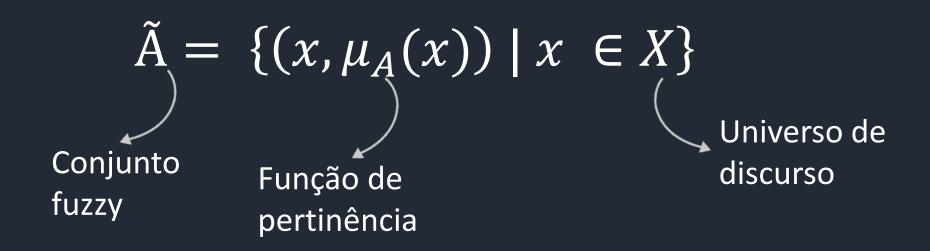


SEP0506 – Sistemas de Apoio à Decisão

INTRODUÇÃO À TEORIA FUZZY

Lucas Zanon (Doutorando)

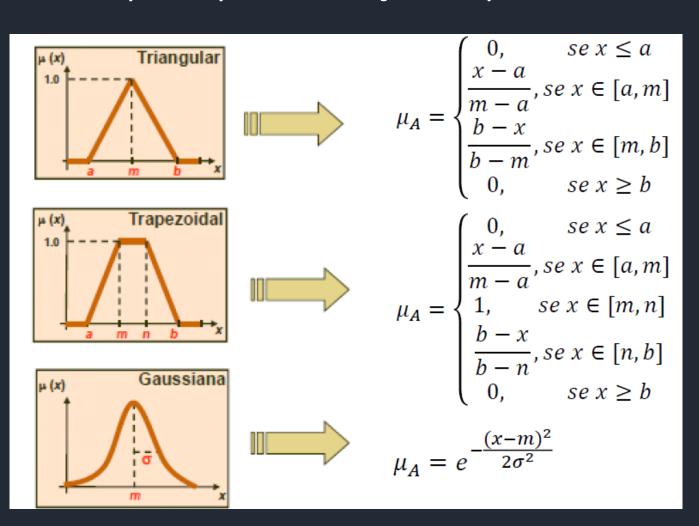
Prof. Luiz C. R. Carpinetti



Except where otherwise noted, this work is licensed under

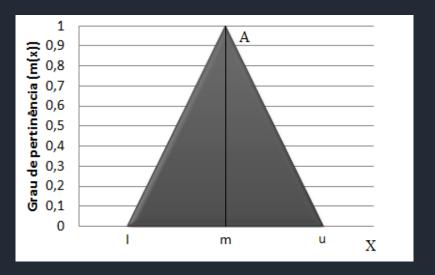
http://creativecommons.org/licenses/by-nc-sa/3.0/

A função de pertinência reflete o conhecimento que se tem em relação a intensidade com que o objeto pertence ao conjunto fuzzy.



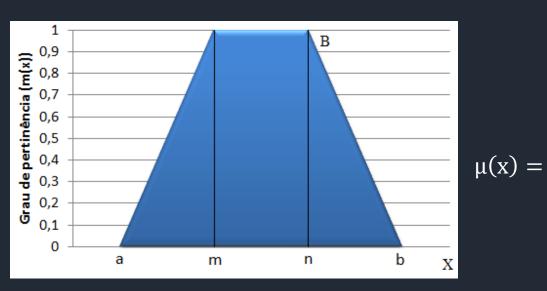
$$\tilde{A} = \{(x, \mu_A(x)) \mid x \in X\}$$
 Universo de discurso fuzzy Função de pertinência

Para um conjunto fuzzy A, contínuo e finito, cada elemento definido no universo de discurso X, pode ser denotado por uma função de pertinência $\mu_A(x): x \to [0,1]$; onde $x \in X$



Principais tipos de função de pertinência:

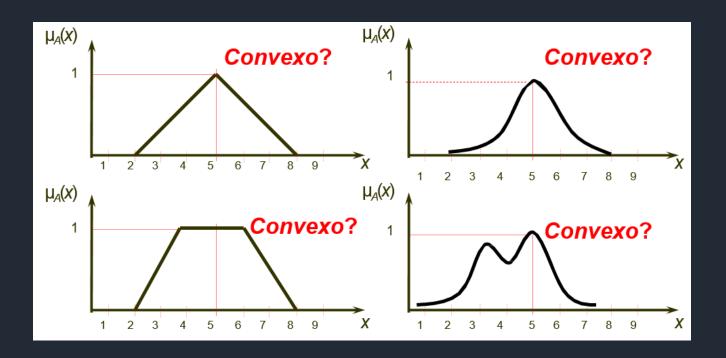
Números fuzzy


- Um número fuzzy representa um conjunto fuzzy em universo discreto ou contínuo;
- Um número fuzzy é normalmente representado pela função de pertinência;
 - Um número fuzzy (contínuo) com função de pertinência triangular é descrito graficamente por segmentos lineares na forma de um triângulo.
 - Representado numericamente pelos termos: (l, m, u)

$$\mu(x) = \begin{cases} 0, & \text{se } x \leq l \\ \frac{x-l}{m-l}, & \text{se } x \in [l, m] \\ \frac{u-x}{u-m}, & \text{se } x \in [m, u] \\ 0, & \text{se } x \geq u \end{cases}$$

Números fuzzy

• Número fuzzy com função de pertinência trapezoidal, representado numericamente por: (a, m, n, b)

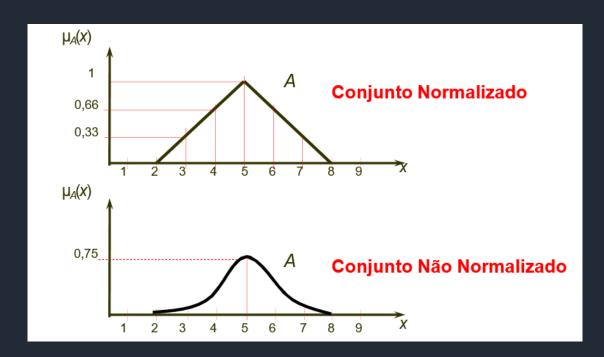


$$\begin{cases} 0, & se \ x \le a \\ \frac{x-a}{m-a}, & se \ x \in [a,m] \\ 1, & se \ x \in [m,n] \\ \frac{b-x}{b-m}, & se \ x \in [n,b] \\ 0, & se \ x \ge b \end{cases}$$

Teoria dos conjuntos Fuzzy

- Todo número fuzzy deve satisfazer as condições de normalidade e convexidade:
 - Convexidade: Um conjunto fuzzy é convexo quando satisfaz a condição:

$$\lambda \in [0,1] \text{ e } x_1, x_2 \in X.$$
 $\mu_A \left[\lambda x_1 + (1-\lambda)x_2 \right] \ge \min \left[\mu_A(x_1), \mu_A(x_2) \right]$



Teoria dos conjuntos Fuzzy

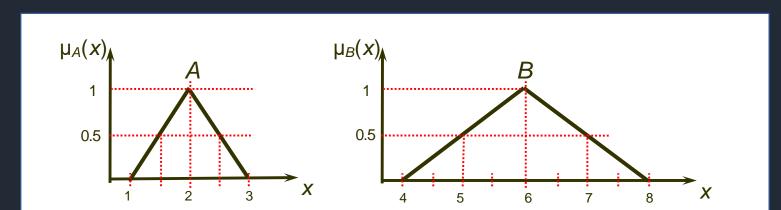
• Normalidade: Ao menos um dos elementos deve ter grau de pertinência igual a 1, conforme

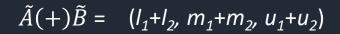
$$\sup \tilde{A}(x)_{x \in X} = 1$$

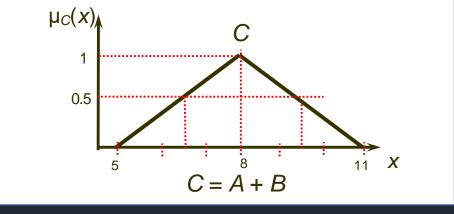
Operações algébricas com números fuzzy triangulares

Para:
$$\tilde{A}=(l_1, m_1, u_1)$$
 e $\tilde{B}=(l_2, m_2, u_2)$,

1. Adição:
$$\tilde{A}(+)\tilde{B} = (l_1 + l_2, m_1 + m_2, u_1 + u_2)$$

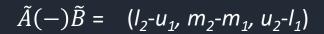

2. Subtração:
$$\tilde{A}(-)\tilde{B} = (l_1 - u_2, m_1 - m_2, u_1 - l_2)$$

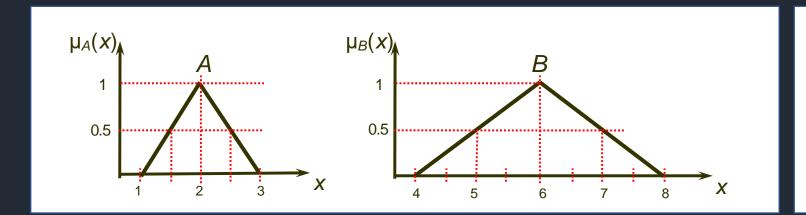

3. Multiplicação:
$$\tilde{A}(*)\tilde{B} = (l_1*l_2, m_1*m_2, u_1*u_2)$$

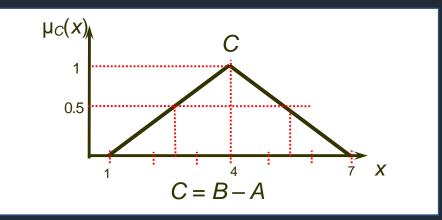

4. Divisão:
$$\tilde{A}(\div)\tilde{B} = (l_1 \div u_2, m_1 \div m_2, u_1 \div l_2)$$

$$l_1 \ge 0, l_2 \ge 0$$

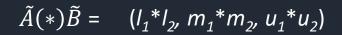
Adição

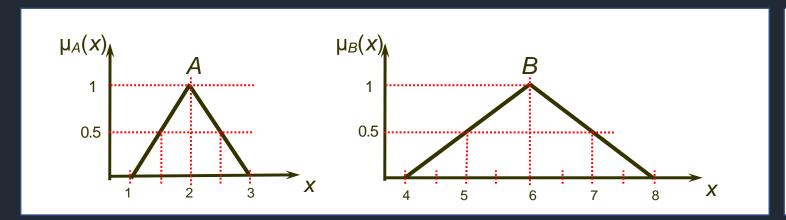


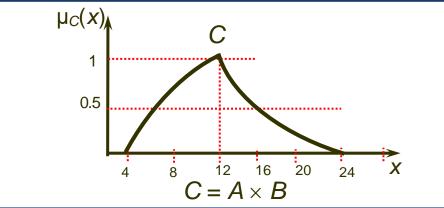



α	a (α)	a (α)	b (\alpha)	b (\alpha)	C (α)	C (\alpha)
0.0	1.0	3.0	4.0	8.0	5.0	11.0
0.1	1.1	2.9	4.2	7.8	5.3	10.7
0.2	1.2	2.8	4.4	7.6	5.6	10.4
0.3	1.3	2.7	4.6	7.4	5.9	10.1
0.4	1.4	2.6	4.8	7.2	6.2	9.8
0.5	1.5	2.5	5.0	7.0	6.5	9.5
0.6	1.6	2.4	5.2	6.8	6.8	9.2
0.7	1.7	2.3	5.4	6.6	7.1	8.9
8.0	1.8	2.2	5.6	6.4	7.4	8.6
0.9	1.9	2.1	5.8	6.2	7.7	8.3
1.0	2.0	2.0	6.0	6.0	8.0	8.0

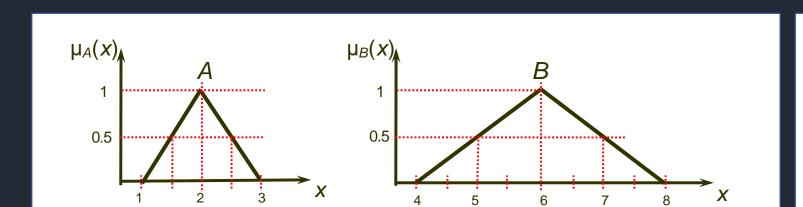
Subtração

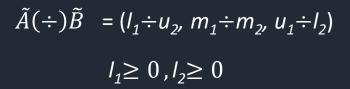


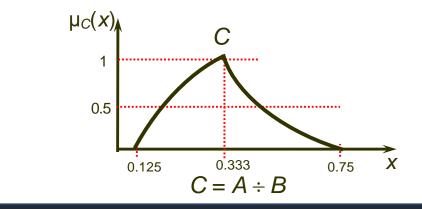



α	a (α)	a (α)	b (α)	b (\alpha)	C (α)	$C_2^{(\alpha)}$
0.0	1.0	3.0	4.0	8.0	1.0	7.0
0.1	1.1	2.9	4.2	7.8	1.3	6.7
0.2	1.2	2.8	4.4	7.6	1.6	6.4
0.3	1.3	2.7	4.6	7.4	1.9	6.1
0.4	1.4	2.6	4.8	7.2	2.2	5.8
0.5	1.5	2.5	5.0	7.0	2.5	5.5
0.6	1.6	2.4	5.2	6.8	2.8	5.2
0.7	1.7	2.3	5.4	6.6	3.1	4.9
0.8	1.8	2.2	5.6	6.4	3.4	4.6
0.9	1.9	2.1	5.8	6.2	3.7	4.3
1.0	2.0	2.0	6.0	6.0	4.0	4.0

Multiplicação






α	a (α)	a (\alpha)	b (\alpha)	b (\alpha)	C (α)	C (α)
0.0	1.0	3.0	4.0	8.0	4.00	24.00
0.1	1.1	2.9	4.2	7.8	4.62	22.62
0.2	1.2	2.8	4.4	7.6	5.28	21.28
0.3	1.3	2.7	4.6	7.4	5.98	19.98
0.4	1.4	2.6	4.8	7.2	6.72	18.72
0.5	1.5	2.5	5.0	7.0	7.50	17.50
0.6	1.6	2.4	5.2	6.8	8.32	16.32
0.7	1.7	2.3	5.4	6.6	9.18	15.18
8.0	1.8	2.2	5.6	6.4	10.08	14.08
0.9	1.9	2.1	5.8	6.2	11.02	13.02
1.0	2.0	2.0	6.0	6.0	12.00	12.00

Divisão

α	a (α)	a (a)	b (\alpha)	b (\alpha)	C (α)	C (\alpha)
0.0	1.0	3.0	4.0	8.0	0.125	0.750
0.1	1.1	2.9	4.2	7.8	0.141	0.690
0.2	1.2	2.8	4.4	7.6	0.158	0.636
0.3	1.3	2.7	4.6	7.4	0.176	0.587
0.4	1.4	2.6	4.8	7.2	0.194	0.542
0.5	1.5	2.5	5.0	7.0	0.214	0.500
0.6	1.6	2.4	5.2	6.8	0.235	0.461
0.7	1.7	2.3	5.4	6.6	0.258	0.426
0.8	1.8	2.2	5.6	6.4	0.281	0.393
0.9	1.9	2.1	5.8	6.2	0.306	0.362
1.0	2.0	2.0	6.0	6.0	0.333	0.333

Outras operações algébricas com números fuzzy triangulares

5. Inverso: $\tilde{A}^{-1} = (1/u_1, 1/m_1, 1/l_1)$ $l_1 \ge 0$

6. Multiplicação por constante: $k * \tilde{A} = (k*I_1, k*m_1, k*u_1)$ $k \ge 0$

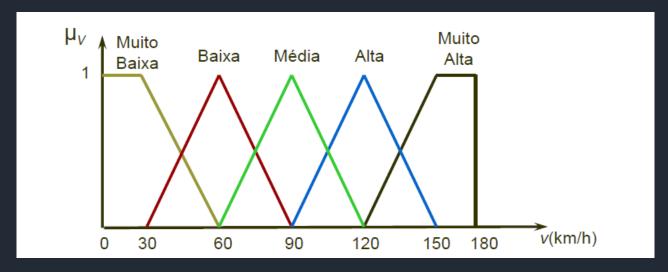
7. Divisão por constante: $\widetilde{A}/k = (l_1/k, m_1/k, u_1/k)$ $k \ge 0$

Sistemas Fuzzy – Variáveis Linguísticas

 Variáveis linguísticas são aquelas que permitem a descrição de informações que estão normalmente disponibilizadas de forma qualitativa.

Sistemas Fuzzy – Variáveis Linguísticas

- · Valores (ou termos linguísticos) da variável são definidos em linguagem natural:
 - Ex: {quente, morno, frio}; {muito baixo, baixo, médio, alto, muito alto}; {péssimo, ruim, médio, bom, excelente}.
- · Os termos linguísticos são representados matematicamente por números fuzzy.


Termos Linguisticos	Números Fuzzy Triangular
Muito ruim (MR)	(0; 0; 2,5)
Ruim (R)	(0; 2,5; 5,0)
Médio (M)	(2,5; 5,0; 7,5)
Bom (B)	(5,0; 7,5; 10,0)
Muito bom (MB)	(7,5; 10; 10)

Sistemas Fuzzy – Variáveis Linguísticas

Seja a variável linguística representada por:

Para o exemplo mostrado no gráfico, tem-se:

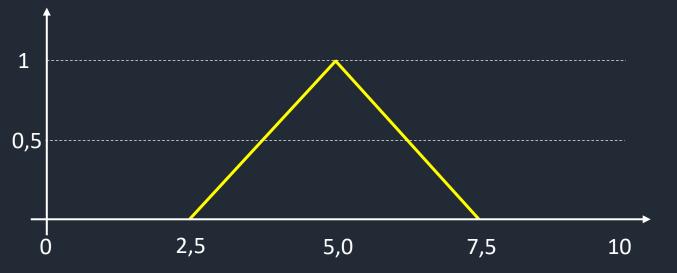
Nome da variável → v = {velocidade}.

Conjunto de termos → Tv = {Muito Baixa, Baixa, Média, Alta, Muito Alta}.


Universo de Discurso → Uv ∈ [0;180]

Funções de Pertinência → São dadas pelas funções triangulares e trapezoidais mostradas nos gráficos da figura.

- Os tomadores de decisão conseguem avaliar mais facilmente o processo quando as informações de saída são fornecidas de forma precisa (pontual).
- Os operadores de defuzzificação permitem então obter um valor de saída pontual (crisp) a partir de valores fuzzy.



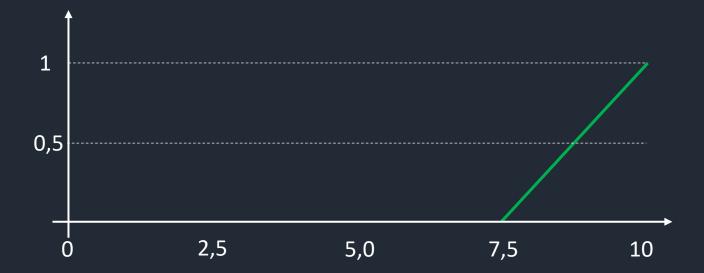
Para um número fuzzy triangular: $\tilde{A}=(L, M, U)$

$$CDA = \frac{(U-L) + (M-L)}{3} + L$$

Termo Linguistico	Número Fuzzy Triangular		
Médio (M)	(2,5; 5,0; 7,5)		

$$CDA = \frac{(U-L) + (M-L)}{3} + L$$

$$=\frac{(7,5-2,5)+(5-2,5)}{3}+2,5=5$$


Podemos dar mais ênfase ao elemento central

Para um número fuzzy triangular: $\tilde{A}=(L, M, U)$

$$A = \frac{L + 2M + U}{4}$$

Termos Linguisticos	Números Fuzzy Triangular		
Muito bom (MB)	(7,5; 10; 10)		

$$A = \frac{L+2M+U}{4} = \frac{7,5+(2*10)+10}{4} = 9,375$$

Quando Usar Sistemas Fuzzy em Apoio à Decisão

- Quando se dispõe de pouca informação quantitativa a respeito do processo a ser analisado.
- Quando as variáveis do processo estão imersas em ambientes de incerteza e imprecisão.
- Quando o processo é melhor definido pelo conhecimento de um especialista sobre o processo.

Referências

• ZIMMERMANN, H.-J. Fuzzy set theory. Wiley interdisciplinary reviews: computational statistics, v. 2, n. 3, p. 317-332, 2010.