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Chapter 2

AI Techniques for Software
Requirements Prioritization

Alexander Felfernig

Institute of Software Technology

Graz University of Technology, Austria

2.1 Introduction

Limited resources, market demands, and technical restrictions regarding

the implementation of software features often demand for the prioritization

of requirements [1–4]. The focus of prioritization is the ranking and se-

lection of requirements that should be included in future software releases.

Intelligent decision support in prioritization is extremely important since

especially when dealing with large assortments of requirements, manual

prioritization processes tend to become very costly [5–8]. Potential sub-

optimal prioritizations can lead to different negative effects such as waste

of time due to a focus on irrelevant requirements, opportunity costs due

to the fact that the relevant features are not provided first, and missing

focus on market demands that could lead in the worst case to total loss [9].

In this context, prioritization can take place on the strategic level as well

as an on the operative level, which is typically associated with short-term

prioritization tasks [10,11]. The prioritization approaches discussed in this

chapter are based on AI techniques from the areas of constraint reason-

ing & optimization [12], utility-based recommendation [13], content-based

recommendation [14], matrix factorization [15], conflict detection [16], and

model-based diagnosis [17].

An overview of different prioritization tasks is given in Fig. 2.1. This

categorization is based on two dimensions. First, level of requirements
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Fig. 2.1 Prioritization variants in software development contexts.

specifies the granularity of requirements specifications, i.e., to which extent

these requirements can already be translated into corresponding detailed

software features. Second, inclusion of constraints refers to which extent

relationships between requirements and relationships to external factors are

taken into account in the prioritization process. Examples of constraints

(dependencies) between requirements are x requires y (x must not be imple-

mented before y) and x excludes y (only one of these requirements should

be implemented). Examples of external factors are the available budget

for a software project, available personnel resources, and specific prefer-

ences of stakeholders engaged in a software project. Along with these two

dimensions, there exist different prioritization approaches, which can be

differentiated with regard to the granularity level of requirements and the

degree of the inclusion of constraints.

Early requirements engineering is related to the idea of figuring out

the requirements that have the highest importance, for example, for the

market or specific customer communities. Prioritization tasks typically

refer to high-level requirements, furthermore, no specific constraints are

included. The major focus is to figure out the most relevant features of

a product with a market relevance. Requirements in such scenarios can

be regarded as high-level, for example, “the new e-learning software should

include a motivation functionality that persuades students to intensively

learn the course topics” or “the new e-learning software should support

natural language based interaction mechanisms”.
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A minimal viable product (MVP) should include a minimal set of fea-

tures that can be integrated as parts of a fully operable software offered

to customers. MVPs are a typical approach to get to the market as soon

as possible with the most relevant features of a software. In this context,

constraints play an important role since the prioritization of requirements

has to take into account constraints such as available personnel and budget

resources. Requirements can also be regarded as high-level and constraints

primarily refer to available budgets and personnel resources. Examples of

constraints are “motivation features of the new e-learning software should

solely include the aspect of social influence” and “for the first version of

the software, natural language interaction should support the answering of

multiple-choice questions with single correct answers”.

Basic release planning does not fully take into account further con-

straints such as available budget, personnel resources, and time restrictions

regarding the implementation of requirements. This type of prioritization

covers implementation scenarios where releases are planned on an oper-

ational level without taking into account in detail constraints regarding

available personnel and budget resources as well as time limitations. Ex-

amples of requirements in such contexts are “the basic scenario for a social

influence based persuasion is the following ... the user interface implemen-

tation of this function should look like as follows ...” or “the basic scenario

for supporting multiple choice questions in the context of natural language

interactions is the following ... the user interface implementation can be

sketched as follows ...”. On a technical level, basic release planning can be

performed using approaches similar to those used in the context of early

requirements engineering.

Finally, integrated release planning represents a full-fledged release plan-

ning [18,19] on the basis of detailed constraints representing organizational

data and rules. In this context, both, constraints regarding dependencies

between requirements as well as constraints related to external factors are

taken into account. Similar to basic release planning, requirements are

defined with fine granularity. A major difference between basic release

planning and integrated release planning is the availability of more detailed

constraint information, for example, integrated release planning is able to

take into account the individual availability of developers (in terms of en-

gagement in other projects and presence or absence during specific time

periods). Furthermore, dependencies between requirements can be taken

into account on a formal level.
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On the level of prioritization techniques, there are two basic approaches

to support prioritization processes — see Achimugu et al. [1]. First, prior-

itization can be regarded as an optimization task where the objective is to

identify a prioritization that takes into account the preferences of individ-

ual stakeholders and also helps to optimize the prioritization with regard

to a set of predefined constraints [20]. On a technical level, optimization-

based prioritization is often based on a hybrid approach where the identi-

fication and aggregation of stakeholder preferences is supported by utility

analysis [21–23] and optimization is performed on the basis of constraint

reasoning [12,24].

Utility-based approaches focus on an analysis of the given requirements

with regard to a set of interest dimensions and less on automated opti-

mization. Different variants of this approach can be implemented, for ex-

ample, a utility-based ranking can be extended with the concepts of liquid

democracy [25]. Finally, social networks can be exploited as data sources

for the identification of new requirements, which are regarded as relevant

by the underlying social network [26]. In terms of the application of the

mentioned prioritization techniques, early requirements engineering and ba-

sic release planning focus more on utility-based prioritization approaches

whereas minimum viable product and integrated release planning focus on

optimization-based prioritization approaches.

The major contributions of this chapter are the following. First, we

provide an overview of existing techniques that help to improve the quality

of prioritization processes in requirements engineering. Second, we show the

application of these techniques in the context of working examples. Third,

in order to stimulate further work in related fields, we discuss relevant issues

for future work.

The remainder of this chapter is organized as follows. Sections 2.2–2.5

include a discussion of the application of AI techniques in the scenarios

of early requirements engineering, minimum viable products, basic release

planning, and integrated release planning. These sections include a de-

scription of the underlying scenarios and working examples. Section 2.6

provides insights how to support stakeholder selection, which is an impor-

tant issue when it comes to the assignment of requirement validation tasks.

Section 2.7 provides an overview of issues for future research. Finally, we

conclude the chapter with Section 2.8.
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2.2 Early Requirements Engineering

A basic means to support prioritization tasks in early requirements en-

gineering is to perform a utility analysis of a given set of requirements.

Utility-based prioritization is based on the concepts of multi-attribute util-

ity theory [27] — different variants thereof are possible. First, individual

requirements are evaluated with regard to interest dimensions (e.g., risk

level of a requirement and the commercial relevance of a requirement).

The utility of the requirement is then determined on the basis of the sum

of interest dimension specific utility values. Interest dimensions can be as-

sociated with a weight, for example, low risks are more important than high

profits. Utility-based prioritization can also be implemented on the basis

of analytic hierarchy process (AHP) [28]. A major disadvantage of this ap-

proach is that requirements have to be evaluated pairwise which does not

scale well when the number of requirements increases.

Interest dimensions, i.e., basic evaluation criteria for utility-based priori-

tization can differ depending on the underlying decision scenario. Examples

of such interest dimensions in company-related software projects are effort

to implement a requirement, risk of not being able to implement a require-

ment, and business relevance of a requirement (profit) [1]. In open source

settings, the dimensions can be different since open source contributors

have to decide individually on which requirement to work next. Examples

of related interest dimensions could be personal expertise of an open source

developer and importance of a requirement for the community [29].

Utility analysis supports stakeholders in the prioritization of require-

ments with regard to a set of interest dimensions D = {d1, d2, ..., dn}. The

underlying idea is that requirements are first analyzed by individual stake-

holders (also denoted as users) — see Tables 2.1–2.2. Such decisions are

often group decisions where stakeholders are in charge of prioritizing a set

of requirements [30].

In this simplified example, users are in charge of evaluating the require-

ments req1..req5 with regard to the interest dimensions business relevance

and risk. Thereafter, individual evaluations are aggregated to determine

the utility of requirements. In this context, Formula 2.1 can be used to

calculate the utility of a requirement with regard to a specific interest di-

mension d. Furthermore, Formula 2.2 is used to determine the overall utility

of a requirement.
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Table 2.1 Evaluation of the dimension

relevance (high rating = high relevance).

user1 user2 user3 user4

req1 1 4 5 2

req2 10 6 1 7

req3 2 6 5 2

req4 1 1 3 7

req5 7 8 6 5

Table 2.2 Evaluation of the dimension

risk (high rating = low risk).

user1 user2 user3 user4

req1 2 7 3 2

req2 9 9 1 7

req3 2 10 3 2

req4 2 5 3 1

req5 3 2 3 5

utilityreq(req, d) =
Σu∈Userseval(req, d, u)

|Users|
(2.1)

utility(req) =
Σd∈Dimsutilityreq(req, d)× weight(d)

|Dims|
(2.2)

The determined utilities are then encoded in a ranking (see Table 2.3).

Table 2.3 Prioritization of requirements req1..req5 with
regard to the interest dimensions relevance (weight = 0.75)

and risk (weight = 0.25).

requirement reqi req1 req2 req3 req4 req5

utility(reqi) 4.63 5.75 4.06 2.94 4.56

priority(reqi) 2 1 4 5 3

The presented approach to group-based multi attribute utility analysis

[30] is based on the assumption that each stakeholder is able to provide

feedback on each of the given requirements. This might not be possible

for various reasons, for example, stakeholders are simply not available, i.e.,

do not have time or they might have issues in terms of missing knowledge

needed to evaluate a requirement. In such cases, mechanisms are needed to

be able to transfer votes in a flexible fashion. Such an approach to liquid-

democracy based prioritization is introduced in [25]. The major difference
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compared to the aforementioned approach is that individual stakeholders

are allowed to vote more than once and to transfer their votes to other

stakeholders.

An alternative approach to handle missing values in requirements eval-

uation is to apply machine learning concepts, which help to automatically

complete a potentially sparse rating matrix [15]. The automatically deter-

mined requirements evaluations can then be proposed to stakeholders and

can also serve as indicators of potential issues related to contradictory eval-

uations, which have to be resolved. Table 2.4 depicts a user-item matrix,

which includes a couple of missing evaluations (denoted with ”?”).

Table 2.4 Association of users with require-

ments req1..req5.
relevance user1 user2 user3 user4

req1 ? ? 5 ?

req2 10 ? 1 ?

req3 ? 6 ? 2

req4 ? ? 3 ?

req5 ? ? ? 5

Based on the information included in Table 2.4, we can perform so-called

dimensionality reduction and describe the relationship between users and

requirements in terms of two low-dimensional matrices U and R where the

former describes the relationship between users and abstract dimensions

(hidden features) (see Table 2.5) and the latter the relationship between

items and abstract dimensions (see Table 2.6).

Table 2.5 User × interest dimension (d1..d3) affinity matrix U .

user1 user2 user3 user4

d1 3,652807135 1,251029912 0,148850849 1,870385191

d2 2,406538532 1,830201936 1,766613942 0

d3 0,053547355 0,176813763 1,86544824 0,002507298

Table 2.6 Requirement × interest dimension (d1..d3)
affinity matrix R.

d1 d2 d3

req1 0,318390415 0,359262854 2,305033956

req2 2,527786478 0,3177104899 0,035500999

req3 1,072394897 2,524779729 0,126403403

req4 0,167185814 1,181561695 0,467019398

req5 2,665424355 0,109392275 0,008631143
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The table entries can be learned on the basis of a matrix factorization

approach that is based on non-linear optimization. The optimization goal

is to find values for the low-dimensional tables, which help to predict the

missing table entries as good as possible. For a detailed discussion of matrix

factorization techniques we refer to [15].

Similar to the description of the relationship between users and hidden

features, we can describe the relationship between requirements and hid-

den features. The higher the value, the higher the corresponding affinity

between users (requirements) and the corresponding hidden features. We

want to emphasize that in the matrix factorization context features are

hidden, i.e., it is not clear if and which hidden feature corresponds to a

specific evaluation dimension (as discussed in the context of utility-based

prioritization).

The two low-dimensional matrices U and R can now be used to calcu-

late a prediction for an unspecified user × requirement pair denoted with

“?” (see Table 2.4). By applying matrix multiplication, we can, for exam-

ple, determine a prediction of the evaluation of requirement req1 by user1.

The corresponding table entry results from the expression 0, 318390415 ×
3, 652807135 + 0, 359262854 × 2, 406538532 + 2, 305033956 × 0, 053547355

which is 2, 151027154. Expecting predictions on a scale 0..10, the prediction

for the evaluation of requirement req1 by user1 appears to be rather low.

2.3 Minimum Viable Products

Minimum viable products (MVPs) represent products (in our case software

components) that include a minimum set of requirements applicable and

of value for a customer. In the context of software development, MVP

development is extremely important especially for start-up companies since

resources are often extremely limited and there is only one chance to develop

the right product for the customer community. Consequently, prioritization

support is extremely important in such scenarios. MVP development is

related to DevOps software processes which are characterized by extensive

automation and continuous updates [31]. Such processes support a more

in-depth customer integration into feedback and prioritization and — as a

consequence — help to increase the quality of prioritization due to deeper

insights into the progress of the project.

Prioritizations for minimum viable products typically have to deal with

high-level requirements, which do not describe specific functionalities but

rather generic features of the software. For these features, it should be
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made clear which are the most relevant ones that can realistically be im-

plemented. We can consider the task of selecting a subset of requirements

to be included in a minimal viable product as a utility-based prioritization

task where requirement utilities and time estimates are used as basic inputs

in a follow-up process that focuses on optimizing the selection of a bundle

of most relevant features (requirements). Thus, MVP-oriented prioritiza-

tion supports a kind of triage process [32] where the most important and

feasible requirements are implemented first.

Formula 2.3 restricts the available time resources, i.e., how much time

is available to implement the new MVP features. In typical start-up sce-

narios, this would reflect a situation where, for example, four persons to-

gether can spend around one month to implement market-relevant features

into an MVP. To make good use of the available time, resource planning

can be used to calculate an optimal subset of requirements to be included

(included(reqi)) in the MVP. An example of how to take into account time

restrictions is shown in Formula 2.3.

time(req1)× included(req1) + ..+ time(reqn)× included(recn) ≤ maxtime

(2.3)

The overall optimization objective of this resource planning task is ex-

pressed with Formula 2.4. The utility of the selected requirements (re-

quirements, which should be part of the MVP) should be maximized while

taking into account additional restrictions (see Formula 2.3).

max← utility(req1)× included(req1) + ..+ utility(reqn)× included(recn)

(2.4)

Table 2.7 Selecting the most relevant requirements under

given time conditions resulting in a maximum utility of

10.31 = utility(req2)+utility(req5).

requirement reqi req1 req2 req3 req4 req5

utility(reqi) 4.63 5.75 4.06 2.94 4.56

time(reqi) 3 4 4 3 5

selected 0 1 0 0 1

2.4 Basic Release Planning

Basic release planning follows a prioritization approach where requirements

formulated on a fine-granular level are selected with regard to their rele-

vance of being part of one of the next n releases — in the case of n = 1,
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this scenario is also denoted as next release problem. In most of the cases,

such scenarios do not need the support of a high-sophisticated release plan-

ning solution. Example reasons for choosing a lightweight process are the

unavailability of resource data required by release planning tools (e.g., data

about resources already occupied in projects) and limited budgets and per-

sonnel resources to purchase and support a heavy-weight release planning

software and to integrate this software with resource-related data sources.

Basic release planning focuses on the prioritization of requirements for-

mulated on a fine-granular level. Initially, this process is often performed on

the basis of a utility analysis (see Section 2.2). On the basis of the results of

a utility analysis, stakeholders can propose assignments of requirements to

releases. If a company’s software process follows a next release strategy, i.e.,

the planning horizon is the next release, the corresponding selection task

is to figure out the most relevant requirements for the next release. Basic

release planning typically does not take into account constraints regarding

available resources — such constraints are taken into account informally.

Tools supporting basic release planning can help to repair inconsisten-

cies in the stakeholders’ preferences regarding the assignment of require-

ments to releases. A scenario in the context of basic release planning is

the following (see Table 2.8). Stakeholders (users) define their individual

preferences regarding the assignment of requirements to releases. Since

stakeholders can do this remotely and are initially often not allowed to

see the preferences of other stakeholders, conflicts regarding defined release

assignment preferences can occur [33].

Table 2.8 Preferences of stakeholders

with regard to release assignments.
user1 user2 user3 user4

req1 1 1 2 1

req2 2 2 3 3

req3 3 3 3 3

req4 1 2 2 3

req5 4 1 1 1

In this context, constraint-based optimization can be applied to min-

imize the need of preference change per user (see Formula 2.7). We as-

sume the existence of variables ureqij with the domain 1..4 representing

the releases 1..4, for example, ureq11 = 1 indicates that user1 prefers the

assignment of req1 to release 1. Furthermore, we assume the existence

of variables ureq′ij , which represent the solution space. The constraint
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ureqcountij = abs(ureqij − ureq′ij) indicates whether a user preference has

to be adapted. Furthermore, we need to count the number of changes

needed per user i (see Formula 2.5). The number of preference changes per

user i is represented by variable chni (see Formula 2.5).

chni ← ureqcounti1 + .. + ureqcountin (2.5)

Furthermore, we want to assure consensus, i.e., each requirement j has

to be assigned to exactly one release (see Formula 2.6).

ureq′1j = .. = ureq′mj (2.6)

Given this knowledge, we can define an optimization problem with the

overall goal to minimize the number of changed release assignments while

at the same time being fair, i.e., it should not be the case that (in the

worst case) all needed changes are affecting a single stakeholder. This

criteria is represented by Formula 2.7. The underlying idea is that the

pairwise distance between stakeholders in terms of the number of needed

stakeholder-specific preference adaptations should be minimized.

min← abs(chn1 − chn2) + .. + abs(chnn−1 − chnn) (2.7)

Formula 2.8 represents an alternative optimization function where the

expected solution represents a tradeoff between fairness among stakehold-

ers in terms of a fair share of individual changes of preferences and mini-

mality in terms of the overall number of needed changes.

min← (abs(chn1 − chn2) + .. + abs(chnn−1 − chnn))× (chn1 + .. + chnn)

(2.8)

This kind of knowledge can be exploited by optimization features of

constraint solvers such as Choco.1

2.5 Integrated Release Planning

On top of the concepts of basic release planning, integrated release plan-

ning has a strong focus on integrating additional constraints related to

the dependency between requirements and constraints related to the avail-

ability of resources, limits of resource consumption, and the assignment of

stakeholders to individual tasks. Integrated release planning requires de-

tailed information about the assignment of employees to current projects

and their availability. Furthermore, project-specific release plans have to be

synchronized since employees can be assigned to multiple projects during
1choco-solver.org
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the same time period. A special case are distributed project scenarios where

a large project is conducted by different independent teams that work on

some common features, which have to be taken into account in the release

plans of the individual project partners.

Table 2.9 provides a representative overview of modeling concepts that

can be used in the context of release planning. Requirements can be repre-

sented as basic components with associated properties represented as finite

domain variables. For example, req1.rel denotes requirement req1 with the

associated release req1.rel, which could be represented, for example, by the

domain 1..3, i.e., the look-ahead factor for releases would be 3. Another

example of a property which can be associated with a requirement reqi is

reqi.dur, which denotes the time estimate for requirement reqi.

Table 2.9 Examples of basic constraints used for defining release planning

tasks. In this context, reqi denotes a requirement, reqi.rel denotes the corre-

sponding release, and req.dur denotes the estimated development time for a
requirement.

Definition Description

reqi.rel = a reqi is assigned to release a

reqi.rel < reqj .rel reqi must be implemented before reqj
reqi.rel ≤ reqj .rel reqj must not be implemented before reqi
reqi.rel 6= reqj .rel reqi and reqj must have different releases

reqi.rel ≤ a implementation of reqi not after release a

reqi.rel ≥ a implementation of reqi not before release a

reqi.rel = n ∨ reqj .rel = n reqi or reqj not in release plan

¬(|reqi.rel − reqj .rel| > k) reqi and reqj must be implemented timely

|{r ∈ R : r = rel}| ≤ a not more than a requirements in release rel

Σr∈R∧r.rel=rel(r.dur) ≤ a not more than a hours bounded to rel

A simple example of the application of the modeling concepts shown

in Table 2.9 is given in Tables 2.10–2.11. Table 2.10 includes dependencies

between requirements that are considered correct and have to be taken into

account, i.e., the constraints are so-called hard constraints. For example

req1.rel < req2.rel denotes the fact that the implementation of req1 has to

be completed before the implementation of req2 can be started. Since these

constraints are assumed to be taken into account, they have to be consistent,

i.e., at least one solution should exist. Assuming a finite domain of 1..3

for each individual variable reqi.rel, a corresponding consistent variable

assignment (solution) is {req1.rel = 1, req2.rel = 2, req3.rel = 3, req4.rel =

3, req5.rel = 1}.
Please note that all constraint types shown in Table 2.8 can be either
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Table 2.10 Example requirements and set D of corresponding de-

pendencies. The domain of reqi.rel is assumed to be 1..3.
req1.rel req2.rel req3.rel req4.rel req5.rel

req1.rel - < - - -

req2.rel - - < - >

req3.rel - - - - -

req4.rel - - - - 6=
req5.rel - - - - -

Table 2.11 Example set S of (inconsistent)

stakeholder preferences.
user1 user2 user3 user4

req1.rel = 1 = 1 ≤ 2 = 1

req2.rel ≥ 2 ≥ 2 ≥ 2 ≥ 2

req3.rel ≤ 2 ≥ 2 = 3 ≤ 3

req4.rel ≥ 1 ≥ 1 ≥ 2 ≥ 2

req5.rel ≥ 2 = 1 = 1 ≤ 2

represented as hard constraints or as soft constraints — in the context of

our example, the entries of Table 2.10 are interpreted as hard constraints,

those of Table 2.11 as soft constraints, i.e., stakeholder preferences that

should be taken into account but could also be ignored in the case that not

all stakeholder preferences could be taken into account. On the basis of

the (hard) constraints shown in Table 2.10, stakeholders (users) can specify

their individual preferences (see Table 2.11). For simplicity, we restrict the

constraint type of user preferences to the form reqi.rel = a, reqi.rel < a,

reqi.rel > a, reqi.rel ≤ a, and reqi.rel ≥ a.

The stakeholder preferences S in Table 2.11 are inconsistent. Detailed

release planning can be regarded as an interactive process where stakehold-

ers define their preferences and then try to establish consensus with regard

to the final release plan. In the example shown in Table 2.11, the stakehold-

ers have defined inconsistent preferences with regard to the requirements

req3 and req5. More precisely, there is one set of conflicting preferences

with regard to req3 ({{user1 : (≤ 2), user3 : (= 3)}}) and two conflicting

preferences with regard to req5 ({{user1 : (≥ 2), user2 : (= 1)}, {user1 : (≥
2), user3 : (= 1)}}). Combinations of preferences that induce an inconsis-

tency are often denoted as conflict set [16, 17]. Conflict sets can be shown

to stakeholders to indicate open issues and to stimulate discussions on how

to resolve the existing inconsistencies. In our example, the inconsistent sit-

uation could be resolved if stakeholder user1 would agree to change both
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of his (her) preferences. If we take into account both, the constraints in D

and the preferences in S, we can detect two singleton conflicts both induced

by the preferences of user1 ({{user1 : (≤ 2)}, {user1 : (≥ 2)}}).

2.6 Stakeholder Recommendation

An issue in different prioritization scenarios is to figure out who should be

in charge of validating a specific requirement since (s)he has the expertise

needed. The quality of stakeholder/requirement assignment can have enor-

mous impacts on the quality of a prioritization since sub-optimal evalua-

tions can lead to sub-optimal prioritizations. Specifically, missing expertise

can lead to situations where, for example, requirements of high relevance

are evaluated as less relevant and — as a consequence — are not consid-

ered as a potential candidate for early releases. A major issue is to identify

stakeholders who have the expertise and thus can provide reasonable eval-

uations of requirements. As sketched in Formula 2.9, expertise estimation

can be implemented on the basis of the similarity between requirements

already evaluated by a stakeholder and a set of new requirements.

Stakeholder expertise can be modeled in various ways. In the following,

we provide a basic example of how to exploit the concepts of content-based

recommendation [14] to propose reasonable assignments of stakeholders to

requirements. Table 2.12 contains a set of new requirements with a corre-

sponding set of keywords, which have been extracted from the requirement

description. For these requirements, we would like to figure out automati-

cally, which stakeholder would be the best one to work on this requirement,

for example, to evaluate the requirement. Furthermore, Table 2.13 shows a

list of stakeholders (users) and a corresponding list of keywords extracted

from requirements descriptions the stakeholder worked on in the past. In

order to estimate which stakeholder should work on which requirement,

we can apply the concepts of content-based recommendation [14]. We can

calculate the similarity between the keywords describing a stakeholder (see

Table 2.13) and the keywords describing a requirement (see Table 2.12).

This can be achieved by applying Formula 2.9 which helps to determine

the stakeholder × requirements similarity.

sim(user, req) =
2× |keywords(user) ∩ keywords(req)|

keywords(user) ∪ keywords(req)
(2.9)

The result of this similarity evaluation is summarized in Table 2.14.

For req1 and req5, users with an average similarity have been identified as
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Table 2.12 Requirements and keywords

extracted from their descriptions.
Requirements Keywords

req1 registration users

req2 basic payment

req3 credit card payment

req4 optimize user portfolio

req5 optimize database

Table 2.13 Stakeholders and keywords of requirements
they have validated.

Stakeholders Keywords

user1 registration feature database connection

user2 payment process

user3 credit card interfaces

user4 credit card portfolio optimize

Table 2.14 Content-based similarity be-
tween stakeholders and requirements.

user1 user2 user3 user4

req1 0.4 0 0 0

req2 0 0.66 0 0

req3 0 0.5 1.0 0.8

req4 0 0 0 0.8

req5 0.4 0 0 0.4

candidates for validating the requirements. A user with a stronger similar-

ity could be found for req2. Finally, there is a strong similarity between

requirements req3, req4, and user4. Overall, user4 seems to have a high

coverage with regard to the potential requirements assignments. Finally,

user3 has the highest expertise with regard to a single requirement (req3).

2.7 Research Issues

Derivation of Preferences from Social Networks. In the discussed prioriti-

zation scenarios, preference elicitation is still a manual process. Especially

in contexts where companies have established a social network representing

their user community, network contents, for example, in the form of tweets

can be exploited to infer new requirements and preferences with regard

to existing and future software features [26]. The automated integration

of community preferences into requirements prioritization is still an open
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issue and extremely relevant for making related decision processes more

community-oriented and efficient. Beyond automated preference integra-

tion, quality assurance for preferences is an extremely important issue. [34]

show how a consequence-based evaluation of different choice alternatives

can help to improve the overall quality of release planning decisions.

Avoidance of Decision Biases. Decision biases are related to shortcuts in

decision making that can lead to sub-optimal decisions [35,36]. Being aware

of such biases helps to improve the overall quality of decisions processes. An

example of such a bias is anchoring where the item evaluations of one user

that are already visible to other users who haven’t evaluated the item up

to now, can have an impact on the evaluation behavior of other users [33].

For an overview of decision biases in recommender systems we refer to [35].

Many of the existing biases reported in the psychological literature have

not been evaluated up to now. This can be regarded as a major topic for

future research.

Transparency of Decisions. In order to increase trust, decisions have

to be made transparent. Transparency can be achieved on the basis of

explanations, which help to understand the reasons for a recommended de-

cision [30]. An important role of transparency is also related to the task

of avoiding manipulations in decision making [37]. An example thereof is a

situation where a user tries to adapt his/her rating in order to push his/her

preferred alternatives (push attack). As discussed in Trang et al. [37], a

very effective way of avoiding manipulations is to make the rating behav-

ior of individual users more transparent, i.e., making their rating behavior

visible to other users. A research issue in this context is to analyze in

detail which degree of transparency of rating behavior best helps to coun-

teract manipulations and which visualizations should be used to explain

the current status of a decision process.

Prioritization and Decision Making in Open Source Environments.

Open source development often takes place in the context of single user

(contributor) decision making, i.e., contributors can individually and inde-

pendently decide which requirement to implement next. Often, many new

requirements are potential candidates and the analysis of these candidates

is time-consuming. In this context, prioritization can help to automati-

cally rank new requirements in a contributor-specific fashion and thus to

significantly reduce related analysis efforts. An approach to support such

prioritization scenarios in the Eclipse open source environment is reported

in [29]. A research challenge in this context is to develop decision support

approaches that do not only determine recommendations for individuals
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but also to figure out which prioritization helps to make the open source

community as a whole more productive.

2.8 Conclusions

In this chapter, we provide an overview of prioritization scenarios that can

be differentiated with regard to the degree of underlying requirement gran-

ularity and whether constraints are used to describe a prioritization task.

These scenarios range from early requirements engineering (utility analysis

of high-level requirements), minimum viable product (selection of features

to be contained in a first version of a product), basic release planning (ini-

tial prioritization of requirements), to integrated release planning (detailed

prioritization of requirements with regard to a predefined set of releases).

To better show the application of related decision support techniques, we

introduce a couple of prioritization examples. This chapter is concluded

with an outline of open issues for future research.

Acknowledgment

The work presented in this chapter has been conducted within the scope of

the Horizon2020 OpenReq Project (funded by the European Union).

References

[1] P. Achimugu, A. Selamat, R. Ibrahim and M. Mahrin, A systematic liter-
ature review of software requirements prioritization research, Information
and Software Technology 56, 6, pp. 568–585 (2014).

[2] M. R. Karim and G. Ruhe, Bi-objective genetic search for release planning
in support of themes, in Proceedings Symposium on Search Based Software
Engineering. Springer, pp. 123–137 (2014).

[3] L. Lehtola, M. Kauppinen and S. Kujala, Requirements prioritization chal-
lenges in practice, in 5th International Conference On Product Focused Soft-
ware Process Improvement (PROFES). Kansai Science City, Japan, pp. 497–
508 (2004).

[4] B. Mobasher and J. Cleland-Huang, Recommender Systems in Requirements
Engineering, AI Magazine 32, 3, pp. 81–89 (2011).

[5] M. Alenezi and S. Banitaan, Bug reports prioritization: Which features and
classifier to use? in 12th International Conference on Machine Learning and
Applications, pp. 112–116 (2013).

[6] A. Perini, F. Ricca and A. Susi, Tool-supported requirements prioritization:
Comparing the AHP and CBRank methods, Information and Software Tech-
nology 51, 6, pp. 1021–1032 (2009).

 A
rt

if
ic

ia
l I

nt
el

lig
en

ce
 M

et
ho

ds
 f

or
 S

of
tw

ar
e 

E
ng

in
ee

ri
ng

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
77

.8
1.

21
1.

24
0 

on
 0

5/
21

/2
3.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



June 1, 2021 9:18 ws-book9x6 Artificial Intelligence Methods for Software Engineering 12360-02 page 46

46 Artificial Intelligence Methods for Software Engineering

[7] G. Ruhe, Software engineering decision support–a new paradigm for learn-
ing software organizations, in International Workshop on Learning Software
Organizations. Springer, pp. 104–113 (2002).

[8] J. Xuan, H. Jiang, Z. Ren and W. Zou, Developer prioritization in bug repos-
itories, in 34th International Conference on Software Engineering (ICSE).
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