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A B S T R A C T

Pathogens and spoilage microorganisms can develop multispecies biofilms on food contact surfaces; however,
few studies have been focused on evaluated mixed biofilms of these microorganisms. Therefore this study in-
vestigated the biofilm development by pathogenic (Bacillus cereus, Escherichia coli, Listeria monocytogenes, and
Salmonella enterica Enteritidis and Typhimurium serotypes) and spoilage (Bacillus cereus and Pseudomonas aer-
uginosa) microorganisms onto stainless-steel (SS) and polypropylene B (PP) coupons; under conditions that
mimic the dairy, meat, and egg processing industry. Biofilms were developed in TSB with 10% chicken egg yolk
(TSB+EY), TSB with 10% meat extract (TSB+ME) and whole milk (WM) onto SS and PP. Each tube was
inoculated with 25 μL of each bacteria and then incubated at 9 or 25 °C, with enumeration at 1, 48, 120, 180 and
240 h. Biofilms were visualized by epifluorescence and scanning electron microscopy (SEM). Biofilm develop-
ment occurred at different phases, depending on the incubation conditions. In the reversible adhesion, the cell
density of each bacteria was between 1.43 and 6.08 Log10 CFU/cm2 (p < 0.05). Moreover, significant reduc-
tions in bacteria appeared at 9 °C between 1 and 48 h of incubation. Additionally, the constant multiplication of
bacteria in the biofilm occurred at 25 °C between 48 and 180 h of incubation, with increments of 2.08 Log10
CFU/cm2 to S. Typhimurium. Population establishment was observed between 48 and 180 h and 180–240 h
incubation, depending on the environmental conditions (25 and 9 °C, respectively). For example, in TSB+ME at
25 °C, S. Typhimurium, P aeruginosa, and L. monocytogenes showed no statistical differences in the amounts
between 48 and 180 h incubation. The dispersion phase was identified for L. monocytogenes and B. cereus at 25 °C.
Epifluorescence microscopy and SEM allowed visualizing the bacteria and extracellular polymeric substances at
the different biofilm stages. In conclusion, pathogens and spoilage microorganisms developed monospecies with
higher cellular densities than multiespecies biofilms. In multispecies biofilms, the time to reach each biofilm
phase varied is depending on environmental factors. Cell count decrements of 1.12–2.44 Log10 CFU/cm2 oc-
curred at 48 and 240 h and were most notable in the biofilms developed at 9 °C. Additionally, cell density
reached by each microorganism was different, P. aeruginosa and Salmonella were the dominant microorganisms
in the biofilms while B. cereus showed the lower densities until undetectable levels.

1. Introduction

Biofilms are defined as a community of microorganisms (of the same
or different species) enclosed in an of self-produced extracellular
polymeric substances (EPS) matrix that is able to adhere strongly to
both living and abiotic surfaces (Steenackers et al., 2012); these

communities are the main mode of growth of bacteria in the environ-
ment (Giaouris et al., 2015). Biofilm formation has been recognized as a
strategy used by microorganisms to survive in hostile environments,
such as on inert surfaces exposed to hostile conditions (UV light, de-
siccation, heat, cold, shear forces). Additionally, organisms within a
biofilm are far more resistant to antimicrobial agents than planktonic
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cells (Almeida et al., 2011; Mah and O'Toole, 2001). Biofilm formation
is a dynamic process with different phases: i) reversible attachment, ii)
desorption, iii) irreversible attachment, iv) microcolonies development,
v) maturation and vi) dispersion (Srey et al., 2013; Stoodley et al.,
2002). This process is affected by several factors, such as temperature,
pH, nutrients content, salinity, contact surface properties, and micro-
organism proprieties (Donlan, 2002; Xu et al., 2010).

In the food industry the pathogenic and spoilage microorganisms
develop biofilms on food contact surfaces (Giaouris et al., 2013b); that
entails equipment contamination, biofouling in drinking water systems,
and post-process contamination, contributing to food spoilage and
foodborne diseases (Chmielewski and Frank, 2003; Zhao et al., 2017).
In line with this, it has been estimated that every year around 600
million people fall ill after eating contaminated food in the world; in-
cluding almost 350 million caused by pathogenic bacteria; this con-
stitute a serious health risk both in developing countries and in ad-
vanced ones such as the United States (WHO, 2017). In this country t
has been estimated that Salmonella causes 1.2 million of foodborne
diseases every year (CDC, 2019); the serotype Typhimurium has been
associated to the meat and dairy industries whereas the serotype En-
teritidis to the poultry industry (Lamas et al., 2018; Yang et al., 2017).
Other important biofilm-former microorganisms commonly implicated
in foodborne diseases are Listeria monocytogenes (Ripolles-Avila et al.,
2019), Escherichia coli (Corzo-Ariyama et al., 2019), and Bacillus cereus
(Park et al., 2019). Moreover, in the last decades, the dairy, egg pro-
cessing, and meat industries have focused extensively on the manage-
ment of food spoilage caused by biofilm-forming microorganisms, such
as Clostridium, Brochothrix thermosphacta, Enterobacteriaceae, lactic
acid bacteria, Pseudomonas spp., and Bacillus spp. (Majed et al., 2016;
Meliani and Bensoltane, 2015; Motarjemi and Lelieveld, 2014). Due to
according to the Food and Agricultural Organization of the United
Nations (FAO, 2011), at least 25% of global food production is dete-
riorated by microbial action (bacteria, yeasts, and molds).

Previous researches showed that L. monocytogenes, P. aeruginosa, B.
cereus, Salmonella spp., and E. coli can develop dual- or tri-species
biofilms with Gram-positive and Gram-negative species (Almeida et al.,
2011; Bridier et al., 2012; Giaouris et al., 2013a; Iñiguez-Moreno et al.,
2018; Kostaki et al., 2012). However, few have reported the biofilm
formation by pathogenic and spoilage microorganisms (Giaouris et al.,
2013b; Guillier et al., 2008; Mellefont et al., 2008; van der Veen and
Abee, 2011) and most have focused on co-culture conditions, without
considering that biofilms in the food industry are formed by multiple
bacteria (Kostaki et al., 2012; Nozhevnikova et al., 2015). To our
knowledge, no prior research has reported biofilm development by five
microorganisms under conditions that mimic the food industry. Hence,
this aim of this study was investigated the mono- and multispecies
biofilm development by pathogenic (B. cereus, E. coli, L. monocytogenes,
and S. enterica) and spoilage (B. cereus and P. aeruginosa) microorgan-
isms onto stainless-steel (SS) and polypropylene B (PP) coupons, in
three culture media to simulate the conditions in the dairy, meat, and
egg processing industries, at 9 and 25 °C.

2. Materials and methods

2.1. Bacterial strains and culture media

The microorganisms used in biofilm formation were E. coli ATCC
11303, S. Typhimurium ATCC 14028, S. Enteritidis ATCC 13076, P.
aeruginosa ATCC 15442, L. monocytogenes ATCC 19111, and B. cereus
ATCC 14579. These bacteria can develop biofilms and represent po-
tential foodborne pathogens and spoilage microorganisms in the dairy,
meat, and egg processing industries (Motarjemi and Lelieveld, 2014).
Before utilization, the microorganisms were incubated individually in
tryptic soy broth (TSB; Becton Dickinson Bioxon, Le Pont de Claix,
France) at 37 °C for 24 h, to yield a final concentration of 107 CFU/mL.

2.2. Biofilm development

2.2.1. Contact surfaces
The SS (AISI 304, 2×1×0.1 cm; CIMA Inoxidables, Jalisco,

Mexico) and PP coupons (2× 1×0.2 cm; Plásticas Tarkus, Jalisco,
Mexico) were cleaned, according to the method of Rossoni and
Gaylarde (2000), modified by Marques et al. (2007). Briefly, the sur-
faces were immersed in pure acetone (Fermont, Monterrey, Nuevo
León, Mexico) for 1 h, to remove any debris and grease, immersed in
neutral detergent (30mL/L; Cip & Group S. de R.L., Tlajomulco de
Zuñiga, Jalisco, Mexico) for 1 h, rinsed with sterile distilled water,
cleaned with ethanol (70%; Hycel, Zapopan, Jalisco, Mexico), dried for
2 h at 60 °C, and sterilized by autoclaving (121 °C for 15min).

2.2.2. Development of mono- and multispecies biofilms and quantification
Biofilms were developed in three culture media: TSB with chicken

egg yolk (TSB+EY, 10%), TSB with meat extract (TSB+ME, 10%;
Becton Dickinson Bioxin), and whole milk (WM) processed at ultra-high
temperature was purchased from a retail shop in Jalisco (Mexico). Each
coupon was individually introduced into a new polypropylene tube
(15mL Centrifuge Tube; Corning CentriStar) containing 5mL of the
corresponding culture media. The monospecies biofilms were in-
oculated with 25 μL (1×106 CFU/mL) of the corresponding strain, the
tubes were incubated for 240 h at 9 or 25 °C. For multispecies biofilms,
each tube was inoculated with 25 μL of each bacterial species (1× 106

CFU/mL); S. Typhimurium was used in biofilms developed in
TSB+ME and WM, and S. Enteritidis was inoculated in TSB+EY. The
tubes with the coupons were incubated at 9 or 25 °C for 1, 48, 120, 180,
and 240 h. At 120 h incubation, the coupons were removed from the
tube and immersed into a fresh medium containing the same micro-
organism concentration (1× 106 CFU/mL); and were incubated to
complete 240 h (Heydorn et al., 2000; Xu et al., 2010). After each in-
cubation period, the coupons were removed from the tube, under sterile
conditions, and rinsed by vortexing (150 rpm for 10 s) in 5mL of Dul-
becco's phosphate-buffered saline (Sigma–Aldrich) to remove the
loosely attached cells (Kostaki et al., 2012). Each coupon was in-
troduced individually into 3mL of casein peptone (1 g/L; Becton
Dickinson Bioxon), and the biofilms were removed by sonication
(50–60 Hz for 1min; Sonicor Model SC-100TH, West Babylon, NY,
USA). Serial dilutions and conventional plate counting on tryptic soy
agar (Becton Dickinson Bioxin) with lactose (10 g/L; Sigma–Aldrich)
and phenol red (0.1 g/L; Hycel, Zapopan, Jalisco, Mexico) were rea-
lized. For quantification of E. coli and B. cereus in multispecies biofilms,
cefsulodin (50 μg/mL; Sigma–Aldrich) and polymyxin B (70 μg/mL;
Sigma–Aldrich) were added, respectively. Petri dishes were incubated
at 37 °C for 24 h (Mariscal et al., 2009). Colonies of E. coli and L.
monocytogenes were yellow, due to lactose fermentation and the re-
maining microorganism colonies were colorless. Salmonella and P.
aeruginosa were distinguished based on the oxidase test. Each quanti-
fication was conducted in triplicate. A control without microorganisms
was included for determination of any contamination.

2.3. Microscopy analysis

2.3.1. Epifluorescence microscopy
After each incubation period (1, 48, 120, 180, and 240 h), the

mono- and multispecies biofilms were stained with 5(6)-carboxy-
fluorescein diacetate (CFDA, 10 μg/mL), and dried in a level II cabinet;
the CFDA excess was rinsed with sterile distilled water. The coupons
were examined under a Nikon Eclipse E400 epifluorescence micro-
scope, using 100× oil immersion lens and a BA 515 B-2ª filter, at
450–490 nm and at least 15 fields were observed (Gorokhova et al.,
2012).

2.3.2. Scanning electron microscopy (SEM) analysis
After each incubation period (as above), a coupon of each material
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was removed from the tube, rinsed with Dulbecco's phosphate-buffered
saline, and immersed in 2% glutaraldehyde at 4 °C for 2 h, to fix the
adherent bacteria (Alhede et al., 2012; Meira et al., 2012). After serial
dehydration in ethanol (30, 50, 60, 70, 90, and 95%) for 10min each, at
4 °C, every coupon was rinsed (three 10-min rinses) in 100% ethanol
(Borucki et al., 2003). Samples were critical-point dried and were
coated with gold for 30 s (Fratesi et al., 2004). The biofilms were
viewed under a Mira 3 LMU field emission scanning electron micro-
scope (Tescan, Czech Republic).

2.4. Statistical analysis

All experiments were performed in triplicate and the data evaluated
using analysis of variance (ANOVA), followed by a least significant
difference (LDS) test, in the Statgraphics Centurion XV software
(Statpoint Technologies, Inc., Warrenton, VA, USA).

3. Results

3.1. Monospecies biofilms

The cell density in the biofilms and cellular viability were evaluated
using standard plate counting and epifluorescent microscopy. All the
tested microorganisms showed a high ability to develop biofilms in the
three culture media reaching>7.70 Log10 CFU/cm2 (Fig. 1). In
TSB+ME, P. aeruginosa not had a significative difference (p > 0.05)
in the cell density under the tested conditions, however; E. coli and B.
cereus had differences in their populations in each condition (p < 0.05)
(Fig. 1A). On the other hand, in TSB+EY L. monocytogenes had the
lower density (7.9 Log10 CFU/cm2) in comparison to the other micro-
organisms, while B. cereus had the higher densities in comparison to its
population in TSB+ME and WM (Fig. 1B). Finally, in WM, P. aerugi-
nosa had the lower density (8.03 Log10 CFU/cm2) (p < 0.05) in com-
parison to the other microorganism in the same media, except that L.
monocytogenes on PP at 9 °C (8.12 Log10 CFU/cm2) (p > 0.05)
(Fig. 1C). In monospecies biofilms was not observed significative in-
fluence of surface type or temperature on all tested microorganisms
(p > 0.05), the conditions had a different effect in the biofilm devel-
opment by each microorganism (Fig. 1).

3.2. Tryptic soy broth with meat extract (TSB+ME)

The bacterial amounts in biofilms are summarized in Fig. 2. At 1 h
incubation in TSB+ME, each bacterial species oscillated between 1.43
(B. cereus) and 6.08 Log10 CFU/cm2 (P. aeruginosa) (Fig. 2C, D). On PP
at 25 °C, P. aeruginosa, S. Typhimurium, E. coli, L. monocytogenes, and B.
cereus reached 6.08, 5.22, 3.63, 2.63, and 1.43 Log10 CFU/cm2

(p < 0.05) (Fig. 2C), respectively. At this stage, B. cereus was not de-
tected (Fig. 2B). Even when all biofilms were inoculated with the same
amount of each bacteria (7.33 ± 0.14 Log10 CFU/mL), statistical dif-
ferences were observed in the cell density of each microorganism
(Fig. 2). In the reversible attachment, the Gram-negative bacteria
reached the highest densities (Fig. 2A–D).

The detachment phase is characterized by the decrement in cell
counts. In TSB+ME, there were significant differences between the
counts at 1 and 48 h, in biofilms developed at 9 °C, for S. Typhimurium
on SS (Fig. 2B), and B. cereus and E. coli on PP (p < 0.05) (Fig. 2D).
Instead, L. monocytogenes showed a linear growth during the 240 h in-
cubation, with increments of 3.18 and 3.87 Log10 CFU/cm2 on PP at
9 °C (Fig. 2D). However, after incubation at 25 °C for 48 h, it displayed
an increase of 2.35 Log10 CFU/cm2 (Fig. 2C) on PP and an even lower
increment of 0.68 Log10 CFU/cm2 on SS (Fig. 2A). Otherwise, S. Ty-
phimurium, P aeruginosa, and L. monocytogenes remained constant since
48 h incubation at 25 °C on both surfaces (Fig. 2A, C). A significant
decrement was noticed for P. aeruginosa on PP at 9 °C at 240 h, related
to biofilm dispersion (Fig. 2D). At the end of the incubation period, the
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Fig. 1. Cellular density in monospecies biofilms. The biofilms ere developed
onto stainless-steel (SS) and polypropylene B (PP), in A) tryptic soy broth (TSB)
with 10% meat extract, B) TSB with 10% egg yolk and C) whole milk and were
incubated at 9 and 25 °C during 240 h. SS at 25 °C (■), PP at 25 °C ( ), SS 9 °C
( ) and PP 9 °C ( ). Each bar represent the mean of three test± standard de-
viation of the means (n= 3). Detection limits were 0.71 and 0.81 Log10 CFU/
cm2 to PP and SS, respectively.
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cell density in multispecies biofilms developed was higher onto PP than
on SS; the temperature had a significative effect in cell density in the
biofilms, being higher at 25 °C than at 9 °C (Table 1).

TSB+ME: tryptic soy broth with 10% meat extract; TSB+EY:
tryptic soy broth with 10% egg yolk and WM: whole milk.

3.3. Tryptic soy broth with egg yolk (TSB+EY)

Results of multispecies biofilms developed on SS and PP in
TSB+EY are shown in Fig. 3. After incubation at 9 °C for 1 h on PP, the
amount of each species was between undetectable levels (B. cereus) to
5.70 Log10 CFU/cm2 (P. aeruginosa), with intermediate counts of 3.36
(L. monocytogenes), 3.65 (E. coli), and 4.97 Log10 CFU/cm2 (S. En-
teritidis) (Fig. 3D). A decrease of 1 Log10 CFU/cm2 in P. aeruginosa
occurred after incubation on SS at 9 °C for 48 h (p < 0.05) (Fig. 3B).
The linear growth phase presented mainly at 25 °C between 48 and
180 h, with increments of 0.9 and 1.27 Log10 CFU/cm2 for P. aeruginosa
(Fig. 3C) and S. Enteritidis (Fig. 3A), respectively. Moreover, L. mono-
cytogenes exhibited a linear growth throughout the 240 h incubation,
evidencing an increment of 3.87 Log10 CFU/cm2 on PP at 9 °C (Fig. 3D).
The tested microorganisms established cell population from 120 h in-
cubation at 9 °C on SS (p > 0.05) (Fig. 3B). Biofilm dispersion was
observable for B. cereus, S. Enteritidis and E. coli in the biofilms de-
veloped at 9 °C on PP, with cell reduction rates of 1.22, 1.55, and 1.59
Log10 CFU/cm2, respectively, in comparison with the densities obtained
at 120 h incubation (p < 0.05) (Fig. 3D). After 240 h of incubation, the

cell density was higher onto PP than on SS; the temperature had a
significative effect in biofilm development on both surfaces (Table 1).

3.4. Whole milk (WM)

After 1 h incubation, the cell density of each microorganism in
biofilms developed in WM oscillated between 2.41 and 5.86 Log10 CFU/
cm2 (Fig. 4), this variation was less in comparison with that shown the
biofilms developed in TSB+ME (Fig. 2) and TSB+EY (Fig. 3)
(p < 0.05). For these biofilms at 25 °C, B. cereus was detected only after
incubation for 1 h, on both SS and PP surfaces (Fig. 4A, C). Significant
decrements in S. Typhimurium, B. cereus, and E. coli were apparent on
both surfaces at 9 °C (Fig. 4B, D) but the highest decrements (1.12 Log10
CFU/cm2) corresponded to B. cereus on PP at 9 °C, and until un-
detectable levels in the others tested conditions (Fig. 4A–C). There was
a linear growth in L. monocytogenes during the 240 h of incubation, with
increments of 2.98 Log10 CFU/cm2 at 25 °C in WM, on SS (Fig. 4A). The
other microorganisms, like S. Typhimurium, increased 2.08 Log10 CFU/
cm2 between 48 and 180 h, on SS (Fig. 4A). In WM at 25 °C, the mi-
croorganisms maintained their densities on SS from 48 h, except S.
Typhimurium, which was stable at 180 h. However, on PP, the popu-
lations were stable from 180 to 240 h (p > 0.05) (Fig. 4A, C). At the
end of incubation on SS at 9 °C, all the microorganisms in the biofilm
demonstrated reductions between 1.2 and 2.80 Log10 CFU/cm2

(p < 0.05), except L. monocytogenes, which maintained its population
(p > 0.05) (Fig. 4B). In WM, at the end of the incubation period, the
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Fig. 2. Cell counts in multispecies biofilms developed in
tryptic soy broth with meat extract (TSB+ME). The biofilms
were developed on stainless-steel (SS) and polypropylene B
(PP), cellular densities were determined at five times (1, 48,
120, 180, and 240 h). A) SS at 25 °C; B) SS at 9 °C; C) PP at
25 °C; D) PP at 9 °C. Escherichia coli ATCC 11303 ●;
Salmonella □; Pseudomonas aeruginosa ATCC 15442 ▲;
Listeria monocytogenes ATCC 19111 ◊; Bacillus cereus ATCC
14579 ■. Vertical bars represent the standard deviations of
the means (n=3). Detection limits were 0.71 and 0.81 Log10
CFU/cm2 to PP and SS, respectively.

Table 1
Cell density in multispecies biofilms after 240 h of incubation in different culture media.

Culture media Cell density in multispecies biofilms (CFU/cm2)a

Stainless steel Polypropylene

9 °C 25 °C 9 °C 25 °C

TBS+ME 5.87 ± 0.15 Abac 6.46 ± 0.20 Ab 6.95 ± 0.23 ABc 7.18 ± 0.45 Ac
TBS+EY 5.78 ± 0.12 Aa 6.67 ± 0.09 Ab 7.19 ± 0.34 Bc 7.07 ± 0.28 Ac
WM 5.09 ± 0.18 Ba 6.55 ± 0.27 Ab 6.59 ± 0.07 Cb 7.91 ± 0.07 Bc

a Mean of three test of population in multispecies biofilms Log10 ± standard deviation of the means (n= 3).
b Values in the same column with the same capital letter are not significantly different (p > 0.05).
c Values in the same row with the same lowercase letter are not significantly different (p > 0.05).
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temperature had a significative effect in the cell density in the biofilms
on both surfaces; however, the population was higher on PP than in the
same tested condition onto SS (Table 1).

The microorganisms that predominate in the biofilms were P. aer-
uginosa and Salmonella. It is also important to mention that the increase
shown by the microorganisms at 180 h compared to 120 h, and the
significant decrease at 240 h, could be associated with the re-inocula-
tion and the replacement of the culture medium (Figs. 2B, C, 3A, C and
4B).

3.5. Epifluorescence and scanning electron microscopy observations

Representative images of monospecies biofilms on SS and PP were
obtained using epifluorescence microscope (Fig. 5). In all the cases
metabolically-active cells were observed. Multispecies biofilms were

observed in different development stages on SS coupons. In this bio-
films, besides active cells, the accumulation of extracellular polymeric
substances (EPS) and food residues were observed. The amount of
polymeric matrix increasing during the incubation time, for this was
more difficult to observe the cells in the biofilms developed in
TSB+EY and WM. After 1 h incubation few cells were observed, but
according to the increment in the incubation time, the number of cells
increased. Additionally, more cell aggregation was observed in biofilms
developed at 25 °C than those developed at 9 °C (Fig. 6). Trough SEM
verified these observations. Biofilms developed in WM showed incre-
ments of microorganisms and EPS a long incubation time. Additionally,
higher amounts of bacteria were observed on PP than SS, in con-
cordance with the plate count results (Fig. 7). Surfaces covered with the
organic matter were also noticed (preconditioned surfaces, Fig. 7B, I).
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Fig. 3. Cell counts in multispecies biofilms developed in
tryptic soy broth with egg yolk (TSB+EY). The biofilms
were developed on stainless-steel (SS) and polypropylene B
(PP), cellular densities were determined at five times (1, 48,
120, 180, and 240 h). A) SS at 25 °C; B) SS at 9 °C; C) PP at
25 °C; D) PP at 9 °C. Escherichia coli ATCC 11303 ●;
Salmonella □; Pseudomonas aeruginosa ATCC 15442 ▲;
Listeria monocytogenes ATCC 19111 ◊; Bacillus cereus ATCC
14579 ■. Vertical bars represent the standard deviations of
the means (n= 3). Detection limits were 0.71 and 0.81 Log10
CFU/cm2 to PP and SS, respectively.
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Fig. 4. Cell counts in multispecies biofilms developed in
whole milk (WM). The biofilms were developed on stainless-
steel (SS) and polypropylene B (PP), cellular densities were
determined at five times (1, 48, 120, 180, and 240 h). A) SS at
25 °C; B) SS at 9 °C; C) PP at 25 °C; D) PP at 9 °C. Escherichia
coli ATCC 11303 ●; Salmonella □; Pseudomonas aeruginosa
ATCC 15442 ▲; Listeria monocytogenes ATCC 19111 ◊;
Bacillus cereus ATCC 14579 ■. Vertical bars represent the
standard deviations of the means (n=3). Detection limits
were 0.71 and 0.81 Log10 CFU/cm2 to PP and SS, respec-
tively.
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4. Discussion

In the food industry, foods residues are the main source used by the
microorganisms to growth (Lamas et al., 2018). It is therefore of great
importance to create growth environments in research laboratories that
mimic actual food industry conditions (Li et al., 2017). All the

monospecies biofilms had a higher cellular density in comparison with
the multispecies biofilms (p < 0.05), this is related with the ability of
each strain to develop biofilms in mixed culture (Iñiguez-Moreno et al.,
2018; Kostaki et al., 2012). To this the kinetics of biofilms formation
under conditions that mimic the dairy, meat and egg processing in-
dustry were tested onto SS and PP. After 1 h incubation, high bacterial

Fig. 5. Micrographs of monospecies biofilms development onto stainless-steel (SS) and polypropylene B by epifluorescence microscopy. The biofilms were developed
at 9 and 25 °C for 240 h in tryptic soy broth (TSB) with 10% meat extract. The white bar scale indicates 5 μm. The red arrows shown the presence of metabolically-
active cells, whereas the yellow arrows indicates the presence of EPS and food residues. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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Fig. 6. Micrographs of multispecies biofilms development on stainless-steel (SS) by epifluorescence microscopy. The biofilms were developed at 9 and 25 °C for 240 h
in tryptic soy broth (TSB) with 10% meat extract, TSB with 10% egg yolk and whole milk, with a replacement of culture medium and re-inoculation of the
microorganisms at 120 h. The white bar scale indicates 5 μm. The red arrows shown the presence of metabolically-active cells, whereas the yellow arrows indicates
the presence of EPS and food residues. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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counts were obtained in all tested conditions, which could be related to
the previous step in the biofilm formation, namely, the surface pre-
conditioning (Dat et al., 2014). In this step, the particles of the medium
coat the surface and modify its charge, increasing bacterial adherence
(Chmielewski and Frank, 2003). The surfaces adsorb milk and milk
components (caseins, β-lactoglobulin, α-lactalbumin, and serum al-
bumin) within the first 5 to 10 s of contact (Dat et al., 2014; Mittelman,
1998), facilitating bacterial adherence (Kuda et al., 2015). Likewise, the
presence of lipopolysaccharides (in Gram-negative bacteria) and bac-
terial appendages (adhesins, fimbriae, and flagella) have been im-
plicated in cell aggregation and biofilm formation, by reducing the
repulsion forces (Bridier et al., 2015; Steenackers et al., 2012). Also,
flagella contribute to biofilm spread (Van Houdt and Michiels, 2010).

The desorption phase is a decrement in the cell count during sample
processing compared with initial colonization (Xu et al., 2010). In this
research, there was a significant difference between the counts obtained
at 1 and 48 h, in biofilms developed at 9 °C. Xu et al. (2010), found that
pathogenic bacteria showed this phase in TSB with low levels of NaCl
(0, 2, and 4%), but not in biofilms developed with high NaCl (6, 8, and
10%), affirming that this phase is dependent on environmental condi-
tions and microorganism type. Meira et al. (2012) evaluated the deso-
rption kinetics of S. aureus by contact with agar and noted a cell de-
tachment of around 3 Log10 CFU/cm2, which is relatively higher than
our results, but this difference is explained by the mechanical forces
applied. Additionally, after 48 h of incubation in TSB+ME E.coli
reached 4.62 Log10 CFU/cm2 while it has been reported that in tri-
species biofilms with L. monocytogenes and S. enterica after the same
time E. coli had a cell density of 8.32 Log10 CFU/cm2 (Almeida et al.,
2011). This could be associated with the antagonistic effect of extra-
cellular peptides secreted by P. aeruginosa (Ma et al., 2009) and the
bacteriocin produced by B. cereus ATCC 14579 (Risøen et al., 2004);
and to the use of meat extract.

In linear growth phase, irreversible adhesion process begins, cell-
cell interactions allow the establishment of complex and highly struc-
tured biofilms (Giaouris et al., 2015). L. monocytogenes showed a large
linear phase in biofilms developed at 9 °C, attributable to its psychro-
trophic nature (Lee et al., 2014); conversely, it has been reported that L.
monocytogenes density in multispecies biofilms tends to be low, because
their EPS production is low (Borucki et al., 2003); nonetheless Pseu-
domonas spp. can increase its colonization and persistence on surfaces
(Fox et al., 2014; Giaouris et al., 2015).

The stabilization and maturation phases are characterized by cel-
lular densities maintenance at different times, S. Enteritidis showed cell
densities of 5.03 and 5.64 Log10 CFU/cm2 (p < 0.05) at 48 and 180 h

respectively, on SS at 25 °C in TSB+EY (Fig. 3A). This result is greater
than reported by Yang et al. (2017) who developed S. Enteritidis ATCC
13076 monospecies biofilms on SS AISI 304 at 25 °C in TSB with 10%
EY; and obtained 4.81 Log10 CFU/cm2 after 48 of incubation. Therefore,
in the current study, the interspecies interactions contributed to in-
crease the cellular density of S. Enteritidis onto SS in TSB+EY. In
addition, the expression of the red, dry and rough morphotype (rdar)
linked to cellulose production (also produced by E. coli) is favored at
25–28 °C under aerobic conditions, during the stationary phase when
cell density is high, and microorganisms compete for space and nu-
trients (Lamas et al., 2018). During these stages, proteases and lipases
are synthesized by P. aeruginosa and B. cereus (Pinto et al., 2010; Ribeiro
et al., 2015); the use of meat, milk and egg yolk proteins as substrates
lead to a decrease in the growth rate and an increase in the pH of the
medium caused by deamination (Mellefont et al., 2008). This con-
tributes to microbial dispersion and the return to planktonic lifestyle, to
reach sites rich in nutrients and colonize other surfaces (O'Toole et al.,
2000; Srey et al., 2013).

Cell density decrements were mainly showed by L. monocytogenes
and B. cereus in biofilms at 25 °C in TSB+EY (Fig. 3A, C); in WM at 9 °C
on SS all microorganisms in the biofilm showed this phase except L.
monocytogenes (Fig. 4B). Moreover, biofilm dispersion is related to an
increase of secondary metabolites and oxygen depletion (O'Toole et al.,
2000; Srey et al., 2013); this stage is commonly observed in biofilms
that have been developed in a nutrient-rich environment (Flemming
et al., 2011).

Salmonella and P. aeruginosa were typically present in higher
amounts than the other tested microorganisms; this can be associated
with their ability to use the media components linked the interspecies
interactions (Kostaki et al., 2012); moreover, predominant micro-
organisms in the biofilms are those with a higher growth rate, although
these can never completely exclude the microorganisms with slow
growth (Banks and Bryers, 1991).The low counts of B. cereus in all
tested biofilms could be related with the interspecies interactions
(Chorianopoulos et al., 2008; Lebert et al., 2007). The bacteriostatic or
bactericidal responses can be attributed to metabolic products with
antagonistic effects (organic acids, inhibitory enzymes, and others),
physicochemical changes, nutrient depletion or combination of these
(Mellefont et al., 2008; van der Veen and Abee, 2011). Additionally,
Pseudomonas spp. compete efficiently to iron and oxygen causing the
suppression of other microorganisms (Tiwari et al., 2016) and has
growth velocity until 10 times higher at 7 °C than other bacteria
(Ribeiro et al., 2015).

In monospecies biofilms, the surface had no effect in cell density

Fig. 7. Micrographs of multispecies biofilm formation stages in whole milk. The biofilms were developed by Escherichia coli ATCC 11229, Salmonella Typhimurium
ATCC 14028, Pseudomonas aeruginosa ATCC 15442, Listeria monocytogenes ATCC 19111, and Bacillus cereus ATCC 14579, at 25 °C on stainless-steel (SS) and poly-
propylene B (PP). The biofilm formation was observed at 1, 48, 120, 180, and 240 h incubation.
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(p > 0.05), due to exist others factors implicated in the biofilm de-
velopment, such as nutrients and temperature; moreover it has been
reported that microorganisms had the same ability to develop biofilms
on hydrophilic or in hydrophobic surfaces (Iñiguez-Moreno et al.,
2018). However, the multispecies biofilms had a higher population on
PP than on SS due to the SS is a hydrophilic material with metallic ions,
these factors contributing to limit the bacterial adhesion, mean the PP is
a hydrophobic surface (Das, 2014; Schlisselberg and Yaron, 2013). So
these results suggest that the surface finish should be carefully con-
sidered when designing a food processing plant, since the surface
should be as smooth as possible so that the shearing force increases.

The use of epifluorescence microscopy permits observing metabo-
lically-active living cells. Intracellular non-specific esterases hydrolyze
the internalized CFDA, producing carboxyfluorescein, which is retained
by live cells with an intact plasma membrane. Hence, the conversion to
carboxyfluorescein by the cells indicates the integrity of the plasma
membrane and the esterase activity (Gorokhova et al., 2012). Although
SS and PP are not autofluorescence materials at the range used
(450–490 nm) (Jun et al., 2010), TSB and EY residues emit fluorescence
(Lee et al., 2008; Yang et al., 2017), explaining the difficulty in dis-
cerning the bacterial cells in the last biofilm formation stages. More-
over, the biofilms are complex structures conformed by multilayers of
microorganisms, EPS and water channels (Hobley et al., 2015). Al-
though SEM, which is one of the most common methods for the study of
biofilms, enables observing the biofilms architecture (EPS and bacteria)
and development, it visualizes both living and dead cells (Alhede et al.,
2012), so for biofilm studies, complementary techniques should be
used.

5. Conclusion

Pathogens and spoilage microorganisms developed mono- and
multispecies biofilms under all tested conditions; however, the cell
density was higher in monospecies biofilms. The type of surface had not
significative effect on monospecies biofilms, but the biofilm develop-
ment by multiple microorganisms was favored on PP than onto SS;
additionally, at 25 °C increase the biofilm development on both sur-
faces. In multiespecies biofilms, the time to reach each biofilm step
varied; this variation is attributable to the influence of the culture
media, temperature, surface type, and the growth of the microorgan-
isms in the biofilms. Desorption and dispersion phases of biofilm for-
mation were most affected by the mentioned factors. Moreover, P.
aeruginosa and Salmonella were the dominant microorganisms in the
biofilms while B. cereus showed the lowest densities. Hence in the food
industry, special attention should be pay first in the selection of the
appropriated food contact surface and then in the management of
cleaning and sanitization programs, with the aim of avoiding the food
residues accumulation reducing the bacterial attachment.
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