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A B S T R A C T   

This work studies the problem of lot sizing and scheduling of multiple products on a single machine, with sto-
chastic demand and sequence-dependent setup times, called Stochastic Economic Lot Scheduling Problem 
(SELSP). The present work differs from others in the literature by considering simple inventory control policies 
and using the simulation–optimization approach to calibrate their parameters. We consider two inventory 
control policies: (i) fixed cycling (First in Sequence - FIS) and (ii) dynamic scheduling based on inventory levels 
(Lowest Days of Supply - LDS), combined with an “order-up-to” lot sizing. The problem is solved using AnyLogic 
simulation software and the OptQuest search engine to minimize total inventory cost (ordering, holding and 
shortage costs). The experimental design included the following factors: number of items, coefficient of variation 
of demand, system workload, and degree of setup increment, allowing the comparison of the two inventory 
control policies in different scenarios. Experiments show that LDS outperforms FIS in all scenarios, achieving up 
to 4.6% cost savings for cases of more products, higher workload, and greater demand variance. The developed 
models proved to solve the problem, effectively generating reasonable solutions. Furthermore, as they are user- 
friendly, we believe they can be adapted, without great difficulties, to real-life scenarios of the process industry.   

1. Introduction 

Lot Sizing and Scheduling Problems (LSP) have received constant 
attention from researchers and practitioners in Production Planning and 
Control. Tomotani and Mesquita (2018) show that lot sizing and 
scheduling is a relevant problem, mainly in the process industry, directly 
impacting the service level and inventory costs. 

A basic formulation of the LSP is to schedule multiple items on a 
single machine with limited capacity and significant setup times. This 
problem of multiple products and a single machine, continuous in time, 
where setup times, production times, and demands are known, is called 
the Economic Lot Scheduling Problem (ELSP). The objective of the ELSP 
is to obtain a cyclical pattern of production that will be repeated within a 
planning horizon, capable of meeting demand and capacity constraints, 
minimizing total holding and setup (Gascon et al., 1994). 

The ELSP has a stochastic variant called Stochastic Economic Lot 
Scheduling Problem (SELSP), which considers the demand as a sta-
tionary stochastic process, and that production and setup times can also 
be random. Since demand is stochastic, to solve the SELSP, it is not 

sufficient to define a fixed production sequence with fixed lot sizes. It is 
necessary to define a policy capable of deciding when and how much to 
produce of each product dynamically, in response to actual demand, and 
considering the need for safety stocks (Glock et al., 2014). 

Inventory control for SELSP can be classified according to scheduling 
and lot-sizing procedures. The scheduling may be fixed - the items are 
checked and produced in a predefined order (e.g., Federgruen and 
Katalan, 1998; Wagner and Smits, 2004; Jodlbauer and Reitner, 2012) 
or dynamic - the next item to be produced is chosen based on stock levels 
(e.g., Graves, 1980; Paternina-Arboleda and Das, 2005). The lot sizes 
can be fixed - production lots for each item have the same size (e.g., 
Graves, 1980; Vaughan, 2007; Jodlbauer and Reitner, 2012) or variable 
- lot sizes vary depending on stock levels (e.g., Smits et al., 2004; Wagner 
and Smits, 2004; Löhndorf and Minner, 2013). The present work com-
pares fixed cycling and dynamic scheduling policies with variable lot 
sizes (order-up-to policy) in a single-machine and multiple-product 
environment with sequence-dependent setup times. 

The contributions of the present work are twofold. First, from a 
theoretical standpoint, it aims to solve the SELSP using the 
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simulation–optimization method, comparing two inventory control 
policies (fixed cycling and dynamic scheduling) in different scenarios 
(number of products, demand variation, system workload, and setup 
increment). Second, from a practical perspective, it proposes two sim-
ulation–optimization models, one for each inventory control policy, that 
allow calibration and application of them in real industrial environ-
ments. We highlight that the “single machine” mentioned above can be a 
complete automated line that produces only one product at a time (batch 
production) and need setup between lots, as is typical in the process 
industry (food, beverages, medicines etc.). 

The article is structured as follows. The first section presents the 
research problem and objectives, and the second reviews the relevant 
literature. The third section presents the problem definition, while sec-
tion four discusses the research method and simulation models. Next, 
section five presents the experimental design, and section six discusses 
the results. Finally, the last section concludes the article and proposes 
future research directions. 

2. Literature review 

The Economic Order Quantity (EOQ) model was one of the first 
applications of scientific method to industrial engineering and is 
considered the starting point of lot sizing and scheduling theory. The 
model calculates the optimal production quantity that minimizes total 
inventory cost, balancing holding and setup costs (Erlenkotter, 2014). 

The limitation of the EOQ in considering only one product was 
addressed by Rogers (1958), who formulated the Economic Lot Sched-
uling Problem (ELSP). The original formulation of the ELSP assumes 
that: i) the machine produces only one item at a time, ii) production 
rates, set up times, and set up costs are known and independent of the 
production sequence, iii) the demand of each item is known and con-
stant over an infinite planning horizon, iv) production capacity is finite, 
and all demand must be met without backlog. Due to these assumptions, 
the input data must be checked in advance to guarantee feasibility. 

Holmbom and Segerstedt (2014) provide a historical overview from 
the EOQ to the ELSP. Their article details three main approaches to 
scheduling in ELSP: common cycle, basic period, and extended basic 
period. The authors also list practical challenges when implementing 
mathematical models, mainly because of the demand and processes 
uncertainties, which require the constant review of production plans. 
Beck and Glock (2019) also review the literature on ELSP and highlight 
that previous research on this topic has had a strong focus on mathe-
matical modelling. According to them, several practical aspects directly 
linked to lot sizing and scheduling have not yet attracted much attention 
from researchers. 

The ELSP has a stochastic variant called Stochastic Economic Lot 
Scheduling Problem (SELSP), which considers demand as a stationary 
stochastic process, while production and setup times can also be 
random. Vergin and Lee (1978) pointed out the practical importance 
and complexity of this problem and were the first to question the scar-
city of academic literature on it. For a more detailed review on the 
SELSP, we recommend Sox et al. (1999) and Winands et al. (2011). 

Goyal (1973) presented one of the first lot-sizing studies, where 
multiple items with stationary stochastic demand are produced on a 
single machine. The author proposed a model whose objective was to 
minimize the sum of holding, setup, and shortage costs. However, a 
significant limitation in this study, as pointed out by Vergin and Lee 
(1978), is that it considers the production lead time equal to zero, which 
is equivalent to unlimited capacity and, therefore, cannot be classified as 
SELSP. 

Graves (1980) proposes the Multi-Product Production Cycling 
Problem (MPCP), equivalent to SELSP. The author presents a heuristic 
based on the case of a single product problem, which is simpler and 
easier to solve, and the notion of “composite product”, a way of aggre-
gating products in a family. Simulation experiments compare his com-
posite product heuristic against four other heuristics derived from the 

reorder point (r,Q) and base stock level (s, S) policies. The composite 
product heuristic dominated three of these heuristics and had an 
equivalent performance against the fourth while being easier to 
parameterize. 

Leachman and Gascon (1988) studied the SELSP (and were the first 
to name it stochastic ELSP, although they did not use the acronym 
SELSP) and proposed a model like Graves (1980), working with discrete 
time (time buckets) but allowing overtime per period. As in the work of 
Graves (1980), only one item can be produced in each time bucket. The 
model’s objective is to define a production schedule that minimizes 
average inventory and setup costs, avoiding backorders. The authors 
used the concepts of runout times (estimated time until an item reaches 
its safety stock level) and slack times (time intervals in which production 
can remain idle without causing stockouts). When predicting a future 
“negative slack time”, the heuristic seeks to reduce previous batches to 
eliminate this negative slack time. The heuristic starts with an initial 
solution, where lots are calculated considering a deterministic problem. 

The work of Leachman and Gascon (1988) was revisited by Leach-
man et al. (1991), who propose improvements in the runout time heu-
ristic, introducing new ways of calculating cycle times and slack times. 
In simulation experiments, the new heuristic showed a 3.0 % reduction 
in total costs compared to the original while maintaining similar in-
ventory levels. This runout time heuristic was the basis for several other 
works, such as Brander et al. (2005) and Levén and Segerstedt (2007). 

Vaughan (2007) studied two scheduling policies for SELSP: fixed 
cycling and dynamic scheduling. The production follows a predefined 
order in the first case, while the second defines the order according to all 
items’ stock levels. The author sought to understand the conditions 
under which a fixed cycling would outperform the dynamic scheduling. 
The simulation results show that the fixed cycling is more suitable in 
scenarios with fewer items, longer setup times, and significant capacity 
limitations. 

Löhndorf and Minner (2013) carried out a study in which they 
approach SELSP through simulation and optimization techniques, 
concluding, similarly to Vaughan (2007), that base-stock policies (dy-
namic scheduling) are suitable for the problem, but are overcome by 
fixed cycling in high workload scenarios. This work was extended in 
Löhndorf et al. (2014) when the authors included sequence-dependent 
setup times. 

Gel et al. (2021) use queuing theory to estimate utilization and cycle 
times on a machine that produces multiple products with sequence- 
dependent setup times. The authors estimate them for four standard 
scheduling rules in industrial practice. Computer simulations conclude 
that the approximations provided by the proposed method are helpful 
for rough-cut capacity planning in real-world scenarios. 

Tubilla and Gershwin (2021) study a version of SELSP in which the 
source of randomness are machine breaks. The authors test different 
heuristics for two problem sets, one where failures are frequent but 
repaired quickly, and another where breakdowns are rare but signifi-
cantly impact the system. The authors propose a new policy that tightly 
controls the surplus of the highest-priority items using fixed base-stock 
levels and, for all other items, it determines their run lengths dynami-
cally. Simulation experiments show that the new policy significantly 
outperforms the benchmarking approaches over a large set of operating 
conditions. 

In previous works that applied simulation to study the SELSP, we 
identified two ways of modelling the demand process: a) as a compound 
Poisson process (e.g., Wagner and Smits, 2004; Vaughan, 2007; 
Löhndorf and Minner, 2013); b) as daily demands with independent 
random sampling (e.g., Kamath and Bhattacharya, 2007; Jodlbauer and 
Reitner, 2012; Rappold and Yoho, 2014). In the first case, the demand 
randomness results from the variance of order arrivals and order 
quantities. In the second, we can directly set the daily demand variance 
with different levels. As one of our goals is to evaluate the effect of 
variance on inventory control performance, we opted for the second 
approach, modelling daily demands with the lognormal distribution. 
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Another issue in inventory modelling is how to deal with stockouts. 
There are two basic approaches: i) loss of sales; ii) backorders (Hopp and 
Spearman, 2008). The first assumes that demand is partially met or lost 
when there is insufficient inventory and incurs a cost of lost sales. The 
second assumes that the demand will be met with an urgent production 
order, with a backorder cost proportional to the delay in customer ser-
vice. It is still possible to find works dealing with mixed models in which 
customers are divided into classes, each with the option of backorder or 
loss of sales (Teunter and Haneveld, 2008). In the SELSP literature, we 
also identified these two approaches: a) lost sales (e.g., Karalli and 
Flowers, 2006; Liberopoulos et al., 2013; Löhndorf and Minner, 2013); 
b) backorder (e.g., Wagner and Smits, 2004; Jodlbauer and Reitner, 
2012; Cunha Neto et al., 2015). In our work, we opted for the loss of 
sales premise, with partial or zero demand fulfilment, depending on the 
level of available inventory. 

In this brief literature review, we have identified two main streams of 
research. The first one seeks to develop heuristics for solving the SELSP 
and usually evaluates them based on simulation experiments (e.g., 
Gascon et al., 1994; Vaughan, 2007; Cortés-Fibla et al., 2015). The 
second uses the simulation and optimization approach to calibrate fixed 
cycling and dynamic scheduling policies (Löhndorf and Minner, 2013; 
Löhndorf et al., 2014). The present work fits into the second one. It 
considers simple inventory control policies, using simulation and opti-
mization models to calibrate their parameters and then running a 
complete factorial experiment, which allows analysing the effect of 
some operational factors on the performance of the models. 

3. Problem formulation 

This article compares two inventory control policies in a single ma-
chine and multiple items make-to-stock (MTS) environment. The ma-
chine produces batches of a single item at a time to replenish finished 
goods inventories consumed at the end of each day by daily demands. 
Each product has a deterministic production rate which, once the size of 
the production order is defined, allows the calculation of the production 
time. In addition to the production time, we consider sequence- 
dependent setup times. Production occurs continuously, seven days a 
week, 24 h a day. 

The daily demand for each item is random and defined by a 
lognormal distribution. The inventory is consumed to meet each day’s 
demand, considering the assumption of partial fulfilment in case the 
available stock is insufficient. There is no backorder, and the unmet 
demand is lost. 

The inventory replenishment considers an “order-up-to” policy, with 
two parameters: minimum stock (s) and maximum stock (S). An item 
only goes into production if its inventory level drops below s, and the 
size of the production order will be the difference between S and its 
inventory position when scheduled. We consider two scheduling rules: i) 
First in Sequence (FIS); ii) Lowest Days of Supply (LDS). In the FIS rule, 
an ideal production sequence that minimizes setup times is defined a 
priori, and the next item in this sequence with an inventory below s is 
chosen. In LDS, out of all items below the minimum stock s, the one with 
the lowest inventory coverage is selected. Both rules allow the system to 
become idle if no item is below the minimum stock s after meeting daily 
demand. 

Simulation-optimization models determine, for each of the two in-
ventory control rules, which values of s and S minimize the Total In-
ventory Cost (TIC), which includes holding cost, setup cost and loss of 
sales/shortage cost. We considered s and S integers. Still, the models can 
be adapted to consider them and the lot sizes as multiples of some values 
(parameters) to cope with practical technological constraints of actual 
industrial processes. 

4. Simulation models 

Two discrete event simulation models were developed in AnyLogic 

software: i) First in Sequence (FIS) and ii) Lowest Days of Supply (LDS). 
The first follows the logic of fixed cycling, while the second follows a 
dynamic scheduling policy. Both simulation models have the same basic 
structure, differing only in the rule for defining the next item for pro-
duction. Our SELSP conceptual model is based on Altiok and Melamed 
(2007) and considers three macro-processes: demand, production, and 
control. The production and demand processes interact with each other, 
determining the system dynamics. The control process collects data from 
the system to calculate the inventory performance metrics, used to 
calibrate parameters and compare stock policies. 

In the demand process (Fig. 1), random daily demands are filled from 
the finished goods inventory. If there is insufficient stock, the demand is 
partially filled or lost if the stock is zero (stockout premise). The model 
does not consider backorders. If the machine is idle at the end of the day, 
the daily demand can trigger production if any item’s stock drops below 
the minimum stock s. 

The production process (Fig. 2) is a continuous cycle that switches 
between idle and busy states. The process consists of identifying the next 
item to produce or stopping if there is no item below the minimum stock. 

There are two procedures for defining the next item, one for each 
model. The FIS model chooses the first item in the sequence below the 
minimum stock, while the LDS model selects the item with the lowest 
value of the “days of supply”, a metric calculated by dividing the stock 
position by the average daily demand of the item. Algorithms 1 and 2 
illustrate these two procedures. 

Algorithm 1 First in Sequence – FIS  

1: input k, inv, smin // current item, stock levels, and minimum stock levels 
2: output idle, j // Boolean variable for machine status and next item to 

produce, if any 
3: idle← True 
4: j←k // next item is the current item 
5: for i←1 to n do: 
6: j←(j + 1)mod n // tries next item in the sequence 
7: if (inv[j] ≤ smin[j]) then: 
8: idle←False 
9: break // stop when you find the first item below minimum stock 
10: return idle, j  

Algorithm 2 Lowest Days of Supply – LDS  

1: input inv, smin, d // stock levels, minimum stock levels, and average 
demands 

2: output idle, j // Boolean variable for machine status and next item to 
produce, if any 

3: idle← True 
4: dosMin←infinity // minimum days of supply 
5: j←Null // initializes j to null 
6: for i←1 to n do: 
7: dos←inv[i]/d[i] // calculates the days of supply of item i 
8: if (inv[i] ≤ smin[i]) and (dos ≤ dosMin) then: 
9: idle← False 
10: dosMin←dos // sets the new minimum days of supply 
11: j←i // sets i as the next item 
12: return idle, j  

Finally, the control process (Fig. 3) only collects daily data on the stock 
position of each item to calculate the final average inventory levels. The 
sales data, used to calculate the service level indicator and cost of lost 
sales, are collected directly in the demand process. 

Fig. 4 presents a screenshot of the general simulation model for n = 5 
products in AnyLogic software. The two versions of the model (FIS and 
LDS) are used in simulation–optimization experiments with the Opt-
Quest engine to compare the two inventory control policies and analyse 
the effect of some operational factors on their performance. 
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5. Experimental design 

This section presents the design of the experiments carried out to 
compare the two inventory control policies in SELSP. We used a full 
factorial design, which considers the following factors:  

– inventory model (mod): FIS, LDS  
– number of items (n): 5, 10  
– coefficient of variation of demand (cv): 20 %, 50 %, 100 %  
– utilization rate (ρ): 70 %, 80 %, 90 %  
– setup increment (α): 50 %, 100 %, 200 % 

Fig. 1. Caption: Demand Process. Alt Text: The figure describes the process of meeting daily demands.  

Fig. 2. Caption: Production Process. Alt Text: The figure describes the production scheduling decision process.  

Fig. 3. Caption: Control Process. Alt Text: The figure describes the control process.  
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In the design of the experiments, we assumed that all products have 
the same production and demand rates, holding and setup costs, and loss 
of sales costs. Due to this homogeneity, all products will have the same 
parameters of inventory control (values of minimum and maximum 
stock). These assumptions enable the factorial analysis of variance, 
presented in the following section. However, the simulation–optimiza-
tion models developed accept different demand and cost parameters for 
specific case evaluations. 

To directly compare the results from different instances, we sought to 
scale the demand so that the total contribution margin was potentially 
the same for all instances. We set the total contribution margin target at 
Y=$1.0 million per year, a contribution margin per unit of $40, and 250 
working days per year. Then, we calculated the average daily demand 
(d) for each product, which resulted in 10 and 20 units/day for cases 
with 10 and 5 products, respectively. The daily demand of each product 
is a lognormal random variable, with variance given by the coefficient of 
variation factor. 

Once the daily demand for each product is defined, we establish the 

production rate, which corresponds to the total daily demand divided by 
the utilization rate of each experiment (μ = n • d/ρ). We consider 
deterministic production and setup times; only demand is stochastic. 

To analyse the effect of sequence-dependent setup times, we estab-
lished a basic setup (su0), inversely proportional to the number of items, 
and a linear setup growth rate (α). With su0 and α, we determine the 
instances setup matrix. To define the basic setup, we considered a target 
of 300 h/year (5 % of total working hours per year) and 24 setups per 
product per year (each item being produced twice a month). Thus, we 
got the values of 2.5 and 1.25 h of setup times for the cases of 5 and 10 
products, respectively. The α factor corresponds to the largest increment 
in setup, which occurs when we jump from one item j to n-1 items 
further in the production cycle. Table 1 exemplifies the setup matrix for 
the hypothetical case of n = 5, su0 = 1 h, and α = 100 %. 

The simulation–optimization models seek to determine the inventory 
control parameters that minimize the Total Inventory Cost (TIC), given 
by the sum of Total Holding Cost (THC), Total Setup Cost (TSC) and 
Total Loss of Sales Cost (TLC). We defined the setup and holding costs 

Fig. 4. Caption: Screenshot of the general simulation model for n = 5 products in AnyLogic. Alt Text: The figure shows a screenshot of the simulation model for n = 5 
products in the AnyLogic software. 
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using the economic order quantity concept as an approximation. We set 
the holding cost to $25 per unit per year (or 25 % of the item cost) and 
the setup cost to $250 (only the setup times are sequence-dependent, not 
the setup costs). For the shortage cost, we considered the cost of a lost 
sale equal to the item’s contribution margin. In addition to TIC, we also 
evaluate the Service Level (SL) indicator, which corresponds to the 
percentage of demand met throughout the simulation. 

The simulations start with all stocks full and last for 250 working 
days. The combination of factors provided 108 instances, each being 
simulated five times, totalling 540 experiments. Using the OptQuest 
engine, the optimization process was carried out in three runs. First, we 
consider a range for s and S values from 10 to 2000, with step 10 and the 
additional constraint of s ≤ S − 1. Thus, we obtained five pairs of (s, S)
for each instance and the corresponding values of the total inventory 
cost (TIC). Then, we repeated the 540 experiments twice by reducing the 
step to 5 and 1 and the search space as follows. Let S1 and S2 be the lower 
and the upper S reached in the previous run. We set the new S range from 
S1 minus k to S2 plus k, with k being the step in the previous run, and the 
new s range from 10 to S2, including the constraint s ≤ S − 1. After the 
third run, for those instances with a higher variation of S, we did extra 
few runs to meet convergence. The results of the last runs were 
considered the final outputs of the optimization process. Table 2 sum-
marizes the parameters and variables of the experimental design. 

6. Results and discussion 

This section describes the results of 540 experiments (108 instances 
with five replicates each). The design of the experiment considers 5 
variable factors: i) control model (mod), ii) number of items (n), iii) 
coefficient of variation of demand (cv), iv) utilization rate (ρ) and v) 
setup increment (α). From n and ρ, we determine the three semi-variable 
factors: i) average daily demand (d), ii) production rate (μ), iii) basic 

setup (su0). Finally, we have three fixed factors: i) holding cost (hc), ii) 
setup cost (sc), iii) loss of sales cost (lc). For each experiment, we 
calculated: total inventory cost (TIC), minimum stock (s), and maximum 
stock (S). 

We ran the experiments on a personal computer with a micropro-
cessor Intel Core i7 3.6-GHz PC and 16 GB of RAM. Table 3 presents the 
means and standard deviations of the computational times. These times 
depend on the size of the search space and the step considered in each 
run (10, 5 and 1, for the first, second and third runs). Table 4 presents 
the first and last lines of the experiment results table. 

Table 5 presents the Average Total Inventory Cost (Av. TIC) for each 
level of the five factors. The “Diff.” columns show the percentage dif-
ference from the best result. In bold are the highest values of Av. TIC and 
Diff. Similarly, we have the Average Maximum Stocks (Av. S). 

We emphasize that the differences in the previous table depend on 
the arbitrated values for the holding, setup, and loss of sales costs. We 
consider that the relationship between inventory cost parameters in this 
paper is realistic for stable market economies. 

Analysing the first factor (n), we found that the scenarios with n = 10 
present inferior performance. We stipulated that the demand would be 
inversely proportional to the number of products, so that the instances 
would have the same potential total margin of contribution. We defined 
the production rates according to the total daily demand and the utili-
zation rate of the instance. Despite this, the number of items still was the 
factor with the most statistically significant effect, as seen below. 

The effects of demand uncertainty and capacity constraint are as 
expected. The higher the variance of demand, the higher the TIC. 
Likewise, the higher the workload, the higher the TIC. Interestingly, the 
increase in demand variance and workload are offset by the rise in 
maximum stock level (S), which reflects on average stock levels; the 
optimization model seeks to compensate for uncertainty in demand and 
capacity constraints with the increasing stock. 

The next factor is the setup increment (α), which defines the 
sequence-dependent setup times. This factor had a more negligible 
impact on TIC, despite the wide range of values tested (up to a 200 % 
increase in setup). One possible interpretation is that, despite the high 
penalty, the loss of productivity due to higher setup times is offset by the 
reduction in loss of sales by producing items closer to stockout. 

Finally, in the last three columns of Table 5, we compare the two 
control models - FIS and LDS. The LDS model surpassed the FIS not only 
in the general average but also in all combinations of the other four 
control factors. Table 6 presents the average total inventory cost for the 
different combinations of n, cv, and ρ, disregarding factor α which had 
the lowest impact on the cost. The most significant differences are seen 
in the instances with higher demand uncertainty and workloads. 

Figs. 5 and 6 present the results of the experiments with different cv, 
ρ, and mod combinations in a boxplot format for n = 5 and 10, 
respectively. On the left half, we have the plots for the FIS model and, on 
the right, the ones for the LDS model. The first three boxplots on the left 
correspond to ρ = 0.7, the next three to ρ = 0.8, and the next three to ρ =
0.9. This sequence repeats on the right half. Finally, the first three 
boxplots on the left correspond to the values of cv = 0.2, 0.5, and 1.0. 
This sequence is repeated for the other plots on the right. These boxplots 
show the apparent effect of the cv and ρ factors on TIC. In both cases (n 
= 5 and 10), one can see the superiority of the results with the LSD 
model on the right compared to the FIS model on the left. 

Table 1 
Setup matrix for n = 5, su0 = 1 h, and α = 100 %.    

To   

1 2 3 4 5 

From 1  0.0  1.000  1.333  1.667  2.000 
2  2.000  0.0  1.000  1.333  1.667 
3  1.667  2.000  0.0  1.000  1.333 
4  1.333  1.667  2.000  0.0  1.000 
5  1.000  1.333  1.667  2.000  0.0  

Table 2 
Summary of parameters and variables.  

Class Parameter Values 

Variable factor Inventory model FIS, LDS 
Variable factor Number of items (n) 5, 10 
Variable factor Demand coefficient of variation 

(cv) 
20 %, 50 %, 100 % 

Variable factor Utilization rate (ρ) 70 %, 80 %, 90 % 
Variable factor Setup increment (α) 50 %, 100 %, 200 % 
Semi variable factor Daily demand (d, unit/day) $1.000.000/n/cmu/ 

L 
Semi variable factor Production rate (μ, unit/day) n*d/ρ 
Semi variable factor Basic setup (su0, h) 300 h/(24*n) 
Fixed factor Holding cost (hc, $/year) $25 
Fixed factor Setup cost (sc, $) $250 
Fixed factor Loss of sales cost (lc, $/unit) $40 
Fixed factor Number of simulated days (L) 250 
Response Variable Total Inventory Cost (TIC, $)  
Response Variable Minimum stock (s)  
Response Variable Maximum stock (S)  
Response Variable Service level (sl)  
Experiment 

Parameter 
Replications per instance (r) 5 

Experiment 
Parameter 

Total number of experiments (N) 540  

Table 3 
Mean and standard deviation of computational times per run and model.   

1st Run 2nd Run 3rd Run  

Mean (s) S.D. (s) Mean (s) S.D. (s) Mean (s) S.D. (s) 

FIS05  12.9  1.3  5.6  2.2  10.9  0.9 
FIS10  25.6  2.0  5.4  1.4  19.3  3.1 
LDS05  12.5  1.2  5.3  2.6  10.7  1.9 
LDS10  25.0  1.3  5.0  1.4  21.2  1.8  
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Table 7 presents the factorial analysis of variance applied to the re-
sults of the experiments. The control factors n, cv, and ρ have the most 
significant effect on TIC. Next, we have the mod factor (FIS and LDS 
models). The α factor, the fourth control factor in the table, presented a 
lower significance level than the others, although it was quite significant 
(p-value = 1.09E-07). 

Exploring the mod factor’s effect further, we compared each of the 
54 FIS instances with their counterpart LDS instances using t-tests 
(instance 1 × instance 55, 2 × 56, and so on). LDS instances out-
performed FIS in 53 of 54 tests, 46 of which were statistically significant 
at a 5 % significance level. Fig. 7 shows the relative differences between 
LDS and FIS (%Diff = (TICLDS − TICFIS)/TICFIS). The relative differences 
range from − 4.96 % (instance 24) to + 0.03 % (instance 6), with a mean 
relative difference of − 2.13 % and a standard deviation of 1.39 

percentage points. 
Thus, the results presented here show the superiority of LDS over FIS 

for the cases considered in our experimental design. We can explain the 
dominance of LDS over FIS because the former is more flexible than the 
latter, allowing us to choose items independently of their position in the 
sequence. Essential to note that FIS is not, in fact, a fixed sequence but 
fixed cycling, which only means that the items are checked in a given 
sequence. During simulation, we observe “jumps” in the FIS model as 
well in LDS, and the difference is that in LDS, those jumps are to the 
“lowest day of supplies” items and not to the next item below the min-
imum stock (s). 

As this is an important outcome of this research, we performed a 
sensitivity analysis to verify if the previous result holds for other costs. In 
Table 8, we present an example comparing instances 54 and 108 (n =

Table 4 
Head and tail of the experiment results table, with the respective input parameters.  

# mod n cv α ρ d μ su0 hc sc lc TIC s S time 

001 FIS 5 0.2 0.5 0.7 20.0 142.86 2.50 0.1 250.0 40.0 46093.9 84 363  10.1 
002 FIS 5 0.2 0.5 0.7 20.0 142.86 2.50 0.1 250.0 40.0 46670.8 83 355  9.9 
003 FIS 5 0.2 0.5 0.7 20.0 142.86 2.50 0.1 250.0 40.0 46475.9 84 360  11.3 
004 FIS 5 0.2 0.5 0.7 20.0 142.86 2.50 0.1 250.0 40.0 46459.6 89 369  11.6 
005 FIS 5 0.2 0.5 0.7 20.0 142.86 2.50 0.1 250.0 40.0 46400.2 90 364  11.1 
006 FIS 5 0.2 0.5 0.8 20.0 125.00 2.50 0.1 250.0 40.0 48072.8 105 416  10.3 
007 FIS 5 0.2 0.5 0.8 20.0 125.00 2.50 0.1 250.0 40.0 47848.3 95 410  11.3 
008 FIS 5 0.2 0.5 0.8 20.0 125.00 2.50 0.1 250.0 40.0 47943.4 101 423  12.3 
009 FIS 5 0.2 0.5 0.8 20.0 125.00 2.50 0.1 250.0 40.0 47540.8 102 417  10.2 
010 FIS 5 0.2 0.5 0.8 20.0 125.00 2.50 0.1 250.0 40.0 47989.2 109 415  10.5 
… … … … … … … … … … … … … … …  
536 LDS 10 1.0 2.0 0.9 10.0 111.11 1.25 0.1 250.0 40.0 74786.7 101 287  19.0 
537 LDS 10 1.0 2.0 0.9 10.0 111.11 1.25 0.1 250.0 40.0 74974.2 101 278  21.1 
538 LDS 10 1.0 2.0 0.9 10.0 111.11 1.25 0.1 250.0 40.0 75500.0 103 281  21.6 
539 LDS 10 1.0 2.0 0.9 10.0 111.11 1.25 0.1 250.0 40.0 74860.5 102 292  23.8 
540 LDS 10 1.0 2.0 0.9 10.0 111.11 1.25 0.1 250.0 40.0 75085.6 106 276  22.6  

Table 5 
Average Total Inventory Cost (TIC) and Average Maximum Stock (S) by factor.  

n Av. TIC Diff. cv Av. TIC Diff. ρ Av. TIC Diff. α Av. TIC Diff. mod Av. TIC Diff. 

5 53527.8 0 % 0.2 55978.0 0 % 0.7 59736.3 0 % 0.5 61163.2 0 % FIS 61966.9 2.3 % 
10 69004.8 28.9 % 0.5 60016.3 7.2 % 0.8 61272.0 2.6 % 1.0 61257.0 0.15 % LDS 60565.7 0 %    

1.0 67804.6 21.1 % 0.9 62790.6 5.1 % 2.0 61378.7 0.35 %    

n Av. S Diff. cv Av. S Diff. ρ Av. S Diff. α Av. S Diff. mod Av. S Diff. 

5 423.0 63.0 % 0.2 314.2 0 % 0.7 331.5 0 % 0.5 338.5 0 % FIS 346.1 2.9 % 
10 259.5 0 % 0.5 333.8 6.2 % 0.8 345.6 4.3 % 1.0 342.7 1.2 % LDS 336.4 0 %    

1.0 375.7 19.6 % 0.9 346.6 4.5 % 2.0 342.5 1.2 %     

Table 6 
Average Total Inventory Cost (Av. TIC) by factor.  

n cv ρ mod Av. TIC Diff. n cv ρ mod Av. TIC Diff. 

5  0.2  0.7 FIS  46564.0 0 % 10  0.2  0.7 FIS  63990.7 0 % 
5 0.2 0.7 LDS  46485.9 − 0.2 % 10 0.2 0.7 LDS  63519.0 − 0.7 % 
5 0.2  0.8 FIS  47899.3 0 % 10 0.2  0.8 FIS  64832.7 0 % 
5 0.2 0.8 LDS  47774.1 − 0.3 % 10 0.2 0.8 LDS  64288.7 − 0.8 % 
5 0.2  0.9 FIS  48042.6 0 % 10 0.2  0.9 FIS  65689.5 0 % 
5 0.2 0.9 LDS  47967.0 − 0.2 % 10 0.2 0.9 LDS  64682.3 − 1.5 % 
5  0.5  0.7 FIS  51173.8 0 % 10  0.5  0.7 FIS  67023.9 0 % 
5 0.5 0.7 LDS  50272.3 − 1.8 % 10 0.5 0.7 LDS  65848.3 − 1.8 % 
5 0.5  0.8 FIS  52857.0 0 % 10 0.5  0.8 FIS  68725.6 0 % 
5 0.5 0.8 LDS  51641.3 − 2.3 % 10 0.5 0.8 LDS  67025.0 − 2.5 % 
5 0.5  0.9 FIS  54451.1 0 % 10 0.5  0.9 FIS  70625.8 0 % 
5 0.5 0.9 LDS  52547.5 − 3.5 % 10 0.5 0.9 LDS  68003.5 − 3.7 % 
5  1.0  0.7 FIS  58968.6 0 % 10  1.0  0.7 FIS  73413.8 0 % 
5 1.0 0.7 LDS  57873.6 − 1.9 % 10 1.0 0.7 LDS  71701.8 − 2.3 % 
5 1.0  0.8 FIS  61457.9 0 % 10 1.0  0.8 FIS  75739.7 0 % 
5 1.0 0.8 LDS  59794.5 − 2.7 % 10 1.0 0.8 LDS  73227.8 − 3.3 % 
5 1.0  0.9 FIS  65253.4 0 % 10 1.0  0.9 FIS  78695.1 0 % 
5 1.0 0.9 LDS  62476.0 ¡4.3 % 10 1.0 0.9 LDS  75053.5 ¡4.6 %  
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10, cv = 1.0, ρ = 0.9, and α = 2.0) under six combinations of setup cost 
(sc=$250, $500 and $1000) and annual holding cost (hc=$25 and $50 
per year). The results show that the relative difference between LDS and 
FIS did not change significantly despite changing the total cost (TIC). 

Lastly, in addition to analysing the effect of operational factors on 
system performance, the models and methods presented in this paper 
can be applied to real-world scenarios, with minor adaptations. Items 
don’t need to have the same parameters values, which will result in 
different control parameters for each item. The users can run the models, 
find the best results for each model, and decide how to run their systems. 
Fig. 8 compares FIS and LDS for a specific experimental condition. 

7. Conclusion 

This work studied the problem of scheduling and lot sizing of mul-
tiple products in a single machine, with stochastic demand and 
sequence-dependent setup times, called Stochastic Economic Lot 

Scheduling Problem (SELSP). We applied the simulation–optimization 
approach with the AnyLogic simulation software and the OptQuest 
search engine to calibrate the inventory control models, which deter-
mine the sequence and the sizes of the lots, to minimize the total in-
ventory cost, which includes holding costs, setup costs and loss of sales/ 
shortage costs. 

In the study, we considered two inventory control policies: (i) fixed 
cycling (First in Sequence - FIS) and (ii) dynamic scheduling based on 
stock levels (Lowest Days of Supply - LDS), combined with an “order-up- 
to” lot sizing. The experimental design included the following factors: 
number of items, coefficient of variation of demand, system workload, 
and degree of setup increment, allowing for comparing the two control 
policies (FIS and LDS) under comprehensive experimental conditions. 
The LDS model outperformed the FIS model in all instances, the differ-
ence being higher in the more restrictive conditions, with higher de-
mand variation and greater workload. 

The present work can be extended in two directions: inventory 

Fig. 5. Caption: Boxplots of samples with n = 5 and different combinations of cv, ρ, and mod factor levels. Alt Text: The figure shows boxplots of total inventory cost 
(TIC) for n = 5 and different combinations of cv, ρ, and mod factor levels. 

Fig. 6. Caption: Boxplots of samples with n = 10 and different combinations of cv, ρ, and mod factor levels. Alt Text: The figure shows the equivalent of Fig. 5 for n 
= 10. 
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control policies and resolution methods. We considered an “order-up-to” 
model with freely variable lot sizes in this work. An extension would be 
to consider fixed or multiple lot sizes, which can be an operational 
constraint adherent to the reality of many factories in the process in-
dustry. Another possibility would be to consider the backorder premise 
rather than the loss of sales, where unmet demands generate production 
orders with an associated backorder cost, also a real-life problem faced 
by many factories. Finally, an interesting operational issue for modelling 
would be related to the weekly work shift. While some process 

companies operate 24/7, it is more common to see production stop for a 
day or two a week, depending on demand and inventory levels. Lot 
sizing in this scenario of weekly stops would also be interesting to study. 

Regarding the simulation–optimization method, we used proprietary 
software in this research, which may be a limitation of its practical 
application. A natural development of the present work would be 
implementing the simulation models in free software and coding a 

Table 7 
Analysis of Variance for Total Inventory Cost (TIC).  

Factor Df Sum Sq Mean Sq F value Pr(>F) Sig. 

n 1 3.23E +
10 

3.23E +
10  

256000.0 <2.0E- 
16 

*** 

cv 2 1.30E +
10 

6.51E +
09  

51500.0 <2.0E- 
16 

*** 

ro 2 8.40E +
08 

4.20E +
08  

3324.0 <2.0E- 
16 

*** 

alfa 2 4.20E +
06 

2.10E +
06  

16.64 1.09E- 
07 

*** 

mod 1 2.65E +
08 

2.65E +
08  

2099.0 <2.0E- 
16 

*** 

n:cv 2 2.61E +
08 

1.30E +
08  

1031.0 <2.0E- 
16 

*** 

n:ro 2 3.26E +
06 

1.63E +
06  

12.89 3.66E- 
06 

*** 

cv:ro 4 1.88E +
08 

4.71E +
07  

372.9 <2.0E- 
16 

*** 

n:alfa 2 7.33E +
05 

3.66E +
05  

2.900 0.0561 . 

cv:alfa 4 9.61E +
05 

2.40E +
05  

1.902 0.1092  

ro:alfa 4 5.96E +
05 

1.49E +
05  

1.180 0.3188  

n:mod 1 1.28E +
07 

1.28E +
07  

101.6 <2.0E- 
16 

*** 

cv:mod 2 7.93E +
07 

3.97E +
07  

314.0 <2.0E- 
16 

*** 

ro:mod 2 2.80E +
07 

1.40E +
07  

110.7 <2.0E- 
16 

*** 

alfa:mod 2 6.14E +
05 

3.07E +
05  

2.432 0.0891 . 

n:cv:ro 4 9.69E +
06 

2.42E +
06  

19.17 1.57E- 
14 

*** 

n:cv:alfa 4 6.24E +
05 

1.56E +
05  

1.234 0.2956  

n:ro:alfa 4 2.33E +
05 

5.83E +
04  

0.461 0.7640  

cv:ro:alfa 8 1.35E +
06 

1.69E +
05  

1.340 0.2217  

n:cv:mod 2 4.75E +
05 

2.38E +
05  

1.880 0.1538  

n:ro:mod 2 9.63E +
05 

4.82E +
05  

3.813 0.0228 * 

cv:ro:mod 4 9.19E +
06 

2.30E +
06  

18.18 8.14E- 
14 

*** 

n:alfa:mod 2 1.36E +
05 

6.82E +
04  

0.540 0.5832  

cv:alfa:mod 4 5.04E +
05 

1.26E +
05  

0.997 0.4090  

ro:alfa:mod 4 3.56E +
05 

8.91E +
04  

0.705 0.5888  

n:cv:ro:alfa 8 1.38E +
06 

1.72E +
05  

1.365 0.2098  

n:cv:ro:mod 4 2.42E +
05 

6.06E +
04  

0.480 0.7506  

n:cv:alfa: 
mod 

4 8.63E +
05 

2.16E +
05  

1.708 0.1471  

n:ro:alfa:mod 4 3.33E +
05 

8.32E +
04  

0.659 0.6208  

cv:ro:alfa: 
mod 

8 3.99E +
05 

4.98E +
04  

0.394 0.9235  

n:cv:ro:alfa: 
mod 

8 9.00E +
05 

1.13E +
05  

0.891 0.5242  

Signif. codes: ’***’ − 0.001, ’**’ − 0.01, ’*’ − 0.05, ’.’ − 0.1. 

Fig. 7. Caption: Boxplots of FIS and LDS relative differences. Alt Text: The 
figure shows the boxplots of the relative differences between the results of the 
FIS and LDS models. 

Table 8 
Comparison of instances 54 and 108 for different setup and holding costs.  

Setup 
Cost 
($) 

Holding 
Cost 
($/yr) 

Av. TIC – 
FIS 

Av. TIC – 
LDS 

Diff. t p- 
value 

250 25  78822.0  75191.3  − 4.6 %  − 10.42 2.7E- 
05 

500 25  102870.4  99262.6  − 3.5 %  − 13.05 1.8E- 
06 

1000 25  137353.6  133645.8  − 2.7 %  − 12.59 1.5E- 
06 

250 50  115564.4  110624.1  − 4.3 %  − 16.96 3.68E- 
05 

500 50  148381.6  143463.8  − 3.3 %  − 14.79 8.3E- 
06 

1000 50  194967.7  189564.2  − 2.8 %  − 13.58 7.7E- 
05  

Fig. 8. Caption: Boxplots of FIS and LDS results for n = 10, cv = 0.2, ρ = 0.7, 
and α = 1.0. Alt Text: The figure shows the boxplots of FIS and LDS results for n 
= 10, cv = 0.2, ρ = 0.7, and α = 1.0. 
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specific numerical optimization method to calibrate the inventory con-
trol parameters. 

Finally, we emphasize that the models developed in this work were 
applied in hypothetical scenarios. Still, we believe that, because they are 
user-friendly models, they can be adapted and used, without great dif-
ficulties, in real systems of the process industry, thus characterizing 
themselves in a theoretical contribution to production planning and 
control in pull production environments. 
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