
! "

MULTIAGENT SYSTEMS 2E – CHAPTER 1
INTELLIGENT AGENTS

Michael Wooldridge

Department of Computer Science
University of Oxford, UK
mjw@cs.ox.ac.uk

$

! "
Intelligent Agents Lecture 1

Defining Agency

• What are the characteristics of an agent?
• This is a question that gets a lot of discussion! (Compare object.)
• For our purposes, we find it useful to introduce two increasingly strong

notions of agency:

– weak agency;
(primarily the software agents community)

– strong agency;
(primarily AI).

Mike Wooldridge 1# $

! "
Intelligent Agents Lecture 1

A Weak Notion of Agency

An agent is a hardware or (more usually) software-based computer
system that enjoys the following properties:

• autonomy
agents operate without the direct intervention of humans or others, and
have some kind of control over their actions and internal state;

• social ability
agents interact with other agents (and possibly humans) via some kind
of agent communication language;

Mike Wooldridge 2# $

! "
Intelligent Agents Lecture 1

• reactivity
agents perceive their environment, (which may be the physical world, a
user via a graphical user interface, a collection of other agents, the
INTERNET, or perhaps all of these combined), and respond in a timely
fashion to changes that occur in it;

• pro-activeness
agents do not simply act in response to their environment, they are able
to exhibit goal-directed behaviour by taking the initiative.

Mike Wooldridge 3# $

! "
Intelligent Agents Lecture 1

• (A simple way of conceptualising an agent is as a kind of UNIX-like
software daemon.)

• If you take any of these attributes away, then you end up with software
you already have. . .

• Think of (weak) agents as human-like ‘assistants’ or ‘drones’ that are
limited in their abilities:
– you can give them tasks to do, and they can go away and cooperate

with other agents to achieve these tasks;
– also, they are capable of taking the initiative in a limited way, like a

human secretary would.
• The weak notion of agency buys us something: a useful computational

metaphor and abstraction tool.

Mike Wooldridge 4# $

! "
Intelligent Agents Lecture 1

A Strong Notion of Agency

• For some researchers — particularly those in AI — the term ‘agent’ has
a stronger meaning.

• These researchers generally mean an agent to be a computer system
that, in addition to having the properties identified above, is either
conceptualised or implemented using concepts usually applied to
people:

– mentalistic notions (belief, desire, obligation, choice, . . . ;
– rationality;
– veracity;
– adaptability/learning.

Mike Wooldridge 5# $

! "
Intelligent Agents Lecture 1

Micro versus Macro Issues

• In building an agent-based system, there are 2 sorts of issues to be
addressed:

– micro issues:
how do we design and build an agent that is capable of acting
autonomously, reactively, pro-actively in a time-constrained
domain?

– macro issues:
how do we get a society of agents to cooperate effectively (i.e.,
maximising their coherence and coordination)?

Mike Wooldridge 6# $

! "
Intelligent Agents Lecture 1

Agent Architectures

• We want to build agents, that enjoy the properties of autonomy,
reactiveness, pro-activeness, and social ability that we talked about
earlier.

– How do we do this?
– What software/hardware structures are appropriate?
– What is an appropriate separation of concerns?

• This is the area of agent architectures.

Mike Wooldridge 7# $

! "
Intelligent Agents Lecture 1

• Maes defines an agent architecture as:

‘[A] particular methodology for building [agents]. It specifies
how . . . the agent can be decomposed into the construction of a
set of component modules and how these modules should be
made to interact. The total set of modules and their interactions
has to provide an answer to the question of how the sensor data
and the current internal state of the agent determine the actions
. . . and future internal state of the agent. An architecture
encompasses techniques and algorithms that support this
methodology.’

Mike Wooldridge 8# $

! "
Intelligent Agents Lecture 1

• Kaelbling considers an agent architecture to be:

‘[A] specific collection of software (or hardware) modules,
typically designated by boxes with arrows indicating the data and
control flow among the modules. A more abstract view of an
architecture is as a general methodology for designing particular
modular decompositions for particular tasks.’

• Most of the rest of this presentation will be taken up with a discussion
of the various kinds of agent architecture that have been developed
(primarily in AI).

Mike Wooldridge 9# $

! "
Intelligent Agents Lecture 1

Reasoning Agents

• The classical approach to building agents is to view them as a particular
type of knowledge-based system, and bring all the associated
(discredited?!) methodologies of such systems to bear.

• This paradigm is known as symbolic AI.
• We define a deliberative agent or agent architecture to be one that:
– contains an explicitly represented, symbolic model of the world;
– makes decisions (for example about what actions to perform) via

symbolic reasoning.

Mike Wooldridge 10# $

! "
Intelligent Agents Lecture 1

• The idea of deliberative agents is highly seductive:

To get an agent to realise some theory of agency, simply give it
representation of this theory in rules, frames, semantic nets or
whatever symbolic knowledge representation scheme you fancy,
and get it to shift some symbols. . .

Mike Wooldridge 11# $

! "
Intelligent Agents Lecture 1

• Now if if one aims to build an agent in this way, then there are at least
two important problems to be solved:

1. The transduction problem: that of translating the real world into an
accurate, adequate symbolic description, in time for that
description to be useful.

2. The representation/reasoning problem: that of how to symbolically
represent information about complex real-world entities and
processes, and how to get agents to reason with this information in
time for the results to be useful.

Mike Wooldridge 12# $

! "
Intelligent Agents Lecture 1

• The former problem has led to work on vision, speech understanding,
learning, etc.

• The latter has led to work on knowledge representation, automated
reasoning, automatic planning, etc.

• Despite the immense volume of work that these problems have
generated, most researchers would accept that neither is anywhere near
solved.

• Even seemingly trivial problems, such as commonsense reasoning,
have turned out to be extremely difficult

Mike Wooldridge 13# $

! "
Intelligent Agents Lecture 1

• The underlying problem lies with the complexity of symbol
manipulation algorithms in general: many (most) search-based symbol
manipulation algorithms of interest are intractable.

• Because of these problems, some researchers have looked to alternative
techniques for building agents; we look at these later.

• First, we consider efforts made within the symbolic AI community to
construct agents.

Mike Wooldridge 14# $

! "
Intelligent Agents Lecture 1

AGENT0 and PLACA
• Much of the interest in agents from the AI community has arisen from

Shoham’s notion of agent oriented programming (AOP)
• AOP a ‘new programming paradigm, based on a societal view of

computation’.
• AOP embodies an unashamedly strong notion of agency!
• The key idea that informs AOP is that of directly programming agents

in terms of intentional notions like belief, commitment, and intention.
• The motivation behind such a proposal is that, as we humans use the

intentional stance as an abstraction mechanism for representing the
properties of complex systems.
In the same way that we use the intentional stance to describe humans,
it might be useful to use the intentional stance to program machines.

Mike Wooldridge 15# $

! "
Intelligent Agents Lecture 1

• Shoham suggested that a complete AOP system will have 3
components:

– a logic for specifying agents and describing their mental states;
– an interpreted programming language for programming agents;
– an ‘agentification’ process, for converting ‘neutral applications’

(e.g., databases) into agents.

Results only reported on first two components.
Relationship between logic and programming language is semantics.

• We will skip over the logic(!), and consider the first AOP language,
AGENT0.

Mike Wooldridge 16# $

! "
Intelligent Agents Lecture 1

• AGENT0 is implemented as an extension to LISP.
Each agent in AGENT0 has 4 components:

– a set of capabilities (things the agent can do);
– a set of initial beliefs;
– a set of initial commitments (things the agent will do); and
– a set of commitment rules.

• The key component, which determines how the agent acts, is the
commitment rule set.

Mike Wooldridge 17# $

! "
Intelligent Agents Lecture 1

• Each commitment rule contains

– a message condition;
– a mental condition; and
– an action.

• On each ‘agent cycle’ . . .
The message condition is matched against the messages the agent has
received;
The mental condition is matched against the beliefs of the agent.
If the rule fires, then the agent becomes committed to the action (the
action gets added to the agents commitment set).

Mike Wooldridge 18# $

! "
Intelligent Agents Lecture 1

• Actions may be

– private — corresponding to an internally executed subroutine, or
– communicative, i.e., sending messages.

• Messages are constrained to be one of three types:

– ‘requests’ to commit to action;
– ‘unrequests’ to refrain from actions;
– ‘informs’, which pass on information.

Mike Wooldridge 19# $

! "
Intelligent Agents Lecture 1

beliefs

commitments

abilities

EXECUTE

update
beliefs

update
commitments

initialise messages in

internal actions

messages out

Mike Wooldridge 20# $

! "
Intelligent Agents Lecture 1

• A commitment rule:
COMMIT(

(agent, REQUEST, DO(time, action)
), ;;; msg condition
(B,
[now, Friend agent] AND
CAN(self, action) AND
NOT [time, CMT(self, anyaction)]

), ;;; mental condition
self,
DO(time, action)

)

Mike Wooldridge 21# $

! "
Intelligent Agents Lecture 1

• This rule may be paraphrased as follows:
if I receive a message from agent which requests me to do action at
time, and I believe that:

– agent is currently a friend;
– I can do the action;
– at time, I am not committed to doing any other action,

then commit to doing action at time.
• This trivial example gives a flavour of AGENT0 programs.
• AGENT0 provides support for multiple agents to cooperate and

communicate, and provides basic provision for debugging. . .
• . . . it is, however, a prototype, that was designed to illustrate some

principles, rather than be a production language.
Mike Wooldridge 22# $

! "
Intelligent Agents Lecture 1

• A more refined implementation was developed by Thomas,
• Her Planning Communicating Agents (PLACA) language was intended

to address one severe drawback to AGENT0: the inability of agents to
plan, and communicate requests for action via high-level goals.

• Agents in PLACA are programmed in much the same way as in
AGENT0, in terms of mental change rules.

Mike Wooldridge 23# $

! "
Intelligent Agents Lecture 1

• An example mental change rule:
(((self ?agent REQUEST (?t (xeroxed ?x)))
(AND (CAN-ACHIEVE (?t xeroxed ?x)))

(NOT (BEL (*now* shelving)))
(NOT (BEL (*now* (vip ?agent))))

((ADOPT (INTEND (5pm (xeroxed ?x)))))
((?agent self INFORM

(*now* (INTEND (5pm (xeroxed ?x)))))))

• Paraphrased:
if someone asks you to xerox something, and you can, and you don’t
believe that they’re a VIP, or that you’re supposed to be shelving books,
then

– adopt the intention to xerox it by 5pm, and
– inform them of your newly adopted intention.

Mike Wooldridge 24# $

! "
Intelligent Agents Lecture 1

Concurrent METATEM

• Concurrent METATEM is a multi-agent language in which each agent is
programmed by giving it a temporal logic specification of the
behaviour it should exhibit

• These specifications are executed directly in order to generate the
behaviour of the agent.

• Temporal logic is classical logic augmented by modal operators for
describing how the truth of propositions changes over time.

Mike Wooldridge 25# $

! "
Intelligent Agents Lecture 1

• For example. . .
important(agents)

means “it is now, and will always be true that agents are important”

♦important()

means “sometime in the future, will be important”

♦• important(Prolog)

means “sometime in the past it was true that Prolog was important”

(¬friends(us))U apologise(you)

means “we are not friends until you apologise”

!"#$
apologise(you)

means “tomorrow (in the next state), you apologise”.

Mike Wooldridge 26# $

! "
Intelligent Agents Lecture 1

• is a framework for directly executing temporal logic specifications.
• The root of the concept is Gabbay’s separation theorem:

Any arbitrary temporal logic formula can be rewritten in a logically
equivalent past future form.

• This past future form can be used as execution rules.
• A program is a set of such rules.
• Execution proceeds by a process of continually matching rules against

a “history”, and firing those rules whose antecedents are satisfied.
• The instantiated future-time consequents become commitments which

must subsequently be satisfied.

Mike Wooldridge 27# $

! "
Intelligent Agents Lecture 1

• Execution is thus is process of iteratively generating a model for the
formula made up of the program rules.

• The future-time parts of instantiated rules represent constraints on this
model.

• An example program: the resource controller. . .
∀ x %%&'()!"#$!"#$

ask(x) ♦ give(x)
∀ x,y give(x) ∧ give(y) (x=y)

• First rule ensure that an ‘ask’ is eventually followed by a ‘give’.
• Second rule ensures that only one ‘give’ is ever performed at any one

time.
• There are algorithms for executing programs that appear to give

reasonable performance.
• There is also separated normal form.

Mike Wooldridge 28# $

! "
Intelligent Agents Lecture 1

• provides an operational framework through which societies of
processes can operate and communicate.

• It is based on a new model for concurrency in executable logics: the
notion of executing a logical specification to generate individual agent
behaviour.

• A system contains a number of agents (objects), each object has 3
attributes:

– a name;
– an interface;
– a program.

Mike Wooldridge 29# $

! "
Intelligent Agents Lecture 1

• An object’s interface contains two sets:
– environment predicates — these correspond to messages the object

will accept;
– component predicates — correspond to messages the object may

send.
• For example, a ‘stack’ object’s interface:

stack(pop, push)[popped, stackfull]

{pop, push} = environment preds
{popped, stackfull} = component preds

• If an agent receives a message headed by an environment predicate, it
accepts it.

• If an object satisfies a commitment corresponding to a component
predicate, it broadcasts it.

Mike Wooldridge 30# $

! "
Intelligent Agents Lecture 1

• To illustrate the language in more detail, here are some example
programs. . .

• Snow White has some sweets (resources), which she will give to the
Dwarves (resource consumers).

• She will only give to one dwarf at a time.
• She will always eventually give to a dwarf that asks.
• Here is Snow White, written in :

Snow-White(ask)[give]:%%&'()!"#$!"#$
ask(x) ♦ give(x)

give(x) ∧ give(y) (x = y)

Mike Wooldridge 31# $

! "
Intelligent Agents Lecture 1

• The dwarf ‘eager’ asks for a sweet initially, and then whenever he has
just received one, asks again.
eager(give)[ask]:

ask(eager)
%%&'()!"#$!"#$

give(eager) ask(eager)

• Some dwarves are even less polite: ‘greedy’ just asks every time.

greedy(give)[ask]:
ask(greedy)

Mike Wooldridge 32# $

! "
Intelligent Agents Lecture 1

• Fortunately, some have better manners; ‘courteous’ only asks when
‘eager’ and ‘greedy’ have eaten.
courteous(give)[ask]:
((¬ ask(courteous) S give(eager)) ∧
(¬ ask(courteous) S give(greedy)))

ask(courteous)

• And finally, ‘shy’ will only ask for a sweet when no-one else has just
asked.

shy(give)[ask]:
♦ ask(shy)

%%&'()!"#$!"#$
ask(x) ¬ ask(shy)

%%&'()!"#$!"#$
give(shy) ♦ ask(shy)

Mike Wooldridge 33# $

! "
Intelligent Agents Lecture 1

Planning agents

• Since the early 1970s, the AI planning community has been closely
concerned with the design of artificial agents.

• Planning is essentially automatic programming: the design of a course
of action that will achieve some desired goal.

• Within the symbolic AI community, it has long been assumed that some
form of AI planning system will be a central component of any
artificial agent.

• Many planning algorithms have been proposed, and the theory of
planning has been well-developed.

Mike Wooldridge 34# $

! "
Intelligent Agents Lecture 1

Reactive Architectures

• There are many unsolved (some would say insoluble) problems
associated with symbolic AI.

• These problems have led some researchers to question the viability of
the whole paradigm, and to the development of reactive architectures.

• Although united by a belief that the assumptions underpinning
mainstream AI are in some sense wrong, reactive agent researchers use
many different techniques.

• In this presentation, we start by reviewing the work of one of the most
vocal critics of mainstream AI: Rodney Brooks.

Mike Wooldridge 35# $

! "
Intelligent Agents Lecture 1

Brooks — behaviour languages

• Brooks has put forward three theses:

1. Intelligent behaviour can be generated without explicit
representations of the kind that symbolic AI proposes.

2. Intelligent behaviour can be generated without explicit abstract
reasoning of the kind that symbolic AI proposes.

3. Intelligence is an emergent property of certain complex systems.

Mike Wooldridge 36# $

! "
Intelligent Agents Lecture 1

• He identifies two key ideas that have informed his research:
1. Situatedness and embodiment: ‘Real’ intelligence is situated in the

world, not in disembodied systems such as theorem provers or
expert systems.

2. Intelligence and emergence: ‘Intelligent’ behaviour arises as a
result of an agent’s interaction with its environment. Also,
intelligence is ‘in the eye of the beholder’; it is not an innate,
isolated property.

Mike Wooldridge 37# $

! "
Intelligent Agents Lecture 1

• To illustrate his ideas, Brooks built some based on his subsumption
architecture

• A subsumption architecture is a hierarchy of task-accomplishing
behaviours.

• Each behaviour is a rather simple rule-like structure.
• Each behaviour ‘competes’ with others to exercise control over the

agent.
• Lower layers represent more primitive kinds of behaviour, (such as

avoiding obstacles), and have precedence over layers further up the
hierarchy.

• The resulting systems are, in terms of the amount of computation they
do, extremely simple.

Mike Wooldridge 38# $

! "
Intelligent Agents Lecture 1

• Steels’ Mars explorer system, using the subsumption architecture,
achieves near-optimal cooperative performance in simulated ‘rock
gathering on Mars’ domain:
The objective is to explore a distant planet, and in particular, to collect
sample of a precious rock. The location of the samples is not known in
advance, but it is known that they tend to be clustered.

Mike Wooldridge 39# $

! "
Intelligent Agents Lecture 1

• Here are the behaviours for the Mars explorer (lower layers have
priority):

1. Obstacle avoidance.
(LOWEST LAYER — LEAST ABSTRACT).

2. Path attraction.
If you see a heavily trodden path, follow it away from spaceship.

3. Explore movement.
If I have no samples, move away from spaceship.

4. Return movement.
If I have samples, and I can’t see any denser concentration, then head
towards spaceship.

Mike Wooldridge 40# $

! "
Intelligent Agents Lecture 1

5. Random movement.
Move in a random fashion.
(HIGHEST LAYER — MOST ABSTRACT).

Mike Wooldridge 41# $

! "
Intelligent Agents Lecture 1

Agre and Chapman — PENGI

• Agre & Chapman observed that most everyday activity is ‘routine’ in
the sense that it requires little — if any — new abstract reasoning.

• Most tasks, once learned, can be accomplished in a routine way.
• Agre proposed that an efficient agent architecture could be based on the

idea of ‘running arguments’.
• The idea is that as most decisions are routine, they can be encoded into

a low-level structure (such as a digital circuit), which only needs
periodic updating.

• The idea is illustrated in PENGI: a simulated computer game, with the
central character controlled using a scheme such as that outlined above.

Mike Wooldridge 42# $

! "
Intelligent Agents Lecture 1

Situated Automata

• A sophisticated approach is that of Rosenschein and Kaelbling
• In their situated automata paradigm, an agent is specified in a rule-like

(declarative) language, and this specification is then compiled down to
a digital machine, which satisfies the declarative specification.

• This digital machine can operate in a provable time bound.
• At the time of writing, the theoretical limitations of the approach are

not well understood.
• The main difficulty appears to be that the more expressive the agent

specification language, the harder it is to compile it.
(There are some deep theoretical results which say that after a certain
expressiveness, the compilation simply can’t be done.)

Mike Wooldridge 43# $

! "
Intelligent Agents Lecture 1

Hybrid Architectures

• Many researchers have argued that neither a completely deliberative
nor completely reactive approach is suitable for building agents.

• They have suggested using hybrid systems, which attempt to marry
classical and alternative approaches.

• An obvious approach is to build an agent out of two (or more)
subsystems:

– a deliberative one, containing a symbolic world model, which
develops plans and makes decisions in the way proposed by
symbolic AI; and

– a reactive one, which is capable of reacting to events without
complex reasoning.

Mike Wooldridge 44# $

! "
Intelligent Agents Lecture 1

• Often, the reactive component is given some kind of precedence over
the deliberative one.

• This kind of structuring leads naturally to the idea of a layered
architecture, of which TOURINGMACHINES and INTERRAP are
examples.

• In such an architecture, an agent’s control subsystems are arranged into
a hierarchy, with higher layers dealing with information at increasing
levels of abstraction.

• A key problem in such architectures is what kind control framework to
embed the agent’s subsystems in, to manage the interactions between
the various layers.

Mike Wooldridge 45# $

! "
Intelligent Agents Lecture 1

Ferguson — TOURINGMACHINES

• The TOURINGMACHINES architecture consists of perception and
action subsystems, which interface directly with the agent’s
environment, and three control layers, embedded in a control
framework, which mediates between the layers.

Mike Wooldridge 46# $

! "
Intelligent Agents Lecture 1

perceptual
subsystem

planning
layer

action
subsystem

modelling
layer

reactive
layer

control subsystem

action
output

sensor
input

Mike Wooldridge 47# $

! "
Intelligent Agents Lecture 1

• The reactive layer is implemented as a set of situation-action rules, à la
subsumption architecture.

• The planning layer constructs plans and selects actions to execute in
order to achieve the agent’s goals.

• The modelling layer contains symbolic representations of the ‘cognitive
state’ of other entities in the agent’s environment.

• The three layers communicate with each other and are embedded in a
control framework, which use control rules.

Mike Wooldridge 48# $

