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Abstract
Farris, J. S. (Biol. Sd., State Univ., Stony Brook, New York, 11790), Kluge, A. G., and

Eckardt, M. J. (Zool., Univ. Michigan, Ann Arbor 48104) 1970. A Numerical approach
to phylogenetic systematics. Syst. Zool., 19:172-191.—Principles abstracted from Hennig
(1966) are used as axioms to form a quantitative analog of phylogenetic systematics.
A close connection is demonstrated between phylogenetics and most parsimonious trees.
The compatibility of some existing clustering methods with the principles is discussed,
and a new clustering technique, the Weighted Invariant Step Strategy (WISS) is described.
Generalization of the axioms to the case where direction of evolution is not assumed is
examined, and it is shown that the Wagner Method for estimating evolutionary trees
is consistent with the generalized phylogenetic axioms.

The taxonomic philosophy propounded in
Hennig's (1966) Phylogenetic Systematics
is unique among non-quantitative ap-
proaches to evolutionary taxonomy for the
detail in which its premises have been
described. The corresponding "phyloge-
netic," or "cladist" school of taxonomists
have been proportionately influential.
Viewpoints similar to those of Hennig
(1966) have consequently been incorpo-
rated into mathematical models underlying
some novel techniques in quantitative evo-
lutionary taxonomy. These facts have led
us to study the formal implications of
Hennig's treatise.

The aims of this paper are to consider
what restrictions are imposed on quanti-
tative evolutionary procedures by the
premises of Phylogenetic Systematics, to
construct quantitative techniques consist-
ent with those premises, and to evaluate
existing quantitative techniques with re-
spect to the premises. It is not our primary
aim to criticize either the principles or the
methods of Phylogenetic Systematics, al-
though we shall consider some generaliza-
tions of the method. We do not claim to

1 Preparation of this paper was partially sup-
ported by National Science Foundation Grant
GB-15146.

2 Contribution number 14 from the Program
in Ecology and Evolution, State University of
New York at Stony Brook.

consider all the issues raised by Phyloge-
netic Systematics. We shall restrict our-
selves to one central topic: Inference of
evolutionary trees.

We shall throughout use "phylogenetic,"
"phylogeneticist," and "phylogenetics" to
refer only to the taxonomic philosophy and
methods of Hennig (1966). We shall use
the term "monophyletic" in the sense of
Hennig.

PHYLOGENETIC AXIOMS

Our formal development will be based
on a set of axioms abstracted from Hennig
(1966).

AI. A character ("transformation series"
of Hennig) is a collection of mutually
exclusive states (attributes; features;
"characters," "character states," or "stages
of expression" of Hennig) which

a) have a fixed order of evolution such
that

b) each state is derived directly from
just one other state, and

c) there is a unique state from which
every other state is eventually de-
rived.

Ala should not be taken to imply that
phylogeneticists assume a character to
evolve in only one way or in only one
direction. We will generally assume that
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F I G . 1 .—A c h a r a c t e r s t a t e t r e e ( i ) ; h y p o t h e t i c a l p h y l e t i c t r e e s ( i i ) , ( i i i ) .

Ala holds only over an appropriately
restricted section of the evolutionary tree.

Alb and Ale imply that the evolutionary
order of a character can be represented as
a character state tree (cf. Camin and
Sokal, 1965) with a unique root and no
closed loops. Such a tree is depicted in
Fig. l ( i ) .

The evolutionary ordering of the states
of a character allows us to classify states
as ancestral ("plesiomorphous" of Hennig)
or derived ("apomorphous" of Hennig).
These terms may be used in a relative
sense, as "state a is ancestral relative to
state b."

All. "All groups regarded as monophyletic
are distinguished by the possession of
derived (apomorphous) stages of expres-
sion . . . of at least one pair of characters
..."(Hennig, 1966:91).

All implies that a minimal condition for
a group, G, of OTUs to form a monophy-
letic group in the phylogenetic system is
that there is at least one character with a
"stage of expression" (i.e., a state) x, such
that aall the OTUs in G "possess" x, and
bno OTU outside G "possesses" x.

The "pair of characters" referred to above
results from the fact that every monophyletic
group distinct from G—and, in particular,

the "sister group" (Hennig, 1966) of G—
must also "possess" a distinctive character
state.

The meaning in this context of the condi-
tion that an OTU or group of OTUs "pos-
sesses" a character state differs from usual
numerical taxonomic usage. "It makes no
difference whether the synapomorphy
[possession of a derived state] consists in
the fact that an apomorphous character
[state] (a') is present identically in all
species . . . , or whether it is present in
different derived conditions (a' and a")"
(Hennig, 1966:90). This point is exempli-
fied in Fig. 1. Fig. l( i) specifies the evolu-
tionary order of a set of character states.
In Fig. l(ii) OTUs B and C share a
state, x2, not present in OTU A, and so
form a permissible monophyletic group. In
Fig. l(iii) B and C do not have the same
state, but the states they have are both
derivable from X2, while state xi, present
in A, is not so derivable. B and C there-
fore again form a permissible monophyletic
group.

To avoid confusion, we will recast All
in terms of some new definitions. A char-
acter state will be said to describe an OTU
(group of OTUs) if and only if the OTU
(all members of the group) have just that
character state. A group, G, of OTUs will
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174 SYSTEMATIC ZOOLOGY

be said to share a step, x, if and only if
every OTU in G either (a) has state x, or
(b) has a state apomorphous relative to
state x according to the evolutionary order-
ing assumed for the character. Here we
use the concept of a step, x, as the transi-
tion from state y to state x, where y is the
most derived state that is ancestral relative
to state x. For example, in Fig. l(iii), B
and C share step x2—that is the step from
x0 to x2—since that character transition has
occurred in the ancestry of both OTUs. On
the character state tree of Fig. l( i) the
nodes of the tree correspond to states,
while the internodes, or branches, corre-
spond to steps. On a character state tree
with no loops, each apomorphous state
corresponds to exactly one step; hence we
may without confusion use the name of
the state to label the corresponding step.
Further, we use the name of a character,
X, say, to refer either to a collection of
states or a collection of steps, there being
again no danger of confusion. Thus we
will refer to both state x and step x as
belonging to X. It is convenient to con-
sider state x0, the most ancestral state of
X, to correspond to a "null" step, x0. We
explicitly reserve "sharing states" between
OTUs to refer to those OTUs' being de-
scribed by states in common. This is done
in order to avoid the introduction of multi-
ple meanings of "shared states" in the
literature. We will find it convenient to
refer to the states derivable from a state, x.
We define a relation, d, on character states
so that y d x (read "y is derivable from x")
if and only if either (a) y = x, or (b) y is
apomorphous relative to x. A specified
evolutionary order on states is again as-
sumed. Hence we would say that two
OTUs with states y and z share a step, x,
if and only if y d x and z d x. The relation
d induces a partial ordering on the states
of a character (cf. Estabrook, 1968). In
our development we will assume properties
of partial orders in dealing with d. The
correspondence between states and steps
conserves the ordering d.

We now restate:
All. For every monophyletic group, G, of

OTUs, there is at least one character, X,
with a state, x, such that if a state y in X
describes any OTU in G then

a) y d x,
while if a state z in X describes any OTU
not in G then
b) z (Jx,

AIII. In the absence of evidence to the
contrary, any state corresponding to a
step shared by a group, G, of OTUs is
taken to have arisen just once in G.

AIII is a restatement of the "auxiliary
principle" of Hennig (1966:121). Because
of the correspondence between steps and
states, AIII implies that any step (i.e.,
transition between states) shared by a
group, G, of OTUs is assumed—unless
there is contrary evidence—to have oc-
curred just once in the ancestral lines
giving rise to the OTUs of G. The step is
then unique in the sense of Wilson (1965),
as is the corresponding state. Note that for
a multistate character, a unique, or even a
unique and unreversed (cf. Wilson, 1965),
state need not survive in every line possess-
ing it.

AIV. "The more characters certainly in-
terpretable as apomorphous (not char-
acters in general) that there are present
in a number of species, the better
founded is the assumption that these
species form a monophyletic group." (cf.
Hennig, 1966:121). This statement is a
re-translation of the original German
manuscript, which was most graciously
made available to us by Dr. Ranier
Zangerl. The original text reads, "Je
mehr sicher als apomorph zu deutende
Merkmale (nicht: Merkmale uberhaupt!)
bei einer Anzahl verschiedener Arten
vorhanden sind, desto besser ist die An-
nahme begriindet, dass diese Arten zu-
sammen eine monophyletische Gruppe
bilden"
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PHYLOGENETIC SYSTEMATICS 175

In the terms we introduced above under
All, AIV indicates that a group of OTUs
sharing many steps is a group whose mon-
ophyly is supported by strong evidence.
Only steps corresponding to derived states
are counted. In our discussion we will
refer to steps corresponding to derived
states as derived steps.

THEOREMS OF PHYLOGENETICS

Axioms AI-AIV are sufficient to allow us
to investigate the mathematics of construct-
ing estimates of evolutionary trees in ac-
cordance with phylogenetic principles. In
this section we assume that AI holds over
the entire tree in question. A more general
case is treated later.
TI. We first consider the problem of find-
ing the character states that describe the
(usually hypothetical) branching points of
a tree. Given that two OTUs, B and C,
together with their common ancestor E
(cf. Fig. 1), comprise a monophyletic
group, and given that for a character, X,
B and C are described by states XB and xo,
we must infer which state of X describes E.
We know by AI that just one state of X
describes E, since the states of a character
are postulated to be mutually exclusive.
We also know from AI that there is at least
one state, xt say, such that xB d x} and xc
d Xi, since all the states of X are presumed
to be derived eventually from an ancestral
state. Now for any state, xt, such that xB
d Xj and xc d xi, the corresponding step is
by definition shared by B and C. There-
fore by AIII, Xi is presumed homologous in
B and C, and so step Xi must also be shared
by E. Since this is true of any state from
which both xB and xc are derivable, it
must be that E is described by a state, xE,
such that

a) xB d xE

b) xc d xE

c) If there is another state, xK, such that
xB d xK and xc d xK, then xE d xK.

That is, E is described by the most derived
state from which both xB and xc may be

derived. No state, xl5 such that xB $ Xi or
xc $. Xi may describe E, since this would
violate the ordering of the character states.

The relation between xB, xc, and xE as
defined above is a theorem deduced from
AI and AIII. We shall denote that theorem
TI.

In utilizing TI it is convenient to frame
a relation on OTUs analogous to the rela-
tion, d, already defined on character states.
For OTUs A and B (either or both of
which may be hypothetical) and characters
Xi, X2, . . . Xx, we will write A D B (read
"A is derivable from B") if and only if for
every character Xi, x1A d xiB, 1 — i — N.

Since TI holds for every character, we
may deduce an immediate corollary:

Til. If OTUs A and B have a most recent
common ancestor, E, then E has the
following properties:
a) A D E
b) B D E
c) for any OTU, K, A D K and B D K

implies E D K.

Thus E must be the most derived hypo-
thetical OTU from which A and B are
both derivable.

We denote the most recent common an-
cestor of a set, G, of OTUs as J(G). Til
allows us to convert the All postulate
about the group, G, to a statement about
the ancestor, J(G), of the group. We al-
ready know from All that any valid mono-
phyletic group, G, must share at least one
step not shared by an OTU outside G.
Suppose that for character X there is a step,
xG, that is shared by G and not shared by
OTUs outside G, and suppose that xG is
the most derived such step for X. Then by
TI, J(G) is described by state xG. Let F
be any group of OTUs not in G. By hy-
pothesis, no OTU, C, in F shares xG, hence
xc $. xG. Thus if xF denotes the state of
J(F) in X, then xF jzl xG. Consequently,
J(F) #> J(G). We state this fact as

Till. For J(.) defined as above, if G is
any monophyletic group permissible
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176 SYSTEMATIC ZOOLOGY

under All, and if F is any group of
OTUs not in G, then J(F) V> J(G).

PHYLOGENETICS AND PARSIMONY

Theorems TI-TIII demonstrate a close
relationship between the phylogenetic
method and the method of most parsimo-
nious trees, as proposed by Gamin and Sokal
(1965) and formalized by Estabrook
(1968). Estabrook showed that TI and Til
hold when hypothetical ancestors of groups
are constructed to minimize the length of
the tree. He also showed that any most
parsimonious tree necessarily contains at
least one monophyletic group, G, from
whose most recent common ancestor, J(G),
it is not possible to derive the ancestor of
any other possible group of OTUs. Esta-
brook proposed a combinatoric procedure
to generate a tree by selecting groups, G,
with ancestors, J(G), such that if F is any
group of OTUs not in G, then J(F) ty
J(G). The set of trees generated by the
Estabrook procedure consequently in-
cludes all the trees that are permissible
under AI-AIII of the phylogenetic system.

In Estabrook's procedure, most par-
simonious trees are identified by measuring
the length of each permissible tree. Anal-
ogously, in the phylogenetic system, we
choose the "correct" tree, at least concep-
tually, by asking which permissible tree is
most in accord with AIV.

Unfortunately, AIV is not sufficiently
detailed to allow us to select a unique
criterion for choosing a most preferable
tree. We know that trees on which the
monophyletic groups share many steps are
preferable to trees on which this is not so.
But AIV deals only with single monophy-
letic groups and does not tell us how to
evaluate a tree consisting of several mono-
phyletic groups. One widely known cri-
terion—parsimony—could be used to select
trees. This would be in accord with AIV,
since on a most parsimonious tree OTUs
that share many steps (this is not the same
as the OTUs' being described by many of
the same states) are generally placed to-

gether. We might argue that the parsimony
criterion selects a tree most in accord with
AIV by "averaging" in some sense the
preferability of all the monophyletic groups
of the tree. Other criteria, however, may
also agree with AIV. We shall describe a
method based on a criterion correlated
with, but not equivalent to, the parsimony
criterion.

THE WEIGHTED INVARIANT STEP STRATEGY

One method for choosing a tree accord-
ing to AIV might operate as follows.

1) Select a set, G, of OTUs whose in-
clusion in a monophyletic group is
"best founded" in the sense that G
shares at least as many derived steps
as does any other possible collection
of OTUs. Go to 2.

2) Delete the OTUs in G from the set
of OTUs under consideration, re-
placing them by J (G), the most recent
common ancestor of G. Go to 3.

3) If the tree is incompletely specified,
return to 1. Otherwise, stop.

Here we assume that the most prefer-
able tree is produced by sequential applica-
tion of AIV. We find at each stage a cluster
of OTUs that are invariant in sharing
many derived steps. Such a cluster clearly
satisfies Alia and AIV. The consequences
of Allb will be treated below.

This is a type of "weighted" cluster
analysis in that, once J(G) is substituted
for G, it is treated just as an OTU (cf.
Weighted Pair Group Analysis; Sokal and
Sneath, 1963). We shall describe the
mathematics needed to program the
Weighted Invariant Step Strategy (WISS).

We must first decide how to count the
number of shared steps in a group of OTUs.
For simplicity in the following discussion,
we assume that the groups selected always
contain just two OTUs. Suppose that OTUs
A and B share a step, x4 (see Fig. l ( i ) ) .
From the definition of sharing, it is clear
that A and B then also share x2 and x0.
In general if two OTUs share a step that
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PHYLOGENETIC SYSTEMATICS 177

is k steps removed from the ancestral state,
then they share at least k + 1 steps, includ-
ing the ancestral ("null") step. Thus in
Fig. l(i) we see that x4 is k = 2 steps
removed from x0, and, as we have already
observed, sharing x4 subsumes sharing X2
and x0, for a total of 3 = k + 1 steps.

To formalize this notion, we assign to
each state, xb of a character, X, a value,
n(xi) representing the number of steps
needed to evolve from the ancestral state,
x0, of X to Xi. Thus in Fig. l ( i ) , we can
see that n (x e )=3 ; n(x 3 )=2; n(xi) = 1.
AIV exhorts us to count only derived steps
in choosing groups, so that the ancestral
step, x0, is not counted. Consequently, if
two OTUs share a step xl5 the total number
of shared derived steps implied by this fact
is n(xi). Note that if only x0 is shared, the
total number of shared steps implied by
n(x0) = 0 is still correct.

We denote as j(xi, xk) the most derived
state, Xj, such that Xi d xj and xk d Xj. If
OTUs A and B form a monophyletic group,
they have most recent common ancestors,
C, say, C = J({A,B}). For every charac-
ter, X, the state, xc, that describes C is
j (xA, xB), and the number of derived steps
shared by A and B in that character is
n(xc) =n(j(xA, xB)).

We define the advancement of an OTU,
A, as follows. For characters Xi, X2, . . . ,
XN, let A be described by states xiA, x2A,
. . . , XNA. The advancement, h(A), of A is
given by

N
h ( A ) = S n(x1A). (1)

i = l

The total number of derived steps shared
by OTUs A and B is equal to h(J( {A,B})).

An algorithm for WISS clustering would
then proceed as follows:

1) Find a pair of OTUs, A and B, such
that for any other OTU, E,

a) h(J({A,E})) ^
b) h(J({B,E})) ^

Go to 2.

2) Replace A and B by C = J({A,B}).
Go to 3.

3) If the clustering is incomplete, return
to 1; otherwise stop.

It is shown below that

h(J({A,B})) - h(B) - diff(A,B)),

where diff(A,B) is a measure of the
phenetic difference between A and B.
Hence h(J({A,B})) can be computed
without computing J({A,B}) itself. This
fact renders feasible highly efficient com-
puter algorithms for WISS clustering. Such
an algorithm has been developed, and a
FORTRAN IV program listing is available
from the senior author.

Clustering by either the WISS or Camin-
Sokal method produces monophyletic
groups that share many derived steps, so
that Alia and AIV are satisfied. Allb, how-
ever, requires that at least one of the steps
shared by a monophyletic group G, not be
shared by any OTU outside G. It is not
always possible to satisfy Allb with a fixed
coding of the data. For example, in the
data

T U

A
B
C
D

Character
1

1
1
0
1

2

1
1
1

o,
where 0 is the ancestral state, it is not pos-
sible to form any monophyletic groups
satisfying Allb. If OTUs A and B, say,
were united, they would share steps "1" in
both characters. However, neither corre-
sponding state is restricted to the A,B group,
for state "1" of character 1 occurs also in
D, while state "1" of character 2 describes
C.

One way to resolve this type of difficulty
is simply to collect data for more characters
until Allb is satisfied. Other approaches
are possible, however. Allb is technically
satisfied if we recode the data, asserting
that the "1" 's of D and C are not the same
states as those of A and B. Such recoding
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178 SYSTEMATIC ZOOLOGY

is not inconsistent with the phylogenetic
philosophy. While AI postulates that the
evolutionary ordering of a character is
fixed, we still face the possibility of error
in determining what the ordering is. With
real data, it is often possible to find external
evidence that the recoding should have
been done anyway.

One interpretation of the spirit of Allb
is that it requires that some of the shared
derived steps on which a monophyletic
group is based be cladistically reliable in
the sense of Farris (1969), in that the cor-
responding states have not arisen indepen-
dently in other groups. We would then
desire preferentially to create monophyletic
groups based on reliable character states.
This might be accomplished by combining
a WISS clustering procedure with a suc-
cessive weighting program (Farris, 1969).
This approach is now being investigated.

PHENETIC CLUSTERING PROCEDURES

In this section we investigate the com-
patibility with the phylogenetic axioms of
some phenetic clustering methods that have
been utilized in evolutionary studies.

Throckmorton (1968) suggested forming
an evolutionary tree by performing a com-
plete linkage cluster analysis. His index of
similarity between OTUs A and B was the
number of derived states describing both
A and B. There are two issues here: the
form of the cluster analysis and the nature
of the similarity measure. The second topic
we reserve for later discussion. In this sec-
tion we assume binary valued characters
with one ancestral and one derived state.
The effect of this convention is just that
with every character binary valued the
number of derived states describing both
OTU A and OTU B is equal to
h(J({A,B})). We may thus consider the
merits of the clustering procedure inde-
pendently of the consequences of the
similarity coefficient. Under the same re-
strictions on characters, the number of
shared steps between two OTUs is equal
to the number of shared states. For con-

venience in comparing methods we will in
this section refer to both quantities as num-
ber of shared states.

Throckmorton's rationale for utilizing
complete linkage analysis is that it effec-
tively estimates the maximum size of the
set of derived states invariant within a
cluster. It is true that the complete linkage
value between two clusters is an upper
bound for the number of derived states in-
variant within the entire group. However,
the linkage value computed by the com-
plete linkage procedure is not the least
upper bound for the number of invariant
derived states. Suppose that each OTU is
considered as a collection of derived states.
Any derived state invariant within a cluster
is present in every OTU of the cluster. Then
the set of states invariant within a lineage
is the intersection of all the sets represent-
ing all the OTUs in the lineage. The num-
ber of states in that intersection may not
exceed the complete linkage similarity level
for that lineage, and will often be smaller.
Consider the hypothetical data,

OTU

A
B
C

1

1
1
0

Character
2

1
1
0

3

1
0
1

4

0
1
1

where the ones are taken to be derived
states and the zeroes are the ancestral
states. A and B share two derived states,
and form a cluster. C shares one state each
with A and B. If complete linkage cluster
analysis were performed, C would be linked
to the A,B cluster at the level correspond-
ing to one shared state. In reality, how-
ever, there is no derived state common to
A, B, and C. C should be linked to the
A,B cluster only at the level corresponding
to no shared derived states.

The disagreement between the two pro-
cedures can in this case be resolved by
Throckmorton's (1968) "delete, cluster,
delete cycle," according to which derived
states describing OTUs in distinct clusters
after cluster analysis at step i are deleted
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PHYLOGENETIC SYSTEMATICS 179

from the analysis for a new cluster analysis
step i + 1. Here the "1" states of characters
3 and 4 are deleted because they describe
both A and C and both B and C, respec-
tively. At the second cluster analytic step,
A and B are united with 2 shared derived
states, and C is united to the A,B cluster
with no shared, derived states. The dele-
tion procedure has some drawbacks, how-
ever. For a more elaborate data set:

A B C D A B C D

TU

A
B
C
D

1

1

i—
i

0
0

2

0
0

1—
1

1

Character
3

1
1
0
0

4

1
0
1
0

5

0
1
1
0

6

1
0
1
0

7

0

i—
i

1
0

8

1
1
0
0

We can see that the discrepancy between
the actual number of shared derived states
and the complete linkage estimate can
alter the outcome of clustering. Performing
complete linkage analysis, A and B form
a cluster with 3 shared states. C shares two
states each with A and B, so the cluster
A,B,C is formed with "two shared states."
D shares no states with A or B, so D is
united to the A,B,C cluster at the level of
no shared states. Now let us unite groups
according to the actual number of shared
states. Again, A and B are linked with
three shared derived states. C shares no
derived states with both A and B, but does
share one derived state with D. Then a
cluster C,D is formed with one shared
state. Finally, cluster A,B is united to
cluster C,D at the level of no shared states.
The results of complete linkage clustering
for these data are depicted in Fig. 2(i),
those of WISS clustering in Fig. 2(ii).

Application of the deletion cycle pro-
cedure in this case produces some interest-
ing results. State "1" of character 2 is lost,
since it occurs in both the A,B,C cluster
and the D "cluster." States "1" of char-
acters 3 and 6 are lost, occurring in both
A and C, as are states "1" of characters 3
and 4, occurring in B and C. The final
tree (Fig. 2(iii)) unites A and B with 3
shared states and (A,B), C, and D with no

(i)
0

(ii)

A B C D

0

(iii)
FIG. 2.—Results of clustering four OTUs by

complete linkage cluster analysis (i) , by counting
shared derived states (ii), and by deleting some
derived states (iii). Numerals indicate the number
of shared derived states assigned to the adjacent
linkage.

shared states. The initial complete linkage
dendrogram (Fig. 2(i)) for these data con-
tains a cluster ((A,B), C) which has no
shared derived steps, hence is not a permis-
sible group under AIL The final dendro-
gram after deletions (Fig. 2(iii)), on the
other hand, lacks the group C,D, for the
existence of which there is some phyloge-
netically valid evidence, the sharing of step
"1" of character 2. In either case, it would
appear that a complete linkage clustering
procedure is in general inconsistent with
the principles of the phylogenetic system.

Throckmorton's sole stated reason for
using complete linkage analysis was that
it would estimate the size of sets of shared,
derived character states. Under that ration-
ale, however, it is clearly more appropriate
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actually to count the number of shared
derived states, as would be done by either
a WISS or Camin-Sokal analysis of the
hypothetical data above. Since counting
shared derived states can lead to clustering
different from that produced by complete
linkage analysis, we conclude that there
does not seem to be any reason to use
complete linkage analysis in evolutionary
studies. We certainly cannot confirm
Throckmorton's conclusion that, "of the
obvious clustering methods, complete link-
age of derivative states is the only one
that estimates an operational phylogenetic
parameter, and, hence, it is the only obvious
method to use for phylogenetic analyses."

Similar criticisms apply to most of the
commonly used phenetic clustering pro-
cedures. For the data set just discussed,
application of Single Linkage Analysis,
Weighted Pair Group Analysis, or Un-
weighted Pair Group Analysis yields a tree
with the same cladistic form as that of
Fig. 2(i), though the exact values of the
linkage levels depend on the method used.

A CODING MODEL

We introduce here a model based on
alternative methods of character coding as
a means of comparing the properties of
similarity coefficients.

Each character, Xi, is a collection of
states, Xio, Xn, . . . , xiPri with p̂  elements.
We can associate with an array of char-
acters a set of binary variables, v. A binary
variable vy corresponds to state xy of
character Xi. The variables, v, can be
used to describe OTUs as can the char-
acter states, x. The variables, v, represent,
then, an alternative way of encoding the
information contained in the original char-
acters. Various methods for recoding x's
as v's are possible, and turn out to have
implications of interest to evolutionary
taxonomy.

We shall discuss three means of binary
coding. In non-additive coding (Sokal and
Sneath, 1963), the value, VjjA, of variable
Vij for OTU A is unity if and only if OTU

A is described by state Xy. In additive
coding, VUA has value unity if and only if
xiA d xy. In semi-additive coding, vljA has
value unity if and only if OTU A is de-
scribed by xy, except that vi0—the variable
corresponding to the ancestral state, xi0, of
character Xi—is unity for every character
and every OTU. For all three methods a
variable, v, that does not have value unity
has value zero.

The character states of Fig. l(i) would
have the non-additive coding,

state

Xo

Xi.

x2

Xa

Xi

X5

Xo

the additive

state

Xo

Xi

x2

Xa

Xi

x5

Xa
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i-H

0
0
0
0
0
0

V i

0

i—
i

0
0
0
0
0

coding,
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i
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i

1
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i
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V i
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1—
(

0
0
0
0
0

and the semi-additive
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x3
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1
1
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1

l—
i

1

V i

0

I—
l

0
0
0
0
0
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Va

0
0
1
0
0
0
0
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0
0
0
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0
0
0

variable
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0
0

I—
l

1

I—
l

i-H

1

v3

0
0
0
1
0
0
0

coding,

variable

v2

0
0
1
0
0
0
0

v3

0
0
0
1
0
0
0

V*

0
0
0
0
1
0
0

v4

0
0
0
0
1
1

i-H

V i

0
0
0
0
1
0
0

v5

0
0
0
0
0
1
0

Vs

0
0
0
0
0

i-H

0

Vs

0
0
0
0
0
1
0

Ve

0
0
0
0
0
0
1 ;

Ve

0
0
0
0
0
0
1 ;

v8

0
0
0
0
0
0
1 .

The variable v0 is, of course, constant for
additive and semi-additive coding, and
hence has no effect on comparisons of
OTUs. We have retained v0 explicitly in
these cases so that our notation is homoge-
neous over coding types.
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The additive coding preserves the form
and direction of the evolutionary ordering
of Fig. l( i) . The semi-additive coding
preserves the direction by its special han-
dling of x0 and v0. The non-additive coding
discards both form and direction of the
character-state tree of Fig. l(i) and pre-
serves only the identity of the character
states.

Our usage of the term "non-additive
coding" is identical to that of Sokal and
Sneath (1963). Our "additive coding" is
equivalent to that of Sokal and Sneath
except for the interpretation of the order-
ing relation used to define the binary cod-
ing. Sokal and Sneath used the relation
"—" applied to the (possibly arbitrary)
numerical scale on which the original char-
acter is defined, while we use the relation
"d" applied to the evolutionary order of
the states of a character. In the case of a
character with linearly ordered states
coded numerically with the ancestral state
having minimal numerical value, "d" is
equivalent to "^." A conceptual—though
not formal—distinction between the two
usages is that in the phylogenetic system,
the ordering relation is significant to the
theory of the system itself, while in phe-
netic practice this need not be.

Additive coding corresponds directly to
the operations employed in the phyloge-
netic system. The reader may verify by
inspection of the tree of Fig. l(i) that, for
the Vij additively coded,

n(xi) =

hence in general, for OTU A,

h(A) = vi j A - v i j Q

(2)

(3)

where Q is again an OTU with the an-
cestral state for every character. Now we
define the difference between OTUs A and
B as

diff(A,B) = S I VUA-VUBI, (4)

and note that
h(A) = diff(A,Q). (5)

Suppose that OTUs A and B form a
monophyletic group with most recent com-
mon ancestor C = J({A,B}). As we have
already seen, xiA d xiC for every character,
Xi. Then for all i and j , Vyc — V4JA. Hence,

h(A) = h(C) + diff(A,C). (6)

Similarly,

h(B) = h(C) + diff(B,C). (7)

Now if vijA and vijB are both unity, Vyc is
also unity; and if VIJA and VJJB are both
zero, Vyc is also zero. Consequently,

is unity if and only if
is unity; and

VijA —

VijA —

cannot be simultaneously
or
and

positive. Thus

diff(A,B) = diff(A,C) + diff(B,C). (8)

Combining (6) and (7),
h(A) + h(B) = 2h(C) +
diff(A,C) + diff(B,C). (9)

Substituting according to (8),

h(A) + h(B) = 2h(C) + diff(A,B). (10)

Rearranging,

h(C) = (%) (h(A) + h(B) - diff(A,B)). (11)
Equation (11) is useful in the WISS

procedure, since it allows h(J({A,B})) to
be computed from the differences (4) be-
tween A, B, and Q, without computing
J({A,B}) itself. If the original characters,
X, all have linear orders on their states, the
common phenetic difference, p,

P(A,B) = (12)

in the sense of Farris (1967) can be used
to compute h:

h(J({A,B})) =(X) (p(A,Q)
p(B,Q) - p(A,B)). (13)

Equation (13) is utilized by one version
of the WISS computer program. Thus,
while the coding variables, v, provide a
basis for a useful model, it is not in prac-
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182 SYSTEMATIC ZOOLOGY

tice necessary to resort to binary coding
in order to compute h values. ^

MATCHING COEFFICIENTS

We have seen that when an additive
coding is used, the difference of (4) cor-
responds to operations in phylogenetic
methods. When a non-additive coding of
the v's is used, the statistic,

CA(A,B)=P-(diff(A,B)) (%),(14)

where P is the number of variables, vy,
effectively counts the number of states
describing both A and B. Thus (14) is
equivalent to the concordance of all states
of Throckmorton (1968). Likewise, if a
semi-additive coding is used, the statistic
CD(A,B) =P-N-(d i f f (A,B)) (%

A

where N is the number of characters, counts
the number of derived states describing
both A and B and is equivalent to the con-
cordance of derived states of Throckmorton.

In the WISS procedure, OTUs A and B
with large values of h(J({A,B})) are clust-
ered together. We can consider h(J({A,B}))
as a kind of similarity coefficient. In the
procedures proposed by Throckmorton
(1968), OTUs A and B are clustered to-
gether if CA(A,B) or CD(A,B) is large.
The correspondence between types of cod-
ing and type of similarity coefficient allows
us to consider the relative information con-
tent of the coefficients. Since h( J( {A,B}))
corresponds to additive coding, it conserves
information on both the form and direction
of the evolutionary orders of character
states. CD, corresponding to semi-additive
coding, conserves the directionality of the
characters. CA conserves only the state
identities.

The information loss induced by con-
cordance can alter the clustering of a set
of OTUs. Suppose that for the data

OTU

A
B
C

i—
i

3
2

i—
i

Character
2

2
1

i—
i

3

0
0

i—
i

FIG. 3.—Three hypothetical OTUs clustered ac-
cording to concordance of derived steps (i); the
same OTUs clustered by number of shared derived
states (ii).

each character is taken to have a linear
evolutionary ordering for its states, zero
being the most ancestral state. Clustering
by shared derived steps, we achieve the
tree of Fig. 3(i), the monophyletic groups
of which are phylogenetically permissible.
Clustering by concordance of derived
states, we note that B and C are described
by one derived state in common, while A is
described by no derived state in common
with B or C. Thus, the tree of Fig. 3(ii)
results. The group B,C of Fig. 3(ii) does
share two derived steps, but these states
are also shared by A. Therefore, Fig. 3(ii)
depicts a tree that is not permissible by
AIL

Concordance cannot generally be used
to achieve a valid phylogenetic clustering.
In a more general context, we would expect
that the loss of information inherent in
clustering by concordance would rule out
clustering by concordance in any sort of
evolutionary application. We may note one
exception, however. If all the characters
in a study have but two states, a matching
method such as concordance can be used
without loss of information, since only
trivial sequence information is present in
the character state trees.

CLUSTERING BY DERIVED STEPS

Equation (11) could be taken as a defi-
nition of a similarity coefficient, s(A,B) =
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PHYLOGENETIC SYSTEMATICS 183

h(J({A,B})), which depends only on the
number of shared derived steps between
two OTUs. (11) indicates, however, that,
recalling (5), s(A,B) can be computed
from a difference (4) that is calculated on
the basis of all character states. It is there-
fore clear that the aim of clustering by
derived steps alone does not at once require
that ancestral states be physically deleted
from the analysis.

A practical consequence of (11) (or(13))
is that it is not necessary to physically alter
a data set in order to accomplish derived-
step clustering or in order to achieve
several different "derived-step" clusterings
corresponding to several hypotheses as to
which states are ancestral. Once a matrix
of values of p (12) or diff (4) has been
computed, the s values corresponding to
a hypothesis can be calculated simply by
specifying Q. Although diff (4) is cal-
culated on the basis of the binary coding
variables, whose values depend on the
choice of ancestral states, it can be shown
that the matrix of diff itself is invariant
over choices of Q.

Some workers have apparently believed
that actual deletion of ancestral states is
necessary to accomplish clustering by de-
rived steps. This seemingly trivial igno-
rance has had one significant ramification.
Some have concluded that no type of
analysis that does not physically delete an-
cestral states can be a truly evolutionary
method. Thus, it has been asserted that
the most parsimonious tree techniques of
Camin and Sokal (1965) or Kluge and
Farris (1969) are not valid evolutionary
techniques because they do not delete an-
cestral states. Equation (11) indicates
clearly that this criticism is unfounded.

REVERSAL AND ITS CONSEQUENCES

Our argument thus far has assumed that
AI holds for the entire evolutionary tree
under consideration. This is equivalent to
assuming irreversibility of evolution. Kluge
and Farris (1969) have criticized the pre-
sumption of irreversibility, and, as we note

above, irreversibility is generally not as-
sumed by phylogeneticists. We shall gen-
eralize our methods so that they hold for
a weaker interpretation of AI.

We shall assume that the states of a
character are related by a character state
tree of fixed form, but that

a) evolution is permitted in either di-
rection along any branch of the char-
acter state tree, and

b) any state is potentially permissible as
the most ancestral state for some
restricted region of the evolutionary
tree.

We retain the convention that the character
state tree has no closed loops. We shall
refer to these conditions on character state
trees collectively as AI'.

By analogy with the relations d and D
introduced earlier, we define two new rela-
tions appropriate for discussion of AI'. By
y dx z, read, "y is derivable from z with
respect to x," we intend that state y is
derivable from state z, taking state x to be
most ancestral. Similarly, A DE B, read,
"A is derivable from B with respect to E"
implies that A is derivable from B in a
frame of reference in which E has (by
definition) all ancestral character states.
As before, A DE B if and only if for any
character, Xl5 xiA dX;ir x1B. Note that neither
"y dx z" nor "y d z" implies the other.

Where earlier we would speak of a step's
being absolutely shared by a group of
OTUs, here steps may be shared only with
respect to a given reference point. We will
say that a step, xc, is shared by A and B
with respect to E if and only if xA dxE xc

and xB dXj5 xc.
It is helpful to consider the properties

of the conditional relation dx in terms of
the character state tree of X. For the
character state tree of Fig. 4, we can see
that x8 and x9 are both derivable from x7

with respect to xi. Thus, OTUs described
by x8 and x9 could validly be assigned to
a monophyletic group if xx were taken to
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FIG. 4.—A generalized character state tree.
Any of the states may be locally most ancestral.

be ancestral. But suppose x7 were taken
to be ancestral. There is no state, x, such
that x8 dx7 x and x9 dx7 x. Then OTUs
described lay x8 and x9 could not, for x7
ancestral, be assigned to a monophyletic
group. In terms of the form of the character
state tree, we can generalize that if and
only if states xt and Xj can be connected
on the tree by a path that does not contain
the ancestral state, xa, then there is a state,
xs, such that xt dXa xs and Xj dXa xs.

Substitution of AF for AI necessitates
some modifications in our interpretations
of AII-AIV. Under AF we can no longer
guarantee that a particular state is every-
where derived, but only that a state is
locally derived in some part of the tree.
Conversely, any state that is locally de-
rived in a tree region containing a group,
G, is a priori equally capable of providing
evidence for the validity of G. Then we
would consider Alia satisfied in Fig. 5 if
there were states xc and yR in characters
X and Y such that xA dxE xc, xB dxE xc,
xH flxE XC, XK $XB XC, yH dYK yR, yK dyE yR,

$YE yR, and yB , these conditions
E E

implying nothing as to whether Xc and yR
are also locally derived in other regions of
the tree. Similarly, in applying AIV to a
group, G, we would count any states as
derived that were locally derived near G,
regardless of whether those states were also
derived in other regions of the tree.

Since reversals of evolution are permitted
under AF, it may happen that a state, x,
that is somewhere ancestral, may have "x"

FIG. 5.—A region of an evolutionary tree. OTU
E is the local ancestor of cluster A, B, C.

—itself—as an ultimately derived state ac-
cording to an evolutionary tree consistent
with AF and AII-AIV. In a sense, then,
constructing a tree by AF may amount to
an implicit recoding of some states in
some OTUs. As noted previously, recoding
in the process of reaching conclusions is
consistent with the phylogenetic philos-
ophy. The "recoding" is, in any event,
necessary if irreversibility is not to be
tacitly assumed. To take this fact into ac-
count, we should conceive of character
state trees in two ways. Primary (or a
priori) character state trees describe the
relative properties of states as we might
initially encode them. Primary state trees
should be regarded as having no fixed
directionality. This is so even when one
particular state may be regarded as actually
having been present in the common an-
cestor of the group under study. Secondary
(or a posteriori) character state trees de-
scribe the relations between many "states,"
some of which may be the "same" on the
primary tree. The secondary character
state tree for a character differs from
the primary tree for that character as a
function of the evolutionary conclusions
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reached. Constructing a valid secondary
tree is consequently partially equivalent to
constructing a valid evolutionary tree. In
order to avoid a circulus vitiosus, of course,
we may consider only primary trees as
input data in inferring evolutionary rela-
tionships.

If we knew—perhaps by Revelation—the
true secondary character state trees for a
study, we could apply the theory of pre-
vious sections directly, "reversals" already
having been coded out of existence. But
if we admit that our character state trees
are primary, only first approximations, we
must review our methods.

Under AF, as we have seen, we may
depend only on local properties of char-
acter state trees. Several of the results of
previous sections can be extended to this
case in a logical way.

The nearest common ancestor of a
group, G, of OTUs can be constructed
under AF just as under AI. In Fig. 5, E
provides a local set of ancestral states.
Hence by AIII, we assign to C of Fig. 5 a
state, xc, such that

a) xA dxE xc

b) xB dxE xc

c) for any OTU, M, A DE M and B DE

dxE xG implies xc dxE xG.

The properties are closely analogous to TI;
we shall refer to them as LTI.

As a corollary, we have:

LTII. If OTUs A and B have nearest
common ancestor, C, with an ancestor,
E, (as in Fig. 5) then

a) A DEC
b) B DE C
c) for any OTU, M, A DE M and B DE

M implies C DE M.

Earlier we noted that Til provided a
connection between the phylogenetic sys-
tem and the theory of Camin-Sokal most
parsimonious trees. Here we can establish
a link between phylogenetics—with—re-
versals and Wagner most parsimonious

trees (Kluge and Farris, 1969; Farris,
1970). The (hypothetical) ancestors con-
structed by the Wagner procedures are
those required by LTII, LTI being equiv-
alent to the median state property of
the hypothetical intermediates of Wagner
Trees (Farris, 1970). This can be readily
shown through the use of the binary coding
variables introduced above. Suppose that
a character, Xs, is expressed as an additive
binary coding for the OTUs of Fig. 5, OTU
E being taken as having the ancestral state
of Xi. Given that state xiE is locally an-
cestral, then the state, xi0, describing C has
binary variables vijC unity if and only if
both vyA and VyB are unity. Now if A and
B share a step, Xy, with respect to E, then
VijA, VijB, and Vyc are all unity. If step xy
is not shared with respect to E by A and B,
then at least one of VyA and vys is zero,
Vyc is zero, and vijE must be zero. This
is an exhaustive classification of events,
since any step, xy, must be either shared
or not shared by A and B with respect to
E. Under both conditions, vyc is the
median of vyA, vyB, and vijE.

Under AI we were able to devise a
similarity coefficient, s(A,B) = h(J({A,B})),
that allowed us to cluster according to the
number of derived steps shared by A and
B. The possibility of reversals under AF
prevents us from designating any states as
invariably derived, so that we may not
directly count the number of shared de-
rived steps for two OTUs. We can, how-
ever, generalize the statistic by making it
conditional on a reference point:

sB(A,B) = (X) (diff(A,E) +
diff(B,E) - diff(A,B)). (16)

This is the number of derived steps shared
by A and B, given that the states describ-
ing E are ancestral—provided that E is a
sufficiently near ancestor of A and B that
no reversals have occurred between E and
A and B. That condition is the case, for
example, in Fig. 5.

The dependence of sE on the reference-
point, E, renders somewhat complex the
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X

FIG. 6.—A neighborhood of a Wagner Network.

problem of constructing clustering schemes
consistent with AIV, subject to AF. Several
different extensions of the WISS procedure
to the case where reversals are allowed
are possible. We might, for example,
choose to cluster OTUs A and B with high
average values of sx (A,B), where X ranges
over the set of OTUs distinct from A and
B. Alternatively, we might cluster accord-
ing to the criterion

max (sx

The question of which clustering technique
of the WISS type is most preferable re-
mains unresolved at present. The axioms
we have taken from Hennig (1966), or,
for that matter, any statements in Hennig
(1966), seem insufficient to provide a
criterion. Choice between methods on the
basis of statistical or analytical properties
seems a promising possibility and is cur-
rently being investigated.

A quite different algorithm for calculat-
ing estimated trees under AF is the Wagner
Method (Kluge and Farris, 1969), an ap-
proximation technique for finding most
parsimonious trees, no assumptions in ir-
reversibility being made. We show here
that the placement of OTUs on Wagner
Networks (see Farris, 1970) is consistent
with AIV subject to AF.

Fig. 6 depicts a neighborhood of a Wag-
ner Network. Any of the nodes A, B, C
may be connected to other nodes not fig-
ured. Fig. 6 has a 3-way symmetry about
the central node, X. In the figured neigh-
borhood, either A, B, or C must be locally
ancestral. Because of the symmetry, we
may take C as locally ancestral without loss
of generality. Note that the case where X
is locally ancestral need not be considered,
since A, B, or C may be taken as identical
to X. Similarly, if some point lying on an
internode of Fig. 6 is regarded as most
ancestral, then Fig. 6 can be relabeled so
that the relevant point becomes "A," "B,"
or "C."

Since Fig. 6 is taken as a neighborhood
of a Wagner Network, no alteration of the
linkages of the network will reduce the
length of the network. In particular, we
know that the network contains no nodes
E, F such that

diff(A,(E,F)) < diff(A,X),
where

diff(A,(E,F)) = (X) (diff(A,E) +

diff(A,F) -diff(E,F)). (17)

The diff (. , .) function here is equivalent to
the diff (. , .) defined above for additive
coding. (17) is derived by Farris (1970).
Note that (17) is of the same form as
(16).

Similarly, there are on the Wagner Net-
work no nodes, Q, R, such that

diff(B,(Q,R)) < diff(B,X) .

The evolution from local ancestor C to
node A (or B) is measured by diff(A,C)
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(or diff(B,C)); for Y = A or B, these
measures can be partitioned exactly:

diff(C,Y) = diff(C,X) + diff(X,Y), (18)

and diff(X,Y) for Y = A,B is the minimum
of values diff(Z,Y) for Z, any possible node
on the Wagner Network but outside the
neighborhood of Fig. 6. From (16), (17),
and (18)

so (A,B) = diff(C,X). (19)

Hence by (18), we partition the evolution
of A (or B) into two components, one,
diff(C,X), being the number of derived
steps shared by A and B in their evolution
beyond C, the other, diff(X,Y), Y = A,B,
being the number of derived steps unique
to Y. Since the number of steps unique to
A or B is minimized, the number of steps
shared by A or B with other OTUs is
maximized. Hence the Wagner Network
is consistent with AIV if reversals are
permitted.

DISCUSSION

The considerations of this paper lead to
one central conclusion: while many nu-
merical taxonomic methods are inconsistent
with the phylogenetic approach, it is pos-
sible to construct a relatively small class
of quantitative techniques that are valid
under the premises of phylogenetics.

Classical phylogeneticists (for example
Hennig, 1966; Brundin, 1968) have con-
tended that similarity does not reflect phy-
letic relationship. Two aspects of their
arguments are relevant here. First, they
have based their conclusions on properties
of preexisting measures of similarity, not-
ing, for example, that "similarity" subsumes
"synapomorphy," "symplesiomorphy," and
convergence. Second, they have explicitly
criticized only the notion that magnitude
of similarity is indicative of absolute near-
ness of phyletic relationship, in effect ignor-
ing the possibility that a much weaker
correlation between similarity and phyletic
relationship may still provide useful in-
formation.

We have defined new coefficients of

"similarity," s(A,B) and sE(A,B), through
which it is possible to distinguish between
similarity owing to derived character states
and that owing to ancestral states. We do
not contend that the magnitude of s(A,B)
directly indicates the closeness of relation-
ship between A and B. We interpret s(A,B)
only as a relative measure of the amount
of evidence favoring the hypothesis that A
and B form a valid monophyletic group.
The actual choice of a phyletic tree is left
to an algorithm that effectively constructs
the evolutionary hypothesis most in accord
with available data. Thus only a weak
connection between s or sE and relationship
is assumed.

With the exception of the techniques of
Camin and Sokal (1965) and of Kluge and
Farris (1969), most numerical taxonomic
procedures do not measure similarity in a
phylogenetically valid way. Indeed, some
clustering techniques, such as Unweighted
Pair Group Analysis (Sokal and Sneath,
1963), assume a strong correlation between
similarity and relationship. Evolutionary
interpretations of dendrograms generated
by phenetic clustering procedures should,
consequently, generally be viewed with
skepticism.

The classical theory of phylogenetic sys-
tematics is well suited to situations in
which character state trees and the identity
of ancestral states can be "safely" estab-
lished without a detailed prior taxonomic
analysis. In more general cases it is often
necessary to rely on taxonomic analysis to
obtain some of the information needed for
direct application of classical phylogenetic
methods. The initial taxonomic analysis
employed in such circumstances may not
be the classical phylogenetic methods
themselves—or, for that matter, their quan-
titative equivalents—since a circulus vitiosus
might result. The initial methods employed
must be consistent with the phylogenetic
system, but may not make strong assump-
tions concerning character state trees.
Wagner Trees seem particularly promising
in this respect, both because of their close
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formal analogies with phylogenetic meth-
ods and because of their great flexibility.
Kluge and Farris (1969) successfully used
Wagner Trees to identify character re-
versals and cases of miscoding. Some
Wagner Tree algorithms (Farris, 1970) can
construct "rootless" trees (networks) for
which no input information on ancestral
states is required. We are currently in-
vestigating methods through which such
undirected networks may be used to infer
the direction of evolution.

SUMMARY

Four premises of phylogenetics are ab-
stracted from Hennig (1966) and used as
axioms in constructing a quantitative tax-
onomic system equivalent to the phyloge-
netic method.

Under the axioms, each possible mono-
phyletic group has a uniquely determined
most recent common ancestor. The relation
between ancestors and groups is the same
as in Estabrook's (1968) formalization of
the method of Camin and Sokal (1965).

The class of phyletic trees permissible
under the phylogenetic axioms is contained
in the set of trees producible by Estabrook's
(1968) combinatoric method for finding
most parsimonious trees.

There is thus a close connection between
the phylogenetic approach and the most
parsimonious tree techniques of numerical
cladistics.

The Weighted Invariant Step Strategy
(WISS) clustering procedure is described
and shown to be consistent with phyloge-
netic principles.

The complete linkage analysis of Throck-
morton (1968) should not be used for
phylogenetic studies, since it can generate
trees that are inconsistent with the premises
of the phylogenetic system.

The statistic,

s(A,B) = (H) (p(A,Q) + p(B,Q) - p(A,B)),

where Q is an OTU with all ancestral char-
acter states and p is the phenetic difference

between OTUs in the sense of Farris (1967),
can be used to compute the number of
derived steps shared by OTUs A and B.
A step, x, is said to be shared by A and B
if the states describing A and B are both
derivable from state x.

Since s(A,B) can be computed from
overall phenetic differences, it is not neces-
sary physically to delete ancestral states
from an analysis in order to achieve cluster-
ing by derived steps. Criticisms that most
parsimonious tree techniques are phyloge-
netically invalid because they do not delete
ancestral states, are consequently spurious.

The concordance of Throckmorton (1968)
—a simple matching coefficient—should
not be generally used in evolutionary in-
vestigations, since it can indicate incorrect
clustering. It may be safely used when
each character of a study has only two
states.

Quantitative phylogenetic methods can
be extended to the case in which no prior
assumptions are made concerning direction
of evolution. The Wagner method (Kluge
and Farris, 1969) is consistent with phy-
logenetic principles in this case. Wagner
Trees may be useful in inferring direction
of evolution.
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