

3.1 Social Laws and Conventions

We begin with a simple strategy to ensure sufficient coordination of agents’ ac-
tions, a strategy that has been characterized as imposing social laws on agents
[55, 56]. The idea is to identify joint states that should not be allowed to arise, and
to impose restrictions on agents’ action choices to prevent them.

A canonical application domain for social laws is in coordinating mobile
robots. Collisions between robots leads to system degradation (robots become
disabled) and cost (robots need repairs), and thus should be avoided. If space is
discretized, such as modeling it as a grid, then states where two or more robots
are in the same grid coordinate should be prevented. Thus, one law to impose on
the robots is that a robot should never move into a neighboring location that is
occupied.

A moment’s reflection reveals that such a law is insufficient, because it fails to
prevent two or more robots from simultaneously entering the same empty location
from different directions. One way to strengthen the social law is to prohibit
agents from entering a location from more than one direction. If each location in
the grid is to be reachable from every other location, this stronger law effectively
defines a directed cycle through the grid locations such that each location is visited
exactly once.

The stronger social law leads to agents moving through the locations in a sort
of “conga line,” where each can move to its next location when that location is
empty. Agents do not need to coordinate their action choices as they decide where
they want to go, because so long as agents obey the law, collisions cannot arise.
However, such prebuilt coordination generally comes at a price. An agent might
take a very circuitous route to get to a desired destination because of the social
law, when it could have potentially gotten where it wanted much more directly
and safely because other agents were far away. In human terms, going the wrong
way on a one-way street might be more efficient late at night when the odds of en-
countering oncoming cars is negligible. But deciding when it is safe to break such
laws requires agents to reason about (and often communicate with) each other. A
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purpose of social laws is to relieve agents of the burden of explicitly coordinating,
potentially at the price of some degree of inefficiency in joint behaviors.

The flip side of social laws that tell agents what they are prohibited from doing
in certain circumstances is the notion of conventions, which tell agents what they
should (or must) do. The conceptual framework for conventions is the same as
for social laws, which is to identify undesirable joint situations and to constrain
agents to actions that avoid them. A canonical application domain for conventions
i1s when agents share joint intentions [33], such that they have committed to work
together on achieving some mutually-desired goal. If, in the midst of pursuing this
joint goal, an agent comes to believe that the goal is unachievable, then it would
be irrational for the agent to continue pursuing it. However, a state in which
some agents are continuing to pursue a joint goal while others have dropped it as
unachievable is arguably an undesirable state, since the former agents are taking
futile actions. Hence, agents in the joint intentions framework follow a convention
that they must notify each other if they come to believe the joint goal cannot be
achieved.

Other flavors of these concepts have been introduced, such as that agents
should return shared resources to their default state after usage (e.g., putting a
tool back where it belongs when finished using it) or even go slightly out of their
way to make a shared environment more conducive to goal achievement for other
agents (e.g., widening a path while following it to make its traversal easier for
later agents) [29]. The algorithmic model shared by them all is:

1. Identify joint states that should be avoided (or sought).

2. Work backward through agents’ joint actions to identify possible precursor
states to these states.

3. Impose constraints on agents’ action choices in the precursor states to pre-
vent (or require) joint actions accordingly.

Note that this process can recurse. If a precursor of a state to avoid leads
inexorably to the undesirable state, then the precursor state should be added to
the states to be avoided, and the algorithm should work backwards from it too.
Similarly, if there is a way to go assuredly to a sought state from its precursor, the
precursor can be added to the set of sought states.

3.2 Organizational Structuring

While social laws and conventions apply equally to all agents, cooperation in
some types of problems can be better achieved if agents are differentially biased
in the actions they choose to, or choose not to, take. Organizational structures
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are a familiar example of this in human institutions. An organizational structure
defines, for example, a set of different organizational roles with identified respon-
sibilities, and connections between roles to direct exchanges of information and to
dictate authority relationships. A good human organizational structure is one that
provides the people occupying each of the roles with guidance about how to pri-
oritize their tasks and direct their communications such that their complementary
actions dovetail together into an effective whole.

As described in Chapter 2, similar ideas can and have been incorporated in
multiagent systems. Organizational structuring has been exploited in a variety of
application domains for multiagent systems, such as disaster response and sensor
networks. Since the sensor network application has been a mainstay of organiza-
tional structuring research for decades, we use it for illustrative purposes in this
section.

The most obvious roles for agents in a distributed sensor network correspond
with geographical regions: different sensor agents will be responsible for mon-
itoring events near where they are located (or where they are now tasked with
relocating to). Where sensor coverages overlap, responsibility for the overlap-
ping region should be assigned, though perhaps not exclusively. That is, just as
in human organizations where overlap between roles allows whomever is least
burdened in the current situation to take on more of the shared responsibility, role
overlap in multiagent systems also enables some degree of dynamic load balanc-
ing, and even fault tolerance.

Other forms of task decomposition within the distributed sensor network do-
main can lead to further refinement of roles. An agent with access to a particular
sensory apparatus (e.g., acoustic instead of visual) might be given greater respon-
sibility for monitoring for particular events. Agents might balance computational
load by assigning responsibility for different kinds of phenomena among them-
selves. Some agents might be given greater responsibility for integrating interpre-
tations from others rather than forming interpretations from raw data themselves.

3.2.1 Organizational Design

While the preceding says something about what an organizational structure does,
the question remains about where it comes from. In general, the space of possible
organizational designs for a non-trivial multiagent (including human) enterprise is
vast, and the ability to predict organizational performance (particularly in human
settings) is limited. Hence, while computational techniques have been used to
study and extend organizational theory [10], no consensus strategy for forming
organizations for systems of computational agents has emerged.

As outlined in Chapter 2, organizational designs can arise from the bottom
up, by adopting and codifying emergent patterns of interactions between agents,
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or can be constructed from the top down, by tasking one or more organizational
designers with forming an organizational structure that the collection of agents
then adopts. Both cases involve a search over (part of) the space of designs.

To make the design process more concrete, we here summarize one approach
developed by Sims, Corkill, and Lesser [57]. A core idea is to view the design
of an organization much like the creation of a hierarchical plan: given goals and
environmental conditions, decompose the goals into component subgoals, identify
agent roles whose preconditions are met by the environment and whose expected
effects match the subgoals, and compose an organization out of the resultant roles.
Then, match agents to the roles to instantiate the organization.

More precisely, the ORGANIZATIONSEARCH algorithm takes a sorted list of
candidate partial organizations, and steps through the list until the following pro-
cedure returns:

1. Generate expansions of the candidate partial organization by finding a goal
leaf in the decomposition hierarchy that has not been fully bound, and
replacing it with either a role-goal binding indicating how it could be
achieved, or with a subgoal tree that further decomposes it into subgoals.

2. Repeat step 1 until all leaves have associated roles.
3. Then use information about agent capabilities to assign agents to the roles.

4. 1If all roles can be assigned, return the organizational design, else return fail-
ure, triggering the search to continue with other candidate decompositions.

The design search begins with the candidate partial plan corresponding to
the organization’s top-level goal(s), and terminates as soon as a completely in-
stantiated organizational design has been found. Because the candidate list is
kept sorted using a heuristic, the first successful returned design is adopted; even
though a better design might be possible, the costs of an exhaustive search for it
argues for heuristic termination.

The above algorithmic outline ignores a variety of details about how knowl-
edge about decompositions and agent capabilities are collected, stored, and re-
trieved, and about complications that arise from, for example, assigning a single
role to multiple agents that then themselves need to coordinate. Yet, it is funda-
mentally like a planning algorithm. As has been pointed out elsewhere, the dis-
tinction between an organizational role and an abstract plan step is blurry [21]. In
both cases, the agent is expected to dynamically elaborate the specification given
its current circumstances, with the expectation that any suitable elaboration will
fulfill the responsibilities to the rest of the organization/plan.
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3.2.2 Organizational Execution and Functionally-Accurate Cooperation

Agents working in a distributed sensor network lack global awareness of the prob-
lem, and thus cooperate by forming local interpretations based on their local sen-
sor data and the tentative partial interpretations received from others, and then
sharing their own tentative partial interpretations. As a result, these agents need to
cooperate to solve their subtasks, and might formulate tentative results along the
way that turn out to be unnecessary. This style of collective problem solving has
been termed functionally accurate (it gets the answer eventually, but with possibly
many false starts) and cooperative (it requires iterative exchange) [40].

Functionally-accurate cooperation has been used extensively in distributed
problem solving for tasks such as interpretation and design, where agents only
discover the details of how their subproblem results interrelate through tentative
formulation and iterative exchange. For this method to work well, participating
agents need to treat the partial results they have formulated and received as tenta-
tive, and therefore might have to entertain and contrast several competing partial
hypotheses at once. A variety of agent architectures can support this need; in par-
ticular, blackboard architectures [15] have often been employed as semi-structured
repositories for storing multiple competing hypotheses.

Exchanging tentative partial solutions can impact completeness, precision, and
confidence. When agents can synthesize partial solutions into larger (possibly still
partial) solutions, more of the overall problem is covered by the solution. When
an agent uses a result from another to refine its own solutions, precision is in-
creased. And when an agent combines confidence measures of two (corroborat-
ing or competing) partial solutions, the confidence it has in the solutions changes.
In general, most distributed problem-solving systems assume similar representa-
tions of partial solutions (and their certainty measures), which makes combining
them straightforward, although some researchers have considered challenges in
crossing between representations, such as combining different uncertainty mea-
surements [68].

In functionally-accurate cooperation, the iterative exchange of partial results
is expected to lead, eventually, to some agent having enough information to keep
moving the overall problem solving forward. Given enough information ex-
change, therefore, the overall problem will be solved. Of course, without being
tempered by some control decisions, this style of cooperative problem solving
could incur dramatic amounts of communication overhead and wasted computa-
tion. For example, if agents share too many results, a phenomenon called dis-
traction can arise: it turns out that they can begin to all gravitate toward doing
the same problem-solving actions (synthesizing the same partial results into more
complete solutions). That is, they all begin exploring the same part of the search
space. For this reason, limiting communication is usually a good idea, as 1s giving
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agents some degree of skepticism in how they assimilate and react to information
from others. We address these issues next.

Organizational structuring can provide the basis for making good decisions
about where agents should direct their attention and apply their communication re-
sources. The organization defines control and communication protocols between
agents by providing messaging templates and patterns to agents that trigger appro-
priate information exchange. As a simple example, the organization can provide
an agent with simple communication rules, such that if the agent creates a lo-
cal hypothesis that matches the rule pattern (e.g., characterizes an event near a
boundary with other agents), then the agent should send that hypothesis to the
specified agents. Similarly, if an agent receives a hypothesis from another, the
organizational structure can dictate the degree to which it should believe and act
on (versus being skeptical about) the hypothesis.

Organization structures thus provide static guidelines about who is generally
interested in what results. But this ignores timing issues. When deciding whether
to send a result, an agent really wants to know whether the potential recipient
is likely to be interested in the result now (or soon). Sending a result that is
potentially useful but that turns out not to be at best clutters up the memory of
the recipient, and at worst can distract the recipient away from the useful work
that it otherwise would have done. On the other hand, refraining from sending a
result for fear of these negative consequences can lead to delays in the pursuit of
worthwhile results and even to the failure of the system to converge on reasonable
solutions at all because some links in the solution chain were broken.

When cluttering memory is not terrible and when distracting garden paths are
short, then the communication strategy can simply be to send all partial results.
On the other hand, when it is likely that an exchange of a partial result will distract
a subset of agents into redundant exploration of a part of the solution space, it is
better to refrain, and only send a partial result when the agent that generated it has
completed everything that it can do with it locally. For example, in a distributed
theorem-proving problem, an agent might work forward through a number of res-
olutions toward the sentence to prove, and might transmit the final resolvent that
it has formed when it could progress no further.

Between the extremes of sending everything and sending only locally-
complete results are a variety of gradations [22], including sending a small partial
result early on (to potentially spur the recipient into pursuing useful related results
earlier). For example, in a distributed vehicle monitoring problem, sensing agents
in neighboring regions need their maps to agree on how vehicles move from one
region to the other. Rather than waiting until it forms its own local map before
telling its neighbor, an agent can send a preliminary piece of its map near the
boundary early on, to stimulate its neighbor into forming a complementary map
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(or determining that no such map is possible and that the first agent is pursuing a
dubious interpretation path).

So far, we have concentrated on how agents decide when and with whom to
voluntarily share results. But the decision could clearly be reversed: agents could
only send results when requested. When the space of results formed is large and
only a few are really needed by others, then sending requests (or more generally,
goals) to others makes more sense. This strategy has been explored in distributed
vehicle monitoring [17], as well as in distributed theorem proving [25, 42].

It is also important to consider the delays in iterative exchange compared to a
blind inundation of information. A request followed by a reply incurs two commu-
nication delays, compared to the voluntary sharing of an unrequested result. But
sharing too many unrequested results can introduce substantial overhead. Clearly,
there is a trade-off between reducing information exchanged by iterative messag-
ing versus reducing delay in having the needed information reach its destination
by sending many messages at the same time. Sen, for example, has looked at this
in the context of distributed meeting scheduling [52]. Our experience as human
meeting schedulers tells us that finding a meeting time could involve a series of
proposals of specific times until one is acceptable, or it could involve having the
participants send all of their available times at the outset. Most typically, however,
practical considerations leave us somewhere between these extremes, sending sev-
eral well-chosen options at each iteration.

Finally, the communication strategies outlined have assumed that messages
are assured of getting through. If messages get lost, then results (or requests for
results) will not get through. But since agents do not necessarily expect mes-
sages from each other, a potential recipient will be unable to determine whether
or not messages have been lost. One solution to this is to require that messages be
acknowledged, and that an agent sending a message will periodically repeat the
message (sometimes called “murmuring”) until it gets an acknowledgment [41].
Or, a less obtrusive but more uncertain method is for the sending agent to pre-
dict how the message will affect the recipient, and to assume the message made it
through when the predicted change of behavior is observed.

3.3 The Contract-Net Protocol and Role Assignment

The third and final category of techniques we discuss where coordination is done
prior to making local planning and control decisions is the use of predefined proto-
cols. An entire chapter of this book is dedicated to communication and protocols,
and so we will not go into all of the gory details. But the important point from
the perspective of this chapter is that protocols typically amount to predefined
multiagent plan templates. These plan templates are intended to bring about a
new joint state of the world, where the new state can include agents now knowing
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things that they previously did not know, forging relationships and dependencies
that mutually benefit them, making commitments that allow each to pursue some
tasks with confidence that others will pursue related tasks, etc.

Formulating protocols is thus akin to formulating social laws or organizational
structures: given properties of desired states of the world, predefine patterns of
actions that if jointly followed will bring them about. In fact, the creation of
choreographed service-oriented computing frameworks can treat the problem of
composing and sequencing services as a planning problem (Chapter 3).

For the remainder of this section, however, we focus not on where protocols
come from, but rather on how they can serve to control the interactions of agents
toward a particular outcome. We will illustrate the ideas by examining one of the
very first multiagent protocols, the contract-net protocol, and one of its first ap-
plications, which is to establish a distributed sensor network [18]. In distributed
sensor network establishment (DSNE), roles (areas of sensing responsibility, re-
sponsibilities for integrating partial interpretations into more complete ones) need
to be assigned to agents, where the population of agents might be initially un-
known or dynamically changing. Thus, the purpose of the protocol is to exchange
information in a structured way to converge on assignments of roles to particular
agents.

At the outset, it is assumed that a particular agent is given the task of monitor-
ing a wide geographic area. This agent has expertise in how to perform the overall
task, but is incapable of sensing all of the area from its own locality. Therefore,
the first step is that an agent recognizes that to perform its task better (or at all) it
should enlist the help of other agents. As a consequence, it then needs to create
subtasks to offload to other agents. In the DSNE problem, it can use its repre-
sentation of the structure of the task to identify that it needs sensing done (and
sensed data returned) from remote areas. Given this decomposition, it then uses
the protocol to match these sensing subtasks with available agents.

The agent announces a request for bids for subtask. The important aspects
of the announcement for our purposes here are the eligibility specification, the
task abstraction, and the bid specification. (Attributes of message structures are
described more fully in Chapter 3.) To be eligible for this task requires that the
bidding agent have a sensor position within the required sensing area and that
it have the desired sensing capabilities. Agents that meet these requirements can
then analyze the task abstraction (what, at an abstract level, is the task being asked
of the bidders?) and can determine the degree to which it is willing and able to
perform the task. An eligible agent can then bid on the task, where the content of
a bid is dictated by the bid specification.

The agent with the task receives back zero or more bids. If it gets no bids,
then it can give up, try again (since the population of agents might be changing),
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broaden the eligibility requirements to increase the pool of potential bidders, or
decompose the task differently to target a different pool of bidders. Even if it gets
back bids, it could be that none are acceptable to it, and it is as if it got none
back. If one or more is acceptable, then it can award the sensing subtask to one
(or possibly several) of the bidding agents. Note that, because the agent with the
task has a choice over what it announces and what bids it accepts, and an eligible
agent has a choice over whether it wants to bid and what content to put into its
bid, no agent is forced to be part of a contract. The agents engage in a rudimentary
form of negotiation, and form teams through mutual selection.

4 Local Planning Prior to Coordination

In some problem domains, predicting and pre-arranging the resolution of all pos-
sible interactions can be difficult and costly. For example, consider an environ-
ment where agents might pursue a wide variety of goals largely independently,
but where aspects of the environment are shared such that how one agent affects
the environment can impact how (and even whether) another agent can achieve its
goals. Anticipating and planning for every possible interaction might be overkill.
Instead, coordination should depend on the actual plans, and hence emergent in-
teractions, of the agents in the current circumstances.

This viewpoint is appealing from the perspective of “divide and conquer”
problem solving. The notion is to divide the problem up such that agents ini-
tially treat their own local problems as being independent, and thus each agent
can formulate its own plan concurrently with the planning of other agents. After
formulating their separate plans, then, the agents need to coordinate their plans to
resolve their unintended interactions. We will refer to the problem of resolving
interactions between separately-formed agent plans as the multiagent plan coor-
dination problem (MPCP).

As has been noted by a variety of people (dating back to Conry et al. [13], and
recently by Nassim et al. [46]), this view of multiagent planning is compatible
with a distributed constraint satisfaction formulation, where the variables are the
agents’ plans, and the constraints enforce that the plans dovetail together suitably.
In distributed constraint satisfaction approaches [67], each agent is responsible for
some set of variables, where each variable has an associated (typically finite) do-
main of values, and whose value assignment can be constrained depending on the
assignments of other variables (possibly belonging to other agents). Traditionally,
distributed constraint satisfaction algorithms involve asynchronous exchanges of
tentative value assignments to (some of) the variables, and then information about
constraint violations that trigger one or more agents to revise their tentative as-
signments. Parallel search can speed up finding a satisfying assignment, but care
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must be taken to ensure the process is complete and terminates.

The MPCP differs from typical distributed constraint satisfaction problems in
several important ways. First, the domain of possible “values” for an agent’s plan
“variable” is usually large (even infinite), and expensive to construct. Hence, there
is a desire to generate as few elements of the variable domains as possible before
converging on a joint plan. Second, the “constraints” between agents’ variables
are complex. It is non-trivial to assess whether the plans of two agents are com-
patible and will lead to some desired outcome state (or avoid an undesired state)
if executed asynchronously.

Hence, the MPCP is generally solved in a sequential manner, possibly with
backtracking, without assurances of finding an optimal joint plan. The basic out-
line of the algorithm is:

1. Each agent builds its local plan as if it were alone in the environment.

2. Agents directly, or through a more centralized mediary, identify potential
problems that can arise during joint execution.

3. For problems that can arise, agents inject additional constraints into their
plans (typically, over the timing of their actions relative to each other) to
prevent such problems.

4. If all problems are prevented, then the agents are done. Otherwise, if some
problems cannot be prevented, then one or more agents develops an alterna-
tive local plan, and the coordination problem repeats with the new portfolio
of agent plans.

4.1 State-Space Techniques

The preceding algorithm sketch obviously leaves underspecified exactly how
agents identify and rectify potential problems. One approach for doing so, rem-
iniscent of GRAPHPLAN concepts [50, section 11.4], is to forward simulate the
execution of agents’ plans, step by step, and to detect whether an inconsistent
state of the world arises, such as where a condition is simultaneously both estab-
lished and undone, or when a single resource is assumed to be claimed by more
than one agent at the same time. When such a state arises, the combination of
actions that led to the inconsistency is analyzed, and one or more of those actions
are prohibited to prevent the inconsistency. In essence, the agent(s) performing
those action(s) are required to pause in the execution of their plan(s) at this step.
Then, from the new resulting consistent state, again all agents (including those
who paused) propose their next actions, and the process continues. If one or more
agents is blocked from ever completing its plan, then the process can backtrack to
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either pause different combinations of actions, or even to request some agents to
form different local plans. It is also possible for some agent actions to be entirely
skipped over, if serendipitously some other agents had established the conditions
that those actions were intended to establish.

Ephrati and Rosenschein [23, 24] have formulated a more robust version of
this approach. Their plan combination search approach to multiagent plan coor-
dination begins with each agent constructing a set of possible local plans, rather
than just one specific local plan which might be incompatible with local plans of
others. During the search, the agents’ sets of plans gets refined to converge on a
nearly optimal combination. The search process avoids commitment to sequences
of actions by specifying sets of propositions that hold as a result of action se-
quences instead of fully grounded states. The agents search by proposing, given a
particular set of propositions about the world, the changes to that set that they each
can make with a single action from their plans. These are all considered so as to
generate candidate next sets of propositions about the world, and these candidates
are ranked using an A* heuristic. Specifically, the cost of reaching the candi-
date set of propositions is summed with the total of each agent’s estimated cost to
achieve its goal based on its plans. The best candidate is chosen and the process
repeats, until no agent wants to propose any changes (each has accomplished its
goal).

Ephrati and Rosenschein illustrate this approach using a simple problem of
agents cooperatively constructing an arch by separately planning the construction
of each upright as well as the lintel [23]. Note that, depending on the more global
movement of the plan, an agent will be narrowing down the plan it expects to use
to accomplish its own private goals. Thus, agents are simultaneously searching for
which local plan to use as well as for synchronization constraints on their actions,
since in many cases the optimal step forward in the set of achieved propositions
might omit the possible contributions of an agent, meaning that the agent should
not perform an action at that time.

4.2 Plan-Space Techniques

The plan-space formulation of the MPCP below follows from Russell and
Norvig’s presentation of partial-order planning [S0]. We begin with a brief re-
fresher on single-agent partial-order planning, and then provide definitions and
algorithms that extend it to the multiagent case.

4.2.1 Single-Agent Plans

A single-agent plan is a total or partial ordering of steps that will advance an
agent from its initial state / to a state that satisfies its goal conditions G. A plan
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step is a fully grounded (or variable free) instance of an operator from the agent’s
set of operators. An operator a in this representation has a set of preconditions
(pre(a)) and postconditions (post(a)), where each condition ¢ € pre(a) U post(a)
is a positive or negative (negated) first-order literal. The set pre(a) represents the
set of preconditions that must hold for the agent to carry out operator a, and the
set post(a) represents the postconditions, or effects, of executing the operator on
an agent’s world state.

A standard formulation of a single-agent plan is a partial-order, causal-link
(POCL) plan. POCL plans capture temporal and causal relations between steps in
the partial-order plan. The definition of a POCL plan here is based on Bickstrom
[2], though it follows common conventions in the POCL planning community [63]
to include special steps representing the initial and goal states of the plan.

Definition 11.1 A POCL plan is a tuple P = (S, <, <c) where S is a set of plan
steps (operator instances), <t and <c are (respectively) the temporal and causal
partial orders on S, where e €< is a tuple (s;,s;) with s;,s; €S, and e €<c is a
tuple (s;.s;,c) with s;,s; € S and where c is a condition. A POCL plan models the
agent’s initial state using an init step, init € S, and the agent’s goal using a goal
step, goal € S, where post(init) = I (the initial state conditions), and pre(goal) =
G (the goal conditions).

Elements of <7 are commonly called ordering constraints on the steps in the
plan. A partial-order plan has the following properties:

o < isirreflexive (if s; <7 s; then s; A7 s;).
e <y istransitive (if s; <7 sj and s; <7 s; then s; <7 s1).

Elements of < are the causal links, representing causal relations between
steps, where causal link (s;,s;,¢) represents the fact that step s; achieves condition
c for step s;. The presence of a causal link in a plan implies the presence of an
ordering constraint.

The single-agent planning problem can be seen as the problem of transforming
an inconsistent POCL plan into a consistent POCL plan. This is done by searching
through the space of possible POCL plans, identifying the consistency flaws in the
current POCL plan under consideration, and iteratively repairing them to produce
a state representing a consistent POCL plan. Flaws include causal-link conflicts
and open preconditions. The presence of a causal-link conflict in a plan indicates
that, for some causal link (s;,s;,c), there exist executions (linearizations) of the
partial-order plan where a step s; € S negates condition c after it is produced by
s; but before it can be utilized by step s;. Given a conflict between a step s and
a causal link (s;,s;,c), the standard method to resolve it is to add either (s,s;) or
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Figure 11.1: Initial state for simple blocks world problem.

(sj,sx) to <7. That is, order the threatening step either before or after the link. An
open precondition ¢ of a plan step s; € S can be satisfied by adding a causal link
(si,sj,c) where step s; € S establishes the needed condition (and s; is not ordered
after s;). If this requires that a new step s; is added to S, then its preconditions
become new open preconditions in the plan.

As a simple example, consider the blocks world situation portrayed in Fig-
ure 11.1. Say Agentl has a goal of achieving a state where block A is on block B.
Using the POCL algorithm, it creates the plan shown in Figure 11.2, where actions
and their parameters are given in the squares, their preconditions (postconditions)
are given to the left (right) of the square, causal links are the narrow black arrows,
and ordering constraints are the wide gray arrows. Notice that the plan is partially
ordered, in that before block A can be stacked on B, both blocks must be cleared,
but they can be cleared in either order. Finally, in Figure 11.3 is a plan for Agent2
to stack block B on C. Neither agent cares where block D ends up.

4.2.2 Multiagent Plans

To extend the notation and definitions of POCL plans to the multiagent case, we
first address the issue of action concurrency. A single-agent usually takes only one
action at a time, and thus a POCL plan such as in Figure 11.2 will be linearized
before or during execution. If an agent can execute multiple actions in paral-
lel, unordered actions that are eligible for execution are assumed to be executed
concurrently. The POCL plan representation cannot express that some unordered
steps to be executed in parallel but not others. To make this distinction, we extend
from Béckstrom [2] the idea of a parallel plan, to define a parallel POCL plan.

Definition 11.2 A parallel POCL plan is a tuple P = (S, <7, <c,#,=) where
(S,=<r1,=c) is the embedded POCL plan, and “#” and “=" are symmetric non-
concurrency and concurrency relations over the steps in S, respectively.

The relation (s;, s j> € = means that 5; and s; are required to be executed simul-
taneously. For example, if a plan has multiple goal steps and is intended to reach
a state where all goals are satisfied simultaneously, then all pairs of goal steps
would be elements of =. The relation (s;,s;) € # is equivalent to the statement
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Figure 11.3: Single POCL plan for stacking block B on block C.

(s; <7 8i) V (si <r s;). The # relation is needed because we make the assumption
that parallel plans obey the post-exclusion principle [2], which states that actions
cannot take place simultaneously when their postconditions are not consistent.
The # and = are disjoint sets, as two steps cannot be required to be concurrent and
non-concurrent.

Given this definition of a parallel plan, it is clear that a partial-order (POCL)
plan P is a specialization of a parallel (POCL) plan P* in which either all pairs
of steps in P* are in # (if it is assumed an agent can do only one action at a
time) or none of them are (if all unordered actions are assumed to be concurrently
executable). Likewise, a POCL plan implicitly requires that = be empty (unless a
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single agent can execute multiple steps concurrently).
Because of the post-exclusion principle, parallel plans have an additional
source of plan flaws:

Definition 11.3 A parallel-step conflict exists in a parallel plan when there are
steps sj and s; where post(s;) is inconsistent with post(s;), s; Ar si, si A s and

<S,‘,Sj> ¢ #

However, unlike open conditions and causal-link conflicts, parallel-step con-
flicts can always be resolved, no matter what other flaw resolution choices are
made. Recall that to repair a parallel-step conflict between steps s; and s, we
need only ensure that the steps are non-concurrent, either by adding s; <7 s; or
s j <r s; to the plan. Given an acyclic plan P, there will always be at least one way
of ordering every pair of steps in the plan such that the plan P remains acyclic.
This can be trivially shown by considering the four possible existing orderings of
any pair of steps s; and s; in plan P. First, s; and s; could be unordered. In this
case, we can add either s; <7 s or s; <7 s; to the plan without introducing cycles
in the network of steps. Second, s; <7 s; is in the plan, in which case the parallel-
step conflict has already been resolved. The same is true when s; <7 s; is in the
plan. Finally, s; <7 s; and s; <7 s; could both hold in the plan, but in this case the
plan already has a cycle, and so repairing the parallel-step conflict becomes moot.

The parallel plan model captures the idea of concurrency, but it is not rich
enough to describe the characteristics of a multiagent plan, in which we also need
to represent the agents involved, and to which actions they are assigned. To do so,
we extend the definition of a parallel plan to a multiagent parallel POCL plan.

Definition 11.4 A multiagent parallel POCL plan is a tuple M = (A, S, <r1,<c,
#,=,X) where (S,<r,<c,#,=) is the embedded parallel POCL plan, A is the set
of agents, and X is a set of tuples of form (s,a), representing that the agent a € A
is assigned fo execute step s. A multiagent plan models the agents’ initial states
using init steps, init; € S, and the goals of the agents using a set of goal steps,
goal; € S, where the preconditions of the goal steps represent the conjunctive goal
that the plan achieves, and the postconditions of the init steps represent features
of the agents’ initial states before any of them take any actions.

Figure 11.4 shows the (inconsistent!) multiagent parallel POCL plan com-
posed of the two agents’ individual plans from Figures 11.2 and 11.3. The dashed
rectangles around the init steps and goal steps indicate that these pairs of steps are
in the = relation. That is, all init steps happen simultaneously (there is a single
initial state whose conditions are the union of the init step postconditions), and
all goal steps happen simultaneously (there is a final goal state for the multiagent
system whose conditions are the union of the goal step preconditions).
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Now, just as in the single-agent case, the multiagent planning problem can
be solved by making an inconsistent multiagent parallel POCL plan consistent,
where each plan step is assigned to an agent capable of executing the step. More
formally, the multiagent plan coordination problem is the problem, given a set
of agents A and the set of their associated POCL plans P, of finding a consistent
and optimal multiagent parallel POCL plan M composed entirely of steps drawn
from P (in which agents are only assigned to steps that originate from their own
individual plans) that results in the establishment of all agents’ goals, given the
collective initial state of the agents. The MPCP can thus be seen as a restricted
form of the more general multiagent planning problem in which new actions are
not allowed to be added to any agent’s plan.

This definition of the MPCP imposes a set of restrictions on the kinds of multi-
agent plan coordination problems that can be represented. Because an agent can
only be assigned steps that originated in its individual plan, this definition does
not model coordination problems where agents would have to reallocate their ac-
tivities. Further, because only individually-planned steps are considered, the def-
inition does not capture problems where additional action choices are available if
agents work together; that is, an agent when planning individually will not con-
sider an action that requires participation of one or more other agents. Finally, in
keeping within the “classical” planning realm, the definition inherits its associated
limitations, such as assuming a closed world with deterministic actions where the
initial state is fully observable.

For any given multiagent parallel plan, there may be many possible consistent
plans one could create by repairing the various plan flaws. However, not all
consistent plans will be optimal. Based on the assumptions outlined previously
concerning the nature of the multiagent plan coordination problem (namely, that
the final plan must be assembled solely from the original agents’ plans), an op-
timal multiagent plan will be one that minimizes the total cost of the multiagent
plan:

Definition 11.5 Total step cost measures the cost of a multiagent parallel plan by
the aggregate costs of the steps in the plan.

This simple, global optimality definition is not the only one that could be used
for the MPCP, but correlates to the most widely-adopted single-agent optimality
criterion. Other relevant definitions include ones minimizing the time the agents
take to execute their plans (exploiting parallelism), maximizing the load balance
of the activities of the agents, or some weighted combination of various factors.
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Figure 11.4: Initial (inconsistent) multiagent parallel POCL plan.

4.2.3 Multiagent Plan Coordination by Plan Modification

As illustrated in Figure 11.4, an initial multiagent parallel plan can simply be the
union of the individual plan structures of the agents, and thus might contain flaws
due to potential interactions between the individual plans. The initial multiagent
plan can then be incrementally modified as needed (by both asserting new coordi-
nation decisions and retracting the individual planning decisions of the agents) to
resolve the flaws. We call this approach coordination by plan modification.

From the initial (as yet uncoordinated) multiagent plan, plan coordination
takes place by repairing any flaws due to interactions between the plans. The
types of flaws are exactly the same as in parallel POCL plans: open precondi-
tions, causal-link threats, and parallel-step flaws. Assuming each of the individual
plans are consistent, there should be no open precondition flaws to resolve, at least
to begin with. Causal link threats within each agent’s plan should not exist, but
new threats arise when an action in one agent’s plan threatens a link in another
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Figure 11.5: Ordering constraint added to resolve causal-link threat.

agent’s plan. In the running example (Figure 11.4), Agentl’s Move(A,T,B) step
results in block B no longer being clear (—C1(B)), which threatens the causal link
between Agent2’s Move(D,B,T) and Move(B,T,C) steps. The flaw can be resolved
by adding to the ordering constraints that Move(A,T,B) come after Move(B,T,C),
as shown in Figure 11.5. Similarly, as before, parallel-step flaws can also be han-
dled by adding in ordering constraints, though the running example has no such
flaws.

The multiagent parallel POCL plan in Figure 11.5 could still be considered
flawed, however, because Agentl and Agent2 both are planning on moving block
D from block B to the table. In the best case, one of these agents would execute the
action, and then the other before attempting its action would recognize that it can
simply skip the action because the desired effects are done. However, some plan
execution systems would treat the situation as a deviation from expectations and
attempt to repair the plan by inserting actions to (re)establish the conditions that
the step expected. In other words, the second agent to execute the Move(D,B,T)
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action might put block D back onto block B just so that it can move it off. This
is obviously wasteful of time and energy. And, even worse, if the two agents
were to attempt their Move(D,B,T) actions at about the same time, their effectors
(grippers) might collide, and the agents might disable themselves!

The MPCP thus introduces a new type of flaw that affects the correctness, or at
least the optimality, of the multiagent plan. Specifically, a step from some agent’s
plan could be redundant given the presence of steps in others’ plans. Note that
redundancy does not require that the agents seek the same effect. For example, if
Agentl had included action Move(D,B,T) to achieve On(D,T), while Agent2 had
planned that action to achieve CI(B), the action taken by one agent has the side
effect of satisfying the other. In such cases, redundant steps may be able to be
removed without introducing new open precondition flaws.

Definition 11.6 A plan step s is redundant in a multiagent parallel POCL plan M
with steps S when there exists a set of replacing steps R, where R C S, such that for
each causal link of form (s.s" ¢), it is also the case that 3s' € R s.t. ¢ € post(s').

Redundancies can be discovered by altering the causal structure of the multi-
agent plan, by retracting some causal-link instantiation decisions and then assert-
ing others to replace them (so as to prevent the introduction of open precondition
flaws). To perform an adjustment of a single causal-link [ = (s;,5;,¢), we simply
identify another step sy that also achieves condition ¢, and then change [ such that
[ = (sk,sj,c). If such an adjustment leaves s; with no outgoing causal links, then
s; can be removed from the plan.

Note that the removal of a single redundant step may require many causal links
to be adjusted as each outgoing causal link of a redundant step must be adjusted
so that the redundant step is no longer causally necessary in the plan. Thus, a
set of steps can collectively replace a single redundant step in a plan. Also note
that removing plan steps provides an alternative way to resolve causal-link and
parallel-step flaws: rather than adjust orderings for a step that threatens a link or
introduces a potential inconsistency with another step, the step can be removed
and the flaws go away. Finally, note that just because a redundancy exists, it does
not mean that it can necessarily be exploited. As in a single-agent plan, the same
action might need to be taken multiple times because its effects are necessarily
undone by intervening actions. (The Towers of Hanoi puzzle is a familiar example
of this.) During plan modification, if removal of such a step is attempted, the
process of link adjustment would result in causal link threats that have no valid
resolutions.

The plan modification algorithm (PMA) is shown in Algorithm 11.1. The
PMA uses a best-first search in order to find the optimal solution. The search
algorithm begins by initializing the search queue with the starting multiagent par-
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Input : an (inconsistent) multiagent parallel plan
Output: an optimal and consistent multiagent parallel plan or null plan

1 Initialize Solution to null;
2 Add input plan to search queue;
3 while gueue not empty do
4 Select and remove multiagent plan M from queue;
5 if M not bounded by Solution then
6 if (M passes Solution Test) and (steps in M < steps in Solution) then
7 | Solution = M,
8 end
9 Select and adjust a non-flagged causal-link in M;
10 For each refinement, remove unnecessary steps in plan;
11 Enqueue all plan refinements in search queue;
12 end
13 end

N

14 repair parallel-step conflicts in Solution;
15 return Solution;

Algorithm 11.1: Multiagent plan coordination by plan modification.

allel plan, and by initializing the current best solution, Solution, to null. Then,
while the queue is not empty, it selects a multiagent plan M with the lowest total
step cost from the queue.

A bounding test is applied to M to determine whether it is possible for M to
have a lower total step cost than the best Solution found so far (if any). A lower
bound on total step cost is computed for plan M by working backwards from the
goal steps to find all plan steps that contribute flagged causal links (as will shortly
be explained) to achieving the goal. If the lower bound of M is below the cost of
Solution, the algorithm proceeds.

PMA next applies a SolutionTest to M, to derive a consistent solution from M,
where any flaws in M other than step redundancy flaws are iteratively resolved by
adding ordering constraints. The SolutionTest thus conducts a depth-first search
through the space of flaw resolutions to find a consistent solution, heuristically
ordering the search to prioritize flaws for which there are fewer alternative resolu-
tions, which is a minimum remaining values (MRV) heuristic [50]. If the consis-
tent solution from M has a lower total step cost than Solution, it replaces Solution.

The PMA algorithm then selects and adjusts a non-flagged causal link in
M. In Figure 11.5, consider the causal link into condition CI(B) for Agentl’s
Move(A,T,B) step. That causal link could originate from either Agentl’s
Move(D,T,B) step (as it does in the figure) or from Agent2’s Move(D,T,B) step.
The PMA makes copies of M that differ only in this refinement of the source of
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Figure 11.6: Solution multiagent parallel POCL plan.

the causal link, and in each “flags” the causal link so that it is not branched on
again, because each of the refinements is added to the queue and might later be
further modified. If in a refinement of M the redirection of causal links results in
a plan step having no outgoing causal links, then that plan step is removed. When
that refinement is enqueued, it will move forward in the queue since its total step
cost will be lower.

The process of dequeuing, testing, and refining continues until the queue is
empty, at which point the current value of Solution represents the lowest cost
multiagent parallel plan derivable from the input plans. PMA then resolves any
parallel-step conflicts in Solution (which, as was previously noted, must be re-
solvable), and returns Solution. In our simple example, the input from Figure 11.4
will lead to two possible solutions, one of which is shown in Figure 11.6 and the
other where the Move(D,B,T) action is instead done by Agentl. These both have
the same number of steps. If the total step cost function also considers parallel
activity, the solution shown would be preferred.
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4.3 Hierarchical Multiagent Plan Coordination

Hierarchical task network (HTN) planning is a method with algorithmic similari-
ties to POCL planning. As per the summary in [50], single-agent HTN planning is
a plan-space search method where the process focuses on refining abstract plans,
rather than fixing flawed plans as in POCL planning. The idea is that the planning
agent is endowed with a library of plans at various levels of abstraction, and the
planning process involves refining a plan by iteratively replacing abstract steps
with sequences of steps that are closer to being operational.

A familiar example of (human) HTN planning is planning a trip to attend a
distant meeting. Given the distances involved, I might decide that my plan is to
“fly” to the meeting. But I cannot execute such a plan without first refining it into
steps of getting to a nearby airport, taking a flight to an airport near the meeting
site, and then getting from that airport to the meeting. Each of these steps in turn
needs to be refined further, until all the steps have been reduced to executable
(primitive) actions. Given the same space of primitive actions, a state-space or
POCL planner could in principle find the same plan, but the knowledge encoded
in entries of the plan library (e.g., that flying involves going from where you are
to an airport, taking a flight, and getting from the resulting airport to your final
destination) can greatly streamline the planning process.

The same can be said for streamlining the multiagent planning process. The
specification of hierarchical plans for teams of agents is part of a process that
has been called team-oriented programming [49]. Such plans not only describe
how high-level tasks are broken down into subtasks, but also how collaborative
activities are broken down into different roles, similarly to relationships between
agents in organizational structures (Section 3.2). Plan refinements associate with
a subtask one or more roles that are responsible for that subtask, and ultimately
the refinement process assigns an agent to each role. (Recovery from agent failure
thus can be done by simply reassigning a role rather than replanning from scratch.)
An agent can further refine an assigned subtask for its role using standard HTN
planning. Timing and other relationships between different agents’ tasks are spec-
ified in the team-oriented programming framework, but generic mechanisms for
enforcing them can be automatically instantiated by a team-oriented programming
infrastructure such as STEAM [59].

HTN planning representations have also been exploited as a means for flexi-
bly solving multiagent plan coordination problems (Section 4). The insight is that,
while an agent can only execute a plan at the level of primitive actions, multiagent
coordination actions can (and often should) be based on more abstract levels of
the hierarchy [11]. For example, two robots performing tasks in the rooms of a
shared environment might avoid collisions by synchronizing to avoid ever occu-
pying the same room, rather than incurring the expense of reasoning about colli-
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1. Initialize the current abstraction level to the most abstract level.
2. Agents exchange descriptions of the plans and goals of interest at the current level.

3. Remove plans with no potential conflicts. If the set is empty, then done; otherwise
determine whether to resolve conflicts at the current level or at a deeper level.

4. If conflicts are to be resolved at a deeper level, set the current level to the next
deeper level and set the plans/goals of interest to the refinements of the plans with
potential conflicts. Go to step 2.

5. If conflicts are to be resolved at this level:

(a) Agents form a total order. Top agent is the current superior.
(b) Current superior sends down its plan to the others.

(c) Other agents change their plans to work properly with those of the current
superior. Before confirming with the current superior, an agent also
double-checks that its plan changes do not conflict with previous superiors.

(d) Once no further changes are needed among the plans of the inferior agents,
the current superior becomes a previous superior and the next agent in the
total order becomes the superior. Return to step (b). If there is no next agent,
then the protocol terminates and the agents have coordinated their plans.

Algorithm 11.2: Hierarchical behavior-space search.

sions at the primitive level. Thus, agents might communicate and coordinate at
an abstract planning level. This not only can have computational benefits (fewer
combinations of joint steps to reason about), but also can have flexibility benefits
at execution time. For instance, in our example of robots in a shared workspace, if
robots only coordinate at the level of entering and leaving rooms, then each robot
retains flexibility to change its planned movements within a room without needing
to renegotiate with the other. However, coordinating at an abstract level tends to
lead to less efficient joint plans (e.g., a robot idling waiting for another to exit a
room rather than carefully jointly working within the room). Further, to antici-
pate potential primitive interactions at abstract levels means that agents need to
summarize for abstract steps the repercussions of the alternative refinements that
might be made [11]. Algorithm 11.2 summarizes a simple algorithm for solving
the multiagent plan coordination problem for agents that have hierarchical plans.
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S Decision-Theoretic Multiagent Planning

Decision-theoretic planning is aimed at choosing actions under uncertainty by
maximizing the expected value of some performance measure called utility. Plan-
ning in this case explicitly factors the uncertainty about the outcomes of actions
and the state of the domain, aiming to optimize utility rather than provably sat-
isfy certain goals. For example, a decision-theoretic plan for a space exploration
rover could maximize the scientific return, measured by the amount or the value
of the collected data in a given mission, in the face of uncertainty about the pace
of progress of the rover and amount of power left in its battery. When applied
to a multiagent system, decision-theoretic planning optimizes simultaneously the
local plan as well as coordination decisions. The value associated with each ac-
tion is based on its impact on the domain, the information it transmits to other
agents, and the information it obtains from the domain or other agents. Thus, a
single planning process optimizes the comprehensive value, thereby optimizing
both domain actions and coordination.

A standard framework to tackle planning under uncertainty is the Markov de-
cision process (MDP) [47]. The model represents the domain using a set of states.
It is designed for a single decision maker whose actions lead to stochastic transi-
tions to new states and a reward that can depend on the action and outcome. The
partially observable MDP (POMDP) is a generalization of the basic model that
accounts for imperfect observations. In a POMDP, the decision maker receives
partial information about the state of the world after taking each action. In that
case, the agent can maintain a belief state (probability distribution over domain
states), and must act without knowing the exact state of the world. One of the
key observations that made it possible to solve single-agent POMDPs is that any
POMDP can be viewed as a belief-state MDP — an MDP whose domain states
are probability distributions over real-world states. Unfortunately, the same is not
true in the multiagent case, making planning substantially more complicated. A
range of exact and approximate dynamic programming algorithms have been de-
veloped for solving MDPs and POMDPs. These algorithms have been used in
many practical applications.

A more general planning problem arises when two or more agents have to co-
ordinate their actions. Imagine for example two space exploration rovers that con-
duct experiments as part of an overall mission. The value of the data collected by
one rover may depend on the experiments performed by the other rover. Planning
in this case becomes particularly complicated when each agent receives different
observations and has different partial knowledge of the overall situation. We refer
to such problems as decentralized control problems, indicating that all the agents
control a single process in a collaborative manner, but must each act in a decen-
tralized manner based on their own observations. Such decentralized multiagent
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Figure 11.7: Hlustration of a two-agent DEC-POMDP.

control problems are ubiquitous. Examples include coordination of mobile robots,
load balancing for decentralized queues, target tracking in sensor networks, and
monitoring of hazardous weather phenomena. This section describes models for
representing such planning problems and algorithms for solving them.

5.1 Models for Decision-Theoretic Multiagent Planning

Natural extensions of MDPs and POMDPs to multiagent settings have been pro-
posed and extensively studied since the late 1990s. We focus in this chapter on
decentralized POMDPs (DEC-POMDPs) [7]. Figure 11.7 illustrates a DEC-
POMDP with two agents. In each step, each agent takes an action, the joint set
of actions causes a stochastic change in the state of the world, and a reward is
generated based on the actions and their outcome. Then, each agent receives its
own private observation and the cycle repeats.

Definition 11.7 (DEC-POMDP) A decentralized partially observable Markov
decision process (DEC-POMDP) is a tuple (I,S,{A;},P,{Qi},O,R,T) where

e [ is a finite set of agents indexed 1,...,n.
e S is a finite set of states, with distinguished initial state sy or belief state by.

e A; is a finite set of actions available to agent i and A= RictAj is the set of
joint actions, where d = (ay,...,a,) denotes a joint action.

e P:SxA— AS is a Markovian transition function. P(s'|s,d) denotes the
probability of a transition to state s' after taking joint action d in state s.

o Q; is a finite set of observations available to agent i and Q = ®R;c;Q; is the
set of joint observations, where 6 = (01, ...,0y) denotes a joint observation.

e 0:AxS— AQ is an observation function. O(3|d,s') denotes the probabil-
ity of observing joint observation o given that joint action d was taken and
led to state s'. Here s' € S,d € A, 6 € Q.
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DEC-POMDP
1-POMDP DEC-POMDP-COM

(finitely nested) MTDP

Figure 11.8: Relationship among several models for multiagent planning.

e R:A XS — Ris a reward function. R(d,s") denotes the reward obtained
after joint action d was taken and a state transition to s' occurred.

The goal is to maximize the cumulative (discounted) reward over some fi-
nite horizon 7" or over an infinite horizon. The model includes only one reward
function, indicating that the agents operate collaboratively toward one objective.
A special case of DEC-POMDP, called DEC-MDP, models situations in which
the combined observations of all the agents provide perfect information about the
underlying world state. DEC-MDPs extend multiagent MDPs (MMDPs), where
each agent has full knowledge of the underlying world state [9]. Notice that a
DEC-POMDP model is equivalent to a single-agent POMDP when n = 1.

Communication between agents can be modeled by a DEC-POMDP either
implicitly or explicitly. Implicit communication occurs whenever one agent’s ac-
tions affect another agent’s observations. Explicit communication — exchanging
messages between agents — can be represented by making the message a compo-
nent of each observation. Each action in this case can be divided into two parts:
a domain action that affects the state of the environment, and a communication
action that affects the messages received by other agents.

A model equivalent to DEC-POMDP called multiagent team decision problem
(MTDP) was introduced in 2002 [48]. DEC-POMDPs and MTDPs are a special
case of partially-observable stochastic games (POSGs), which allow each agent
to have a different objective encoded by a private reward function. Another re-
lated model that explicitly represents beliefs about other agents, called interactive
POMDP (I-POMDP), was introduced in 2005 [28]. The relationships between the
different models is illustrated in Figure 11.8, largely based on the analysis in [54].

To illustrate the problems and solution methods, we will use a simple toy
problem called the multiagent tiger problem. This domain includes two agents,
two states, three actions, and two observations, and was introduced by Nair et
al. [44]. In this problem, the two agents are initially situated in a room with two
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doors. Behind one door is a tiger and behind the other is a large treasure. Each
agent may open one of the doors or listen. If either agent opens the door with
the tiger behind it, a large penalty is given. If the door with the treasure behind it
is opened and the tiger door is not, a reward is given. If both agents choose the
same action (e.g., both open the same door), a larger positive reward or a smaller
penalty is given to reward this cooperation. If an agent listens, a small penalty is
given and an observation is seen that is a noisy indication of which door the tiger
is behind. Once a door is opened, the game resumes from its initial state with the
tiger, and treasure’s locations randomly reshuffled.

This class of problems has raised several questions about the feasibility of
decision-theoretic planning in multiagent settings: Are DEC-POMDPs signifi-
cantly harder to solve than POMDPs? What features of the problem domain af-
fect the complexity, and how? Is optimal dynamic programming possible? Can
dynamic programming be made practical? Can locality of agent interaction be
exploited to improve algorithm scalability? Research in recent years has signifi-
cantly increased the understanding of these issues and produced a solid foundation
for multiagent planning in stochastic environments. We describe below some of
the key results and lessons learned.

5.1.1 Solution Representation and Evaluation

Solutions for decentralized control problems involve a set of policies — one per
agent — that determine how each agent should act so as to maximize the overall
reward. How can these policies be represented? In the case of finite-horizon
problems, one can use policy trees. Each policy tree is a decision tree where
each node is labeled with an action and branches are labeled with observations.
Starting with the root node, at each step, each agent performs the action of the
current node and then branches to a subtree based on the observation it receives.
Sample optimal policy trees for the multiagent tiger problem with horizons 14
are shown in Figure 11.9. The actions are L (listen), OL (open left), and OR (open
right). The observations are hl (hear tiger on left) and hr (hear tiger on right). Note
that while the value generally grows with the horizon, there are some fluctuations
when the added time allows for costly listening actions, but is not sufficient for
establishing a reliable belief about the tiger’s location.

Figure 11.10 shows a horizon 5 optimal solution (same tree for both agents).
As this example illustrates, the size of policy trees grows exponentially with the
horizon of the problem, making it hard to keep complete policy trees in large prob-
lems. And when the problem has an infinite horizon, policy trees can no longer
be used to represent solutions. A common approach in that case is for each agent
to summarize what it knows using finite memory and to represent policies using
finite-state controllers. Each controller state represents an intermediate internal
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Horizon 1 Horizon 2 Horizon 3

hl hr

Horizon 4

Figure 11.9: Optimal policy trees for the multiagent tiger problem with horizons
1-4. The policy trees of both agents are the same in this case. The expected values
as a function of the horizon are: V| = -2, V, = —4, V3 =5.19, V, = 4.80.

Horizon 5

Figure 11.10: Optimal policy tree for the multiagent tiger problem with horizon
5. The expected value in this case is V5 = 7.03.

memory state of the agent. Starting with an initial controller state, at each state
an agent chooses an action based on its internal state and then branches to a new
internal state based on the observation received. Both the action selection and
controller transitions could be deterministic or stochastic; higher value could be
obtained using stochastic mappings, but the optimization problem is harder.

Figure 11.11 shows optimal deterministic controllers for the infinite-horizon
multiagent tiger problem with a discount factor of 0.9. The large arrow points
to the initial state. The figure shows a one-node controller (same controller per
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Agent 1, Agent 2 Agent 1, Agent 2
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hr, hl

hr, hl hr, hl

Figure 11.11: Optimal one-node and two-node deterministic controllers for the
multiagent tiger problem.

Agent 1 hr, hl Agent 2 hr, hl

9@ e@

hr hl

Figure 11.12: Optimal three-node deterministic controllers for multiagent tiger.

agent) with an expected value of —20, and a two-node controller, which repre-
sents the same policy and has the same value. With so little memory, the optimal
policy is to listen all the time and not risk opening a door. Figure 11.12 shows an
optimal deterministic solution with three-node controllers. The value in this case
is —14.12 and the policies of the agents are different in this case. Figure 11.13
shows an optimal deterministic solution with four-node controllers. The value in
this case 1s —3.66 and the policies of the agents are again different.

Figure 11.14 shows stochastic two-node controllers for this problem. The
large arrow points to the initial state. Each state leads to multiple actions shown in
rectangles with the probability of the action attached to the link. Each observation
then leads to a stochastic transition to one of the two states. The value in this case
is —19.30, a slight improvement over the two-node deterministic controller. A
three-node stochastic controller (not shown) can achieve a value of —9.94.

Formally, these solutions assign a local policy to each agent i, §;, which is a
mapping from local histories of observations or internal memory states to actions.
A joint policy, 8 = (81, ...,0,), is a tuple of local policies, one for each agent.

For a finite-horizon problem with T steps, the value of a joint policy 6 with
initial state s is

T—1

V3(s0) = E[Z R(Ei,,s,)|s0,8].

=0

For an infinite-horizon problem, with initial state so and discount factor y €
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Figure 11.14: Stochastic two-node controllers for multiagent tiger.

[0, 1), the value of a joint policy 0 is

V3(s0) = E [[i‘é'yrR(El,,s;)\sQ,S] .

5.1.2 The Complexity of DEC-POMDPs

Complexity analysis of DEC-POMDPs has shown that the finite-horizon prob-
lem is NEXP-hard. What is striking is that the problem remains NEXP-hard
even when restricted to a two-agent DEC-MDP. This is in contrast to the com-
plexity of finite-horizon MDPs and POMDPs, which is P-complete and PSPACE-
complete, respectively. Although it is not known whether the classes P, NP, and
PSPACE are distinct, it is known that P # NEXP, and thus DEC-POMDPs are
provably intractable. Furthermore, assuming EXP # NEXP, the problems take
super-exponential time to solve in the worst case. These complexity results reveal
some fundamental differences between centralized and decentralized control of
Markov decision processes.

These results, however, represent the worst-case complexity of the general
model. This presents the question of whether problems that arise in practice are
intractable, and whether the structure and characteristics of some real-world prob-
lems make them fundamentally easier to solve. For example, mobile robots are
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largely independent agents. They move and take actions using their private actua-
tors, which are often totally independent of the actions of other robots operating in
the environment. This property is called transition independence. Another useful
property that is sometimes satisfied is observation independence — guaranteeing
that the observations of one agent depend only on a component of the underlying
state that is not affected by the actions of the other agents. Analysis of the problem
shows that these assumptions could lead to a problem of lower complexity. For
example, a DEC-MDP that satisfies transition and observation independence can
be solved in exponential time [30].

5.2 Solving Finite-Horizon DEC-POMDPs

Dynamic programming algorithms for solving finite-horizon DEC-POMDPs con-
struct and evaluate policy trees incrementally, starting with the final step and mov-
ing backward toward the first step. Policy trees of the current iteration become
subtrees of the policies built in succeeding iterations. The key to success is re-
ducing the amount of time and space either by performing pruning of irrelevant
policies, or —in the case of approximate algorithms — pruning policies that are less
likely to be useful.

Let g; denote a policy tree and Q; a set of policy trees for agent i. Q_; denotes
the sets of policy trees for all agents but agent i. A joint policy ¢ = (q1,¢2,"** ,qn)
is a vector of policy trees and Q = (01,02, ,0Qp) denotes the sets of joint poli-
cies. Evaluating a joint policy ¢ can be done as follows:

V(s,q) =R(s,a) + Y P(s'|s,@)0(3|s',a@)V (s',45) (11.1)

s'.0

where d are the actions at the roots of trees ¢ and gz are the subtrees of ¢ after
obtaining observations 0.

In multiagent settings, agents have to reason about the possible future policies
of the other agents in order to choose optimal actions. The standard belief-state
of a POMDP - a probability distribution over world states — is no longer suitable.
Instead, it is necessary to use a multiagent belief state, which is a probability
distribution over system states and policies of all other agents: b; € A(S X Q_;).
Other forms of multiagent belief states could be used to capture the uncertainty
about the beliefs or intentions of other agents, but the above form of belief state,
also called generalized belief state, is the one used in this chapter because it is
most commonly used in existing algorithms.

One of the early class of algorithms for solving DEC-POMDPs is the “Joint
Equilibrium-Based Search for Policies” (JESP), which seeks to find a joint policy
that is locally optimal. That is, the solution cannot be improved by any single
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1 Generate a random joint policy
2 repeat
3 foreach agent i do
4 Fix the policies of all the agents except i
5 for =T downto / do // forwards
6 Generate a set of all possible belief states:
Bl(-’BlJrl ,q’_i,ai,Oi),Vai €A, Vo, € Q;
7 end
8 fort=1/to7 do // backwards
9 foreach /' € B’ do
10 Compute the best value for V' (V' a;)
1 end
12 end
13 forall the possible observation sequences do
14 for =T downto / do // forwards
15 Update the belief state &' given ¢";
16 Select the best action according to V(¥ a;)
17 end
18 end
19 end

20 until no improvement in the policies of all agents
21 return the current joint policy

Algorithm 11.3: DP-JESP for DEC-POMDPs.

agent, given the policies assigned to the other agents. The best algorithm in this
class, DP-JESP, incorporates three key ideas [44]. First, the policy of each agent
is modified while keeping the policies of the others fixed. Second, dynamic pro-
gramming is used to iteratively construct policies. Third, and most notably, only
reachable belief states of the DEC-POMDP are considered for policy construction.
This leads to a significant improvement, because there is only an exponential num-
ber of different belief states for one agent as opposed to the doubly exponential
number of possible joint policies. Algorithm 11.3 summarizes the operation of
DP-JESP [44]. This approach only guarantees local optimality and still leads to
exponential complexity due to the exponential number of possible belief points.
The algorithm could solve small benchmark problems up to horizon 7.

An exact dynamic programming (ExactDP) algorithm for solving DEC-
POMDPs has been developed as well [32]. In every iteration, this algorithm first
exhaustively backups the policy trees of the previous iteration, then prunes all the
dominated policies. A policy of an agent is dominated by another policy when the
value of every complete policy that includes it as a subtree can be improved (or
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Initialize all depth-1 policy trees
fortr=/toT do // backwards
Perform full backup on O’
Evaluate policies in 0' !
Prune dominated policies in Q' !
end

N N R W N =

return the best joint policy in 07 for &°
Algorithm 11.4: Exact DP for DEC-POMDPs.

preserved) by replacing it with the other policy. This property must be satisfied
for every set of policies of the other agents and every belief state. It is clear that
dominated policies are not needed to construct an optimal solution. Dominance
can be tested efficiently using a linear program. The algorithm can solve partially-
observable stochastic games with minimal changes, as it can produce all the non-
dominated policies for each agent. This process, summarized in Algorithm 11.4,
is the first DP algorithm that could produce a globally optimal solution of a DEC-
POMDP. Unsurprisingly, this approach runs out of memory very quickly because
the number of possible (non-dominated) joint policies grows doubly exponentially
over the horizon. Even with very significant pruning, the algorithm can only solve
small benchmark problems with horizons 4-5. But it introduces important prun-
ing principles that prove useful in designing effective approximations.

Several improvements of the ExactDP algorithm have been proposed. Since
some regions of the belief space are not reachable in many domains, the point-
based DP (PBDP) algorithm computes policies only for the subset of reachable
belief states [58]. Unlike DP-JESP, PBDP generates a full set of current-step
policies and identifies the reachable beliefs by enumerating all possible top-down
histories. This guarantees optimality with a somewhat more aggressive pruning.
The worst-case complexity is thus doubly exponential due to the large number of
possible policies and histories.

While the above algorithms introduced important ideas, it became clear that
to improve scalability, it is necessary to perform more aggressive pruning and
limit the amount of memory used by solution methods. The memory-bounded
DP (MBDP) algorithm presented a new paradigm that allowed the algorithm to
have linear time and space complexity with respect to the problem horizon [53].
MBDP, shown in Algorithm 11.5, employs top-down heuristics to identify the
most useful belief states and keeps only a fixed number of policies selected based
on these belief states. The number of policies maintained per agent is a constant
called maxTrees. To assure linear space, however, it is not sufficient to limit the
number of policies per agent, because the size of each policy tree grows expo-
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Initialize all depth-1 policy trees

forr=1/to7T do // backwards

Perform full backup on ¢’

Evaluate policies in 0!

for k=1 to maxTrees do
Select a heuristic & from the heuristic portfolio
Generate a state distribution b € A(S) using
Select the best joint policy g *! in 't for b

end

Prune all the policies except the selected ones

o RN R W N =

[
>

end

—
N =

return the best joint policy in 07 for b°
Algorithm 11.5: Memory-bounded DP for DEC-POMDPs.

Figure 11.15: A set of maxTrees policy tree can be represented compactly by
reusing a fixed number of maxTrees subpolicies of the previous level.

nentially with the horizon. To address that, MBDP deploys an efficient method
to reuse subpolicies in a given policy tree. At each level, the new branches of the
tree point to one of the maxTrees policies of the previous level, as illustrated in
Figure 11.15. This memory-bounded policy representation enables the algorithm
to solve much larger problems with essentially arbitrary horizons. A number of al-
gorithmic improvements in MBDP and its variants have made it possible in recent
years to solve effectively larger problems using dozens of maxTrees per level.

5.3 Solving Infinite-Horizon DEC-POMDPs

As illustrated earlier, finite-state controllers can be used to summarize unbounded
observation histories using finite memory. One controller is used per agent, where
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the state of the controller changes based on the observation sequence of the agent,
and in turn the agent’s actions are based on the state of its controller. When these
functions are deterministic, optimizing controllers can be tackled using standard
heuristic search methods. When these mappings are stochastic, the search for
optimal controllers becomes a continuous optimization problem. We describe in
this section two approaches for optimizing such stochastic controllers.

Definition 11.8 (Local finite-state controller) Given a DEC-POMDP, a local
finite-state controller for agent i is a tuple (Q;, V;,M;), where Q; is a finite set
of controller nodes, y; : Q;i — AA; is a stochastic action selection function, and
Ni: Qi X Aj X O; = AQ; is a stochastic transition function.

An independent joint controller is a set of local finite-state controllers, one for
each agent, that together determine the conditional distribution P(d,q'|¢,5). The
controllers are independent in that the local memory state transitions and action
selection functions of one agent are independent of the memory states and obser-
vations of the other agents, making the policy suitable for decentralized operation.

5.3.1 Correlated Joint Controllers

While agents do not have access to the local information of other agents in a
DEC-POMDP, they can benefit from performing correlated actions. This can be
achieved using a correlation device — a mechanism that can facilitate coordina-
tion using an additional finite-state controller whose state is accessible by all the
agents [6]. The correlation device mimics a random process that is independent
of the controlled system. Agents use the extra signal from the device to select
actions, but they cannot control the correlation device. Such mechanism can be
implemented in practice by giving each agent the same stream of random bits.

Definition 11.9 (Correlation device) A correlation device is a tuple (C,V),
where C is a finite set of states, and Y : C — AC is a state transition function.
At each time step, the device makes a transition and all the agents observe its new
state.

The definition of a local controller can be extended to consider the shared sig-
nal ¢ provided by a correlation device. The local controller for agent i becomes
a conditional distribution of the form P(a;,q’|c,gi,0i). A correlation device to-
gether with the local controllers for each agent form a joint conditional distribu-
tion P(c’,d,q'|c,q,0), called a correlated joint controller.
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Figure 11.16: A slice of a two-agent DEC-POMDP where actions are selected
based on internal states ¢; with (right) and without (left) a correlation device ¢.

The value of a correlated joint controller can then be computed by solving a
set of linear equations, one foreach s € S, g€ Q, and ¢ € C:

V(s,q,c)=
Y P(c.d)|[R(s.d)+v ¥ P31, @)P(@)e,3.a.0)P( |V (.7, )|
a

s, 7675/ 7cl

Figure 11.16 illustrates a slice (similar to a dynamic Bayesian network) of a
two-agent DEC-POMDP with and without a correlation device. The underlying
state s and observations o; are determined by the DEC-POMDP model, while the
controller state ¢; and action a; are determined by the policy parameters.

5.3.2 Policy Iteration for Infinite-Horizon DEC-POMDPs

An infinite-horizon DEC-POMDP could produce infinitely many observation se-
quences. To approach near-optimal value, it may be necessary to increase the con-
troller size. In fact, e-convergence can only be guaranteed when we increase the
number of controller states using an exhaustive backup operation. An exhaustive
backup introduces new controller states for each possible action and each possi-
ble branch given an observation to existing controller states [5]. This is similar
to the exhaustive backup in the finite-horizon case, except that we grow existing
controllers rather than policy trees.

To formalize this process, let Q% denote the set of controller nodes for agent
i after iteration f. For each possible one-step policy, a new controller node is
added. Thus, for each agent i, |A;||Q;] 19l nodes are added to the controller. In the
finite-horizon algorithm, the exhaustive backup was followed by a pruning step,
eliminating dominated policy trees. Here, an analogous procedure can be used [5].
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input : DEC-POMDP, correlated joint controller, convergence parameter €
output: A correlated joint controller that is e-optimal for all states.

1 begin

2 t<0

3 while Y- |R,ux| /(1 —7) > € do

4 t<1+1

5 Evaluate correlated joint controller by solving a system of linear equations
6 Perform an exhaustive backup to add nodes to the local controllers

7 Perform value-preserving transformations on the controller
8 end
9 return correlated joint controller

10 end
Algorithm 11.6: Policy iteration for infinite-horizon DEC-POMDPs.

Definition 11.10 (Value-preserving transformatlon) Given two correlated joint
controllers C and D with node sets Q and R, respectively, we say that changing
controller C to D is a value-preserving transformation if there exist mappings
fi : Qi = AR, for each agent i and f. : Q. — AR, such that:

V(5,9) < LP(Fa)V(5,7)

The goal of a value-preserving transformation is to reduce the size of a con-
troller without decreasing its value, or to improve the value without changing the
size. In general, reducing the size of the controller is necessary between exhaus-
tive backup steps because those steps increase the size of the controller in a doubly
exponential manner. Several such transformations that can be implemented effi-
ciently using linear programming have been formulated [5].

The complete policy iteration procedure, sketched in Algorithm 11.6, inter-
leaves exhaustive backups with value-preserving transformations. Unlike single
agent MDPs, there is no Bellman residual for testing convergence in this case.
Therefore, it is necessary to use the discount factor y and the number of iterations
to define a simpler e-convergence test. Let |R,,4¢| denote the largest absolute value
of a one-step reward in the DEC-POMDP. Then the algorithm terminates after it-
eration ¢ if Y1 - |R,0c| /(1 — ) < €. Intuitively, the algorithm exploits the fact that
due to discounting, at some point the future rewards collected are negligible.

As with optimal algorithms for finite-horizon DEC-POMDPs, producing near-
optimal controllers is intractable. In practice, the value-preserving transforma-
tions cannot reduce the size of the controllers sufficiently to continue executing
the algorithm until the convergence criterion is met. However, several approx-
imate techniques for infinite-horizon DEC-POMDPs have been developed based
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For variables of each agent i: x(g;,a;), ¥(qi,ai,0i,4}) and z(g,s)
Maximize Zbo(s)z(fjo,s), subject to

N
The Bellman constraints:

VZ]’,S Z(qas) =

) (Hx(qivai) [R(Sﬁ) +Y):P(S’!s7ﬁ)20(5l~v’ﬁ)ZHy(qi,auo,-,q§)Z(67’,s’)])
a \ i s 3 q i
And probability constraints for each agent i:

Vgi Y x(qi,ai)) =1, Vgi,0i,a; Y. y(gi.ai,0i,q;) =1
ai 4

Vgi,a; x(qi.a;) >0, Vaqi,0i,a; y(qi,ai,0i,q;) >0

Table 11.1: The NLP defining a set of optimal fixed-size DEC-POMDP
controllers. For each agent i, variable x(g;,a;) represents P(a;|g;), variable
¥(gi,ai,0i,q}) represents P(q!|qi,ai,0;), and variable z(g,s) represents V(qg,s)
where " represents the initial controller node for each agent.

on these principles by simply restricting the size of each controller and optimizing
value with a bounded amount of memory. We discuss one such approach below.

5.3.3 Optimizing Fixed-Size Controllers Using Non-Linear Programming

With a fixed controller size, the problem of optimizing the joint controller can be
represented as a non-linear program (NLP) by creating a set of new variables that
represent the values of each set of controller states and underlying world state.
Unlike the dynamic programming backups, which iteratively improve the proba-
bilities and could get stuck in low-quality local optima, the NLP approach allows
both the values and probabilities in the controller to be optimized simultaneously.
While the NLP is generally harder to solve, the approach results in a search pro-
cess that is more sophisticated and can leverage state-of-the-art solvers. Existing
NLP solvers do not guarantee global optimality, but experimental results show
that the NLP formulation is advantageous [1]. In practice, DEC-POMDPs can
have small optimal controllers or can be approximated effectively with small con-
trollers. Furthermore, the NLP approach can optimize value for a specific given
initial belief state, thus making better use of limited controller size.

The non-linear program for a DEC-POMDP with an arbitrary number of
agents is shown in Table 11.1. It optimizes the value of a set of fixed-size con-
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trollers given an initial state distribution and the DEC-POMDP model. The vari-
ables for this problem are the action selection and node transition probabilities for
each node of each agent’s controller as well as the joint value of a set of controller
nodes. Hence, these variables are for each agent i, P(a;|g;) and P(q}|gi,ai,0;), and
for the set of agents and any state, V (g, s). The NLP objective is to maximize the
value of the initial set of nodes at the initial state distribution. The constraints in-
clude the Bellman constraints and additional probability constraints. The Bellman
constraints, which are non-linear, ensure that the values are correct given the ac-
tion and node transition probabilities. The probability constraints ensure that the
action and node transition values are proper probabilities. It is straightforward to
add a correlation device to the NLP formulation simply by adding a new variable
for the transition function of the correlation device. As expected, a correlation
device can improve the value achieved by the NLP approach, particularly when
each controller is small [1].

6 Multiagent Execution

We conclude this chapter by turning to the actual execution of multiagent planning
and control decisions. To the extent that the knowledge used for decision making
was correct, the actual trajectory of the world state should mimic the expectations
of the agents. Even in cases where actions or observations are uncertain, as is
modeled in DEC-POMDPs, the planning and control decisions should have antic-
ipated the possibilities and formulated responses to the foreseen contingencies.

Of course, the rosy picture above can fail to materialize, when the model of
the world used by agents for making planning and control decisions is incorrect
or incomplete relative to the agents’ true world. In such situations, agents can
find themselves in unanticipated states, and need to decide how to respond in the
near-term, and perhaps also how to update their models so as to make better plan-
ning and control decisions in the future. In this section, we can only scratch the
surface of the challenges posed in multiagent execution, and of some approaches
to overcoming them.

6.1 Multiagent Plan Monitoring

Detecting deviations from anticipated trajectories is one challenge that is signif-
icantly more difficult in multiagent settings than single-agent settings. A single
agent can use its observations to form beliefs about its current state, and then de-
termine whether it had anticipated possibly having such beliefs at this point in its
execution. If not, the agent can invoke a response that could attempt to repair its
existing plan by injecting new actions that in expectation will return it to an an-
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ticipated trajectory. Or the agent could treat its new beliefs about its current state
as the starting point for building a new plan to achieve its objectives. See [50] for
techniques of this kind.

In a multiagent system, certainly the same kind of process could occur, but
now recovery is harder: an agent cannot in general inject new actions or replace
its old plan with a new one without coordinating with other agents, resolving any
new interagent faults that its changed plan introduces. Furthermore, it could be
that a better way of recovering from such a deviation would be to have one or more
other agents change their plans, even though their old plans were proceeding as
expected.

Even more problematic are situations where no agent in isolation perceives a
deviation from expectations (each foresaw that its current state might have arisen)
but the agents collectively have reached an unexpected joint state. Detecting such
a deviation requires not only that agents share local information, but that one or
more agents are knowledgeable about which (partial) joint states are expected and
which are not. Effectively, monitoring the execution of a multiagent plan can
amount to a non-trivial collaborative problem-solving effort among the agents.

6.2 Multiagent Plan Recovery

In the multiagent setting, the same dilemma occurs as in single-agent planning
when execution diverges from what was planned: should the agent(s) try to reuse
some of the old plan(s) so as to take advantage of the effort that went into con-
structing them, or should the agent(s) build entirely new plan(s) to achieve their
objectives from the current state. If they choose the latter route, then replanning
in the multiagent context can be accomplished with any of the techniques already
discussed.

Plan repair is potentially more cost-efficient, but more complicated. If only
some agents need to repair their plans (the others have not deviated), repair
nonetheless could involve all of the agents as the repaired plans need to be coordi-
nated with others’ unchanged plans. This could lead to others needing to change
their plans, in a chain reaction of planning and coordination efforts. And this does
not even account for opportunities for agents to reallocate responsibilities among
themselves, such as if an agent that has deviated from expectations has exhausted
a resource in its attempt to establish a condition in the world, and it must now fall
to another agent that has reserve resources.

The preceding discussion has further made an important assumption — that the
agents should treat the deviation as an anomaly rather than as an indication that the
planning knowledge is itself flawed. More broadly, agents can view divergence
from expectations as a learning opportunity to correct/improve the models used
for planning.
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A simple example of such a response can occur in the case of social laws.
The designer(s) of the laws used the models of goals/rewards to identify states
to avoid, and of actions to identify and prohibit bad precursor state-and-action
combinations. If a state to avoid is reached nonetheless, the agents can update
their transition models to build better plans/laws in the future, or might perform
Q-learning to directly learn what actions not to take in particular states.

A danger in doing such learning, as discussed in Chapter 10, is that if mul-
tiple agents learn simultaneously, their local adaptations might not combine into
a coherent joint adaptation. For example, if mobile robotic agents collide in a
particular location, there is a danger that they all might now avoid that location,
which would make deliveries to that location impossible. Techniques for con-
trolling learning and adaptation in multiagent systems (see Chapter 10) is thus
pertinent in this context.

6.3 Multiagent Continuous Planning

The extreme case of multiagent plan monitoring and repair/replanning is where
agents are continually reconsidering and revising their plans. When repair/re-
planning is punctuated, it is not unreasonable to assume that agents can all sus-
pend their plan executions until that process is complete, and then they proceed
with executing their (new) coordinated plans unless and until another deviation
occurs. This is not without problems in dynamic domains, where the environment
keeps changing while agents are thinking. Thus, when planning is continuous,
agents cannot afford to wait for convergence to an assuredly coordinated joint
plan. Instead, agents should be able to revise and pursue plans despite those plans
perhaps being (temporarily) uncoordinated.

One of the earliest examples of this form of continuous planning in multiagent
systems was an approach called partial global planning (PGP) [20]. PGP was
applied to the interpretation problem of tracking vehicles in a distributed sensor
network. This kind of application is particularly forgiving of lack of coordination,
which at worst only wastes computational resources. That is, the interpretation
problem can be solved with functionally-accurate cooperation, as described in
Section 3.2.2. This is in contrast to problems, like air traffic control, where even
brief periods of mis-coordination can have catastrophic consequences.

Each sensor agent builds a plan as to how it will process its data: which data it
will process in what order, when it will combine partial interpretations into larger
interpretations, etc. Because agents’ sensor regions can overlap, if agents can
communicate about their plans, then by comparing its plans with its neighbors an
agent can decide which (if any) signals in an overlapping region it should process,
and which it should leave to others. Furthermore, because vehicles tend to not



530

Chapter 11

disappear at boundaries, agents can help each other by providing partial interpre-
tations near their boundaries to others, to help others focus interpretation problem
solving on compatible extensions.

Of course, over time new sensor signals can arrive, or data might prove more
noisy and take longer to process than expected. As a result, an agent might change
its plan. If others know of this change, then they might in turn change their plans,
possibly leading to chain reactions (and even cycles) of plan changes. At times
these efforts can lead to significant improvements in joint behavior, but at other
times the improvements might be smaller than the communication and computa-
tion overhead of attaining them. PGP combats the costs and delays in coordinating
responses to such dynamics with various mechanisms, including:

1. Abstraction: As already discussed in this chapter, abstraction benefits multi-
agent planning by allowing coordination decisions to be based on funda-
mental agent interactions without getting distracted by details of local plans.
In PGP, even though each agent builds a detailed plan for processing sig-
nals and constructing larger interpretations, the agents communicate with
each other only about what partial interpretations they plan to construct
and when. Thus, even though internally an agent might frequently make
changes to its detailed plan, other agents’ perceptions of its plans generally
evolve much more slowly.

2. Decentralization: PGP assumes that responsibility for coordination deci-
sions can be distributed among agents in any of a variety of ways, as ex-
pressed in a meta-level organization (MLO). The MLO defines roles, pro-
tocols, and authority structures that the agents use when solving the coordi-
nation problem, analogously to how the agents’ domain-level organization
guides the agents’ activities in solving the interpretation problem. In par-
ticular, the MLO can distribute coordination responsibility such that each
agent has authority to modify its own plans based on its current partial view
of the plans of (some of) the other agents.

3. Partial Global Reasoning: An agent forms a partial global plan by com-
bining the abstract plans it has received from others with its own. The
agent can then search through modifications to the partial global plan to
find a better joint plan. For example, it might determine that various agents
should reorder their tasks to change who is responsible for portions of the
overlapping regions, and who will formulate which interpretations. In the
PGP implementation, the search is done heuristically and in a greedy hill-
climbing fashion, since finding optimal solutions would take much more
time and such solutions will likely be made obsolete quickly due to further
dynamics. An agent then changes its local plan according to how it thinks
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the joint plan should change. A key assumption behind this strategy is that
all agents, given the same information, would formulate the same revised
partial global plan. Hence, unilateral changes to a plan in expectation that
other agents will make complementary changes to their plans is warranted
given sufficient propagation of planning information based on the MLO.

4. Communication Planning: By examining the partial global plan, an agent
can determine when an interpretation will be formed by one agent that could
be of interest to another agent, and can explicitly plan the communication
action to transmit the result. If results need to be integrated into a larger
partial interpretation, an agent using PGP will construct a tree of exchanges
such that, at the root of the tree, partially integrated results will be at the
same agent, who can then construct the complete result.

5. Asynchrony: Agents asynchronously adapt their local plans and communi-
cation plans to their partial global views. This sacrifices global consistency
across plans for rapid responsiveness to changing awareness. Depending
on the MLO and the relative domain dynamics, the agents could ultimately
converge on consistent joint plans, but PGP allows each agent to pursue its
best guess as to what its local plan should be at any given time. If it guesses
wrong, its efforts were wasted, but had it idled waiting for consistent plans
those cycles would have gone to waste anyway.

6. Dampened Responsiveness: As an agent’s plan changes in the dynamic en-
vironment, it can determine how its abstract plan that it has told other agents
about has been affected, if at all. Some changes to a local plan might, for
example, delay the formation and transmission of a partial interpretation.
The agent must determine whether a change to its abstract plan is worth
telling other agents about. In PGP, a simple thresholding strategy was used:
if an abstract plan step will occur earlier or later than expected by more that
a parameterized number of time steps, then the agent should alert others.
A larger threshold effectively introduced “slack™ into the system, cutting
down on coordination overhead by allowing greater degrees of interagent
plan slippage. The parameter would be tuned empirically.

Advances in continual planning in multiagent systems have extended and re-
fined these types of strategies over the years. For example, the DARPA Coor-
dinators program [35] emphasized helping teams of humans who are distributed
geographically to manage and time their activities so as to achieve joint objectives.
One research thrust for this problem was for the teams to each represent a space
of possible schedules to follow, where unfolding events can narrow the space of
remaining possibilities, and where a threshold defined on this process determines
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whether an agent should inform others about such changes [3]. Another was for
agents to explicitly model the probabilities of satisfying their contributions to joint
objectives, and updating each other as these probabilities decreased significantly
[43].

7 Conclusions

Multiagent planning and control with more agents, capable of more behaviors, op-
erating in uncertain and partially-observable worlds, introduces and compounds
daunting computational challenges. Research has sought to exploit structure in
problems that allow solutions to be composed from solutions to localized sub-
problems, and this chapter has illustrated various strategies for different types of
problem structures and performance requirements. Significant progress has been
made, and yet substantial challenges remain. We conclude by summarizing other
important past and ongoing work in this area.

Multiagent planning has been studied since the founding of the field of dis-
tributed Al. Some of the earliest work in this area includes that of Georgeff
[26, 27], who developed some of the earliest multiagent plan deconfliction tech-
niques, and of Corkill [14], who developed a distributed version of the NOAH
planner created by Sacerdoti [51]. Corkill and colleagues, especially Lesser, pi-
oneered the use of organizational techniques for multiagent control [16]. Decker
and Lesser generalized techniques for coordinating agent plans in their work on
GPGP, and for representing complex multiagent task networks in their work on
TAEMS [39].

Planning for teams of agents was investigated not only by Tambe [49, 59]
(Section 4.3), but also by Grosz and Kraus [31], building on concepts from Co-
hen and Levesque [12]. Multiagent planning and scheduling, involving dealing
with temporal constraints, also has a rich literature (e.g., [8, 61]). Other work for
coordinating plans that agents largely form separately includes that of Tonino et
al. [60].

Other techniques that have formulated the multiagent planning problem in
decision-theoretic terms include those that solve problems where agents inter-
act through the assignment (and reassignment) of resources [19, 66], and where
agents interact by changing shared state in structured ways that enable each other
[4, 64].

Memory-bounded dynamic programming (MBDP) [53] has been dramatically
improved in recent years by introducing a variety of methods to reduce the number
of observations considered by the policy, and employing efficient pruning tech-
niques. Point-based methods have been recently introduced to cope with the NP-
hardness of the backup operation [37]. This algorithm exploits recent advances
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in the weighted CSP literature to offer a polytime approximation scheme that can
handle a much larger number of belief points (MaxTrees). Another technique,
trial-based dynamic programming (TBDP) [65], combines the main advantages of
DP-JESP with MBDP to avoid the expensive backup operations, allowing prob-
lems with much larger state spaces to be tackled.

The locality of agent interaction — the fact that each agent interacts with a small
number of neighboring agents — has proved crucial to the development of DEC-
POMDP algorithms that can handle dozens of agents. Specialized models such
as network distributed POMDPs (ND-POMDPs) have been introduced to capture
structured interactions and develop early algorithms that can exploit such struc-
tures [45]. More recently, the constrained-based dynamic programming (CBDP)
algorithm has been shown to provide magnitudes of speedup thanks to its linear
complexity in the number of agents [36]. Algorithms for solving loosely-coupled
infinite-horizon problems have also been developed. One promising direction is
based on transforming the policy optimization problem to that of likelihood maxi-
mization in a mixture of dynamic Bayesian networks [38]. Based on this reformu-
lation, the expectation-maximization (EM) algorithm has been used to compute
the policy via a simple message-passing paradigm guided by the agent interaction
graph.

8 Exercises

l. Analyze a multiperson problem that you have been involved in solv-
ing. Identify localities in the structure of the problem, and strategies for
composing an overall solution from solutions to the localized subproblems.

2. Do you agree with the stance taken in this chapter that multi-
agent planning requires both that the plan formulation process be distributed
among agents and that the resulting plan construct be distributed as well?
If so, justify in your own words why you believe this stance is warranted.
If not, give counterexamples to this stance and justify why they arguably
embody multiagent planning.

3. The broad brushstrokes of social laws to avoid collisions between
robots operating in a gridworld was provided in this chapter. This question
asks you to elaborate a bit.

(a) For an 8 x 8 gridworld (empty other than robots), flesh out an example
of the social laws that avoid collisions, indicating for each location
where a robot is allowed to go, along with any other laws that the
robots should follow.
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(b) Are there gridworld shapes (again, empty other than robots) for which
useful social laws cannot be constructed? If so, give examples, and if
not, explain why not.

(c) Now, say in the 8 x 8 gridworld there is a wall that partitions the envi-
ronment in half except there is one pair of cells on each side that are
connected. How would you build social laws to handle such a case,
assuming that a robot might need to visit locations on both sides of the
world?

4. Implement a simulation of a robot gridworld. Create in that world

simulated robots, and endow them with the capabilities and constraints as-
sociated with Traffic Law 2 in [56]. Experimentally investigate the perfor-
mance of the robots following that traffic law to determine how well they
perform as the number of robots increases in a fixed-size grid.

. Describe and analyze a real-world (human) instance of organiza-

tional redesign. What alternative decompositions of the larger problem into
interacting roles were possible, and why was the particular choice made
during the redesign? Develop a specification for the space of designs, and
suggest a search strategy for finding and implementing a good design from
that space. Is your search assured to return an optimal solution? Is it effi-
cient?

. Consider the contract net protocol where announcements can be

either about tasks that need to be done or the availability of resources that
could be assigned tasks.

(a) Name a real-life example where task announcement makes much more
sense than availability announcement. Justify why.

(b) Now name a real-life example where availability announcement makes
much more sense. Justify why.

(c) Let’s say that you are going to build a mechanism that oversees a dis-
tributed problem-solving system, and can “switch” it to either a task
or availability announcement mode.

1. Assuming communication costs are negligible, what criteria
would you use to switch between modes? Be specific about what
you would test.

ii. If communication costs are high, now what criteria would you
use? Be specific about what you would test.
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7.

10.

We noted that task announcing can be tricky: If a manager is too
fussy about eligibility, it might get no bids, but if it is too open it might have
to process too many bids, including those from inferior contractors. Let us
say that the manager has n levels of eligibility specifications from which
it needs to choose one. Describe how it would make this choice based on
a decision-theoretic formulation. How would this formulation change if it
needed to consider competition for contractors from other managers?

. A folk theorem in the organization literature is that in human or-

ganizations, task decompositions invariably lead to clear assignments of
subtasks to members of the organization. Give an example of where de-
composition without look-ahead to available contractors can be detrimental.
Give an example where biasing decomposition based on available contrac-
tors can instead be detrimental. Finally, give an algorithm for alternating
between decomposition and assignment to incrementally formulate a dis-
tributed problem-solving system. Is your algorithm assured of yielding an
optimal result? Is it complete?

. Consider the pursuit task, with four predators attempting to sur-

round and capture a prey. Define an organizational structure for the preda-
tors. What are the roles and responsibilities of each? How does the structure
indicate the kinds of communication patterns (if any) that will lead to suc-
cess?

Consider the following simple instance of the distributed delivery
task. Robot A is at position o and robot B is at position 3. Article X is at
position & and needs to go to position , and article Y is at position  and
needs to go to {. Positions a, B, €, v, and { are all different.

(a) Define in STRIPS notation, suitable for partial-order planning, sim-
ple operators Pickup, Dropoff, PickDrop, and Return, where Pickup
moves the robot from its current position to a pickup position where
it then has the article associated with that position; Dropoff moves a
robot and an article it holds to a dropoff position where it no longer
has the article; PickDrop combines the two (it drops off its article and
picks up another associated with that position); and Return moves a
robot back to its original position.

(b) Using these operators, generate the partial-order plan with the fewest
plan steps to accomplish the deliveries. Decompose and distribute this
plan to the robots for parallel execution, inserting any needed synchro-
nization actions. How does the use of multiple robots affect the plan
execution?
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I1.

12.

13.

(c) Using the operators, generate the partial-order plan that, when dis-
tributed, will accomplish the deliveries as quickly as possible. Is this
the same plan as in the previous part of this problem? Why or why
not?

Given the previous problem, include in the operator descriptions
conditions that disallow robots to be at the same position at the same time
(for example, a robot cannot do a pickup in a location where another is
doing a dropoff). Assuming each robot was given the task of delivering a
different one of the articles, generate the individual plans and then use the
plan modification algorithm to formulate the synchronized plans, including
any synchronization actions into the plans. Show your work.

Consider the delivery problem given before the previous problem.
Assume that delivery plans can be decomposed into 3 subplans (pickup,
dropoff, and return), and that each of these subplans can further be decom-
posed into individual plan steps. Furthermore, assume that robots should
not occupy the same location at the same time — not just at dropoff/pickup
points, but throughout their travels. Use the hierarchical behavior-space
search algorithm to resolve potential conflicts between the robots’ plans,
given a few different layouts of the coordinates for the various positions
(that is, where path-crossing is maximized and minimized). What kinds
of coordinated plans arise depending on at what level of the hierarchy the
plans’ conflicts are resolved through synchronization?

Assume that distributed delivery robots are in an environment
where delivery tasks pop up dynamically. When a delivery needs to be
done, the article to be delivered announces that it needs to be delivered,
and delivery agents within a particular distance from the article hear the
announcement.

(a) Assume that the distance from which articles can be heard is small.
What characteristics would an organizational structure among the de-
livery agents have to have to minimize the deliveries that might be
overlooked?

(b) Assume that the distance is instead large. Would an organizational
structure be beneficial anyway? Justify your answer.

(c) As they become aware of deliveries to be done, delivery agents try to
incorporate those into their current delivery plans. But the dynamic
nature of the domain means that these plans are undergoing evolution.
Under what assumptions would partial global planning be a good ap-
proach for coordinating the agents in this case?
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14.

15.

16.

17.

18.

(d) Assume you are using partial global planning for coordination in this
problem. What would you believe would be a good planning level for
the agents to communicate and coordinate their plans? How would the
agents determine whether they were working on related plans? How
would they use this view to change their local plans? Would a hill-
climbing strategy work well for this?

Given a flawed multiagent plan M with more than one unflagged
causal link to adjust, which causal link should the plan modification algo-
rithm prefer to adjust? Justify your (heuristic) selection strategy.

Give an example of a real-world situation in which multiple agents
operate under partial observability and each agent has access to different
partial information about the overall state. Can agents share all their knowl-
edge all the time in your example? If yes, explain how. If not, explain
why.

The DEC-POMDP model (Definition 11.7) does not include ex-
plicit communication. Suppose that each agent can broadcast certain mes-
sages to all the other agents in each action cycle. Define precisely this kind
of a DEC-POMDP with fwo agents and explain why it is not an extension of
the standard model (i.e., show that every DEC-POMDP with explicit com-
munication can be reduced to a standard DEC-POMDP).

The communication model presented in the previous question al-
lows each agent to broadcast a message to all the other agents in each step.
This means that the space of possible joint messages received by each agent
grows exponentially with the number of agents. Consider a more scalable
communication model that allows only one agent to broadcast a message in
each cycle (e.g, when multiple agents try to broadcast messages simultane-
ously, this may either result in failure or success of just one agent). Define
precisely one such model and determine whether it is reducible to a standard
DEC-POMDP or not.

Consider the complete specification of the multiagent tiger problem
shown in Table 11.2.

(a) Derive the values of the deterministic policies for horizons 1-3 shown
in Figure 11.9.

(b) Derive the values of the deterministic finite-state controller policies
shown in Figure 11.11.
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Tiger observation table

Joint action | State hl hr
(L.L) TL 0.85 | 0.15
(L,.L) TR 0.15 | 0.85
(O%*,*) * 0.5 0.5
(*,0%) * 0.5 0.5

Tiger transition table

Joint action | Current state | Nextstate | Probability
(L.L) TL TL 1.0
(L.L) TR TR 1.0
(O*,%) TL TL 0.5
(O%,*) TL TR 0.5
(*,0%) TR TR 0.5
(*,0%) TR TL 0.5

Tiger reward table

Joint action ~ State  Value Joint action ~ State  Value Joint action ~ State  Value
(L,L) * -2 (OR,L) TR -101 (OL,L) TR 9
(L,OR) TR -101 (OR,L) TL 9 (OL,L) TL -101
(L,OR) TL 9 (OR,0R) TR -50 (OL,0R) * -100
(L,OL) TR 9 (OR,0R) TL 20 (OL,0L) TR 20
(L,OL) TL -101 (OR,0OL) * -100 (OL,0L) TL -50

Table 11.2: Tiger observation, transition, and reward tables.

19. In the multiagent tiger problem, suppose that the reward for opening

the correct door (e.g., <OR,OR> when the state is TR) is increased to 50. Is
the horizon 1 policy in Figure 11.9 still optimal? If not, what is the optimal
policy (and its value)? Repeat the question for horizons 2 and 3.

20. In the multiagent tiger problem, the optimal policy is to listen for

several steps before opening any door. If the observation probabilities in-
crease from 0.85 to 0.9, does that change the optimal horizon 1 policy?
What about horizons 2 and 3?

21. [Level 2/3] If all agents share their observations with each other at each step,

the problem becomes centralized. In the multiagent tiger problem, what
would the resulting observations (and their probabilities) be for each agent
when observations are shared? How does this change the optimal policies
for horizons 1 and 2?7 Would the agents ever choose to open different doors?
Is a centralized solution (with shared observations) always guaranteed to
have value at least as high as a decentralized solution?

22. [Level 2/3] If the transition and observation probabilities are independent for

each agent and the reward values are additive between the agents, the prob-
lem can be solved as a set of independent problems whose solutions can
be summed together. In the multiagent tiger problem, the observations are
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independent, but the transitions and rewards depend on all agents. Consider
the case where the tiger does not transition after a door is opened and each
agent receives a reward of 10 for opening the correct door, —50 for opening
the incorrect door and —1 for listening. What are the optimal horizon 1, 2,
and 3 policies for this case?

23. [Level 2/3] Given the same number of nodes, stochastic controllers often al-

low higher-valued policies to be constructed compared to deterministic con-
trollers. Is there a one-node stochastic controller with a higher value than
the optimal one-node deterministic controller in the multiagent tiger prob-
lem? If there is, construct one. Otherwise, prove that this is not possible in
this case.
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