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A SUCCESSIVE APPROXIMATIONS APPROACH TO 

CHARACTER WEIGHTING 


Abstract 
Fa~ris,J. S. (Dept. Biol. Sci., State Uniu., Stony Brook, New York 11790) 1969. A 

successive approximations approach to charaaer weighting. Syst. Zool., 18:374385.-
Characters that  are reliable for cladistic inference are those that are consistent w i t h  the  
true phyletic relationships, that is, those that  have little homoplasy. A set o f  cladistically 
reliable characters are correlated w i t h  each other i n  a particular non-linear fashion here 
referred t o  as hierarchic correlation. Cladistically unreliable characters can b e  hierarchically 
correlated only b y  chance. A technique that  infers cladistic relationships b y  successively 
weighting characters according t o  apparent cladistic reliability is suggested, and computer 
simulation tests o f  the  technique are described. Results indicate that  t h e  successive 
weighting procedure can b e  highly successful, e v e n  w h e n  cladistically reliable characters 
are heavily outnumbered b y  unreliable ones. [Evolutionary taxonomy. Cladistics. Char-
acter weighting.] 

Quantitative weighting of characters is of 
great concern in evolutionary taxonomy. 
This is so because convergence, parallelism, 
and evolutionary reversals are possible. 
Thus, not all characters are equally well 
correlated with phyletic history. In seeking 
to infer that phyletic history, we may be 
able to increase the efficiency of our 
methods by weighting characters differ-
entially according to their degree of correla- 
tion with cladistic relationships. 

Classical evolutionary taxonomists have 
made use of a number of "biological" 
schemes for character weighting. These 
rely on such qualities as inferred degree of 
"functional" or "adaptive importance," de- 
gree of "adaptiveness," or "fundamentality 
of adaptation." Such criteria have been 
widely criticized (see for example Sokal 
and Sneath, 1963; Kluge and Farris, 1969) 
on the grounds that they are subjective and 
incapable of quantification. A more impor- 
tant property of "biological" criteria may 
be that they are peripheral to the subject 
of cladistic inference. Even if we could 
find some way to measure, for example, the 
"functional importance" of a character, it 
would still remain to be demonstrated that 
the measure of functional importance was 
correlated with the utility of the character 

for purposes of cladistic inference. This is 
not to say that such a demonstration is 
impossible; some published comments on 
character weighting are a step in this direc- 
tion (Farris, 1966; Kluge and Farris, 1969). 
Nonetheless, the validity of a given weight- 
ing criterion should not simply be assumed, 
and it seems desirable to investigate the 
connection between weighting methods and 
the usefulness of characters for cladistic 
inference. 

In this paper I shall present a weighting 
method developed directly from the con-
cept of clad6tic reliability: the degree of 
fit between a character and the phylogeny. 

I shall assume throughout that the coding 
of each character is fixed. References to 
"poor characters" indicate that the coding 
of the character implies homoplasy. This 
need not mean that the homoplasy is "real" - .  

in any other sense. Any case of apparent 
homoplasy can be removed by an appropri- 
ate recoding of the character. In that sense, 
there is no such thing as a "convergent 
character" or a "character reversal." In this 
treatment of weighting, therefore, I shall 
be discussing ways to find a measure of the 
agreement between the phylogeny and a 
character coding that has been fixed a priori 
without knowledge of the phylogeny. 
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A CONSISTENCY MEASURE 

We shall need to define a measure of 
the degree of correlation between a char- 
acter and a phylogeny. Existing measures 
of correlation are not appropriate, since we 
wish to assign a value to the agreement be- 
tween a character-typically a linear vari- 
able-and a branching pattern. We do not 
wish to restrict the measure of agreement 
to be large only on "linear," "monotone," 
or even "single valued relationships be- 
tween the character and the pattern-nor 
do these terms have any clear meaning in 
this context. We proceed from a set of 
definitions. A character is in complete 
agreement with a phyletic branching pat- 
tern if that pattern indicates no homoplasy 
( convergences, parallelisms, or reversals) 
in the character. The character disagrees 
dVith a phyletic pattern to the degree to 
which that pattern indicates homoplasy in 
the character. 

To measure the amount of homoplasy 
of a character on a tree, we compute the 
patristic unit cha~acter length of the char- 
acter on the tree, following the definition 
of patristic difference given by Farris 
(1967). This is done as folIows. For the 
tree pattern in Fig. 1there are seven nodes, 
A, B, C, D, E, F, G, with character states 
0, 1, 0, 2, 1, 0, 1, respectively. The patristic 
unit character length of the character on 
the tree is the amount of change implied 
by the tree for the character. For the tree 
and character in Fig. 1 the patristic unit 
character length is thus calculated by 
adding the difference in the character be- 
tween A and B, A and C, B and D, B and 
E, C and F, and C and G: 1+ 0 + 1 +  
0 + 0 + 1= 3. For a discretely coded char- 
acter, as in this example, the patristic unit 
character length is the "number of steps" 
of the character for the tree in the sense of 
Camin and Sokal (1965). 

The range of a character is the difference 
between its numerically least and greatest 
states. For the character of Fig. 1, the range 
is 2 -0 =2. The range of a unit character 
is the smallest value that the patristic unit 

FIG, 1.-A hypothetical tree to illustrate com-
putation of patristic differences. 

character length for that character can at- 
tain on any tree. I define c(i), the unit char- 
acter consistency of character i, as 

r ( i )  
c ( i )=-

l ( i ) ' 

where r(i) is the range of the character, and 
1(i) is the patristic unit character length. 
Necessarily, c(i) varies between 0 and 1and 
will increase with the degree of agreement 
between the character and the tree on 
which Yi)was calculated. In our example, 
the c value is %. Unit character consistency 
is defined analogously to the consistency 
of a data set with a tree (Kluge and Farris, 
1969). The prefix "unit character" is in- 
tended to distinguish the two uses of "con- 
sistency." Note that there is no direct 
connection between unit character consist- 
encies and consistencies, since the former 
do not depend on the scales of the unit 
characters, whereas the latter do. Further, 
the overall consistency of a set of char-
acters with a tree is not, for instance, in 
general equal to the mean value of the unit 
character consistencies of the data set with 
the tree. 

HIERARCHIC CORRELATION 

We define as cladistically reliable char-
acters that have high unit character con-
sistency with the true cladistic relationships 
of the group under study. Several char- 



TABLE1. HYPOTHETICALDATASET. 
Each OTU has state "1" in the indicated characters 
and state "0" otherwise. 

6' 1,> states in 
OTU characters 

acters that are all consistent with the 
cladistic relationships will all fit a common 
branching pattern, and they are thus in a 
sense "correlated" with each other. This 
is not the usual product-moment correla- 
tion. To emphasize the distinctness of this 
"correlation," I shall refer to it as hierarchic 
correlation. 

The defining property of hierarchic cor- 
relation is that a set of variables with high 
hierarchic correlation will all be highly 
consistent with a single branching pattern. 
Characters that are hierarchically correlated 
may or may not be correlated in any other 
apparent way. To exemplify this point, I 
have included a hypothetical data set speci- 
fied by Table 1. All the characters in the 
data set are completely consistent with the 
tree in Fig. 2. The characters are all binary, 
so that the apparent correlations between 
them can be measured by the phi coefficient 
( the contingency coefficient of Siegel, 
1956). The phi coefficients for the char- 
acters of the hypothetical data set range 
from 1.0-the maximum possible-for char-
acter 1with character 2, to 0.067-the mini-
mum possible is 0-for character 29 with 
character 30. The median value of the 
matrix of the phi coefficients is only 0.1. 
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FIG.2.-A tree that fits perfectly all the char- 
acters of Table 1. 

Thus, although the hierarchic correlation 
of the characters is perfect, the average 
apparent correlation between characters is 
not very strong. There is considerable varia- 
tion in the degree of apparent correlation 
of pairs of characters, even though all the 
characters fit the tree perfectly. 

Since there is no strong relationship be- 
tween the apparent correlations of char-
acters and their consistency with cladistic 
relationships, we should not attempt to 
estimate the cladistic reliabilities of char-
acters through the apparent correlations of 
their states. 

SUCCXSSIVE: WEIGHTING 

To estimate cladistic reliability, we rely 
on properties of cladistic systems. By defini- 
tion cladistically reliable characters are 
hierarchically correlated with each other. 
Cladistically unreliable characters are not 
hierarchically correlated with each other. 
This is so because the phylogeny itself is 
the only source of a hierarchic pattern for 
the variation of a character. Characters 
whose a priori codings are poorly related 
to the phylogeny necessarily vary from the 
phylogeny each in its own random way 
with respect to the phylogeny itself. 
Several unreliable characters will each 
vary from the phyolgeny in its own ran-
dom way, and chances are very slight that a 
series of random variables will by accident 
form a pseudo-hierarchic pattern of varia- 
tion. If several unreliable characters are 
developmentally, genetically, or function-



CHARACTER WEIGHTING 

ally related, they may of course vary to- 
gether much more strongly than indepen- 
dent variables. It  is still only by pure 
chance, however, that a pattern of func-
tional covariation may happen to fit a 
hierarchic pattern. In general, therefore, 
we expect hierarchic correlations many 
times more frequently among cladistically 
reliable characters than among cladistically 
unreliable ones. 

If we construct an estimated phyletic 
tree so that it is most consistent with an 
initial data set, we may use it as a first- 
quite possibly, rough-guess at the true 
cladistic relationships. 

The estimated tree can provide a tenta- 
tive set of unit character consistencies. The 
unit character consistencies so computed 
can be taken as estimates of the consist- 
encies of the unit characters with the true 
phylogeny. The consistencies provide mea- 
sures of cladistic reliability, and the reli- 
abilities can be used to weight characters. 
The reweighted character set can then be 
used to construct a new estimated tree, 
which will usually differ from the first 
estimate. The process might be repeated 
indefinitely. Provided that the methods 
of tree construction and weighting are fixed, 
however, the successive trees will all be 
the same beyond any iteration at which a 
tree is the same as on the immediately 
previous iteration. Thus the iterative pro- 
cedure can be halted as soon as two succes- 
sive trees have the same form. 

The first set of estimated consistencies 
incorporates information on the hierarchic 
pattern of the data and so the first re-
weighted data set contains more easily 
interpretable information than the initial 
data set. The second tree is expected to be 
somewhat closer to the true phylogeny than 
the initial tree, and the reweighting based 
on it to be more reliable than the first 
reweighting. Similarly, we suppose that 
if methods of weight computation and tree 
construction are suitably efficient, succes-
sive tree estimates and consistency esti- 
mates will become progressively better until 

the process terminates at the correct phy- 
letic tree. 

SIMULATION TESTS 

Computer programs for estimating trees 
by successive weighting procedures have 
already been used to analyze relationships 
among grebes (DeBenedictis and Farris, in 
prep), killifish (Farris, in prep), and 
g go pod id lizards (Kluge, in prep). In 
each case, the technique has been highly 
"successful," in the sense that it produced 
trees in excellent agreement with the pre- 
conceptions of the workers. Such "suc-
cesses" do not, of course, prove anything 
at all about the validity of successive 
weighting. I have attempted to gain a 
better estimate of that validity through a 
series of computerized simulation tests. 

For the tests, a hypothetical phylogenetic 
tree with 31 nodes and 30 completely con- 
sistent characters was specified. Poorly 
consistent characters in various numbers 
were assigned to the nodes by a random 
number generator. For a single run, the 
data set consisted of 31 OTUs with 30 + k 
characters, where k is the number of ran-
domized characters. A supervisor program 
submitted a complete data set to a succes- 
sive weighting program, compared the out- 
put of the successive weighting program 
to the true form of the phylogeny to evalu- 
ate the successive weighter, called a random 
number generator to produce a new com-
plete data set, and repeated the process. 
In runs so far performed, 1c varied from 5 
to 150. 

The successive weighting program formed 
Prim Networks (see Edwards and Cavalli- 
Sforza, 1964) of the 31 OTUs. The Prim 
Network is a shortest network connecting 
a fixed set of nodes. For these experiments, 
the length of an internode lying between 
nodes A and B was computed as 

where X(A,i) is the state of character i for 
node A and u(i)is the weight assigned to 
character i. Initially all the u;(i)were set 
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A 

\ F /c 
FIG. 3.-A hypothetical tree used to illustrate 

computation of cladistic difference. 

to unity. The true tree for the hypothetical 
data set could be expressed exactly as a 
Prim Network of the 31 nodes with the 30 
reliable characters. Hence the successive 
weighting program could-but would not 
necessarily-retrieve the true tree exactly. 

Tree estimates were compared to the 
true tree through the corresponding matri- 
ces of cladistic differences between OTUs. 
The matrices of cladistic differences were 
constructed using a modification of the 
definition of Farris ( 1967). The chdistic 
difference between two nodes on a tree 
diagram was taken to be the number of 
internodes lying on the path between the 
nodes. In Fig. 1,D and E are each directly 
connected to B; hence each has a cladistic 
difference of 1 from B according to the 
network of Fig. 1. Similarly, the cladistic 
difference in Fig. 1between F and E is 4. 

The index of difference between two 
cladistic difference matrices-hence two 
networks-was the mean squared differ-
ence between corresponding elements of 
the matrices, the constant zero values of 
the main diagonal being ignored. The 
equation, 

expresses this relationship. Q and P are the 
two matrices of cladistic difference being 
compared, i and i index rows and colu~nns 
of Q and P ,  q ( . , .) and p(  . , .) are indexed 

FIG.4.-Four types of function relating weight 
( W )  to probability of change ( P ) :  a, concave 
bounded; b, concave unbounded; c, linear; d, con- 
vex. 

elements of Q and P, and t is the number 
of OTUs. The value of d ( Q ,  P)  is zero if 
Q and P are identical. 

For the network with seven OTUs in Fig. 
1, the matrix of cladistic differences is: 

A B C D E F G 
A 0 1 1 2 2 2 2 
B 1 0 . 2 1 1 3 3 
C 1 2 0 3 3 1 1 
D 2 1 3 0 2 4 4 
E 2 1 3 2 0 4 4 
F 2 3 1 4 4 0 2 
G 2 3 1 4 4 2 0 . 

Fig. 3 can be taken as a different network 
for the same OTUs, and produces the 
cladistic difference matrix, 

A B C D E F G 
A 0 3 2 1 1 1 3 
B 3 0 1 4 4 2 2 
C 2 1 0 3 3 1 1 
D l 4 3 0 2 2 4 
E 1 4 3 2 0 2 4 
F 1 2 1 2 2 0 2 
G 3 2 1 4 4 2 0 . 

The comparison d (Fig. 1, Fig. 3) has the 
value 1.8095. No optimality properties are 
claimed for d as a measure for comparing 
networks. I t  is intended simply as a de-
scriptive index of amount of difference. 

Both the original characters of the hy- 
pothetical OTUs and the characters sup- 
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TABLE2. SUCCESSOF SUCCESSIVE WEIGHTING FOR VARIOUS WEIGHT FUNCTIONS. EACHENTRY IS THE MEAN 

O F  10 SIMULATION RUNS. 

Average
Number of difference Average difference after iteration (average number of iterations) 

random before 
characters iteration w ( i )  =1- p ( i )  w ( i )  =1- ( p ( i ) ) z  w ( i )  = ( 1 - p ( i ) ) Z  w ( i )  = ( ~ ( i ) ) - ~ - l  

plied by the random number generator were 
binary valued. Consequently, the unit 
character consistency of any character 
could be computed from the number of 
times the character changed on a given 
network. A character is said to change in a 
particular internode of the tree if the two 
end-nodes of that internode have different 
states for the character. If character i 
changes Yi) times, the proportion 

where t is the number of nodes on the tree, 
varies between 0 and 1 for binary char- 
acters and is related to the consistency: 

since the range, r ( i ) ,  of a binary character 
is 1. High values of p ( i )  are associated 
with low reliability of characters. 

The successive weighting was performed 
by assigning weights as functions of the 
p ( i )  values. Several different functions 
w ( i )  = f ( p ( i  ) ) were investigated. They 
fall into four main categories (Fig. 4): Linear, 
w ( i )  = 1 - p ( i ) ;  convex, w ( i )  = 1-(p(i))", 
k > 1; concave and bounded, w ( i )  = ( 1-
~ ( i ) ) ~ ,k > 1; and concave and unbounded, 
to(i)  = ( p ( i ) ) - " - 1, k 3 1. 

RESULTS AND INTERPRETATIONS 

The results of the simulation tests are 
summarized in Table 2. The first column 
of the Table gives the number of ran-
domized characters, the second column 
gives the difference between the true tree 
and the unweighted Prim Network, and 
the third through sixth columns give, for 
various weighting functions, the difference 
between the true and estimated trees and 
the number of iterations required to achieve 
a stable solution by successive weighting. 
All tabulated values are averages of ten 
runs. 

The application of the successive weight- 
ing algorithm almost always improves the 
estimate of the true tree. The efficiency of 
the estimate, however, varies sharply be- 
tween weighting functions. Among bounded 
functions, the concave is most effective, the 
convex is least effective, and the linear is 
intermediate. By far the most effective is 
the unbounded concave weight function, 
which achieves a perfect estimate of the 
true tree even when unreliable characters 
outnumber reliable characters five to one. 

The differences before iteration may be- 
come quite large (the largest in the study 
was 21.2), so that the first estimate of the 
phyletic tree is in general quite inaccurate. 



Nonetheless, the best weighting function 
invariably produced an accurate answer. 
This fact suggests that initial approxima- 
tions do  not need to be very good in order 
for the successive weighting procedure to 
be effective, and hence that the validity of 
the successive weighting process is not 
strongly tied to the assumption that an un- 
weighted, estimated tree is a reasonable 
first guess at the true tree. 

Since the concave weight functions per- 
formed better than the convex one, it ap- 
pears it is more effective to weight strongly 
for very reliable characters than it is to 
weight strongly against very unreliable 
ones. The difference between the two pos- 
sibilities actually lies in the treatment of 
mediocre characters. With a concave 
weight function, only very reliable char-
Bcters receive high weight, and inter-
mediately poor characters are devaluated 
almost as much as are the characters that 
are definitely unreliable. With a convex 
weight function, only very unreliable char- 
acters are heavily weighted against, and 
mediocre characters receive almost as much 
weight as very reliable characters. The 
results of the simulation runs seem to in- 
dicate that it is most expedient to treat 
suspicious characters as if they were un-
reliable. 

The most successful weighting function 
weighted very strongly. The ratio between 
the weight for a character that changed 
once and the weight for a character that 
changed 29 times is about 2.5 x lo5. For 
the linear weight function, the weight ratio 
is 29; for the convex weight function it 
is 15.2; and for the bounded concave weight 
function, it is 841. Thus the degree of 
success of the successive weighting tech- 
nique is positively related to the strength of 
weighting. As far as available data show, 
the stronger the weighting, the more effec- 
tive the procedure. 

INITIAL WEIGHT ESTIMATES 

In the simulation tests, all the characters 
,were binary with initial weight unity. 

SYSTEMATIC ZOOLOGY 

There was no initial influence of weighting 
coefficients, and the successive weighter 
was able immediately to detect the hierar- 
chic structure of the data. In real data 
applications, however, the characters may 
not all have such conveniently equivalent 
codings. The possibility exists that an 
"unweighted data set may imply weighting 
coefficients quite uncorrelated with the 
cladistic reliabilities of the unit characters. 
Such a case might lead to reduced effi-
ciency of the successive weighter. It  is 
desirable to develop objective means of 
controlling the weight structure of the data 
supplied to the successive weighter. 

Some weighting methods rely only on the 
distribution of a unit character in the data. 
Farris ( 1966) and Kluge and Farris ( 1969) 
point out that thc conservatism of a char- 
acter should be inversely related to s,,~, 
the standard deviation of the character 
within OTUs. Further, the relative tend- 
ency of characters to undergo convergence 
should be reflected by the ratio s,,T2/sn2 
where sn2is the variance of a character be-
tween OTUs. Initial weights based on these 
variability criteria were employed in the 
applied studies mentioned above. 

Of greater theoretical interest from 
the standpoint of this paper are initial 
weighting criteria that-like the successive 
weighter-depend on the covariation of the 
unit characters. Several measures of covari- 
ation between characters have been em-
ployed in taxonomy. I t  is illuminating to 
separate those measures into two categories. 
Measures of phenetic correlation depend 
only on the apparent covariation of char- 
acters. Measures of hierarchic correlation, 
on the other hand, depend on the corre-
spondence between characters and dendritic 
patterns of some kind. In the first group 
fall the phi coefficient, the product-moment 
correlation coefficient applied to between- 
OTU covariation of characters, various 
forms of factor analysis, and the predic- 
tivity of Throckmorton (1968; see also 
Farris, Kluge, and Eckardt, in press, a ) .  In 
addition to the consistency measure used 
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by the successive weighter, measures of 
hierarchic correlation include the com-
patibility matrix of Camin and Sokal (1965) 
and the character-pair matrix of Le Quesne 
(1969). 

Ideally the input to the successive 
weighter should contain as much informa- 
tion on cladistic reliability as possible. 
Hence we choose among measures of co-
variation on the basis of their power to 
detect hierarchic correlations. The prod- 
uct-moment correlation coefficient and the 
closely related phi coefficient measure di- 
rectly the between-OTU covariation of 
character states. The example above suf- 
fices to show that such covariation is not 
well correlated with cladistic reliability. 
The predictivity of Throckmorton (1968) 
measures the covariation of similarity coef- 
flicients derived from selected character sets. 
While Throckmorton apparently intended 
predictivity as a measure of cladistic reli- 
ability, that statistic is also only loosely con- 
nected with hierarchic correlation. Farris, 
Kluge, and Eckardt (in press, a )  showed 
that the covariation of similarities derived 
from hierarchically perfectly correlated sets 
of characters could be positive, negative, 
or intermediate. Measures of phenetic cor- 
relation, then, offer a poor basis for an 
initial weighting procedure. 

The compatibility matrix of Camin and 
Sokal (1965) is a square matrix, C, in which 
the rows and columns correspond to char- 
acters. The entry C(i,  j) is the minimum 
number of extra steps for character i on a 
tree which fits character j exactly. C(i,  j) 
is clearly related to the hierarchic correla- 
tion of i and i. If C(i,  j) is zero, i and j 
are mutually consistent. A nonzero C(i,  j) 
indicates some inconsistency between i and 
j. The exact magnitude of a nonzero entry, 
C(i ,  j) ,  cannot, however, be readily in-
terpreted. The estimated reliability of char- 
acter i or j is a function of its lack of con- 
sistency with a tree based on all characters. 
While there is some correlation between 
entries C(i ,  j) and the consistency of char- 
acter i with the tree for all characters, the 

relationship is not a simple one, and we may 
not safely assume that the cladistic reli- 
ability of i is computable from, say, xC(i, j). 

i 
The approach of Le Quesne (1969) 

avoids the perils of attempting interpreta- 
tion of the exact value of C(i,  j). The 
character-pair matrix, H, is a binary-valued 
array in which H (i, j) is unity if C(i,  j) is 
nonzero, and zero otherwise. Le Quesne's 
statistic, Ni = s H ( i ,  j) ,  is the number of 

i 
characters with which character i is incom- 
patable. Le Quesne described a simple 
method for computing H( i ,  j) in the case 
of binary-valued characters. A contingency 
table, T(  i, j) : 

Character i 

Character i 

whose entries are the numbers of OTUs in 
each of the four possible categories, is con- 
structed. The number of nonzero boxes of 
T(i, j) determines H(i, j). If that number is 
four, H(i, j) is unity. Otherwise, H(i, j) =0. 

The counts, Ni, seem to offer a good first 
approximation to cladistic reliabilities. In 
a study with p reliable and q unreliable 
characters, we would expect the unreliable 
characters to be inconsistent both with each 
other and with the reliable characters. The 
Nj for an unreliable character, j, should be 
nearly p + q. Such high N values are 
closely approached by 3 of the 4 apparently 
unreliable characters of the Argodrepana 
data analyzed by Le Quesne. A reliable 
character, k, will also be inconsistent with 
most of the unreliable characters, but will 
be consistent with virtually all of the reli- 
able characters. Hence N, will be about 
q < P + q .

Le Quesne's method can be readily ex-
tended to multistate characters by using 
additive binary coding (Sokal and Sneath, 
1963; an example in an evolutionary ap- 



plication is given by Farris, Kluge, and 
Eckardt, in press, b )  of the characters. 
Each binary coding variable is then treated 
as a character. This approach has the ad- 
vantage that each step of a multistate char- 
acter may be individually evaluated with 
respect to cladistic reliability. Use of addi- 
tive binary coding and separate evaluation 
of steps is also one way to extend the succes- 
sive weighting technique to multistate 
characters. Preliminary results of a study 
to be published elsewhere suggest that this 
may be the most effective such extension. 

Le Quesne suggested simply removing 
characters with high N until all the H 
entries remaining are zero. This would be 
a statisfactory technique for data such as 
Le Quesne's for Argodrepana, in which 
there are many characters of perfect 
cladistic reliability and only a few very un- 
reliable characters. In general, however, 
we need to be more cautious. It may 
happen that many of the most reliable char- 
acters of a large data set show one or two 
cases of convergence, so that elimination 
of non-zero H entries would not be pos- 
sible. Characters that are in general quite 
unreliable may nonetheless contain useful 
information on some restricted region of 
the evolutionary tree, and a character dele- 
tion approach would cause loss of that in- 
formation. Further, although we may re-
gard N 4  as a good indicator of reliability, 
we do not necessarily expect that it will be 
completely accurate. We rely on the succes- 
sive weighter to check our conclusions 
based on Ni,  but this can be done only if 
all the characters are present in the input 
to the successive weighter. Finally, it is 
impossible simply to delete poor binary 
characters when an additive binary coding 
is used for multistate characters: we can- 
not allow a single step to be deleted from 
the middle of a multistate character, nor 
would we wish to delete an entire multistate 
character that had only one or two un-
reliable steps. 

Instead of deleting poor characters, we 
shall assign characters initial weights as 
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functions of Ni .  Letting N ,  stand for the 
total number of characters in the study, we 
can base a mieight function conveniently 
on N d N T .  The weight, w ( i ) ,  needs to 
decrease rapidly with NJNT.  In studies 
with many unreliable characters and few 
reliable ones, the difference between N,/NT 
and N k / N T  may not be great, even if char- 
acters / and k differ substantially in reli- 
ability. If the number of unreliable char- 
acters is large, a rapidly increasing weight 
function is needed to provide large dif-
ferentials in weight between reliable and 
unreliable characters. By analogy with the 
simulation test, we might expect an initial 
weight function such as w ( i )= (NT/N4)3- 1 
to be reasonably effective. Again, for ap- 
plication to multistate variables, i may index 
either a binary character or a binary coded 
step of a multistate character. 

We may wonder how likely it is that the 
successive weighter will extensively modify 
the conclusions of the initial weighting 
procedure. There will undoubtedly be data 
sets for which it is possible to reach valid 
conclusions on the basis of the initial 
matrix, H, alone. In general, however, we 
would expect the successive weighter to 
provide more detailed information on cla- 
distic reliability than is available in the 
initial estimate. This is so for two reasons. 
First, the H matrix reflects only painvise 
covariation of characters, while the con-
sistencies, c ( i )  of the successive weighter 
provide a measure of higher-order inter-
actions between characters i and the rest 
of the entire set of characters. Second, the 
H matrix is symmetric, so that it is quite 
possible for reliable characters to have 
moderately high Ni, since they are incon- 
sistent with several unreliable characters. 
For data with many unreliable characters, 
therefore, initial weight estimates based on 
N$NT may be unable to make a strong 
distinction between reliable and unreliable 
characters. The successive weighter, on the 
other hand, utilizes a non-symmetric rela- 
tionship by measuring the consistency be- 
tween character i and the entire tree. As 
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is amply shown by the simulation runs, the 
successive weighter can develop large 
weighting differentials between reliable 
and unreliable characters, even when the 
proportion of unreliable characters in the 
data is quite large. 

The several weighting criteria, st", sW2/ 
s B 2 ,  Ni/NT, and c ( i ) ,  treated in this paper 
are not mutually exclusive. They can all 
be used in a single procedure. Programs to 
handle these many kinds of weighting in- 
formation are now being developed. 

DISCUSSION 

A number of possible difficulties need to 
be discussed. Some of my more orthodoxly 
pheneticist colleagues have suggested that 
the results are mathematically trivial: that 
any successive weighting program is bound 
tb appear to work, and hence the simula- 
tion tests have no meaning. This objection 
does not appear to be valid, since the data 
indicate that the successive weighting tech- 
nique works well only if a proper weight 
function is used. 

Is the operation of the program on a 
hypothetical data set a reasonable test of 
the program's efficiency for analyzing the 
real data? Within limits, I believe that it is. 
The hypothetical data sets presented to the 
successive weighting program were simply 
matrices of character states. Some of the 
characters were consistent with a common 
branching pattern and some were not-the 
program had no a p~ior i  infolmation on 
which were which. Surely a real data set is 
no more than that, at least in the context of 
computer analysis. From the standpoint of 
the operation of the successive weighting 
algorithm, real and hypothetical data sets 
seem quite directly comparable. 

The unreliable characters in the simula- 
tion runs were produced by a random num- 
ber generator, while unreliable characters 
in real data are produced causally when 
distinct phyletic lines respond similarly to 
similar selective situations. Does this 
dichotomy between causality and random- 
ness imply that the hypothetical data set 

was too unrealistic? Probably not: the fea- 
ture of unreliable characters that is of 
interest in this context is their random 
distribution with respect to the phylogeny. 
Unreliable characters necessarily have this 
random property despite the fact that their 
distribution is caused by selection. I t  is 
only the randomness that concerns us, and 
that randomness, it would seem, can be 
effectively mimicked by a random number 
generator. 

To what extent would the effectiveness 
of the successive weighting technique be 
reduced by correlations of functional or 
adaptive origin between characters? There 
are two answers to this. The first is that 
the effects of functional correlations are still 
being studied, and programs to successively 
weight, taking seemingly correlated com-
plexes of characters into account, are being 
developed. The second-and perhaps more 
interesting-is that the characters used were 
correlated. Since there were only 31 OTUs 
in the hypothetical data sets, the dimen- 
sionality of the character space could not 
exceed 30. Up to 180 total characters were 
employed; hence there must have been 
partial correlations between most of the 
randomized characters. From the stand-
point of computer analysis, such partial 
correlations should have the same effect as 
partial functional correlations between char- 
acters. The most successful weighting 
algorithm functioned perfectly despite this 
handicap. We do not need to fear that 
small amounts of functional correlation in 
our data will render our procedures in-
effectual. 

One unpleasant possibility is that some 
type of data set might cause a successive 
weighting program to interate indefinitely 
without achieving a stable solution. All the 
existing successive weighting programs have 
safeguards against that possibility, but 
they have never been needed. In numerous 
simulation tests and analyses of real data, 
the number of iterations has never exceeded 
20, and the overall average number of 
iterations is between 3 and 5. Non-ter-



minating analyses do not seem to be a 
serious practical danger of this technique. 

The hypothetical data sets employed all 
contained a branching pattern, and once 
that was found, no further interpretation 
was required. Real data sets, however, may 
consist entirely of unreliable characters and 
thus not contain a true branching pattern 
at all. Since a network-forming program is 
certain to produce a tree, whether it makes 
sense or not, some care is required in in-
terpreting the results of computerized tree- 
forming techniques with real data. Again, 
this topic is still under investigation, but 
I can offer a few preliminary remarks. 

If the real data set contains a substantial 
number of cladistically reliable characters, 
we may reasonably expect the successive 
weighting program to produce a good esti- 
mate of the true tree. The reliable char- 
acters will then be highly consistent with 
the output tree, and if most of the charac- 
ters in the data set are in good agreement 
with the output tree, we are justified in 
believing our answer to be correct. In-
deed, if the output tree is consistent with a 
"large" number of characters, we should 
accept the output tree, even if the con-
sistent characters were not a majority of 
the character set. 

If the data set does not contain enough 
good characters to specify a good estimate 
of the true tree, the output tree will be in- 
consistent with most of the characters, and 
it may happen that none of the characters 
will be highly consistent with the output 
tree. If this occurs, we may be sure that 
we have bad data. 

Future research into this problem will 
be concerned with developing precise 
criteria along the lines of the arguments 
above. Theory involved with incorporating 
the number of characters and the number 
of OTUs in the data set into the evaluation 
will probably be relevant, and studies of 
the bearing of character coding on the 
interpretation may well prove fruitful. 

From these considerations, it seems rea- 
sonable to conclude that the tests performed 
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may be considered indicative of the in-
ferential power of the successive weighting 
procedure. While development of tech-
niques to apply the procedure to real data 
remains to be done, the considerable effi- 
ciency of the successive weighting algorithm 
seems to promise that methods of cladistic 
inference may soon become highly reliable. 

SUMMARY 

The problem of weighting characters is 
approached through the concepts of unit 
character consistency and cladistic reli-
ability. Unit characters are highly con-
sistent with a tree if they show little homo- 
plasy on that tree. Unit characters are 
cladistically reliable if they are consistent 
with the true phyletic tree. 

A set of cladistically reliable characters is 
consistent with a single tree-the true one- 
and hence the characters are correlated with 
each other in a particular way here referred 
to as hierarchic correlation. A set of 
cladistically unreliable characters can be 
hierarchically correlated only by accident. 

A good estimate of the true cladistic re- 
lationships for a group can be achieved by 
forming an estimated tree, weighting char- 
acters according to their consistency with 
the tree, and repeating until the tree no 
longer changes between iterations. This 
procedure is workable because it reinforces 
the influence of hierarchically correlated 
characters on the tree estimate, while 
eliminating the effects of characters that are 
random with respect to a branching pattern. 

Computer simulation was employed to 
test the efficiency of the successive weight- 
ing procedure. The results varied with the 
form of the function relating consistency to 
weight. The most effective weight function 
gave flawless results even when only 30 
reliable characters and 150 unreliable ones 
were included in a hypothetical data set. 

A modification of the character selection 
technique of Le Quesne (1969) is suggested 
as a means to obtain an initial set of weights 
for the input data to the successive weighter. 

The use of successive weighting algo- 
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rithms may soon make it possible to con-
struct reliable techniques for cladistic in-
ference. 
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