CÁRIE DENTÁRIA EM CRIANÇAS DE 12 ANOS NO BRASIL: ESTUDO RETROSPECTIVO DOS LEVANTAMENTOS EPIDEMIOLÓGICOS DE 1980 A 2005

José Roberto Pereira Lauris

Tese apresentada à Faculdade de Odontologia de Bauru, da Universidade de São Paulo, como parte dos requisitos para obtenção do título de Livre Docente em Odontologia, área de Metodologia de Pesquisa e Estatística.

Bauru

2006

L375c

Lauris, José Roberto Pereira Cárie dentária em crianças de 12 anos no Brasil: estudo retrospectivo de 1980 a 2005 / José Roberto Pereira Lauris. – Bauru, 2006.

xiv, 153 p.: il.; 31 cm.

Tese (Livre Docência) – Faculdade de Odontologia de Bauru. USP.

Autorizo, exclusivamente para fins acadêmicos e científicos, a reprodução total ou parcial desta tese, por processos fotocopiadores e outros meios eletrônicos.

Assinatura:

José Roberto Pereira Lauris

13 de julho de 1957 Agudos - SP	Nascimento
1975 – 1979	Curso de Engenharia Mecânica – Faculdade de Engenharia da Fundação Educacional de Bauru (atual UNESP) – Bauru-SP.
1995 – 1997	Curso de Pós-Graduação em Engenharia Elétrica (Automação), em nível de Mestrado, na Faculdade de Engenharia Elétrica e de Computação, UNICAMP.
1998 - 2000	Professor Assistente MS-2 da Disciplina de Metodologia da Pesquisa e Estatística da Faculdade de Odontologia de Bauru, USP.
1998 – 2000	Curso de Pós-Graduação em Ciências (Distúrbios da Comunicação Humana), em nível de Doutorado, no Hospital de Reabilitação de Anomalias Craniofaciais, USP.
2000	Professor Assistente Doutor MS-3 da Disciplina de Metodologia da Pesquisa e Estatística da Faculdade de Odontologia de Bauru, USP.
Associações	SBPqO – Sociedade Brasileira de Pesquisas Odontológicas. SBIS – Sociedade Brasileira de Informática em Saúde.

DEDICATÓRIA

Éminha esposa

Rita

e

meus filhos Natátia e Gabriel

A maior desgraça que pode acontecer a qualquer escrito que se publica, não é muitas pessoas falarem mal, é ninguém dizer nada.

Nicolas Boileau

AGRADECIMENTOS

À Faculdade de Odontologia de Bauru, por ter me dado a oportunidade de aqui desenvolver minha carreira docente.

Ao Prof. Dr. **José Roberto de Magalhães Bastos**, esteio da área de Saúde Coletiva da FOB-USP, pelo seu incentivo, sinceridade e dedicação à causa da Saúde Coletiva.

Ao Prof. Dr. **Eymar Sampaio Lopes**, por ter acreditado na minha capacidade, incentivado e orientado no princípio de minha carreira acadêmica.

Ao Prof. Dr. José **Alberto de Souza Freitas** (Dr. Gastão), por me ter aberto as portas do Centrinho, permitindo trabalhar nesta ilha de conhecimento que é a Universidade de São Paulo.

Aos meus colegas docentes da área de Saúde Coletiva, **Arsênio**, **Dino**, **Nilce e Sílvia**, pelo apoio e companheirismo.

Aos funcionários da área de Saúde Coletiva, **Helena**, **Marta**, **Nilton**, **Rosa e Sílvia**, pela convivência alegre e ajuda em todos os momentos.

A todos os **colegas e funcionários** do Departamento de Odontopediatria, Ortodontia e Saúde Coletiva.

Ao mestrando **Henrique Mendes Silva** por sua ajuda na coleta de dados.

A todos os funcionários da Biblioteca da FOB, em especial a **Cibele**, **Rita e Valéria**, pelo auxílio constante e sempre rápido.

Aos professores Vitor Gomes Pinto, Paulo Capel Narvai e Antonio Carlos Frias pela ajuda no acesso aos dados primários dos levantamentos epidemiológicos de 1986 e 1998.

Ao Dr. **Olímpio José Nogueira Viana Bittar** e a CD **Tania Forni** pela presteza no fornecimento de dados da SES-SP.

A minha família, **Márcia**, **Omar**, **Vic**, **Camila**, **Paulo** e **Gislaine**, pela convivência harmoniosa que sempre me deu tranqüilidade para a dedicação à profissão.

Aos **meus amigos**, que sabem quem são sem precisar citá-los.

SUMÁRIO

LISTA DE FIGURAS	vi
LISTA DE TABELAS	iv
LISTA DE ABREVIATURAS	xiii
RESUMO	xiv
1 INTRODUÇÃO	2
2 REVISÃO DE LITERATURA	7
3 OBJETIVOS	25
4 METODOLOGIA	27
5 RESULTADOS E DISCUSSÃO	39
5.1 Levantamento epidemiológico de 1986	39
5.2 Levantamento epidemiológico de 1996	53
5.3 Levantamento epidemiológico SB Brasil 2003	63
5.4 Análise dos três levantamentos nacionais	94
5.5 Estudo ecológico por município no período de 1980 a 2005	103
6 CONCLUSÃO	119
ANEXOS	121
REFERÊNCIAS BIBLIOGRÁFICAS	
ABSTRACT	153

LISTA DE FIGURAS

Figura 1 -	Ficha de coleta de dados do CPOD de cada artigo.	30
Figura 2 -	Entrada de informações da referência bibliográfica de origem dos dados	31
Figura 3 -	Diagrama mostrando a curva de Lorenz	35
Figura 4 –	Histograma da distribuição percentual do CPOD das 1.792 crianças de 12 anos do levantamento epidemiológico de 1986	43
Figura 5 –	CPOD médio no Brasil estratificado por renda familiar, em salários mínimo, baseado no levantamento epidemiológico de 1986	46
Figura 6 –	Histograma da distribuição percentual do CPOD das 4.320 crianças de 12 anos do levantamento epidemiológico de 1996	54
Figura 7 –	Histograma da distribuição percentual do CPOD das 34.550 crianças de 12 anos do levantamento epidemiológico SB Brasil 2003	67
Figura 8 –	CPOD médio por região e porte do município baseado no levantamento epidemiológico SB Brasil 2003	74
Figura 9 -	Histograma do CPOD médio aos 12 anos, por município, no levantamento epidemiológico SB Brasil 2003	91
Figura 10 –	Curvas de Lorenz mostrando a distribuição do CPOD com relação ao total da amostra por região, no levantamento SB Brasil 2003.	92
Figura 11 –	Figura 11 – Curvas de distribuição do CPOD aos 12 anos de idade nos levantamentos epidemiológicos de 1986, 1996 e 2003	94
Figura 12 –	Curvas de distribuição do CPOD aos 12 anos de idade nos levantamentos epidemiológicos de 1986, 1996 e 2003 só para as capitais das unidades federativas	95

LISTA DE FIGURAS

Figura 13 –	Curvas de regressão, por região, baseadas nos levantamentos de 1986, 1996 e 2003,com dados das capitais	97
Figura 14 –	Curva de regressão para o CPOD no Brasil, baseada nos levantamentos de 1986, 1996 e 2003 só com dados das capitais federativas	98
Figura 15 –	Curvas de Lorenz e coeficiente de Gini, do CPOD aos 12 anos de idade, nos levantamentos de 1986, 1996 e 2003, no Brasil	101
Figura 16 –	Curvas de Lorenz e coeficiente de Gini, do CPOD aos 12 anos de idade, nos levantamentos de 1986, 1996 e 2003, só para as capitais do Brasil	101
Figura 17 –	Distribuição dos levantamentos epidemiológicos, de CPOD aos 12 anos, segundo o ano de coleta dos dados	106
Figura 18 –	Distribuição dos levantamentos epidemiológicos, de CPOD aos 12 anos, segundo a fluoretação de água de abastecimento do município	106
Figura 19 –	Distribuição dos levantamentos epidemiológicos, de CPOD aos 12 anos, quanto ao tamanho da amostra	107
Figura 20 –	Distribuição dos levantamentos quanto a população dos municípios	108
Figura 21 –	Distribuição dos levantamentos quanto ao IDH-M dos municípios	108
Figura 22 -	Distribuição do CPOD dos levantamentos por ano da coleta dos dados	109
Figura 23 -	Distribuição de freqüência dos resíduos da função de regressão não linear múltipla	113
Figura 24 -	Gráfico de dispersão do valor estimado contra o resíduo da função de regressão não linear múltipla 71	113

LISTA DE FIGURAS

Figura 25 - Curvas de estimativa do CPOD médio dos municípios 115 brasileiros, por porte populacional e adição de flúor nas águas de abastecimento

Tabela 1 -	Fração de amostragem, população estimada, amostra estimada e amostra real no levantamento epidemiológico de 1986	41
Tabela 2 -	Parâmetros do CPOD das 1.792 crianças de 12 anos do levantamento epidemiológico de 1986	43
Tabela 3 -	CPOD médio por município, região e para o país, obtido no levantamento epidemiológico de 1986	45
Tabela 4 -	CPOD médio por região e renda familiar, no Brasil, obtidos no levantamento epidemiológico de 1986	46
Tabela 5 -	Descrição da amostra coletada, porcentagem ideal para manter proporcionalidade com a população, e peso atribuído a cada criança para correção da desproporcionalidade, no levantamento de 1986	49
Tabela 6 -	Média, erro padrão da média, e intervalo de confiança a 95% para o CPOD, do levantamento de 1986, fazendo a ponderação da amostra em relação a população representada	50
Tabela 7 -	Comparação do CPOD calculado sem e com ponderação no levantamento epidemiológico de 1986	51
Tabela 8 -	Parâmetros do CPOD das 4.320 crianças de 12 anos do levantamento epidemiológico de 1996	55
Tabela 9 -	CPOD por município, região e para o país, obtido no levantamento epidemiológico de 1996	57
Tabela 10 -	Descrição da amostra coletada, porcentagem ideal para manter proporcionalidade com a população, e peso atribuído a cada criança para correção da desproporcionalidade, no levantamento de 1996	59
Tabela 11 -	Média, erro padrão da média, e intervalo de confiança a 95% para o CPOD, do levantamento de 1996*, fazendo a ponderação da amostra em relação a população representada	60

Tabela 12 -	Comparação do CPOD calculado sem e com ponderação no levantamento epidemiológico de 1996	61
Tabela 13 -	Tamanho da amostra estimada, para crianças de 12 anos, e média executada por porte de município e região no levantamento SB Brasil 2003	65
Tabela 14 -	Parâmetros do CPOD das 34.550 crianças de 12 anos do levantamento epidemiológico de SB Brasil 2003	67
Tabela 15 -	Média e erro padrão da média, por município, obtidos no levantamento epidemiológico SB Brasil 2003	69
Tabela 16 -	CPOD por região e porte do município, baseado no levantamento epidemiológico SB Brasil 2003	73
Tabela 17 -	CPOD por porte do município, baseado no levantamento epidemiológico SB Brasil 2003	74
Tabela 18 -	Descrição da amostra coletada, porcentagem ideal para manter proporcionalidade com a população, e peso atribuído a cada criança para correção da desproporcionalidade, no levantamento epidemiológico de 2003	76
Tabela 19 -	Média, erro padrão da média, e intervalo de confiança a 95% para o CPOD, por região e porte do município, do levantamento de SB Brasil 2003, fazendo a ponderação da amostra em relação a população representada, e o desenho amostral	85
Tabela 20 -	Comparação do CPOD calculado sem e com ponderação, por região e porte do município, no levantamento epidemiológico SB Brasil 2003	86
Tabela 21 -	Média, erro padrão da média, e intervalo de confiança a 95% para o CPOD, por região, do levantamento de SB Brasil 2003*, fazendo a ponderação da amostra em relação a população representada	88

Tabela 22 -	Comparação do CPOD calculado sem e com ponderação, por região, no levantamento epidemiológico SB Brasil 2003	88
Tabela 23 -	Média, erro padrão da média, e intervalo de confiança a 95% para o CPOD, por porte do município, do levantamento de SB Brasil 2003*, fazendo a ponderação da amostra em relação a população representada	89
Tabela 24 -	Comparação do CPOD calculado sem e com ponderação, por porte do município, no levantamento epidemiológico SB Brasil 2003	89
Tabela 25 -	Índice CPOD médio e coeficiente de Gini para as cinco regiões do levantamento SB Brasil, 2003	92
Tabela 26 -	CPOD, aos 12 anos de idade, obtidos nos levantamentos epidemiológicos de 1986, 1996 e 2003, por região e para o Brasil	96
Tabela 27 -	CPOD, aos 12 anos de idade, obtidos nos levantamentos epidemiológicos de 1986, 1996 e 2003*, por região e para o Brasil	96
Tabela 28 -	Estimativa para os próximos anos do CPOD médio das capitais do Brasil, baseada nos levantamentos de 1986, 1996 e 2003	99
Tabela 29 -	Comparação entre os resultados do CPOD médio para o Brasil, calculado com e sem ponderação da representatividade da amostra em relação à população, nos levantamentos epidemiológicos de 1986, 1996 e 2003	100
Tabela 30 -	Distribuição dos levantamentos epidemiológicos, de CPOD aos 12 anos, segundo a região geográfica	105
Tabela 31 -	Classificação do porte dos municípios de acordo com a população no ano da coleta de dados	110

Tabela 32 -	Análise de regressão múltipla tendo como variável dependente o CPOD médio do município	112
Tabela 33 -	Estimativa do CPOD médio dos municípios brasileiros, por porte populacional e adição de flúor nas águas de abastecimento, para os anos 2010, 2015, 2020, 2025 e 2030	115
Tabela 34 -	Estimativa da redução do CPOD médio no período de 1980 a 2005	116

LISTA DE ABREVIATURAS

BBO -Bibliografia Brasileira de Odontologia ceod -Índice de dentes decíduos Cariados, Extraídos e Obturados (Restaurados) Índice de superfícies decíduas Cariadas, Extraídas e ceos -Obturadas (Restauradas) CPOD -Indice de dentes Cariados, Perdidos e Obturados (Restaurados) CPOS -Índice de superfícies Cariadas, Perdidas e Obturadas (Restauradas) dp desvio padrão erro padrão da média epm -FDI -Federação Dentária Internacional IBGE -Instituto Brasileiro de Geografia e Estatística IC -Intervalo de Confiança IDH-M -Índice de Desenvolvimento Humano Médio Literatura Latino-Americana e do Caribe em Ciências da Saúde LILACS -MEDLINE – Literatura Internacional em Ciências da Saúde MS -Ministério da Saúde OMS -Organização Mundial da Saúde ONU -Organização das Nações Unidas SES -Secretaria Estadual de Saúde SESI-Serviço Social da Indústria SM -Salário mínimo

RESUMO

Cárie dentária em crianças de 12 anos no Brasil: estudo retrospectivo dos levantamentos epidemiológicos de 1980 a 2005

A cárie dentária é a mais prevalente das doenças da cavidade bucal. índice CPOD é a medida mais utilizada nos levantamentos epidemiológicos de cárie dentária, e a idade de 12 anos é tida como padrão pela OMS na avaliação da condição de saúde bucal de populações. Em nível nacional, foram realizados no Brasil três grandes levantamentos epidemiológicos de saúde bucal, nos anos de 1986, 1996 e 2003. Além destes levantamentos vários outros, de menor porte, foram publicados em revistas científicas. O objetivo deste trabalho foi analisar os dados históricos de levantamentos epidemiológicos de cárie dentária aos 12 anos, realizados no Brasil no período de 1980 a 2005 e, com bases nestes dados, verificar a relação do CPOD com a fluoretação das águas de abastecimento, o Índice de Desenvolvimento Humano - Municipal (IDH-M), o porte dos municípios e o tempo. Foram analisados os dados dos levantamentos nacionais e todos os outros publicados na literatura científica disponível. Os resultados mostraram uma clara tendência de declínio no valor do CPOD, mas este declínio não foi homogeneamente distribuído na população, ficando uma pequena parcela da população como portadora de grande quantidade de cárie dentária. Os três levantamentos nacionais não utilizaram a mesma metodologia dificultando uma análise mais precisa dos dados do ponto de vista histórico. Grande parte dos levantamentos menores, publicados nas revistas científicas, carecem de um maior rigor científico. Concluiu-se que o CPOD tem correlação estatisticamente significante com o tempo, fluoretação das águas de abastecimento e porte do município.

1 INTRODUÇÃO

A cárie dentária é a mais prevalente das doenças que afetam a cavidade oral humana. Seguindo uma tendência mundial, a prevalência de cárie no Brasil tem diminuído nos últimos tempos, porém, a redução dos índices de cárie não tem ocorrido de forma homogênea na população. Isto leva o país a ter alguns estratos da população com índice de cárie muito baixo enquanto outros estratos apresentam alta incidência da doença. (NADANOVSKY, 2000; ANTUNES; PERES; FRAZÃO, 2006).

Embora seja uma doença de alta prevalência, seu controle, nos dias atuais, é perfeitamente viável e pode-se almejar sua erradicação se as ações corretas forem tomadas. Por se tratar de doença disseminada na população, a estratégia de controle mais adequada é a coletiva, onde as ações visam todos os indivíduos da sociedade independentemente da identificação individual da ocorrência da doença. Dentre as ações mais efetivas na prevenção da cárie estão os métodos educativos que visam adequação de hábitos de higiene e alimentação da população. Além disso, outras ações de saúde pública como a fluoretação das águas de abastecimento público e controle de flúor em dentifrícios, bebidas e alimentos agem como complemento para sua não ocorrência.

Fato a se notar é que os custos para o controle da cárie são baixos quando comparados com os benefícios da não contaminação dos indivíduos. A não ocorrência de cárie dentária não só elimina necessidade de tratamento odontológico específico para a mesma, mas as ações de educação para preveni-la promovem melhor higienização bucal e por conseqüência previnem outras doenças da cavidade bucal como a gengivite e a periodontite, entre outras.

Num país como o Brasil, onde vivem 180 milhões de pessoas, a redução de um dente cariado, em média na população, representa uma redução na necessidade de 180 milhões de procedimentos odontológicos diretos para com a cárie. Levando-se em conta que em maio de 2006 o SUS

pagava R\$ 2,05 por restauração de duas faces de amálgama ou compósito (http://www.saude.sc.gov.br/download/sia_sih/sia/R03PBFIX.doc) uma simples conta mostra que se teria uma economia de cerca de R\$ 360.000.000,00.

A epidemiologia é ferramenta básica para o conhecimento da "distribuição e dos determinantes de estados ou eventos relacionados à saúde em populações específicas, e a aplicação desses estudos no controle dos problemas de saúde" (LAST, 1988).

O estudo epidemiológico da cárie dentária é necessário para se estabelecer sua prevalência, evolução ao longo do tempo, grupos mais afetados e verificação da eficácia dos métodos adotados para seu controle.

Tornou-se universal o estudo da prevalência da cárie dentária pelo índice CPO, que conta o número de dentes cariados (C), perdidos por cárie (P) e obturados/restaurados (O) por indivíduo. Este índice se divide em dois: CPO quando se avalia os dentes permanentes, e ceo quando se avalia os dentes decíduos. Pode-se avaliar as mesmas condições, descritas anteriormente, por superfície dentária gerando assim o CPOS (cariados, perdidos e obturados por superfície dentária) e para se diferenciar de quando se conta por dente chamamos de CPOD (cariados, perdidos e obturados por dente).

A cárie medida por este índice é sempre cumulativa haja vista que uma vez que o dente teve alguma experiência de cárie, mesmo se tratado adequadamente, ele continuará sendo contado no CPOD. Pode-se avaliar então que, para um mesmo sujeito, seu CPOD só pode aumentar com o passar do tempo e nunca ser reduzido. Assim, o estudo baseado no CPOD deve estar sempre relacionado à idade do indivíduo. Para que se possa estabelecer comparações entre populações estabeleceu-se grupos etários mais adequados para se fazer avaliação pelo CPOD e ceo.

Dentre os grupos etários estudados, a idade de 12 anos é particularmente a mais estudada, pois nesta idade a criança está com sua

dentição permanente quase completa e o controle da cárie nesta fase, principalmente pela fixação de hábitos de higiene e alimentação, implica numa provável manutenção de boa condição de saúde bucal no futuro.

No Brasil levantamentos epidemiológicos têm sido feitos em várias regiões do país, porém por se tratar de um país com dimensões continentais e um dos países com maior desigualdade de distribuição de renda no mundo, a cárie é também distribuída de maneira não uniforme, o que reforça a necessidade de amplos estudos que atinjam todas as regiões e camadas sociais. Evidentemente estudos epidemiológicos desta natureza são caros e demandam grandes recursos financeiros, tempo e pessoal e, portanto, de difícil execução.

Três tipos de levantamentos epidemiológicos têm sido conduzidos no país: 1- grandes levantamentos de abrangência nacional coordenados por órgãos ligados ao Ministério da Saúde (três grandes levantamentos epidemiológicos foram executados em 1986, 1996 e 2003); 2- levantamentos oficiais em nível estadual tendo como exemplo os levantamentos de 1998 e 2002 feitos no Estado de São Paulo; e 3- uma grande quantidade de levantamentos de menor porte executados principalmente pela área acadêmica.

Os levantamentos de abrangência nacional requerem modelos de estudo que necessitam amostragem por estratos e conglomerados. Estes levantamentos requerem análise estatística mais complexa, e que leve em conta o modelo amostral. Os resultados finais divulgados nem sempre especificam como estes foram calculados, e se o modelo amostral foi considerado nos cálculos. Já os levantamentos de menor porte são publicados isoladamente e sua análise conjunta permitiria uma melhor análise da evolução da cárie dentária.

A necessidade de se conhecer o perfil epidemiológico da cárie dentária no país ao longo do tempo, agrupando todas as possíveis fontes de dados, e a qualidade das informações nas quais se baseia este conhecimento, foram as razões que motivaram a realização deste estudo. A

análise dos levantamentos nacionais anteriormente executados visa, também, contribuir para as discussões sobre o assunto, no momento em que está tomando corpo a realização de um levantamento epidemiológico nacional em saúde bucal no ano 2010.

Embora se deva conhecer o perfil epidemiológico para todos os grupos etários, visto que as ações de promoção de saúde são diferentes em cada grupo, devido a dimensão que um trabalho deste tomaria, foi feita uma delimitação optando-se por estudar apenas o grupo etário de 12 anos e sua evolução nos últimos 25 anos.

2 REVISÃO DE LITERATURA

2 REVISÃO DE LITERATURA

Dentre as várias definições que existem do que é epidemiologia, desde os primórdios dos estudos do estado de saúde/doença, pode-se citar a definição de Pereira (1995) como representativa de seu conceito atual, "Epidemiologia é o ramo das ciências da saúde que estuda, na população, a ocorrência, a distribuição e os fatores determinantes dos eventos relacionados com a saúde".

O início da utilização de conceitos estatísticos na saúde pública data do século XVII. O inglês John Graunt (1620-1674) é considerado pioneiro na utilização de métodos estatísticos em estudos de mortalidade, sendo considerado o primeiro epidemiologista da história. Em seu livro "Natural and political observations mentioned in a following index, and made upon the bills of mortality", de 1662, ele usou registros de mortalidade da população de Londres com finalidade de descrever vários fatores relacionados as doenças da época, principalmente ligados à peste bubônica que afligia a Inglaterra naqueles anos. Os estudos destas tábuas de registro são os primeiros trabalhos estatísticos sobre a população na Inglaterra do século XVII. Seu trabalho é considerado pioneiro porque já estabelecia importantes conceitos da metodologia científica aplicada à epidemiologia: 1- ele era breve e objetivo na sua descrição; 2- explicava em detalhes todos seus cálculos; 3submetia suas teorias a vários métodos de cálculo e estimativa; e 4- era modesto e incentivava críticas a seu trabalho. (LAURENTI, 1991; ALMEIDA FILHO, 1994; ROTHMAN, 1996).

Na evolução da epidemiologia, a figura mais conhecida é do médico inglês John Snow (1813-1858). Embora tenha sido um dos fundadores da anestesiologia, Snow ficou conhecido por seu trabalho pioneiro na epidemiologia da cólera que assolava a Inglaterra em meados do século XIX. Por meio de seu trabalho foi possível estabelecer a relação da cólera com a contaminação das águas de abastecimento de Londres anos antes de Koch identificar o bacilo da cólera (vibrio cholerae) em 1884. Por isso é

considerado por muitos autores como "pai da moderna epidemiologia". O trabalho de Snow só foi possível porque na mesma época era responsável pelo escritório de registros de estatísticas vitais na Inglaterra o também médico William Farr (1807-1883). Farr havia implantado um sistema inovador de procedimentos padronizados para coleta, classificação, análise e descrição de causas de morte. (MORABIA, 2001; PERES; ANTUNES, 2006).

No século XIX foram feitos os primeiros levantamentos das condições de saúde bucal. Em 1847 foi realizado o primeiro estudo biométrico de cárie dentária por um inglês de nome Tolmes. Neste estudo foi feita contagem de dentes extraídos, subdividindo os dados por sexo e idade. Em 1888, nos Estados Unidos, Ottofy fez estudo em crianças de 5 a 15 anos onde contava número de dentes sadios e doentes. Em 1899, Koener utilizou pela primeira vez contagem de dentes cariados, perdidos e obturados sugerindo que se deva fazer a análise dente a dente. (OLIVEIRA et al, 1998)

Só no século XX a epidemiologia deixaria de ser voltada quase exclusivamente para as doenças infecciosas e se voltaria ao estudo das variáveis ambientais e comportamentais e suas relações de morbidade. Deste tempo é o famoso estudo "Framingham Heart Study" National Heart, Lung, and Blood Institute do Estados Unidos. Iniciado em 1948 com completo acompanhamento de uma amostra inicial de 5.209 homens e mulheres da cidade de Framingham, Massachusetts-USA, tinha as obietivo determinar como principais causas das doenças cardiovasculares. Este estudou gerou uma grande quantidade de conhecimento científico. Fatores relacionados às doenças coronarianas como colesterol alto, hipertensão arterial, dieta e cigarro foram determinados com as bases epidemiológicas deste estudo. (NATIONAL HEART, LUNG, AND BLOOD INSTITUTE, 2005).

A maneira mais tradicional de se verificar a ocorrência de uma doença é contar o número de indivíduos atacados por esta doença. Com isto podese descrever a ocorrência absoluta ou relativa de uma doença (p.ex. a porcentagem de indivíduos com cárie dentária). Embora seja uma primeira forma de descrever a ocorrência da doença, quando se tem diferentes graus de severidade da mesma, esta descrição é muito pobre em informação pois agrupa todos os graus de severidade em uma única categoria: os indivíduos que têm a doença. Assim, para se estabelecer as diferenças de intensidade de ataque de uma doença utiliza-se um número "índice" que descreve a severidade em uma escala graduada com limites inferior e superior permitindo então a classificação de cada indivíduo não só como tendo ou não a doença, mas além disso o grau de severidade com que ele está atacado. Na cárie dentária é importante a graduação da intensidade com que cada indivíduo está atacado pela doença e o índice mais utilizado internacionalmente é o CPO (PINTO, 2000b).

É do início do século XX a introdução do índice CPO como medida da cárie dentária. Em um clássico estudo de 1937, Henry Klein e Caroll Palmer utilizam a medida dente a dente classificando várias formas de ataque da cárie. O levantamento foi realizado em crianças indígenas do Estados Unidos e pela primeira vez utilizava a denominação DMF (Decayed, Missing e Filled) que foi traduzida para o Brasil como CPO (Cariado, Perdido e Obturado) (OLIVEIRA, 1998). Após este levantamento, os autores publicaram em 1940 (KLEIN e PALMER, 1940) um trabalho com a descrição de todos os detalhes, como: forma de registro, tabulação e análise dos dados, necessários para a realização de levantamento de cárie dentária.

O CPO considera as condições dentárias no nível do dente, não fazendo distinção da severidade da doença no dente desde que ele esteja atacado pela doença. Assim, um dente com uma pequena cavidade tem o mesmo peso no índice que um dente totalmente destruído pela cárie. Para se fazer um índice mais refinado foi criado um índice com as mesmas características do CPO tradicional só que avaliando o ataque da doença ao nível de superfície dentária, dividindo o dente em cinco superfícies: oclusal, mesial, distal, vestibular e lingual. Para se fazer a distinção entre o CPO contado por dente e o CPO contado por superfície dentária acrescenta-se a letra "D" para dente e a letra "S" para superfície, originando, assim, o CPO-D

e CPO-S. Para fazer distinção entre a dentição temporária (decídua) e a permanente, denomina-se em letras minúsculas os dados referentes a dentição temporária e letras maiúsculas os dados referentes a dentição permanente, tendo-se então o CPO-D, CPO-S, ceo-d e ceo-s (PINTO, 2000b).

A partir da metade do século XX começaram as primeiras tentativas de se padronizar as metodologias utilizadas nos levantamentos epidemiológicos em saúde bucal. As principais características a serem padronizadas eram grupos etários a serem estudados, números índices para cada problema de saúde bucal, e tamanho da amostra. O serviço de Saúde Pública dos Estados Unidos e a Associação Dentária Americana foram as primeiras instituições a publicarem normas na década de 50. O Departamento de Saúde Pública do estado da Califórnia publicou em 1957 o documento "Dental Caries Survey — Who, Why and How" como uma referência básica para levantamentos epidemiológicos em saúde bucal. (OLIVEIRA, 1998).

Em 1961, através do Expert Committee on Dental Health, a Organização Mundial de Saúde publicou a primeira proposta de estruturação de levantamentos em saúde bucal. Nesta proposta já havia a preocupação internacionais. de estabelecer padrões visando uma possível comparabilidade de dados. O estabelecimento de um critério padrão, internacionalmente aceito, surge em 1971 com a primeira edição do "Oral health surveys - basic methods" pela OMS. Em 1977 foi publicada a segunda edição, com modificações principalmente no que diz respeito à doença periodontal. Na seqüência, foram editadas em 1987 a terceira edição, e em 1997 a quarta edição, nesta última se baseiam a maioria dos levantamentos epidemiológicos feitos atualmente (OLIVEIRA, 1998).

Utilizado como referência nos levantamentos atuais, o manual da OMS "Levantamentos básicos em saúde bucal" é uma tradução para o português da quarta edição do "*Oral health surveys – basic methods*" de 1997. O manual traz orientações desde a definição da amostra,

procedimentos de avaliação e ficha individual específica para preenchimento dos dados coletados. A ficha contém os seguintes tópicos: identificação geral, exame extra-oral, exame da articulação temporomandibular, condição da mucosa bucal, opacidade de esmalte, fluorose, índice periodontal, perda de inserção, condição dentária da coroa, condição dentária da raiz, necessidade de tratamento, condição protética, necessidade de prótese, anomalias dentofaciais, e necessidades de cuidados imediatos e de referência. O CPOD, de cada sujeito, é obtido pela soma dos códigos: 1-cariado; 2 – restaurado, com cárie; 3 – restaurado, sem cárie; 4 – ausente, por motivo de cárie. Quanto as idades, para levantamentos epidemiológicos, o manual recomenda os grupos etários de 5 anos, 12 anos, 15 anos, 35 a 44 anos, e 65 a 74 anos. Destaca particularmente a idade de 12 anos como idade de monitoração para a cárie nas comparações internacionais e das tendências da doença (ORGANIZAÇÃO MUNDIAL DE SAÚDE, 1999).

Entre as décadas de 1950 e 1980 foram realizados os primeiros levantamentos epidemiológicos de cárie dentária no Brasil. Em princípio, levantamentos em populações restritas e com abrangência local ou, no máximo regional (SOUZA; SILVA; MATOS, 1969; VIEGAS; VIEGAS, 1974; CASTELLANOS, 1974; VIEGAS, 1992).

Em 1982, a Federação Dentária Internacional (FDI), seguindo diretivas da OMS, propôs metas específicas de saúde bucal a serem atingidas pelos países membros da OMS no ano 2000. Foram propostas seis metas: 1 – 50% das crianças de 5 a 6 anos livres de cárie; 2 – média geral do CPOD aos 12 anos no máximo igual a 3; 3 – 80% da população aos 18 anos com dentição completa; 4 – 50% de redução do edentulismo, em relação a 1980, na idade de 35 a 44 anos; 5 – 25% de redução do edentulismo, em relação a 1980, na idade de 65 anos e acima; 6 – estabelecimento de banco de dados para monitorar as mudanças na saúde bucal. Foi citado como primeiro indicador global de saúde bucal o CPOD aos 12 anos, considerado como uma medida indireta de saúde bucal de toda a população. Este índice foi considerado como tendo a mesma importância para avaliar a saúde bucal, que a taxa de mortalidade infantil tem, como

indicador da saúde geral das populações. Foi também recomendado que levantamentos populacionais fossem feitos a cada 5 anos para acompanhamento da evolução da saúde bucal (FÉDÉRATION DENTAIRE INTERNATIONALE, 1982).

Em 1988, o Ministério da Saúde por meio da Divisão Nacional de Saúde Bucal publicou o relatório "Levantamento Epidemiológico em Saúde Bucal: Brasil, zona urbana, 1986" (BRASIL, 1988). Este foi o primeiro levantamento epidemiológico de abrangência nacional na área de saúde bucal realizado no Brasil. O conceito até então vigente era que o problema da saúde bucal era tão grande que não haveria necessidade de nenhum levantamento visto que este apenas confirmaria os graves problemas no país. Este levantamento foi efetivado graças ao apoio do Ministério da Saúde com apoio da Secretaria de Planejamento da Presidência da República por intermédio do IPEA (Instituto de Planejamento Econômico e Social). Mesmo assim os recursos públicos disponibilizados foram extremamente escassos, o equivalente a US \$ 23.400,00, e o levantamento só foi possível devido ao apoio de outras instituições que absorveram custos de mão-de-obra, serviços de amostragem e computação, entre outros. O levantamento foi limitado à zona urbana com dados para as cinco macrorregiões (Norte, Nordeste, Sudeste, Sul e Centro-Oeste) segundo faixa de renda familiar, analisando a prevalência de cárie dentária, das doenças periodontais, das necessidades e presença de prótese total e da procura por serviços odontológicos. Foram considerados 10 grupos etários (6, 7, 8, 9, 10, 11, 12 anos, de 15 a 19 anos, de 35 a 44 anos e de 50 a 59 anos). O levantamento foi feito apenas nas capitais estaduais, pois baseado em levantamentos anteriores não se verificava diferença na prevalência de cárie em função do porte do município. Foram amostradas 16 das 27 capitais estaduais com objetivo de representar as cinco macrorregiões. A amostragem de crianças foi feita em escolas de 1º e 2º graus enquanto a amostra de adultos foi coletada em domicílios. A escolha das 16 capitais por conveniência, dando preferência aquelas que tinham representação da Fundação Serviços de Saúde Pública (FSSP). A amostra

total consistiu de 22.710 indivíduos, sendo 1.792 crianças de 12 anos. O resultado global apresentou, aos 12 anos, um CPOD médio igual a 6,651.

Em 1993, foi realizado pelo SESI (Serviço Social da Indústria), com parte dos recursos do Ministério da Saúde e parte da Kolynos do Brasil, um levantamento epidemiológico de saúde bucal onde foram examinadas 110.640 crianças de 7 a 14 anos, das quais 58.450 estudavam em escolas do Sistema SESI e 52.19 estudavam em escolas públicas. Neste levantamento o índice CPOD médio aos 12 anos foi de 4,84. Estas crianças eram provenientes das cinco macrorregiões do Brasil, e estavam distribuídas em 22 unidades da federação abrangendo 114 cidades. Este levantamento, com abrangência nacional, conta com o "viés" de ter, na maior parte de sua amostra, crianças do SESI que têm acesso a medidas preventivas em grau diferente da população em geral (SERVIÇO SOCIAL DA INDÚSTRIA, 1996; MEDEIROS; WEYNE 2001; OLIVEIRA, 2006).

Em artigo de 1996, Pinto (1996) destaca que a OMS escolheu como referência internacional para comparar as condições de saúde bucal em crianças e adolescentes o CPOD aos 12 anos de idade. Esta idade é importante porque a criança está com a quase totalidade dos dentes permanentes erupcionados e se, até então, manteve boas condições de higiene existe um bom prognóstico para o futuro de sua saúde bucal. Neste trabalho o autor fez uma comparação do CPOD médio aos 12 anos entre 165 países, por região geográfica, além de relacionar a cárie com quatro outros indicadores globais: consumo de açúcar per capita, população, PNB (Produto Nacional Bruto) per capita e IDH. Para o Brasil foi utilizado o índice médio de 4,8 obtido no levantamento epidemiológico do SESI de 1993. Em uma relação de ordem crescente de CPOD dos 165 países o Brasil ocupou a posição 140, o que mostra uma posição de alto índice de cárie comparado ao resto do mundo. Interessante ressaltar que os dez países com mais alto IDH possuíam, na época, um CPOD médio de 2,54, mais alto que os 10 países de pior IDH, que tinham média de 1,76. É curioso que os países com piores condições de desenvolvimento humano e de rendimento tinham CPOD menor que países mais desenvolvidos. Para o autor, isto aparentemente "reforça o conceito segundo o qual a cárie dental é uma típica doença do desenvolvimento, assim como o consumo exagerado de açúcar".

Em 1996, foi feito o segundo levantamento epidemiológico de âmbito nacional, realizado por uma parceria entre o Ministério da Saúde, Associação Brasileira de Odontologia (ABO-Nacional), Conselho Federal de Odontologia (CFO) e as secretarias estaduais de saúde. A intenção era verificar as alterações ocorridas, no perfil da cárie dentária, 10 anos após o primeiro levantamento de 1986. O levantamento abrangeu os grupos etários de 6, 7, 8, 9, 10, 11 e 12 anos, e foi feito em escolas públicas e privadas das 26 capitais estaduais e do Distrito Federal. O tamanho da amostra foi determinado baseando-se na recomendação da OMS (ORGANIZAÇÃO MUNDIAL DE SAÚDE, 1999), que diz que em locais onde a prevalência de cárie é alta ou moderada, o exame de 40 a 50 indivíduos por idade é suficiente para se conhecer o quadro de saúde/doença da população. Decidiu-se, baseado nas recomendações da OMS, que a amostra seria composta de 40 crianças de 4 escolas de cada capital para cada um dos 7 grupos etários. Para seleção das escolas foi definido que as quatro escolas de cada cidade seriam aleatoriamente selecionadas seguindo o seguinte critério: uma escola de periferia (pública), uma escola de bairro (pública) e duas escolas do centro (uma pública e uma privada). Foram examinadas um total de 30.240 crianças sendo 4.320 de 12 anos de idade, 160 em cada cidade. Não houve um relatório oficial dos resultados deste levantamento, porém seus dados primários foram disponibilizados para uso na rede de computadores (internet) no site <u>www.datasus.gov.br</u>. O resultado global médio do CPOD aos 12 anos foi de 3,06 (OLIVEIRA, 2006).

Peres, Narvai e Calvo (1997), fizeram uma extensa pesquisa no Estado de São Paulo com objetivo estudar o CPOD aos 12 anos em todos os municípios do estado. A metodologia consistiu do envio de instrumento de coleta de dados contendo as questões desejadas para ser respondido pelas secretarias ou departamentos de saúde dos 625 municípios do estado. A taxa de resposta foi de 20% (125 municípios). O CPOD médio nos

municípios variou de 1,3 a 13,6, com uma média estadual ponderada pela população igual a 4,8. Comparando com a classificação da OMS, os resultados mostraram que 0,0% dos municípios tinham prevalência muito baixa (CPOD de 0,0 a 1,1), 4,0% tinham prevalência baixa (CPOD de 1,2 a 2,6), 17,6% tinham prevalência moderada (CPOD de 2,7 a 4,4), 38,4% tinham prevalência alta (CPOD de 4,5 a 6,5), e 40,0% tinham prevalência muito alta (CPOD > 6,5). Os pequenos municípios, embora em quantidade maior, representavam uma parcela menor da população do estado e tinham piores condições de CPOD. Dos municípios sem fluoretação das águas de abastecimento, 56,0% apresentavam CPOD maior que 6,7 enquanto dos com fluoretação apenas 27,0% apresentavam CPOD > 6,7. Os autores também concluíram que os serviços municipais de saúde bucal pouco se utilizam dos recursos básicos que a epidemiologia pode oferecer, o que indicava a necessidade de uma melhor formação na área de epidemiologia do profissional que atua na área de saúde bucal.

Para mostrar o panorama mundial da cárie dentária aos 12 anos. Nithila et al (1998) publicaram trabalho comparando levantamentos epidemiológicos de 1986 a 1996 feitos em 80 países. Estes dados foram cadastrados no Banco Mundial de Dados sobre Saúde Bucal (BMDSB) da OMS. O BMDSB foi criado em 1969 para se ter um conhecimento global da saúde bucal e suas tendências epidemiológicas, na época do trabalho o BMDSB contava com 1.850 conjuntos de dados sobre cárie dental de 178 países diferentes. Como resultado o trabalho apontou que as Américas é o continente com menor conjunto de informações, com informações de apenas 26% dos países, sendo ainda que a maioria destas informações eram de países pequenos. Os autores justificaram que a dificuldade e o custo de se executar um levantamento em nível nacional é muito grande em países com grande extensão geográfica. No estudo, dos 80 países avaliados, sessenta (75%) tinham um índice CPOD médio menor que 3,0, que era a meta da OMS/FDI para o ano 2000. Do Brasil, o dado utilizado foi o de 1993 com um CPOD médio de 4,9, sendo portanto um dos países com CPOD acima da meta prevista para o ano 2000.

Para verificar a influência de modificações nos critérios diagnósticos de cárie nos levantamentos epidemiológicos Oliveira et al (1998a) fizeram uma comparação entre o CPOD medido pelos critérios propostos por pelo *Dental Health Center* que no Brasil teve grande divulgação na década de 1980 pelos livros de Chaves (CHAVES, 1986) e os critérios propostos pela OMS em 1987. A principal diferença foi a utilização mais criteriosa, na proposta da OMS, da sonda exploradora para se fazer o diagnóstico de "cariado". Neste trabalho, com uma amostra de 55 crianças de 12 anos, o CPOD médio pelo método descrito por Chaves foi de 3,1, enquanto pelo método proposto pela OMS foi de 2,1. O resultado foi um índice médio 32,25% menor pelo método da OMS.

Oliveira et al (1998b) fizeram uma análise crítica da metodologia proposta pela Organização Mundial da Saúde nos levantamentos epidemiológicos em saúde bucal. Embora fizessem críticas a alguns pontos que não estão descritos com a clareza necessária, e outros que ainda usam conceitos superados, os autores mostram a necessidade de que instituições como a OMS estabeleçam padrões para os levantamentos epidemiológicos, pois só com a padronização a nível mundial é possível comparações com base científica. Porém, fizeram a ressalva que os mesmos sejam periodicamente revisados e adaptados às condições regionais.

Em 1998, a Secretaria de Estado da Saúde de São Paulo, em convênio com a Faculdade de Saúde Pública da Universidade de São Paulo, realizou um levantamento epidemiológico com objetivo de avaliar as condições de saúde bucal da população de 5 a 12 anos e de 18 anos de idade do Estado de São Paulo. Também teve como objetivo obter dados exploratórios para adultos de 35 a 44 anos de idade vinculados às unidades das redes de ensino pública e privada do Estado e idosos de 65 a 74 anos. Foram coletados dados relativos a cárie dentária, doença periodontal, oclusão dentária, fluorose dentária e uso de prótese dentária. A amostra foi calculada com base no manual "Levantamentos básicos em saúde bucal" da OMS onde 40 crianças por idade são suficientes para obtenção dados confiáveis. Acrescentando-se um "erro de desenho" igual a 2 pela técnica de

amostragem por conglomerado em vários estágios, e uma perda estimada de 20%, fixou-se em 96 o número de elementos amostrais por estrato. Neste de estudo os elementos foram estratificados pelas 24 DIR's (Divisão Regional de Saúde) do Estado e porte dos municípios (Pequeno, Médio e Grande). A técnica de amostragem utilizada foi por conglomerado em três estágios. No primeiro estágio foram sorteados municípios dentro de cada DIR obedecendo o critério de até: dois municípios de pequeno porte com água fluoretada e dois sem água fluoretada, um município de médio porte com água fluoretada e um sem água fluoretada, e um município de grande porte com água fluoretada e um sem água fluoretada. No segundo estágio foram sorteadas as unidades amostrais secundárias, que no caso das crianças eram as escolas. No terceiro estágio eram sorteados os elementos amostrais (crianças em cada escola). Um total de 89.114 indivíduos de 133 municípios compôs a amostra. Como resultado, para a idade de 12 anos, foi encontrado um CPOD médio geral igual a 3,72 para as 9.327 crianças examinadas (UNIVERSIDADE DE SÃO PAULO, 1999).

O CPOD não é um índice perfeito para avaliação da cárie dentária, e em trabalho de 1999 Castro, Vianna e Reis (1999) destacaram algumas críticas feitas ao índice, pela British Association for the Study of Community Dentistry e alguns autores sobre o fato do índice CPOD, por ser uma soma dos cariados, perdidos e restaurados, acaba atribuindo o mesmo peso para cada componente, como se os três fossem equivalentes. Outra crítica feita foi que para o componente perdido, quanto mais idoso o indivíduo mais difícil é estabelecer a verdadeira causa desta perda. Também foi criticado o fato de que a cárie só é considerada quando já evoluiu ao ponto de uma cavidade, enquanto o ideal seria ser detectada ainda no estágio de mancha branca. No trabalho foi feita uma proposta de se criar o IRCD (Índice Reversível de Cárie Dental) que inclui a mancha branca como um de seus elementos. Além de incluir a mancha branca o novo índice propôs pesos diferentes para cada componente. Os componentes do novo índice foram: hígido (peso 0), desmineralizado (peso 1), restaurado (peso 2), cariado (peso 3), cuidado pulpar (peso 4), perdido (peso 5) e extração indicada

(peso 6). Os autores não mencionaram que critérios foram utilizados para se estabelecer os pesos para cada componente. Para testar o novo índice foram examinadas 47 crianças de 12 anos e calculados o CPOD e O IRCD. O resultado mostrou um CPOD médio de 3,23 enquanto o IRCD médio foi de 4,01. A diferença pode ser atribuída principalmente pela inclusão do componente "desmineralizado" e os diferentes pesos para cada um dos componentes.

Moysés (2000), buscando demonstrar as desigualdades em saúde bucal em relação aos conceitos de classe social, linhas de pobreza e o modelo de Desenvolvimento Humano Sustentável (DHS) fez uma correlação entre o Índice de Desenvolvimento Humano (IDH) e o CPOD aos 12 anos, por unidade da federação, baseado no Levantamento Epidemiológico de 1996. Em vez de trabalhar com os valores absolutos dos índices, o autor optou por utilizar o coeficiente de correlação de Spearman que utiliza o ranking dos valores destas duas variáveis, em função da não normalidade da distribuição dos dados. A ordenação para o ranking do IDH foi feita em ordem decrescente, e o CPOD em ordem crescente. Como resultado encontrou uma correlação positiva (r = 0,47) e estatisticamente significante (p = 0,01), indicando tendência de aumento do CPOD com a diminuição do IDH.

Em 2000 foi publicado um artigo (RONCALLI et al, 2000) e um caderno pelo Ministério da Saúde (BRASIL, 2000) nos quais foi descrito o projeto do levantamento epidemiológico de saúde bucal da população brasileira, então chamado de "SB2000 - Condições de Saúde Bucal da População Brasileira no ano 2000", previsto para ser realizado naquele ano. O projeto contou com a colaboração de Secretarias Estaduais de Saúde e algumas Universidades. O objetivo era se fazer o maior levantamento epidemiológico em saúde bucal da história brasileira. A população foi estratificada em dois níveis, macrorregião geográfica (Norte, Nordeste, Sudeste, Sul e Centro-Oeste) e porte populacional do município (1- até 5.000 habitantes, 2- de 5.001 a 10.000 habitantes, 3- de 10.001 a 50.000 habitantes, 4- de 50.001 a 100.000 habitantes e 5- mais de 100.000

habitantes). De cada macrorregião foram sorteados 10 municípios de cada porte populacional, perfazendo um total de 250 municípios no Brasil. Para garantir a participação das capitais das unidades federativas, todas foram incluídas na amostra. A proposta foi examinar pessoas de seis grupos etários quais sejam: 18 a 36 meses, 5 anos, 12 anos, 15 a 19 anos, 35 a 44 anos e 65 a 74 anos. Para cada idade foram definidos os problemas a serem estudados, que no grupo de 12 anos foi: cárie, doença periodontal , fluorose e má-oclusão. Em linhas gerais houve uma estimativa de que seriam avaliados 750 indivíduos por município, 37.500 por região e 187.500 para o país.

Demonstrando as dificuldades de se definir um levantamento epidemiológico de abrangência nacional em um país com as dimensões do Brasil, Pinto (2000) faz uma série de críticas construtivas ao projeto do então SB2000. Principais pontos destacados são: não ser levado em consideração diferenças socioeconômicas, a amostragem por conglomerados sugerida não era probabilística e portanto não poderia ser expandida para o universo brasileiro, e que havia excesso de índices de avaliação da condição bucal.

Medeiros e Weyne (2001) fizeram, por meio de uma revisão de trabalhos anteriores, análise da prevalência da cárie dentária em países subdesenvolvidos fazendo uma comparação com a situação em países industrializados. Esta revisão mostra que, aos 12 anos, os países que mostraram redução mais expressivas nos últimos 25 anos foram: Dinamarca, Finlândia, Reino Unido, França, Nova Zelândia, Islândia e Espanha. Os autores concluíram que em países em desenvolvimento, como o Brasil, houve uma importante redução do CPOD, embora esta redução não tenha ocorrido de forma homogênea em toda população. Concluíram também que muitas vezes são feitas generalizações de dados obtidos por meio de amostragem de conveniência, obtidas em população urbana, para mostrar uma situação que não representa bem a diversidade social existente no país.

No Estado de São Paulo, com a definição de que seria executado o projeto SB2000, a SES resolveu ampliar o estudo que seria feito no Estado como parte do SB2000, com finalidade de aprimorar a representatividade dos dados ao nível estadual. Para tanto constituiu um Grupo de Trabalho para elaborar esta ampliação e assim criar o projeto "Condições de Saúde Bucal no Estado de São Paulo em 2002" que seria executado concomitantemente ao projeto SB2000. Para sua execução foi feito um convênio entre a SES-SP e a Faculdade de Saúde Pública da Universidade de São Paulo. No Estado de São Paulo, o SB2000 havia sorteado 19 municípios como participantes da amostra da macrorregião sudeste. Neste projeto ficou estabelecida a inclusão de mais 16 municípios perfazendo um total de 35 a participarem da amostragem final. O cálculo da amostra obedeceu aos mesmos critérios propostos no SB2000 Na amostra final foram examinados em todo Estado 16.708 indivíduos, sendo 5.969 escolares de 12 anos. Nesta idade o CPOD médio foi de 2,52. (SÃO PAULO, 2002).

Após o estabelecimento das metas em saúde bucal para o ano 2000, feito em 1981 pela FDI e OMS, foi criado um comitê com representantes da FDI, OMS e IADR (*International Association for Dental Research*) para a criação de metas para o ano 2020. Com finalidade de estabelecer estas metas foi feito um estudo para verificar se os países tinham atingido as metas propostas para o ano 2000. A conclusão foi que, em muitos países as metas foram atingidas e até superadas, porém para uma proporção significativa da população mundial elas estavam longe de ser atingidas. Por isto, resolveu-se que as metas numéricas deveriam ser estabelecidas em nível nacional, regional ou local, dependendo da situação de cada país. Assim, as metas foram mais gerais e não fornecidos valores fixos. Com respeito à cárie dentária aos 12 anos ficou estabelecido "reduzir o CPOD, particularmente o componente C, na idade de 12 anos de X%, com especial atenção aos sub-grupos de alto risco na população, utilizando a distribuição e médias na avaliação" (HOBDELL et al., 2003).

Em 2004, o Ministério da Saúde publicou o relatório "Condições de Saúde Bucal da População Brasileira 2002-2003: Resultados Principais"

(BRASIL, 2004). Este relatório foi resultado do levantamento epidemiológico originalmente chamado de SB2000, que devido a atrasos no cronograma passou a ser chamado então de SB Brasil 2003. A amostra total foi de 108.921 indivíduos, ficando aquém dos 187.500 estimados originalmente do projeto. Com relação as crianças de 12 anos, o total foi de 34.550 gerando um CPOD médio de 2,78.

Frias, Antunes e Narvai (2004) desenvolveram um trabalho para avaliar a precisão e validade de levantamentos epidemiológicos em saúde bucal que utilizam a metodologia padronizada internacionalmente pela OMS. O estudo foi feito como parte do levantamento epidemiológico realizado na cidade de São Paulo que estava integrado ao Projeto SB2000 do Ministério da Saúde. Foram feitos reexames de escolares de 12 e 15 a 19 anos por nove examinadores que participaram do levantamento. As comparações interexaminadores resultaram em uma porcentagem de concordância mínima de 93% com valor da estatística kappa de 0,88. Também foi feita a comparação dos nove examinadores com um "gold standard" obtido pelo consenso entre examinadores e o coordenador do projeto. Como resultado obteve-se sensibilidade e especificidade superiores a 0,95 para todos os examinadores. Os autores concluíram que os indicadores mostraram como bem sucedido o processo de calibração que foi aplicado aos examinadores, embora ressaltem que não existe um "gold standard" verdadeiro para este tipo de estudo.

Em 2004, Abreu, Modena e Pordeus (2004) se propuseram a fazer uma revisão sistemática da cárie dentária em populações residentes na zona rural do Brasil. A busca pelos artigos foi feita nas bases de dados MEDLINE, LILACS e BBO. Dos 32 trabalhos identificados inicialmente nas bases de dados, depois da análise crítica dos trabalhos, foram selecionados apenas 9 trabalhos. Ainda assim, os autores reconheceram que se adotassem o critério de que qualquer tipo de possível viés fosse suficiente para excluir o artigo, eles teriam ficado com apenas um par de trabalhos. Isto mostra a não padronização e falta de critérios metodológicos precisos utilizados na maioria dos levantamentos. Os autores identificaram o uso de técnicas de

amostragem não probabilística como sendo o principal problema metodológico encontrado nos trabalhos. A falta de cálculo amostral também levantou a questão da validade externa dos dados, comprometendo a possível extrapolação dos dados para a população em estudo. Também foi mostrado que a maioria dos trabalhos foi desenvolvida nas regiões Sul e Sudeste, com 89% dos trabalhos utilizados nesta revisão. Isto o que mostrou necessidade de mais estudos epidemiológicos principalmente nas regiões menos desenvolvidas do país. Por tudo isto os autores recomendaram ver com cautela uma revisão feita com estas características. Sugeriram ainda que a população rural deva fazer parte dos novos levantamentos epidemiológicos em nível nacional.

Em trabalho de 2004, utilizando dados das 131 cidades do levantamento epidemiológico de 1998 feito no Estado de São Paulo, Antunes, Narvai e Nugent (2004) fizeram análise das desigualdades da distribuição da cárie na população do estado. Para tanto utilizaram coeficiente de Gini, curva de Lorenz e análise de regressão envolvendo a cárie e variáveis sócio-econômicas. Os resultados mostraram forte correlação entre cárie e fatores socioeconômicos assim como ficou caracterizada uma tendência de polarização na distribuição do CPOD aos 12 anos. Entende-se por polarização o fenômeno de que uma pequena parcela da população é responsável por grande quantidade de dentes cariados, perdidos e restaurados.

Antunes, Jahn e Camargo (2004) em trabalho avaliando desigualdade da distribuição da cárie dentária na população do Estado de São Paulo nos anos de 1998 e 2002 utilizaram dados de 9.327 (1998) e 5.722 (2002) crianças de 12 anos de idade, dos levantamentos epidemiológicos conduzidos pela Secretaria de Estado da Saúde de São Paulo. Como resultados obtiveram que, enquanto o CPOD teve uma redução de 3,72 (1998) para 2,52 (2002), o coeficiente de Gini, que mostra a desigualdade na distribuição (polarização) teve uma elevação de 0,479 para 0,565. Isto mostrou um progresso na redução da cárie, porém, mostrou também que esta redução não ocorreu de maneira igual na população como um todo.

Quanto aos fatores relacionados com a cárie demonstrou-se que um nível sócio-econômico mais alto, tratamento odontológico preventivo, acesso a água fluoretada e educação em saúde bucal se mostraram fatores que influenciaram favoravelmente a redução de cárie.

Roncalli (2006) fez um paralelo entre a epidemiologia e a saúde bucal coletiva. O autor mostrou que construção de modelos de atenção em saúde bucal só pode ser atendida se tivermos um constante acompanhamento da saúde bucal pela utilização da epidemiologia. Sinalizou ainda que os estudos epidemiológicos na área de saúde bucal têm crescido nos últimos anos, em números relativos, acima da média da área de saúde em geral. Ressaltou, ainda, que grande parte da produção científica está concentrada em levantamentos realizados dentro de programas de pós-graduação em saúde coletiva. Foi apresentada também uma revisão histórica dos caminhos da epidemiologia e saúde bucal coletiva onde se analisou a evolução dos levantamentos epidemiológicos de 1986, 1996 e 2003, sua inserção no contexto político e social, e a participação cada vez maior da área de saúde bucal nos congressos de epidemiologia. O autor postulou que há necessidade de que as ferramentas da epidemiologia passem a ser incorporadas como rotina nas políticas de saúde bucal e sejam capazes de agir como modificadoras do padrão de saúde e não como meras ferramentas de quantificação de doenças.

3 OBJETIVOS

3 OBJETIVOS

Geral:

Fazer um estudo retrospectivo dos levantamentos epidemiológicos que utilizaram o índice CPOD como medida de cárie dentária aos 12 anos no Brasil, no período de 1980 a 2005.

Específicos:

- 1. Analisar a evolução do CPOD baseado nos dados históricos dos levantamentos epidemiológicos acima referidos.
- 2. Avaliar criticamente a metodologia empregada nos levantamentos.
- Relacionar os dados de CPOD com: IDH-M (Índice de Desenvolvimento Humano Municipal), tempo, porte populacional do município e fluoretação das águas de abastecimento.

4 METODOLOGIA

Tipo de estudo:

Este estudo foi dividido em duas partes com as seguintes características metodológicas:

- 1- Estudo retrospectivo do CPOD, com dados secundários, coletados individualmente por criança de 12 anos de idade, nos levantamentos epidemiológicos oficiais executados pelo Ministério da Saúde em 1986, 1996 e 2003.
- 2- Estudo ecológico retrospectivo com dados secundários de levantamentos epidemiológicos publicados em revistas indexadas e dados dos levantamentos epidemiológicos oficiais feitos no Brasil em 1986, 1996 e 2003 (Ministério da Saúde), e no Estado de São Paulo em 1998 e 2002 (Secretaria de Estado da Saúde). A unidade de estudo foi cada município brasileiro que possuía dados de CPOD médio de crianças de 12 anos.

Acesso aos dados:

O índice CPOD é uma medida individual da gravidade da cárie dentária. Quando tratado em um conjunto de indivíduos é referido como CPOD médio, indicando a média aritmética dos indivíduos. No presente trabalho o termo CPOD foi utilizado tanto no contexto individual como referindo ao CPOD médio, por facilidade de expressão.

Para o estudo ecológico, com dados médios por município, a busca de levantamentos epidemiológicos de cárie utilizando o CPOD como índice foi feita por pesquisa bibliográfica nas bases de dados Lilacs, Medline, BBO. A opção foi por utilizar informações disponíveis à comunidade científica. Com isto, vários levantamentos ficaram de fora deste estudo devido a sua não divulgação nos meios aqui pesquisados. Três tipos de trabalho não foram acessados: levantamentos não publicados em revistas indexadas;

trabalhos acadêmicos (dissertações, teses, etc.); e levantamentos executados por gestores públicos municipais e estaduais sem divulgação na comunidade científica.

Para a busca nas bases de dados foram utilizados: como descritores (palavras-chave) os termos CPO, DMF (Decayed, Missing and Filled), e como limite a palavra "criança". Estes termos são os convencionados pelas bases de dados para indicar cárie dentária (CPOD) e a idade de 12 anos.

A base de dados da BBO inclui também teses e dissertações. Estas porém não foram utilizadas devido à dificuldade de acesso ao texto completo das mesmas, e à grande repetição de dados de teses que são também publicados como artigos científicos.

Foram critérios de exclusão dos dados publicados:

- Dados anteriores a 1980
- Dados não específicos para o grupo etário de 12 anos
- Dados não descritos em nível de município
- Utilização de outro índice de cárie que não o CPOD baseado em Klein e Palmer (1940)
 - Dados já descritos em artigos ou levantamentos anteriores

Este trabalho não pode ser considerado uma revisão sistemática visto que se fossem adotados os critérios de seleção de artigos para uma revisão sistemática perder-se-ia quase a totalidade dos artigos. Os mesmos, na sua grande maioria, não preenchiam os requisitos metodológicos exigidos por uma revisão sistemática. As principais falhas metodológicas encontradas nos artigos foram:

- Caracterização da população que a amostra pretende representar
- Técnica de amostragem não probabilística

- Falta de cálculo amostral
- Falta de calibração dos examinadores
- Descrição do ambiente onde foram feitos os exames
- Identificação do número de sujeitos avaliados
- Ano efetivo da coleta de dados

Os dados do CPOD médio, por município, dos levantamentos epidemiológicos oficiais foram obtidos da seguinte forma:

- Levantamento nacional de 1986: o relatório deste levantamento (BRASIL, 1988) não divulgou os dados médios por município haja vista que seu objetivo foi descrever os dados por região (Norte, Nordeste, Sudeste, Sul e Centro-Oeste) e para o Brasil. Os dados médios por município foram calculados a partir do banco de dados, contendo os dados primários por indivíduo, fornecido diretamente pelo coordenador do levantamento, o professor Vitor Gomes Pinto.
- Levantamento nacional de 1996: dados por município calculados a partir do banco de dados, contendo os dados primários por indivíduo, obtido do sítio www.datasus.gov.br (BRASIL, 1996).
- Levantamento nacional Saúde Bucal 2003: o relatório deste levantamento (BRASIL, 2004) divulgou os resultados por região e o porte dos municípios. Os dados por município foram calculados a partir do banco de dados, contendo os dados primários por indivíduo, obtido do sítio www.saude.gov.br (BRASIL, 2003)
- Levantamento do Estado de São Paulo de 1998: O relatório deste levantamento (SÃO PAULO, 1998) divulgou os resultados por DIR (Divisão Regional de Saúde) do Estado de São Paulo. Os dados por município foram calculados a partir do banco de dados, contendo dados primários por indivíduo, fornecido por meio da SES-SP pelo professor Antonio Carlos Frias, um dos pesquisadores do levantamento.

Levantamento do Estado de São Paulo de 2002: os dados por município foram extraídos diretamente do relatório "Condições de saúde bucal no Estado de São Paulo em 2002" (SÃO PAULO, 2002).

Os dados médios, por município, dos artigos e dos levantamentos epidemiológicos oficiais foram então transcritos para uma ficha de coleta de dados (figura 1) e posteriormente digitados em um banco de dados criado no Microsoft[®] Office Access 2003 onde cada registro continha a informação do valor de COPD médio para o município. Este registro era relacionado pelo campo "Referência no" a outra tabela do mesmo banco de dados onde eram digitadas as informações da referência bibliográfica de onde os dados se originaram (figura 2).

Registro nº:	Referência nº:
Cidade:	Estado: Ano:
COPD: média:	dp: n:
Água fluoretada (S/N):	Início da fluoretação:
Observação:	

Figura 1 – Ficha de coleta de dados do CPOD de cada artigo.

Referência nº:
Título do artigo:
Autores:
Revista:
Ano:
Observação:

Figura 2 – Entrada de informações da referência bibliográfica de origem dos dados.

Após a digitação de todas as fichas foi feita uma conferência no banco de dados para verificar se não haviam informações duplicadas vindas de artigos diferentes. Isto ocorreu em alguns casos, pois vários levantamentos de dados primários eram utilizados em diferentes artigos para estudos científicos.

Para completar os dados referentes à fluoretação das águas de abastecimento dos municípios (figura1), haja vista que vários artigos não traziam esta informação, foram feitas buscas por outros meios. Para o Estado de São Paulo contou-se com a colaboração da Secretaria Estadual de Saúde. Das cidades que não se conseguiu a informação na literatura ou *internet* foi feito contato pessoal, por telefone, com os responsáveis pelo abastecimento de água no município.

Após o banco de dados do CPOD por município estar completo, este foi exportado para uma planilha do Microsoft[®] Office Excel 2003 onde foram acrescentadas as variáveis: população do município, IDH-M (Índice de Desenvolvimento Humano Municipal) de 1991 e IDH-M de 2000.

A população do município utilizada foi o número de habitantes do município no ano do levantamento. Esta informação foi obtida no sítio www.datasus.gov.br que utiliza dados provenientes dos censos e estimativas populacionais do IBGE. Esta foi a fonte de dados para todas as informações relativas à população brasileira utilizadas em várias análises do presente trabalho.

O objetivo do IDH (Índice de Desenvolvimento Humano), criado em 1990, foi medir o nível de desenvolvimento humano dos países. O IDH leva em conta três componentes: a longevidade (como indicador de saúde), a educação e a renda da população. O IDH-M (Índice de Desenvolvimento Humano - Municipal) é uma adaptação do IDH para ser aplicado aos municípios.

O IDH-M é obtido pela média aritmética de três sub-índices: IDH-Longevidade, IDH-Educação e IDH-Renda. Esta média leva a um valor entre 0 (zero) e 1 (um) sendo que zero significa nenhum desenvolvimento humano e um significa total desenvolvimento humano (PNUD, 2004).

Os dados do IDH-M de 1991 e 2000, foram acessados na página http://www.pnud.org.br/atlas/tabelas/index.php do sítio www.pnud.org.br, mantido pelo Programa das Nações Unidas para o Desenvolvimento, que é um órgão da ONU.

Para o estudo dos dados primários individuais dos levantamentos nacionais oficiais de 1986, 1996 e 2003, foram selecionados somente os registros de dados referentes ao grupo etário de 12 anos com seu respectivo CPOD.

Os dados de 1986, fornecidos pelo professor Vitor Gomes Pinto, e os dados de 2003, obtidos no sítio www.saúde.gov.br estavam em formato de gravação "DBF" (*Data Base Format*) e foram convertidos para planilha do Microsoft[®] Office Excel 2003. Os dados de 1996 obtidos do sítio www.datasus.gov.br já se encontravam no formato do Microsoft[®] Office Excel 2003.

Análise estatística:

Tanto as planilhas com dados médios por município, como as planilhas com dados individuais por criança, foram importadas pelo programa estatístico Statistica versão 7.0 (StatSoft Inc., Tulsa, USA), onde foram executados todos os cálculos estatísticos, exceto média e erro padrão ponderados, e o coeficiente de Gini.

Para a análise dos dados do presente trabalho, além das tradicionais medidas de média aritmética, erro padrão da média (epm) e intervalo de confiança a 95% (IC95%), foram utilizados os seguintes procedimentos estatísticos:

Medida de assimetria da distribuição

Medir a assimetria de uma distribuição significa medir o quanto a distribuição é diferente entre as porções para baixo e para cima da média. Se a distribuição for perfeitamente simétrica (p.ex. a distribuição normal) seu valor será 0 (zero). Valores acima de 0 indicam valores concentrados à esquerda da média e, em geral, a média é maior que a mediana. Valores menores que zero indicam valores concentrados à direita da média e, em geral, a mediana é maior que a média.

Para medir a assimetria da distribuição de CPOD dos dados dos levantamentos epidemiológicos utilizou-se a fórmula (ZAR, 1996):

Assimetria =
$$\frac{n \times \sum (x_i - \overline{x})^3}{(n-1) \times (n-2) \times s^3}$$
 (4.1)

onde: n = número de casos

 \overline{x} = média aritmética s = desvio padrão

Medida de achatamento da distribuição (curtose)

A curtose é uma medida do pico da distribuição em comparação com o pico da distribuição normal. Um valor de curtose acima

de 0 indica um pico mais acentuado, e portanto, valores mais concentrados (distribuição leptocúrtica) do que a distribuição normal, já um valor abaixo de 0 indica uma distribuição mais "achatada" (distribuição platicúrtica) que a distribuição normal.

Para medir a curtose da distribuição de CPOD dos dados dos levantamento epidemiológico utilizou-se a fórmula a seguir (ZAR, 1996):

Curtose =
$$\frac{n(n+1)\sum (x_i - \overline{x})^4 - 3\left[\sum (x_i - \overline{x})^2\right]^2 (n-1)}{(n-1)(n-2)(n-3)_S^4}$$
(4.2)

onde: n = número de casos

 \bar{x} = média aritmética s = desvio padrão

Curva de Lorenz e Coeficiente de Gini:

A curva de Lorenz é utilizada para mostrar graficamente o grau de desigualdade da distribuição de um fator na população comparando com uma distribuição uniforme deste fator na população (figura 3).

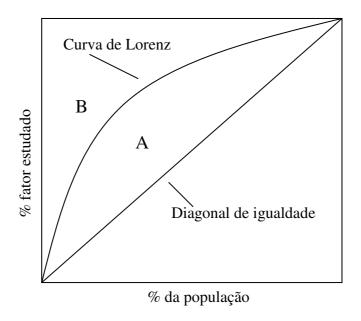


Figura 3 – Diagrama mostrando a curva de Lorenz.

O coeficiente de Gini é calculado por uma razão das áreas da curva de Lorenz. Se a área entre a diagonal de igualdade e a curva de Lorenz é A, e a área acima da curva de Lorenz é B, então o coeficiente de Gini é igual a A/(A+B). Este cálculo resulta em um valor entre 0 e 1, onde 0 indica a perfeita igualdade de distribuição na população enquanto o valor 1 representa a total desigualdade. A perfeita igualdade é obtida se todos elementos da população têm o mesmo valor de ocorrência do fator estudado, já a total desigualdade ocorre se um único elemento da população é o responsável pela totalidade da ocorrência do fator. Embora tenha sido desenvolvido para aplicação na área de Economia, visando descrever desigualdade na distribuição de renda, é utilizado em todas as áreas, incluindo a Odontologia (ANTUNES; NARVAI; NUGENT, 2004; ANTUNES; JAHN; CAMARGO, 2004).

Como o programa Statistica v. 7.0 não executa o cálculo do coeficiente de Gini, os cálculos foram feitos em planilha montada no programa Microsoft[®] Office Excel 2003. O cálculo do coeficiente de Gini foi feito utilizando-se a seguinte fórmula (BROWN, 1994):

$$G = \left| 1 - \sum_{i=0}^{n-1} (X_{i+1} - X_i)(Y_{i+1} + Y_i) \right|$$
 (4.3)

onde: G = coeficiente de Gini

X = proporção acumulada da variável populaçãoY = proporção acumulada da variável estudada

Média aritmética ponderada e erro padrão ponderado

Os três levantamentos epidemiológicos aqui analisados utilizaram processo de pré-estratificação no plano amostral. Nos levantamentos de 1986 e 1996 a pré-estratificção foi por região geográfica, e no de 2003 foi por região e porte populacional dos municípios. Nos levantamentos também utilizou-se amostragem por conglomerados, isto é, sorteava-se grupos de criancas de 12 anos anos, por exemplo: cidades e escolas.

Quando se utiliza este tipo de amostragem (estratificada e por conglomerados), a média aritmética simples é um estimador não enviesado da média populacional dos estratos selecionados. Já quando os dados dos estratos são agregados para se estimar a média populacional geral, se não houver proporcionalidade entre os tamanhos das amostras com os tamanhos das populações que elas representam, a média aritmética simples é um estimador enviesado da média populacional geral. Um estimador não enviesado da média populacional geral é a média aritmética ponderada pela população representada em cada estrato (HANSEN; HURWITZ; MADOW, 1953; COCHRAN, 1965):

$$\overline{\chi}_{w} = \frac{\sum (\overline{\chi}_{i} \times W_{i})}{\sum W_{i}}$$
 (4.4)

onde: $\overline{\chi}_{w}$ = média geral

 $\overline{\chi}_i$ = média de cada estrato

 W_i = peso de ponderação de cada estrato

Também para se estimar a variância, e conseqüentemente o erro padrão da média, é necessário levar em conta o método de amostragem. O cálculo do erro padrão da média como se a amostra fosse aleatória simples produz viés na estimativa em levantamentos com amostragem complexa. Geralmente amostragens estratificadas tendem a resultar em um menor erro padrão quando calculado levando em conta os estratos do que quando calculados como amostragem aleatória simples. Já a seleção da amostra por meio de conglomerados tende a aumentar o erro padrão, sendo maior este aumento quanto maior for o tamanho do conglomerado (HANSEN; HURWITZ; MADOW, 1953). Assim, tanto para a estimativa da média como do erro padrão da média de dados agregados, deve-se levar em consideração o plano de amostragem.

Para o cálculo dos parâmetros estatísticos dos dados agregados utilizou-se o módulo "Complex Samples" do programa estatístico SPSS for Windows versão 13.0 (SPSS Inc., USA). Neste módulo do programa descreve-se o modelo de amostragem utilizado no levantamento, indicando as variáveis que definem os estratos, os conglomerados e o peso de ponderação de cada elemento. Como regra de ponderação, na definição do peso de ponderação de cada elemento amostral, a soma dos pesos de todos elementos da amostra deve totalizar o número de elementos da população representada.

Análise de regressão múltipla

Para relacionar os fatores IDH-M, tempo, porte populacional do município e fluoretação das águas de abastecimento com o CPOD médio do município foi utilizada análise de regressão múltipla tendo como variável dependente o CPOD e independentes os outros fatores. A forma de condução da análise de regressão foi "backward stepwise", neste modo todas variáveis são incluídas no modelo inicial e, a cada passo, são retiradas as variáveis sem influência significativa. Neste procedimento foi adotado nível de significância de 5%.

5 RESULTADOS E DISCUSSÃO

5 RESULTADOS E DISCUSSÃO

Neste capítulo, foram apresentados e discutidos primeiramente os dados e análises dos levantamentos epidemiológicos nacionais de 1986, 1996 e 2003. Na seqüência foi feita uma comparação entre os três levantamentos, e na última parte foram mostrados e discutidos os resultados e análises do estudo ecológico por município do período de 1980 a 2005.

5.1 Levantamento epidemiológico de 1986

O levantamento epidemiológico nacional de 1986 estimou a prevalência de cárie dentária, das doenças periodontais, das necessidades e presença de prótese total e da procura por serviços odontológicos. Neste estudo foram considerados 10 grupos etários (6, 7, 8, 9, 10, 11, 12 anos, de 15 a 19 anos, de 35 a 44 anos e de 50 a 59 anos) (BRASIL, 1988). No presente estudo foram analisados apenas os dados do CPOD aos 12 anos.

O levantamento de 1986 teve como grande mérito o fato de ter sido o primeiro com abrangência nacional e ter utilizado metodologia criteriosa dentro dos recursos disponíveis à época. Destaca-se também que foi o único até hoje que estratificou os dados por renda familiar e verificou se a criança havia recebido atendimento odontológico no ano anterior.

A principal limitação que se nota no levantamento é que a coleta de dados foi limitada à zona urbana e feita em 16 capitais de estados com objetivo de representar as cinco regiões do país (Norte, Nordeste, Sudeste, Sul e Centro-Oeste). A escolha das 16 capitais se deu por conveniência, sendo selecionadas as capitais que possuíam representação da Fundação Serviços de Saúde Pública (FSSP). Não foram incluídas no levantamento cidades de pequeno e médio porte e habitantes da zona rural. O relatório final foi bem criterioso ao expor estas limitações e deixou claro qual a

população representada pela amostra. A coleta apenas nas capitais foi justificada pela facilidade de acesso, e que, levantamentos anteriores não verificaram diferença na prevalência de cárie em função do porte do município. Para as crianças a seleção da amostra foi feita em escolas de 1º. e 2º. graus (BRASIL, 1988).

Quanto ao tamanho da amostra, foi estabelecido que em cada cidade seria amostrada uma fração do total de alunos matriculados na cidade. As frações de amostragem não foram iguais para todas cidades, variando de 1/500 a 1/200 de acordo com cada região (tabela 1). Os autores não citaram no relatório qual o critério utilizado para definir estas frações.

Tabela 1 – Fração de amostragem, população estimada, amostra estimada e amostra real no levantamento epidemiológico de 1986.

Cidade	Est.	Fração de amostra -gem*	Pop. de 12 anos**	Amostra estima- da	Amostra real*	Região	Amostra estima- da	Amostra real*
Manaus	AM	1/200	20.400	102	64	Norte	202	248
Belém	PA	1/200	19.948	100	184	Norte	202	240
Maceió	AL	1/400	11.399	28	36			
São Luiz	MA	1/400	6.255	16	39			
Fortaleza	CE	1/400	34.541	86	85	Namalaata	004	445
João Pessoa	РВ	1/400	9.387	23	28	Nordeste	324	415
Recife	PE	1/400	27.172	68	83			
Salvador	ВА	1/400	41.025	103	144			
Belo Horizonte	MG	1/200	39.185	196	325	Sudeste	516	714
São Paulo	SP	1/500	159.936	320	389	0.0.0.00		
Curitiba	PR	1/200	23.606	118	118			
Florianópolis	SC	1/200	3.915	20	16	Sul	237	267
Porto Alegre	RS	1/200	19.929	100	133			
Brasília	DF	1/300	29.784	99	61			
Goiânia	GO	1/300	17.976	60	64	Centro- Oeste	183	148
Cuiabá	MT	1/300	7.010	23	23			
TOTAL			471.464				1.462	1.792

^{* -} BRASIL (1988)

O sorteio das crianças deu-se em dois estágios: primeiro foram sorteadas escolas dentro de cada município (conglomerados com probabilidade proporcional ao tamanho da escola) e, em seguida, baseado em listagem dos alunos das escolas, foram sorteados os alunos a serem examinados.

Para o cálculo do número de escolas a serem sorteadas na primeira etapa da amostragem foi utilizada a seguinte expressão:

^{** -} fonte: IBGE

$$n_{escolas} = \frac{N \times f}{r} \tag{5.1}$$

onde: N = número total de crianças matriculadas no município f = fração de amostragem para o município r = número de alunos a ser examinado por escola

Por razões de ordem prática foi estabelecido um número fixo de 120 alunos por escola. Estas 120 crianças possuíam idades entre de 6 a 12 anos, e não somente 12 anos.

Analisando o levantamento de 1986, Oliveira (2006) fez uma série de críticas à metodologia do mesmo, sendo uma das principais a falta de clareza no critério para estabelecimento do tamanho da amostra.

A amostra final ficou constituída de 22.713 sujeitos de todos grupos etários, sendo 1.792 crianças de 12 anos. O resultado geral, do CPOD aos 12 anos, pode ser observado na figura 4 e tabela 2. Nesta análise os dados foram agrupados independentemente da representatividade de cada município ou região com relação à população total do país.

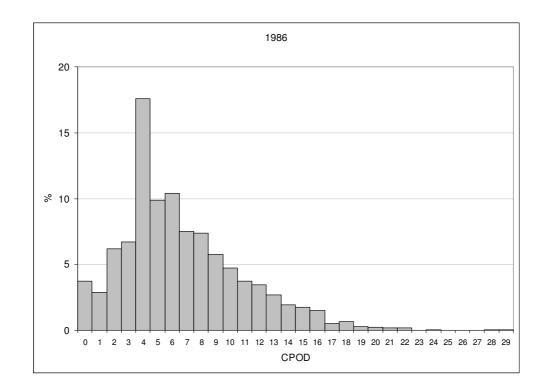


Figura 4 – Histograma da distribuição percentual do CPOD das 1.792 crianças de 12 anos do levantamento epidemiológico de 1986.

Tabela 2 – Parâmetros do CPOD das 1.792 crianças de 12 anos do levantamento epidemiológico de 1986.

C	POD 1986
média	6,65
dp	4,17
epm	0,10
mediana	6,00
IC 95%	6,46 - 6,84
assimetria	0,97
curtose	1,24
coef. Gini	0,34

Pelo histograma pode-se observar que a distribuição teve relativa semelhança com a distribuição normal, com destaque para o valor 4 como sendo o de maior freqüência (17,4%). A mediana da distribuição foi 6,00, um valor muito próximo da média, o que mostra uma razoável simetria na distribuição embora a medida de assimetria apresente um valor maior que zero (0,97) indicando uma maior concentração de valores abaixo da média.

O CPOD médio geral foi 6,65 e com distribuição homogênea ao longo da população (coeficiente de Gini = 0,34). Uma parcela muito pequena (3,7%) das crianças tinham CPOD zero.

Por ter trabalhado com amostra de grande tamanho, o erro padrão da média foi pequeno (0,10), o que leva a um intervalo de confiança estreito (6,46 a 6,84), embora o desvio padrão tenha sido grande (4,17).

O valor da curtose de 1,24 demonstrou uma tendência de pico mais acentuado que na distribuição normal, que é o que ocorre no valor de CPOD 4 (quatro).

O relatório oficial do levantamento descreveu os dados do CPOD, dos vários grupos etários, por região, faixa de renda e o total geral para o Brasil. Esta descrição foi feita pelo CPOD e seus componentes C, P e O (BRASIL, 1988).

Os resultados obtidos por cidade, macrorregião e total para o país estão dispostos na tabela 3. Deve-se lembrar que o objetivo do levantamento foi obter o CPOD médio por macrorregião e para o país. A amostra não foi coletada com objetivo de representar cada município individualmente e os resultados foram aqui relatados por município apenas para maior detalhamento das informações.

Embora o levantamento não tivesse por objetivo representar cada município, verificou-se grande variabilidade entre eles, mesmo dentro da mesma região geográfica (Salvador = 3,76 e Maceió = 13,81). Isto demonstra a necessidade da realização de levantamentos epidemiológicos específicos, além dos levantamentos de caráter geral, para identificar características peculiares de cada município.

Tabela 3 – CPOD médio por município, região e para o país, obtido no levantamento epidemiológico de 1986.

Cidade	Estado	Estado	Estado	Estado	n	CPOD*		- Região	n	CPOD*	
Cluade	Estado	n	média	epm	negiao	11	média	epm			
Manaus	AM	64	6,81	0,49	Norte	248	7,50	0,24			
Belém	PA	184	7,73	0,27	None	240	7,30	0,24			
Maceió	AL	36	13,81	0,62	Nordeste	415	6,90	0,22			
São Luís	MA	39	5,95	0,53							
Fortaleza	CE	85	7,74	0,51							
João Pessoa	РВ	28	7,04	0,59							

Recife	PE	83	8,89	0,42				
Salvador	ВА	144	3,76	0,19				
Belo Horizonte	MG	325	5,33	0,18	Sudeste	714	5,95	0,14
São Paulo	SP	389	6,47	0,21	Oudeste	714	5,55	0,14
Curitiba	PR	118	6,81	0,31				
Florianópolis	SC	16	13,94	1,31	Sul	267	6,31	0,26
Porto Alegre	RS	133	4,96	0,32				
Brasília	DF	61	7,98	0,53				
Goiânia	GO	64	8,84	0,57	Centro- Oeste	148	8,53	0,35
Cuiabá	MT	23	9,09	0,76				
		BRAS	SIL			1.792	6,65	0,10

^{* -} baseado nos dados primários fornecidos pelo prof. Vitor Gomes Pinto

A tabela 4 mostra os dados estratificados por região e renda familiar. O levantamento mostrou que no o Brasil havia uma tendência de leve diminuição do CPOD quanto maior era a renda familiar (figura 5).

Tabela 4 – CPOD médio por região e renda familiar, no Brasil, obtidos no levantamento epidemiológico de 1986*.

Renda familiar							Geral		
Região	até 2 SM		3 a 4 SM		5 ou +	5 ou + SM		Gerai	
	CPOD	n	CPOD	n	CPOD	n	CPOD	n	
Norte	7,18	125	7,16	80	9,05	43	7,50	248	
Nordeste	6,98	331	6,11	62	7,91	22	6,90	415	
Sudeste	6,53	285	6,05	226	5,02	203	5,95	714	
Sul	6,59	182	6,21	61	4,46	24	6,31	267	
Centro- Oeste	8,72	100	9,08	26	7,00	22	8,53	148	
BRASIL	6,98	1.023	6,45	455	5,90	314	6,65	1.792	

^{* -} baseado nos dados primários fornecidos pelo prof. Vitor Gomes Pinto

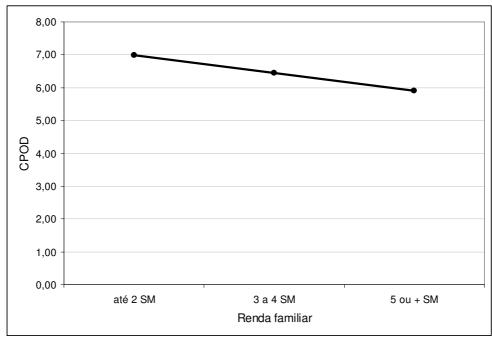


Figura 5 – CPOD médio no Brasil estratificado por renda familiar, em salários mínimo, baseado no levantamento epidemiológico de 1986.

O resultado geral de 6,65 para o Brasil, obtido pela média aritmética geral dos 1.792 valores de CPOD de cada criança, foi o valor de referência divulgado no relatório oficial do levantamento. O mesmo aconteceu com os dados por região e renda familiar (BRASIL, 1988).

Um viés observado nos cálculos de CPOD médio, quando os dados foram agrupados para a estimativa do CPOD médio para as regiões e o país, foi o fato da média para os dados agrupados ter sido feita sem levar em conta a proporcionalidade do tamanho da amostra com relação ao tamanho da população que ela representa. Para que isto pudesse ter sido feito sem levar a um viés seria necessário que o tamanho da amostra de cada estrato (região) fosse proporcional ao tamanho da população do estrato (HANSEN; HURWITZ; MADOW, 1953). Isto quer dizer que, se uma região

possuía 20% da população do país ela deveria ter contribuído com 20% da amostra geral para o Brasil.

Quando não ocorre esta proporcionalidade entre amostra e população, se uma região de alto CPOD possui uma proporção maior na amostra do que uma região de baixo CPOD, ao se calcular o CPOD médio para o país, sem levar este fato em consideração, o mesmo terá um viés para mais.

Na área de Economia é comum realizar este tipo de levantamento e ajustar os resultados, quando agrupados, relacionando o tamanho da amostra com o tamanho da população que ele representa. Os pesos amostrais são calculados em função de estimativas para o total de pessoas em recortes iguais as projeções populacionais (IBGE, 2004).

No caso do levantamento de 1986 a amostra foi calculada com intenção de representar cada região. Ao se calcular a média para o Brasil esta deveria levar em conta que a proporção da amostra em cada região é diferente da proporção da população de crianças de 12 anos de cada região. Além disto, poderia ter sido feito o ajuste entre o tamanho da amostra e o tamanho da população de cada município participante do levantamento.

Visando ajustar o cálculo das médias e erros padrões ao tamanho da população de cada município e região foi calculado o CPOD ponderado pela população representada. Para estimar o número de crianças de 12 anos na população urbana dos municípios e das regiões foram utilizados os dados médios dos censos populacionais de 1980 e 1991 executados pelo IBGE. Foi utilizada a população urbana porque o levantamento amostrou apenas crianças dos centros urbanos.

Para fazer a ponderação foi necessário estabelecer o peso de ponderação para cada elemento da amostra. No caso, o peso foi determinado pela seguinte expressão:

$$Peso = \frac{N_{município}}{n_{município}} \times \frac{N_{região}}{N_{municípios_região}}$$
(5.2)

onde: $N_{\it município}$ = tamanho da população do município $n_{\it município}$ = tamanho da amostra do município $N_{\it região}$ = tamanho da população da região $N_{\it municípios_região}$ = tamanho da população dos municípios amostrados na região

Utilizando esta fórmula a somatória dos pesos de ponderação das 1.792 crianças totalizou 2.132.830, que era a população estimada de crianças de 12 anos, nas áreas urbanas, do Brasil no ano de 1986 (tabela 5).

Ainda na tabela 5, pode-se observar qual seria a porcentagem de crianças de cada município que amostra deveria ter para manter proporcionalidade com a região e o país. Verifica-se que enquanto o município de Belém participou com 10,27% da amostra, para manter proporcionalidade ele deveria ter contribuído com apenas 2,76% da amostra. Isto mostra que ao ser feita a média sem ponderação este município influencia a média geral mais do que deveria. Já o município de São Paulo estava sub-representado, pois deveria ter participado com 37,93% da amostra e participou com 21,71%.

Tabela 5 – Descrição da amostra coletada, porcentagem ideal para manter proporcionalidade com a população, e peso atribuído a cada criança para correção da desproporcionalidade, no levantamento de 1986.

		Am	ostra		População	k	% ideal	Peso
Região	Município	n	%	município	dos municípios da região	região	de crianças na amostra	atribuído a cada criança
Norte	Manaus	64	3,57	20.400	40.348	118.934	2,82	939,6
Š	Belém	184	10,27	19.948	40.346	110.934	2,76	319,6
	Maceió	36	2,01	11.399			2,27	1.347,6
	São Luis	39	2,18	6.255			1,25	682,6
Nordeste	Fortaleza	85	4,74	34.541	100 770	550.005	6,89	1.729,5
Noro	João Pessoa	28	1,56	9.387	129.776	552.335	1,87	1.426,8
	Recife	83	4,63	27.172			5,42	1.393,3
	Salvador	144	8,04	41.025			8,19	1.212,5
Sudeste	Belo Horizonte	325	18,14	39.185	100 101	1 007 110	9,29	609,8
Sud	São Paulo	389	21,71	159.936	199.121	1.007.118	37,93	2.079,5
	Curitiba	118	6,58	23.606			6,99	1.262,6
Sul	Florianópolis	16	0,89	3.915	47.450	299.478	1,16	1.544,3
	Porto Alegre	133	7,42	19.929			5,90	945,7
este	Brasília	61	3,40	29.784			3,95	1.381,5
Centro-Oe	Goiânia	64	3,57	17.976	54.770	154.965	2,38	794,7
Cen	Cuiabá	23	1,28	7.010			0,93	862,4
-	TOTAL	1.792	100,00	471.464	471.464	2.132.830	100,00	-

^{*}população urbana de crianças de 12 anos, estimada em1986, fonte: IBGE ** para manter proporcionalidade com a população representada

A tabela 6 mostra os resultados do levantamento de 1986 ajustados para o desenho amostral executado.

Para o cálculo do erro padrão da média, além do peso de ponderação, existe influência do método de seleção da amostra, que no caso foi por conglomerados (escolas). Como nas planilhas de dados primários obtidas para os cálculos aqui executados não havia indicação a que conglomerado cada criança pertencia não foi possível levar em consideração este fator, assim, os dados de erro padrão mostrados na tabela 6 podem estar subdimensionados.

Tabela 6 – Média, erro padrão da média, e intervalo de confiança a 95% para o CPOD, do levantamento de 1986, fazendo a ponderação da amostra em relação a população representada.

Região		CPOD*				
	n	média	epm	IC 95%		
Norte	248	7,27	0,28	6,71 - 7,82		
Nordeste	415	7,12	0,23	6,66 - 7,58		
Sudeste	714	6,25	0,18	5,90 - 6,59		
Sul	267	6,62	0,28	6,07 - 7,17		
Centro-Oeste	148	8,41	0,36	7,70 - 9,11		
BRASIL	1.792	6,74	0,11	6,51 - 6,96		

^{* -} baseado nos dados primários fornecidos pelo prof. Vitor Gomes Pinto

Na tabela 7 foi feita a comparação entre os parâmetros obtidos com e sem levar em consideração o desenho amostral. O CPOD total do Brasil passou a ser 6,74, contra um valor sem ponderação de 6,65, um aumento de 1,3%.

Tabela 7 – Comparação do CPC	D calculado	sem e	com	ponderação	no
levantamento epidemiológico de 19	86*.				

Região -	Sem pon		Com pon	deração	dif.	dif. %
negiao -	média	epm	média	epm	uii.	uii. 76
Norte	7,50	0,24	7,27	0,28	-0,23	-3,1
Nordeste	6,90	0,22	7,12	0,23	0,22	3,2
Sudeste	5,95	0,14	6,25	0,18	0,30	5,0
Sul	6,31	0,26	6,62	0,28	0,31	4,9
Centro-Oeste	8,53	0,35	8,41	0,36	-0,12	-1,4
BRASIL	6,65	0,10	6,74	0,11	0,09	1,3

^{* -} baseado nos dados primários fornecidos pelo prof. Vitor Gomes Pinto

Pode-se dizer que a diferença, ao ser feita a ponderação pelo tamanho da população, foi muito pequena e, portanto, desnecessário se fazer tal ajuste. A diferença foi pequena porque neste levantamento houve uma relativa proporcionalidade entre a população das macrorregiões e o tamanho das amostras (tabela 5). Esta proporcionalidade ocorreu porque o tamanho da amostra foi determinado por uma fração do total de alunos matriculados na cidade. Embora as frações não tenham sido iguais para todas as cidades, variando de 1/500 a 1/200 (tabela 1), isto levou a que as regiões mais populosas contassem com maior tamanho de amostra.

Outro fator que contribuiu para a pequena diferença entre a média ponderada e a sem ponderação foi que, com exceção dos municípios de Maceió e Florianópolis, não houve grande heterogeneidade entre os CPOD's médios dos municípios e regiões (tabela 3). Quanto maior fosse a heterogeneidade entre os municípios e as regiões maior seria a possibilidade de aumento do viés no cálculo sem ponderação.

O fato de se optar por um tamanho de amostra proporcional à população trás vantagens e desvantagens. A principal vantagem é ter uma amostra que permite cálculos diretos dos parâmetros estatísticos por região

simplesmente agrupando os sujeitos de cada cidade. A desvantagem é que o aumento do tamanho da amostra em grandes populações não é acompanhado de aumento na precisão da medida na mesma proporção. Se utilizarmos o erro padrão da média (epm) como medida de precisão da média da população, o epm é dado por:

$$epm = \frac{dp}{\sqrt{n}} \tag{5.3}$$

A cada vez que se aumenta o tamanho da amostra em "x" vezes temse o epm \sqrt{x} vezes menor, assim uma amostra 4 vezes maior leva a um epm apenas 2 vezes menor. Provavelmente deveu-se a este fato que no levantamento de 1986 tenha sido adotada uma proporção menor (1/500) para as regiões mais populosas, e maior (1/200) para as menos populosas. Isto reduz a necessidade de uma amostra maior, porém implica em cuidados para verificar se há necessidade de ajustes nos cálculos dos dados agrupados.

Os pesquisadores do levantamento de 1986 devem ser enaltecidos por sua capacidade de terem executado este primeiro levantamento de abrangência nacional com tão poucos recursos financeiros disponíveis. Acrescenta-se o fato de, neste levantamento, ter sido feita a estratificação por nível sócio-econômico, característica única entre os três levantamentos nacionais.

5.2 Levantamento epidemiológico de 1996

O levantamento epidemiológico de 1996 foi o segundo levantamento epidemiológico de âmbito nacional, tendo sido realizado por uma parceria entre o Ministério da Saúde, Associação Brasileira de Odontologia (ABO-Nacional), Conselho Federal de Odontologia (CFO) e as Secretarias Estaduais de Saúde. O objetivo foi verificar as alterações ocorridas no perfil da cárie dentária, 10 anos após o levantamento de 1986.

Sua abrangência foi menor, pois foram objeto do estudo apenas as crianças dos grupos etários de 6, 7, 8, 9, 10, 11 e 12 anos. A coleta da amostra foi feita em escolas públicas e privadas das 26 capitais estaduais e do Distrito Federal.

O tamanho da amostra foi determinado baseando-se na recomendação da OMS, que determina que em locais onde a prevalência de cárie é alta ou moderada, o exame de 40 a 50 indivíduos por idade é suficiente para se conhecer o quadro de saúde/doença da população (OMS, 1991). Decidiu-se que a amostra seria composta de 40 crianças por escola, de 4 escolas de cada capital de unidade federativa para cada um dos 7 grupos etários. Assim, foram examinadas um total de 30.240 crianças sendo 4.320 de 12 anos de idade, 160 em cada cidade. O objetivo da amostragem foi estimar o CPOD médio para cada capital de unidade federativa, representando posteriormente as regiões geográficas e o Brasil.

Para seleção das escolas foi definido que as quatro escolas de cada cidade seriam aleatoriamente selecionadas seguindo o seguinte critério: uma escola de periferia (pública), uma escola de bairro (pública) e duas escolas do centro (uma pública e uma privada).

Visando garantir a consistência entre os resultados dos examinadores foi feita uma calibração entre dos mesmos. Para a execução da calibração, foi definido um dentista pela Área Técnica de Saúde Bucal, que calibrou um Coordenador Estadual de Saúde Bucal em cada região. Na seqüência estes

coordenadores calibraram os Coordenadores Estaduais de sua região, que foram os responsáveis pela calibração das equipes na sua capital, segundo o critério para o exame e regras para o registro. Foram calibradas 108 equipes de examinadores constituídas de um dentista, um anotador e um monitor indicado pela Associação Brasileira de Odontologia (ABO).

O resultado geral do CPOD das 4.320 crianças de 12 anos está mostrado na figura 6 e na tabela 8.

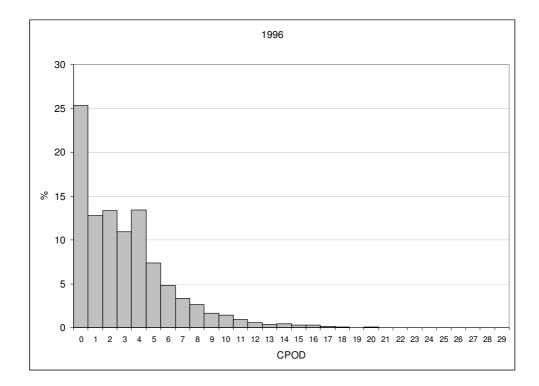


Figura 6 – Histograma da distribuição percentual do CPOD das 4.320 crianças de 12 anos do levantamento epidemiológico de 1996.

Tabela 8 – Parâmetros do CPOD das 4.320 crianças de 12 anos do levantamento epidemiológico de 1996.

CPOD 1996					
média	3,06				
dp	3,12				
epm	0,05				
mediana	2,00				
IC 95%	2,97 - 3,15				
assimetria	1,50				
curtose	3,00				
coef. Gini	0,53				

Pelo histograma pode-se observar na distribuição dos dados que não houve semelhança com a distribuição normal, com destaque para o valor 0 (zero) como sendo o de maior freqüência (25,3%). O segundo valor de maior freqüência foi o 4 (13,4%). A mediana da distribuição foi 2,00, um valor bem abaixo da média (3,06), o que indicou uma assimetria na distribuição, que foi comprovada pelo valor da medida de assimetria de 1,50, indicando uma maior concentração de valores abaixo da média.

Por ter trabalhado com amostra de grande tamanho o erro padrão da média é pequeno (0,05) o que levou a um estreito intervalo de confiança da média (2,97 - 3,15). O desvio padrão (3,12) mostrou uma grande variabilidade dos dados, fato que já havia ocorrido no levantamento de 1986.

O valor da curtose (3,0) demonstrou uma tendência de pico mais acentuado que na distribuição normal, o que pode ser claramente notado no valor 0.

O coeficiente de Gini com valor 0,53 mostrou desigualdade na distribuição do CPOD, o que pode ser comprovado visualmente na figura 6 pela grande concentração de dados nos baixos valores de CPOD. Estes resultados demonstraram uma tendência de polarização da cárie, onde se

observa uma grande parcela da população com reduzido índice de cárie, e uma pequena parcela com altos índices.

Quando comparados com os resultados do levantamento de 1986, os resultados de 1996 mostraram uma grande redução do CPOD médio, passando de 6,65 para 3,06, uma diminuição de 54,0%. Esta redução não se deu de modo uniforme na população, pois se verificou um aumento do coeficiente de Gini de 0,34 para 0,53.

Os resultados oficiais divulgados por cidade, região e total para o país estão dispostos na tabela 9.

Tabela 9 – CPOD por município, região e para o país, obtido no levantamento epidemiológico de 1996*.

			CPO	DD D			CP	 DD
Cidade	Estado	n	média	epm	- Região	n	média	epm
Belém	PA	160	4,49	0,26				
Boa Vista	RR	160	6,30	0,34				
Macapá	AP	160	2,56	0,21				
Manaus	AM	160	2,54	0,19	Norte	1.120	4,27	0,11
Porto Velho	RO	160	4,99	0,33				
Rio Branco	AC	160	4,37	0,29				
Palmas	TO	160	4,62	0,31				
Aracaju	SE	160	1,50	0,15				
Fortaleza	CE	160	2,34	0,18				
João Pessoa	PB	160	3,94	0,25				
Maceió	AL	160	2,89	0,23				
Natal	RN	160	3,78	0,26	Nordeste	1.440	2,88	0,08
Recife	PE	160	2,96	0,23				
Salvador	BA	160	1,52	0,19				
São Luís	MA	160	3,51	0,24				
Teresina	PI	160	3,44	0,25				
Belo Horizonte	MG	160	2,41	0,20				
Rio de Janeiro	RJ	160	2,09	0,17	Sudeste	640	2,06	0,11
São Paulo	SP	160	2,28	0,20	Oddesic	040	2,00	0,11
Vitória	ES	160	1,47	0,16				
Curitiba	PR	160	2,23	0,18				
Florianópolis	SC	160	2,83	0,19	Sul	480	2,41	0,09
Porto Alegre	RS	160	2,16	0,21			,	,
Brasília	DF	160	1,90	0,19				
Campo Grande	MS	160	2,95	0,20	Centro-	640	2,85	0,11
Cuiabá	MT	160	3,29	0,23	Oeste		•	•
Goiânia	GO	160	3,27	0,24				
		BRAS		4.320	3,06	0,05		

^{* -} BRASIL (1996)

Seguindo o mesmo raciocínio citado anteriormente, existe um viés causado pelo agrupamento da amostra sem levar em conta sua proporcionalidade com a população que representa. O CPOD médio, por região e para o país, deveria ter sido calculado ponderando o peso da população de cada capital, pois a amostra foi determinada para representar

cada uma delas. Neste levantamento, devido ao fato da amostra ter sido de mesmo tamanho em todos os municípios independentemente de sua população, a média geral dos dados agrupados sem ponderação (3,06) representa o CPOD médio das capitais do país e não o CPOD médio das crianças do país.

Visando ajustar os cálculos das médias e erros padrão ao tamanho da população de cada município e região foi calculado o CPOD ponderado pelo tamanho da população representada. Para estimar o número de crianças de 12 anos na população urbana dos municípios e das regiões foram utilizados os dados médios dos censos populacionais de 1991 e 2000 executados pelo IBGE. Foi utilizada a população urbana porque o levantamento amostrou apenas crianças dos centros urbanos.

Para estabelecer o peso de ponderação de cada elemento da amostra foi utilizada a fórmula 5.2. Como resultado da aplicação da fórmula a somatória dos pesos de ponderação das 4.320 crianças totalizou 2.601.330, que era a população estimada de crianças de 12 anos nas áreas urbanas do Brasil no ano de 1996 (tabela 10).

Observando-se qual seria a porcentagem de crianças de cada município que amostra deveria ter para manter proporcionalidade com a região e o país, verifica-se que enquanto o município de Palmas participou com 3,70% da amostra, para manter proporcionalidade ele deveria ter contribuído com apenas 0,16% da amostra. Isto mostra que ao ser feita a média sem ponderação, este município influenciou a média geral cerca de 20 vezes mais do que deveria. Já o município de São Paulo estava sub-representado pois deveria ter participado com 24,87% da amostra, e participou com os mesmos 3,70%. Por isso, no ajuste pelo peso de ponderação o valor para Palmas foi 26,4 e para São Paulo 4.043,8.

Tabela 10 – Descrição da amostra coletada, porcentagem ideal para manter proporcionalidade com a população, e peso atribuído a cada criança para correção da desproporcionalidade, no levantamento de 1996*.

		Am	ostra		População*	*	% ideal de		
Região	Município	n	%	município	municípios da região	região	crianças na amostra***	atribuído a cada criança	
	Belém	160	3,70	22.463			2,24	364,2	
	Boa Vista	160	3,70	3.676			0,37	59,6	
Φ	Macapá	160	3,70	5.398			0,54	87,5	
Norte	Manaus	160	3,70	27.533	71.400	185.224	2,75	446,4	
_	Porto Velho	160	3,70	6.011			0,60	97,5	
	Rio Branco	160	3,70	4.693			0,47	76,1	
	Palmas	160	3,70	1.626			0,16	26,4	
	Aracaju	160	3,70	9.322			1,28	208,7	
	Fortaleza	160	3,70	41.548			5,72	930,2	
ø.	João Pessoa	160	3,70	11.683			1,61	261,6	
este	Maceió	160	3,70	14.696			2,02	329,0	
Nordeste	Natal	160	3,70	14.083	193.593	693.515	1,94	315,3	
Z	Recife	160	3,70	27.108			3,73	606,9	
	Salvador	160	3,70	47.484			6,54	1.063,1	
	São Luís	160	3,70	12.983			1,79	290,7	
	Teresina	160	3,70	14.686			2,02	328,8	
Φ	Belo Horizonte	160	3,70	40.391			5,88	955,7	
Sudeste	Rio de Janeiro	160	3,70	92.700	309.371	1.171.227	13,49	2.193,4	
S	São Paulo	160	3,70	170.903			24,87	4.043,8	
	Vitória	160	3,70	5.377			0,78	127,2	
_	Curitiba	160	3,70	26.757			6,89	1.120,6	
Sul	Florianópolis	160	3,70	5.220	53.662	359.599	1,34	218,6	
	Porto Alegre	160	3,70	21.685			5,59	908,2	
ste	Brasília	160	3,70	35.154			3,38	549,2	
Centro-Oeste	Campo Grande	160	3,70	12.216	76.715	191.765	1,17	190,9	
entr	Cuiabá	160	3,70	9.764			0,94	152,5	
ŏ	Goiânia	160	3,70	19.581			1,88	305,9	
-	TOTAL	4.320	100,00	704.741	704.741	2.601.330	100,00	-	
* - BRAS	II (1006)								

^{* -} BRASIL (1996)

A tabela 11 mostra os resultados do levantamento de 1996 ajustados para o desenho amostral executado. Para o cálculo do erro padrão da média, além do peso de ponderação, existe influência do método de seleção da amostra, que no caso foi por conglomerados (escolas). Assim como no

^{**-} população urbana de crianças de 12 anos, estimada em1996, fonte: IBGE

^{***} para manter proporcionalidade com a população representada

levantamento de 1986, nas planilhas de dados primários obtidas para os cálculos não havia indicação a que conglomerado cada criança pertencia, por isso, não foi possível levar em consideração este fator, o que pode ter levado a um sub-dimensionamento dos erros padrão mostrado na tabela 11.

Tabela 11 – Média, erro padrão da média, e intervalo de confiança a 95% para o CPOD, do levantamento de 1996*, fazendo a ponderação da amostra em relação a população representada.

Região	n		CPOD					
negiau	n	média	epm	IC 95%				
Norte	1120	3,72	0,13	3,48 - 3,97				
Nordeste	1440	2,59	0,08	2,43 - 2,75				
Sudeste	640	2,23	0,13	1,98 - 2,47				
Sul	480	2,26	0,12	2,02 - 2,50				
Centro-Oeste	640	2,59	0,12	2,36 - 2,82				
BRASIL	4.320	2,46	0,06	2,33 - 2,54				

^{* -} BRASIL (1996)

Na tabela 12 estão as comparações entre os cálculos ajustados ao desenho amostral e sem o ajuste.

Tabela 12 -	Comparação	do	CPOD	calculado	sem	е	com	ponderação	no
levantamento	epidemiológi	co d	le 1996	*					

Região —	Sem pon	deração	Com pon	deração	dif.	dif. %
	CPOD	epm	média	epm	uii.	uII. 76
Norte	4,27	0,11	3,72	0,13	-0,55	-12,8
Nordeste	2,88	0,08	2,59	0,08	-0,29	-10,1
Sudeste	2,06	0,09	2,23	0,13	0,17	8,0
Sul	2,41	0,11	2,26	0,12	-0,15	-6,3
Centro- Oeste	2,85	0,11	2,59	0,12	-0,26	-9,0
BRASIL	3,06	0,05	2,46	0,06	-0,60	-19,6

^{* -} BRASIL (1996)

Diferentemente do ocorrido no levantamento de 1986, observou-se uma grande diferença entre o CPOD calculado sem e com ponderação. O valor do CPOD para o Brasil passou de 3,06 para 2,46, uma redução de 19,6%. Analisando o IC95% do resultado ajustado com o valor obtido sem ajuste concluiu-se que a diferença entre os métodos de cálculo foi estatisticamente significante. Isto ocorreu porque municípios com alto valor de CPOD como Palmas (4,62) e Boa Vista (6,30), que têm uma pequena população, entraram para o cálculo sem ponderação com o mesmo peso que municípios com grande número de habitantes e baixos valores de CPOD como São Paulo (2,28) e Rio de Janeiro (2,09).

Também dentro das regiões observaram-se alterações significativas. Verificou-se aumento do CPOD no cálculo ponderado apenas na região Sudeste, passando de 2,06 para 2,23, isto ocorreu porque a cidade de menor CPO foi Vitória (1,47) que contribuiu com 25% da amostra da região porém possuía apenas 1,74% da população de crianças de 12 anos dos municípios da região.

Estes resultados mostraram que a determinação de um mesmo tamanho de amostra para os vários municípios requer uma metodologia

simplificada, porém a interpretação dos dados agrupados necessita de um melhor manejo estatístico do que simplesmente a adição direta das amostras para representar o total por região ou para o país.

Pode-se ainda questionar que o valor representativo para o Brasil (CPOD = 2,46), mesmo ajustando os cálculos, tem como grande viés o fato do levantamento só ter amostrado as capitais das unidades federativas, que normalmente são as áreas mais desenvolvidas dos estados. Este levantamento deve ser interpretado com cautela na sua qualidade de representação das regiões e do país como um todo.

5.3 Levantamento epidemiológico SB Brasil 2003.

O SB Brasil 2003 foi o último grande levantamento epidemiológico sobre saúde bucal feito no Brasil. O levantamento foi delineado no ano de 2000 e originalmente chamado SB2000, teve sua coleta de dados nos anos de 2002 e 2003 e passou a ser designado SB Brasil 2003. Dentro do projeto ficou estabelecido que o levantamento seria feito utilizando-se amostragem probabilística por conglomerados em três estágios: região (Norte, Nordeste, Sudeste, Sul e Centro-Oeste), porte do município (até 5.000 habitantes, de 5.001 a 10.000 habitantes, de 10.001 a 50.000 habitantes, de 50.001 habitantes a 100.000 habitantes e mais de 100.000 habitantes), e grupo etário (18 a 36 meses, 5 anos, 12 anos 15 a 19 anos, 35 a 44 anos e 65 a 74 anos).

Justificado por viabilidade de execução, decidiu-se que seriam sorteados 10 municípios de cada porte em cada região (50 municípios por região), totalizando assim 250 municípios. Dentro deste modelo estabeleceuse que todas as capitais dos estados e o Distrito Federal fariam parte da amostra. Assim o número de municípios com mais de 100.000 habitantes que foram sorteados foi o que restava para completar 10 em cada região. Como exemplo, no caso da região Nordeste foi sorteado apenas um município haja vista que a região possui nove capitais estaduais (BRASIL, 2000).

O sorteio dos municípios se deu de forma ponderada, em que cada município possuía uma probabilidade de participar da amostra associada a sua contribuição para o total de habitantes da região na categoria a ser estudada.

Cálculos foram feitos para determinar o tamanho da amostra para cada faixa etária, região e porte de município para uma determinada precisão das medidas, que no caso da idade de 12 anos era de 20%. Para determinação do CPOD aos 12 anos de idade isto levou os tamanhos mínimos de amostra a variarem de 43 a 285 crianças por município.

O tamanho da amostra foi calculado para cada grupo etário por porte de município em cada região a partir das estimativas de cárie produzidas em 1986 e 1996. Foi utilizada a seguinte fórmula de cálculo:

$$n = \frac{z^2 \times s^2}{(\overline{x} \times \varepsilon)^2} \times deff$$
 (5.4)

onde: z = limite da área de rejeição considerando determinado nível de significância (utilizou-se 1,96 correspondendo a 95% de confianca

 s^2 = variância estimada da variável (no caso, o CPOD)

x = média estimada da variável (no caso, o CPOD)

 ε = margem de erro (utilizou-se 0,20 para a idade de 12 aos)

deff = efeito do desenho (utilizou-se 2)

Após a realização do cálculo executou-se um ajuste no tamanho da amostra prevendo uma perda de 20% da mesma. Todo o cálculo de tamanho de amostra executado foi feito para tamanho infinito de população, sendo então feito um ajuste para populações finitas utilizando-se:

$$n = \frac{n^*}{1 + \left(\frac{n^*}{N}\right)} \tag{5.5}$$

onde: $n = \atop n^* = \atop N = \atop N = \atop N = \atop tamanho da amostra calculada para população infinita tamanho da população$

Para a seleção dos elementos amostrais, no grupo etário de 12 anos, foi definido como unidade amostral secundária as escolas de ensino fundamental. Estabeleceu-se que seriam sorteadas 20 escolas dos municípios que tinha mais de 20 estabelecimentos de ensino, e nos com menos de 20 todos participariam da amostra. Depois de sorteadas as escolas seriam sorteadas, por amostragem sistemática, as crianças, em número igual em cada escola perfazendo o tamanho da amostra calculado previamente.

Na tabela 13 pode-se observar o tamanho da amostra calculada, conforme as fórmulas anteriores, e o tamanho médio da amostra executada efetivamente no levantamento. Verificou-se uma grande proximidade entre o planejado e o executado principalmente se for levado em conta que a estimativa previa uma perda de 20% da amostra. Dada a dimensão do levantamento nota-se o grande cuidado que os autores tomaram neste critério.

Tabela 13 – Tamanho da amostra estimada, para crianças de 12 anos, e média executada por porte de município e região no levantamento SB Brasil 2003*.

				Região		
Amostra	Porte (hab.)	Norte	Nordeste	Sudeste	Sul	Centro- Oeste
	até 5.000	60	68	58	43	55
<u>a</u> *	5.000 a 10.000	94	106	99	78	93
Estimada*	10.000 a 50.000	144	169	186	151	156
	50.000 a 100.000	162	210	248	198	192
	mais de 100.000	173	231	285	224	208
	até 5.000	52	68	60	46	48
, * *	5.000 a 10.000	101	108	103	78	68
outa	10.000 a 50.000	134	145	187	159	134
Executada**	50.000 a 100.000	163	211	222	200	152
	mais de 100.000	172	200	233	238	184

^{* -} BRASIL (2004)

Ao final da execução da coleta de dados, de uma meta de 127.939 pessoas, foram avaliados 108.921 (85%), destas 34.550 eram crianças de 12 anos de idade.

Os dados individuais foram disponibilizados na internet, para livre acesso, no sítio www.saude.org.br.

^{** -} BRASIL (2003)

Em 2005 foi publicado pelo Ministério da Saúde o resultado geral deste levantamento "Projeto SB Brasil 2003 – Condições de Saúde Bucal da População Brasileira 2002-2003 – Resultados Principais". Este relatório mostrou os índices por região, porte populacional dos municípios e faixaetária.

A primeira consideração a se fazer é que embora o levantamento tenha coletado dados em 250 municípios, em uma das cidades (São Ludgero-SC) não foram coletados dados de crianças de 12 anos, ficando assim um total de 249 municípios na análise do presente trabalho

O valor geral obtido do índice CPOD para o Brasil aos 12 anos foi de 2,7852, o que arredondando para duas casas decimais dá 2,79, mas no relatório foi apresentado como 2,78. Este resultado foi e é utilizado como referência em vários trabalhos.

O relatório final do levantamento afirma que os dados foram coletados no período de maio de 2002 a outubro de 2003, como não foi especificado o ano de coleta para cada município, neste trabalho os dados foram considerados como coletados em 2003.

O resultado geral do CPOD das 34.550 crianças de 12 anos que participaram da amostra total está representado na figura 7 e tabela 14.

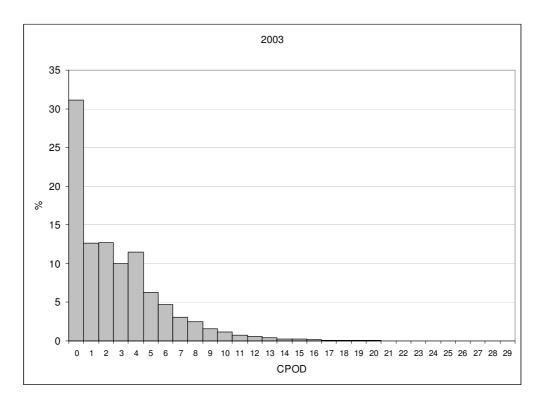


Figura 7 – Histograma da distribuição percentual do CPOD das 34.550 crianças de 12 anos do levantamento epidemiológico SB Brasil 2003.

Tabela 14 – Parâmetros do CPOD das 34.550 crianças de 12 anos do levantamento epidemiológico de SB Brasil 2003.

	CPOD 2003							
média	2,79							
dp	3,12							
epm	0,02							
mediana	2,00							
IC 95%	2,75 - 2,82							
assimetria	1,71							
curtose	4,38							
coef. Gini	0,57							

Pelo histograma pode-se observar que a distribuição do CPOD foi bem diferente da distribuição normal, o que foi comprovado pelos altos valores de assimetria (1,71) e curtose (4,38).

O CPOD zero ocorreu em 31,1% das crianças e a segunda maior ocorrência foi no valor 2 com 12,7% das crianças. Nota-se também uma grande desigualdade na distribuição do CPOD quando medida pelo coeficiente de Gini (0,57).

O relatório final do levantamento não apresentou os dados por município, mas somente por região e porte do município. A tabela 15 mostra os resultados da média e erro padrão da média para todos os municípios do levantamento epidemiológico de 2003, ordenados por ordem alfabética dentro de cada unidade da federação.

Tabela 15 – Média e erro padrão da média, por município, obtidos no levantamento epidemiológico SB Brasil 2003*.

Municipio n média epm Municipio n média epm Ariquemes-RO 160 2,66 0,21 Aliança do Tocantins-TO 76 2,49 0,29 Porto Velho-RO 154 2,34 0,19 Araguacema-TO 64 3,58 0,37 Chupinguaia-RO 48 2,48 0,40 Carrasco Bonito-TO 50 1,96 0,31 Pimenteiras do Oeste-RO 29 3,38 0,59 Divinópolis do Tocantins-TO 78 3,19 0,37 Cruzeiro do Sul-AC 170 5,89 0,25 Lizarda-TO 52 4,79 0,62 Mâncio Lima-AC 85 4,98 0,41 Marianópolis do Tocantins-TO 44 2,20 0,33 Rio Branco-AC 169 3,18 0,24 Miracema do Tocantins-TO 119 2,44 0,25 Rodrigues Alves-AC 102 4,67 0,30 Nova Olinda-TO 119 2,44 0,25 Atalaia do Norte-AM 84 4,74			CD/	7 D			CPOD	
Ariquemes-RO 160 2,66 0,21 Aliança do Tocantins-TO 76 2,49 0,29 Porto Velho-RO 154 2,34 0,19 Araguacema-TO 64 3,58 0,37 Chupinguaia-RO 48 2,48 0,40 Carrasco Bonito-TO 50 1,96 0,31 Pimenteiras do Oeste-RO 29 3,38 0,59 Divinópolis do Tocantins-TO 78 3,19 0,37 Cruzeiro do Sul-AC 170 5,89 0,25 Lizarda-TO 52 4,79 0,62 Mâncio Lima-AC 85 4,98 0,41 Marianópolis do Tocantins-TO 44 2,20 0,33 Rio Branco-AC 169 3,18 0,24 Miracema do Tocantins-TO 139 2,68 0,26 Rodrigues Alves-AC 102 4,67 0,30 Nova Olinda-TO 119 2,44 0,25 Atalaia do Norte-AM 84 4,74 0,40 Silvanópolis-TO 60 1,38 0,22 Canutama-AM 103 8,	Município	n			Município	n		
Porto Velho-RO 154 2,34 0,19 Araguacema-TO 64 3,58 0,37 Chupinguaia-RO 48 2,48 0,40 Carrasco Bonito-TO 50 1,96 0,31 Pimenteiras do Oeste-RO 29 3,38 0,59 Divinópolis do Tocantins-TO 78 3,19 0,37 Cruzeiro do Sul-AC 170 5,89 0,25 Lizarda-TO 52 4,79 0,62 Mâncio Lima-AC 85 4,98 0,41 Marianópolis do Tocantins-TO 44 2,20 0,33 Rio Branco-AC 169 3,18 0,24 Miracema do Tocantins-TO 139 2,68 0,26 Rodrigues Alves-AC 102 4,67 0,30 Nova Olinda-TO 119 2,44 0,25 Amaturá-AM 94 3,22 0,26 Pequizeiro-TO 71 2,59 0,33 Atlaia do Norte-AM 84 4,74 0,40 Silvanópolis-TO 60 1,38 0,22 Canutama-AM 103 8,54			media	ерт	Aliance de Tocentino		media	ерт
Chupinguaia-RO 48 2,48 0,40 Carrasco Bonito-TO 50 1,96 0,31 Pimenteiras do Oeste-RO 29 3,38 0,59 Divinópolis do Tocantins-TO 78 3,19 0,37 Cruzeiro do Sul-AC 170 5,89 0,25 Lizarda-TO 52 4,79 0,62 Mâncio Lima-AC 85 4,98 0,41 Marianópolis do Tocantins-TO 44 2,20 0,33 Rio Branco-AC 169 3,18 0,24 Miracema do Tocantins-TO 119 2,44 0,25 Rodrigues Alves-AC 102 4,67 0,30 Nova Olinda-TO 119 2,44 0,25 Amaturá-AM 94 3,22 0,26 Pequizeiro-TO 71 2,59 0,33 Atalaia do Norte-AM 84 4,74 0,40 Silvanópolis-TO 60 1,38 0,22 Canutama-AM 103 8,54 0,36 Taipas do Tocantins-TO 30 1,27 0,28 Itacoatiara-AM 126 3,56 </td <td>Ariquemes-RO</td> <td>160</td> <td>2,66</td> <td>0,21</td> <td>•</td> <td>76</td> <td>2,49</td> <td>0,29</td>	Ariquemes-RO	160	2,66	0,21	•	76	2,49	0,29
Pimenteiras do Oeste-RO 29 3,38 0,59 Divinópolis do Tocantins-TO 78 3,19 0,37 Cruzeiro do Sul-AC 170 5,89 0,25 Lizarda-TO 52 4,79 0,62 Mâncio Lima-AC 85 4,98 0,41 Marianópolis do Tocantins-TO 44 2,20 0,33 Rio Branco-AC 169 3,18 0,24 Miracema do Tocantins-TO 139 2,68 0,26 Rodrigues Alves-AC 102 4,67 0,30 Nova Olinda-TO 119 2,44 0,25 Amaturá-AM 94 3,22 0,26 Pequizeiro-TO 71 2,59 0,33 Atalaia do Norte-AM 84 4,74 0,40 Silvanópolis-TO 60 1,38 0,22 Canutama-AM 103 8,54 0,36 Taipas do Tocantins-TO 30 1,27 0,28 Itacoatiara-AM 126 3,56 0,29 Palmas-TO 170 2,42 0,18 Jutaí-AM 105 3,37 <			-		_			
RO 29 3,38 0,39 Tocantins-TO 78 3,19 0,37 Cruzeiro do Sul-AC 170 5,89 0,25 Lizarda-TO 52 4,79 0,62 Mâncio Lima-AC 85 4,98 0,41 Marianópolis do Tocantins-TO 44 2,20 0,33 Rio Branco-AC 169 3,18 0,24 Miracema do Tocantins-TO 119 2,68 0,26 Rodrigues Alves-AC 102 4,67 0,30 Nova Olinda-TO 119 2,44 0,25 Amaturá-AM 94 3,22 0,26 Pequizeiro-TO 71 2,59 0,33 Atalaia do Norte-AM 84 4,74 0,40 Silvanópolis-TO 60 1,38 0,22 Canutama-AM 103 8,54 0,36 Taipas do Tocantins-TO 30 1,27 0,28 Itacoatiara-AM 126 3,56 0,29 Palmas-TO 170 2,42 0,18 Jutaí-AM 102 3,21 0,39 Feira Nova		48	2,48	0,40		50	1,96	0,31
Mâncio Lima-AC 85 4,98 0,41 Marianópolis do Tocantins-TO 44 2,20 0,33 Rio Branco-AC 169 3,18 0,24 Miracema do Tocantins-TO 139 2,68 0,26 Rodrigues Alves-AC 102 4,67 0,30 Nova Olinda-TO 119 2,44 0,25 Amaturá-AM 94 3,22 0,26 Pequizeiro-TO 71 2,59 0,33 Atalaia do Norte-AM 84 4,74 0,40 Silvanópolis-TO 60 1,38 0,22 Canutama-AM 103 8,54 0,36 Taipas do Tocantins-TO 30 1,27 0,28 Itacoatiara-AM 126 3,56 0,29 Palmas-TO 170 2,42 0,18 Jutaí-AM 105 3,37 0,28 Cedral-MA 81 3,69 0,36 Manaus-AM 102 3,21 0,39 Feira Nova do Maranhão-MA 96 4,74 0,33 Paulino Neves-MA 69 3,46 0,35 </td <td></td> <td>29</td> <td>3,38</td> <td>0,59</td> <td>•</td> <td>78</td> <td>3,19</td> <td>0,37</td>		29	3,38	0,59	•	78	3,19	0,37
Rio Branco-AC 169 3,18 0,24 Tocantins-TO 44 2,20 0,33 Rio Branco-AC 169 3,18 0,24 Miracema do Tocantins-TO 139 2,68 0,26 Rodrigues Alves-AC 102 4,67 0,30 Nova Olinda-TO 119 2,44 0,25 Amaturá-AM 94 3,22 0,26 Pequizeiro-TO 71 2,59 0,33 Atalaia do Norte-AM 84 4,74 0,40 Silvanópolis-TO 60 1,38 0,22 Canutama-AM 103 8,54 0,36 Taipas do Tocantins-TO 30 1,27 0,28 Itacoatiara-AM 126 3,56 0,29 Palmas-TO 170 2,42 0,18 Jutaí-AM 105 3,37 0,28 Cedral-MA 81 3,69 0,36 Manaus-AM 102 3,21 0,39 Feira Nova do Maranhão-MA 96 4,74 0,33 Paintins-AM 153 4,84 0,24 Paulino Neves-	Cruzeiro do Sul-AC	170	5,89	0,25		52	4,79	0,62
Rio Branco-AC 169 3,18 0,24 Tocantins-TO 139 2,68 0,26 Rodrigues Alves-AC 102 4,67 0,30 Nova Olinda-TO 119 2,44 0,25 Amaturá-AM 94 3,22 0,26 Pequizeiro-TO 71 2,59 0,33 Atalaia do Norte-AM 84 4,74 0,40 Silvanópolis-TO 60 1,38 0,22 Canutama-AM 103 8,54 0,36 Taipas do Tocantins-TO 30 1,27 0,28 Itacoatiara-AM 126 3,56 0,29 Palmas-TO 170 2,42 0,18 Jutaí-AM 105 3,37 0,28 Cedral-MA 81 3,69 0,36 Manaus-AM 102 3,21 0,39 Feira Nova do Maranhão-MA 96 4,74 0,33 Parintins-AM 153 4,84 0,24 Paulino Neves-MA 69 3,46 0,35 São Paulo de Olivença-AM 106 4,75 0,35 São Luís-M	Mâncio Lima-AC	85	4,98	0,41	Tocantins-TO	44	2,20	0,33
Rodrigues Alves-AC 102 4,67 0,30 Nova Olinda-TO 119 2,44 0,25 Amaturá-AM 94 3,22 0,26 Pequizeiro-TO 71 2,59 0,33 Atalaia do Norte-AM 84 4,74 0,40 Silvanópolis-TO 60 1,38 0,22 Canutama-AM 103 8,54 0,36 Taipas do Tocantins-TO 30 1,27 0,28 Itacoatiara-AM 126 3,56 0,29 Palmas-TO 170 2,42 0,18 Jutaí-AM 105 3,37 0,28 Cedral-MA 81 3,69 0,36 Manaus-AM 102 3,21 0,39 Feira Nova do Maranhão-MA 96 4,74 0,33 Parintins-AM 153 4,84 0,24 Paulino Neves-MA 69 3,46 0,35 São Paulo de Olivença-AM 106 4,75 0,35 São Luís-MA 162 3,23 0,23 Tefé-AM 152 2,45 0,21 Urbano Santos-MA<	Rio Branco-AC	169	3,18	0,24		139	2,68	0,26
Atalaia do Norte-AM 84 4,74 0,40 Silvanópolis-TO 60 1,38 0,22 Canutama-AM 103 8,54 0,36 Taipas do Tocantins-TO 30 1,27 0,28 Itacoatiara-AM 126 3,56 0,29 Palmas-TO 170 2,42 0,18 Jutaí-AM 105 3,37 0,28 Cedral-MA 81 3,69 0,36 Manaus-AM 102 3,21 0,39 Feira Nova do Maranhão-MA 96 4,74 0,33 Parintins-AM 153 4,84 0,24 Paulino Neves-MA 69 3,46 0,35 São Paulo de Olivença-AM 106 4,75 0,35 São Luís-MA 162 3,23 0,23 Tefé-AM 152 2,45 0,21 Urbano Santos-MA 92 2,53 0,29 Uarini-AM 54 4,59 0,48 Coronel José Dias-PI 68 5,04 0,41	Rodrigues Alves-AC	102	4,67	0,30	Nova Olinda-TO	119	2,44	0,25
Canutama-AM 103 8,54 0,36 Taipas do Tocantins- TO 30 1,27 0,28 Itacoatiara-AM 126 3,56 0,29 Palmas-TO 170 2,42 0,18 Jutaí-AM 105 3,37 0,28 Cedral-MA 81 3,69 0,36 Manaus-AM 102 3,21 0,39 Feira Nova do Maranhão-MA 96 4,74 0,33 Parintins-AM 153 4,84 0,24 Paulino Neves-MA 69 3,46 0,35 São Paulo de Olivença-AM 106 4,75 0,35 São Luís-MA 162 3,23 0,23 Tefé-AM 152 2,45 0,21 Urbano Santos-MA 92 2,53 0,29 Uarini-AM 54 4,59 0,48 Coronel José Dias-PI 68 5,04 0,41	Amaturá-AM	94	3,22	0,26	Pequizeiro-TO	71	2,59	0,33
Cariutama-AM 103 8,34 0,36 TO 30 1,27 0,28 Itacoatiara-AM 126 3,56 0,29 Palmas-TO 170 2,42 0,18 Jutaí-AM 105 3,37 0,28 Cedral-MA 81 3,69 0,36 Manaus-AM 102 3,21 0,39 Feira Nova do Maranhão-MA 96 4,74 0,33 Parintins-AM 153 4,84 0,24 Paulino Neves-MA 69 3,46 0,35 São Paulo de Olivença-AM 106 4,75 0,35 São Luís-MA 162 3,23 0,23 Tefé-AM 152 2,45 0,21 Urbano Santos-MA 92 2,53 0,29 Uarini-AM 54 4,59 0,48 Coronel José Dias-PI 68 5,04 0,41	Atalaia do Norte-AM	84	4,74	0,40		60	1,38	0,22
Itacoatiara-AM 126 3,56 0,29 Palmas-TO 170 2,42 0,18 Jutaí-AM 105 3,37 0,28 Cedral-MA 81 3,69 0,36 Manaus-AM 102 3,21 0,39 Feira Nova do Maranhão-MA 96 4,74 0,33 Parintins-AM 153 4,84 0,24 Paulino Neves-MA 69 3,46 0,35 São Paulo de Olivença-AM 106 4,75 0,35 São Luís-MA 162 3,23 0,23 Tefé-AM 152 2,45 0,21 Urbano Santos-MA 92 2,53 0,29 Uarini-AM 54 4,59 0,48 Coronel José Dias-PI 68 5,04 0,41	Canutama-AM	103	8,54	0,36		30	1,27	0,28
Jutaí-AM 105 3,37 0,28 Cedral-MA 81 3,69 0,36 Manaus-AM 102 3,21 0,39 Feira Nova do Maranhão-MA 96 4,74 0,33 Parintins-AM 153 4,84 0,24 Paulino Neves-MA 69 3,46 0,35 São Paulo de Olivença-AM 106 4,75 0,35 São Luís-MA 162 3,23 0,23 Tefé-AM 152 2,45 0,21 Urbano Santos-MA 92 2,53 0,29 Uarini-AM 54 4,59 0,48 Coronel José Dias-PI 68 5,04 0,41	Itacoatiara-AM	126	3,56	0,29		170	2,42	0,18
Manaus-AM 102 3,21 0,39 Feira Nova do Maranhão-MA 96 4,74 0,33 Parintins-AM 153 4,84 0,24 Paulino Neves-MA 69 3,46 0,35 São Paulo de Olivença-AM 106 4,75 0,35 São Luís-MA 162 3,23 0,23 Tefé-AM 152 2,45 0,21 Urbano Santos-MA 92 2,53 0,29 Uarini-AM 54 4,59 0,48 Coronel José Dias-PI 68 5,04 0,41			-					
Parintins-AM 153 4,84 0,24 Paulino Neves-MA 69 3,46 0,35 São Paulo de Olivença-AM 106 4,75 0,35 São Luís-MA 162 3,23 0,23 Tefé-AM 152 2,45 0,21 Urbano Santos-MA 92 2,53 0,29 Uarini-AM 54 4,59 0,48 Coronel José Dias-PI 68 5,04 0,41	Manaus-AM	102				96		
São Paulo de Olivença-AM 106 4,75 0,35 São Luís-MA 162 3,23 0,23 Tefé-AM 152 2,45 0,21 Urbano Santos-MA 92 2,53 0,29 Uarini-AM 54 4,59 0,48 Coronel José Dias-PI 68 5,04 0,41	Parintins-AM	153	4,84	0,24		69	3,46	0,35
Tefé-AM 152 2,45 0,21 Urbano Santos-MA 92 2,53 0,29 Uarini-AM 54 4,59 0,48 Coronel José Dias-PI 68 5,04 0,41		106	4,75	0,35	São Luís-MA	162	3,23	0,23
Uarini-AM 54 4,59 0,48 Coronel José Dias-PI 68 5,04 0,41		152	2,45	0,21	Urbano Santos-MA	92	2,53	0,29
			-					
DUA VISIA-TIT 100 4,07 U, IY JUIIU DUI YES-FI 00 3,03 U,37	Boa Vista-RR	186	2,67	0,19	Júlio Borges-PI	68	3,63	0,37
Ananindeua-PA 229 1,34 0,13 Marcos Parente-PI 52 5,25 0,52	Ananindeua-PA		-	-		52		
Augusto Corrêa-PA 149 3,71 0,29 Novo Santo Antônio- 54 4,19 0,43	Augusto Corrêa-PA	149	3,71	0,29		54	4,19	0,43
Belém-PA 247 1,58 0,13 Tamboril do Piauí-PI 67 5,49 0,49	Belém-PA	247	1,58	0,13	Tamboril do Piauí-Pl	67	5,49	0,49
Bragança-PA 176 2,93 0,22 Teresina-PI 207 2,52 0,17	Bragança-PA	176	2,93	0,22	Teresina-PI	207	2,52	0,17
Cametá-PA 191 2,94 0,19 Wall Ferraz-PI 67 1,94 0,29	Cametá-PA	191	2,94	0,19	Wall Ferraz-PI	67	1,94	0,29
Capitão Poço-PA 132 2,83 0,27 Brejo Santo-CE 186 2,75 0,19	Capitão Poço-PA	132	2,83	0,27	Brejo Santo-CE	186	2,75	0,19
Castanhal-PA 172 2,01 0,16 Fortaleza-CE 161 1,75 0,16	Castanhal-PA	172	2,01	0,16	Fortaleza-CE	161	1,75	0,16
Inhangapi-PA 101 3,15 0,29 Palhano-CE 92 4,16 0,36	Inhangapi-PA	101	3,15	0,29	Palhano-CE	92	4,16	0,36
Marituba-PA 178 3,26 0,19 Quixadá-CE 211 2,40 0,17	Marituba-PA	178	3,26	0,19	Quixadá-CE	211	2,40	0,17
Moju-PA 201 2,75 0,19 Tianguá-CE 188 4,48 0,30	Moju-PA	201	2,75	0,19	Tianguá-CE	188	4,48	0,30
Monte Alegre-PA 204 2,70 0,19 Natal-RN 190 2,76 0,21	Monte Alegre-PA	204	2,70	0,19	Natal-RN	190	2,76	0,21
Nova lpixuna-PA 115 3,28 0,26 Pureza-RN 105 3,14 0,30	Nova Ipixuna-PA	115	3,28	0,26	Pureza-RN	105	3,14	0,30
Parauapebas-PA 173 2,80 0,22 Bayeux-PB 235 3,59 0,19	Parauapebas-PA	173	2,80	0,22	Bayeux-PB	235	3,59	0,19
Prainha-PA 163 3,34 0,22 Cubati-PB 122 3,17 0,26	Prainha-PA	163	3,34	0,22	Cubati-PB	122	3,17	0,26
Santarém-PA 207 3,20 0,19 João Pessoa-PB 179 3,51 0,23	Santarém-PA	207	3,20	0,19	João Pessoa-PB	179	3,51	0,23
Uruará-PA 146 4,41 0,36 Nova Floresta-PB 116 4,65 0,31	Uruará-PA	146	4,41	0,36	Nova Floresta-PB	116	4,65	0,31
Xinguara-PA 143 2,99 0,26 Sertãozinho-PB 68 4,22 0,37	•	143	2,99			68	4,22	0,37
Serra do Navio-AP 67 2,72 0,41 Belém de Maria-PE 197 3,95 0,27								
Macapá-AP 79 1,10 0,19 Belo Jardim-PE 215 5,19 0,25		79	1,10	0,19	Belo Jardim-PE	215	5,19	0,25

^{* -} BRASIL (2003)

Tabela 15 (cont.) – Média e erro padrão da média, por município, obtidos no levantamento epidemiológico SB Brasil 2003 * .

Município		CPO	OD	Município	<u> </u>	CP	OD D
Município	n	média	epm	Município	n	média	epm
Caruaru-PE	231	2,97	0,18	José Raydan-MG	68	2,04	0,26
Escada-PE	237	2,26	0,20	Luisburgo-MG	99	2,88	0,25
Exu-PE	168	2,26	0,18	Minas Novas-MG	183	3,46	0,26
Ingazeira-PE	68	2,10	0,26	Monsenhor Paulo-MG	109	3,42	0,36
Ipojuca-PE	226	2,61	0,21	Nova Lima-MG	322	0,98	0,08
Recife-PE	106	1,72	0,19	Paracatu-MG	213	1,71	0,16
Santa Filomena-PE	111	3,75	0,37	Ribeirão das Neves- MG	180	1,21	0,13
Taquaritinga do Norte- PE	180	2,23	0,18	Santa Luzia-MG	188	1,59	0,13
Jundiá-AL	86	3,93	0,39	São Gonçalo do Rio Abaixo-MG	60	4,73	0,44
Maceió-AL	202	2,91	0,21	Silveirânia-MG	53	1,79	0,31
Rio Largo-AL	220	3,24	0,21	Conceição do Castelo-ES	137	2,65	0,25
Aracaju-SE	335	0,91	0,09	Vitória-ES	286	1,25	0,12
Pinhão-SE	82	2,17	0,30	Duque de Caxias-RJ	249	2,08	0,16
Buerarema-BA	167	2,19	0,24	Iguaba Grande-RJ	187	3,71	0,21
Campo Formoso-BA	231	11,96	0,37	Japeri-RJ	133	4,16	0,28
Elísio Medrado-BA	109	2,82	0,28	Mangaratiba-RJ	188	1,98	0,16
Eunápolis-BA	135	2,42	0,22	Rio de Janeiro-RJ	116	1,28	0,16
Firmino Alves-BA	107	2,19	0,26	Bebedouro-SP	332	2,17	0,13
Inhambupe-BA	173	2,58	0,20	Boracéia-SP	69	1,46	0,21
Lajedo do Tabocal-BA	136	4,26	0,30	Castilho-SP	186	3,08	0,21
Muquém de São Francisco-BA	43	1,07	0,26	Dumont-SP	72	2,71	0,30
Salvador-BA	229	1,45	0,13	Irapuru-SP	103	2,64	0,23
Serrinha-BA	216	1,79	0,15	Itapirapuã Paulista-SP	65	3,32	0,44
Tucano-BA	176	1,56	0,20	Itápolis-SP	201	4,18	0,23
Além Paraíba-MG	208	2,04	0,18	Jaboticabal-SP	190	2,79	0,22
Belo Horizonte-MG	300	1,02	0,10	Jales-SP	189	1,49	0,13
Caldas-MG	152	3,32	0,20	Mairiporã-SP	92	3,04	0,30
Canaã-MG	55	2,75	0,33	Piracicaba-SP	225	1,98	0,16
Catas Altas-MG	58	3,00	0,38	Sabino-SP	62	4,34	0,44
Glaucilândia-MG	58	1,91	0,32	São Paulo-SP	249	1,75	0,14
Goianá-MG	58	1,79	0,25	Sertãozinho-SP	253	4,51	0,25
Guaranésia-MG	187	2,78	0,22	Sorocaba-SP	241	1,38	0,13
Guidoval-MG	99	2,33	0,21	Tatuí-SP	192	2,02	0,16
Ibiraci-MG	149	1,99	0,20	Uchoa-SP	100	1,62	0,20
Itabira-MG	297	2,13	0,17	Vargem-SP	102	3,73	0,30
Jaíba-MG	190	0,93	0,11	Várzea Paulista-SP	264	3,06	0,18
Januária-MG	225	1,47	0,15	Altônia-PR	152	2,30	0,23
José Gonçalves de	58	3,12	0,27	Apucarana-PR	245	3,33	0,20
Minas-MG * - BRASII (2003)					-	,	

^{* -} BRASIL (2003)

Tabela 15 (cont.) – Média e erro padrão da média, por município, obtidos no levantamento epidemiológico SB Brasil 2003*.

		CP	OD.			CP	OD
Município	n	média	epm	Município	n	média	epm
Arapoti-PR	167	3,39	0,26	Porto Alegre-RS	187	1,06	0,11
Campo Mourão-PR	206	2,11	0,17	Santo Ângelo-RS	207	1,82	0,15
Colombo-PR	215	1,63	0,13	Santo Antônio da Patrulha-RS	195	2,22	0,18
Corumbataí do Sul-	93	4,42	0,31	Santo Expedito do	43	6,28	0,66
PR Curitiba-PR	263	1,39	0,11	Sul-RS São João Urtiga-RS	43	7,21	0,71
Espigão Alto do Iguaçu-PR	85	4,08	0,11	São Miguel das Missões-RS	40	2,43	0,71
Lobato-PR	55	3,27	0,40	Sapiranga-RS	198	1,83	0,15
Matinhos-PR	135	2,29	0,20	Taguara-RS	224	1,54	0,13
Pranchita-PR	78	4,01	0,30	Tuparendi-RS	89	2,85	0,30
Realeza-PR	151	3,80	0,25	Bandeirantes-MS	23	2,70	0,52
Rio Branco do Ivaí-PR	55	3,44	0,50	Campo Grande-MS	163	2,80	0,23
Umuarama-PR			-	•			
	178	1,63	0,14	Corguinho-MS	47	2,68	0,69
Vera Cruz do Oeste- PR	80	2,14	0,25	Corumbá-MS	49	3,73	0,54
Agrolândia-SC	92	4,70	0,34	Dois Irmãos do Buriti- MS	96	4,02	0,32
Araranguá-SC	175	3,47	0,25	Dourados-MS	173	2,58	0,23
Balneário Camboriú- SC	198	1,30	0,14	Paranaíba-MS	160	2,62	0,22
Blumenau-SC	260	1,12	0,11	Três Lagoas-MS	146	2,87	0,22
Canoinhas-SC	168	3,49	0,23	Alto Garças-MT	65	6,34	0,48
Doutor Pedrinho-SC	47	5,81	0,70	Apiacás-MT	81	1,59	0,14
Faxinal dos Guedes-	160	4,54	0,21	Araputanga-MT	88	4,58	0,34
SC Florianópolis-SC	268	1,30	0,12	Barra do Garças-MT	121	7,58	0,51
Grão Pará-SC	79	3,48	0,12	Cáceres-MT	192	3,53	0,24
Itajaí-SC	224	1,82	0,15	Chapada dos Guimarães-MT	24	7,00	0,61
Jaborá-SC	43	3,12	0,46	Cuiabá-MT	196	3,03	0,24
Joinville-SC	177	1,19	0,15	General Carneiro-MT	61	3,25	0,42
Videira-SC	147	2,35	0,21	Juína-MT	199	6,37	0,32
André da Rocha-RS	20	3,00	0,58	Juscimeira-MT	126	2,72	0,22
	203	2,20	0,16	Nortelândia-MT	72	1,36	0,23
Bento Gonçalves-RS							
Camaquã-RS	219	2,98	0,19	Ponte Branca-MT	4	5,50	2,40
Charguages PS	338 129	1,63	0,13 0,11	Ribeirãozinho-MT São José do Xingu-	46 93	5,35 3,89	0,65 0,31
Charqueadas-RS Cidreira-RS		0,80		MT Dandanánalia MT			
	79	1,34	0,19	Rondonópolis-MT	165	3,96	0,31
Gravataí-RS	200	1,61	0,13	Sinop-MT	164	3,98	0,26
Guaíba-RS	187	1,41	0,14	Várzea Grande-MT	207	2,09	0,16
Ibiaçá-RS	77	2,55	0,24	Nova Monte Verde- MT	55	3,62	0,36
Inhacorá-RS	15	5,00	0,51	Anápolis-GO	190	2,15	0,16
Mariana Pimentel-RS	42	4,38	0,40	Aparecida de Goiânia- GO	232	2,34	0,17
Pinheiro Machado-RS	188	1,36	0,14	Cachoeira Dourada- GO	87	2,13	0,24

^{* -} BRASIL (2003)

Tabela 15 (cont.) – Média e erro padrão da média, por município, obtidos no levantamento epidemiológico SB Brasil 2003*.

Município	n	CPO	DD	Município	n	CP	OD
Muriicipio	n	média	epm	Municipio	n	média	epm
Catalão-GO	205	2,79	0,22	Petrolina de Goiás- GO	45	4,44	0,57
Caturaí-GO	56	4,50	0,57	Pirenópolis-GO	152	3,68	0,26
Corumbá de Goiás- GO	58	1,72	0,26	Planaltina-GO	232	2,16	0,14
Formosa-GO	156	2,27	0,19	Santa Cruz de Goiás- GO	34	4,26	0,54
Goiânia-GO	203	1,81	0,15	São Luís de Montes Belos-GO	166	2,08	0,19
Itaguari-GO	62	3,42	0,39	Senador Canedo-GO	111	3,87	0,32
Itumbiara-GO	212	2,07	0,17	Taquaral de Goiás- GO	48	2,79	0,42
Luziânia-GO	179	2,54	0,18	Turvelândia-GO	39	2,31	0,40
Niquelândia-GO	148	3,27	0,25	Valparaíso de Goiás- GO	49	2,65	0,30
Nova Roma-GO	82	4,00	0,44	Brasília-DF	134	2,45	0,23
Palmeiras de Goiás- GO	153	4,31	0,26				

^{* -} BRASIL (2003)

As tabelas 16 e 17, e a figura 8, mostram um resumo dos dados estratificados por região e porte do município. Todos estes cálculos foram executados por meio de agrupamento simples dos dados.

Tabela 16 – CPOD por região e porte do município, baseado no levantamento epidemiológico SB Brasil 2003*.

-		Re	egião/Por	te	F	Região	
Região	Porte		CPC			CPC	OD
		n	média	epm	n -	média	epm
	1	515	2,67	0,13			
(t)	2	1009	4,29	0,11			
Norte	3	1338	3,42	0,09	6.208	3,13	0,03
2	4	1631	3,22	0,07			
	5	1715	2,29	0,06			
	1	680	3,73	0,13			
ste	2	1075	3,65	0,10			
Nordeste	3	1451	2,53	0,08	7.322	3,19	0,03
8	4	2114	4,08	0,10			
	5	2002	2,28	0,06			
ம்	1	479	3,66	0,17			
Centro-Oeste	2	675	3,16	0,12			
0-01	3	1337	4,16	0,11	5.849	3,16	0,04
ent	4	1516	2,87	0,08			
<u> </u>	5	1842	2,54	0,07			
	1	604	2,55	0,11			
ste	2	1030	2,76	0,09			
Sudeste	3	1871	2,68	0,07	8.052	2,30	0,04
S	4	2216	2,45	0,06			
	5	2331	1,58	0,05			
	1	456	4,57	0,18			_
	2	699	3,13	0,11			
Sul	3	1592	2,67	0,07	7.119	2,31	0,04
	4	1995	2,02	0,05			
	5	2377	1,62	0,05			
		BRAS	IL		34.550	2,79	0,02

^{* -} BRASIL (2003)

Tabela 17 – CPOD por porte do município, baseado no levantamento epidemiológico SB Brasil 2003*.

Porte (hab.)	n —	CP	OD
	11	média	epm
até 5.000	2.734	3,40	0,06
5.001 a 10.000	4.488	3,44	0,05
10.001 a 50.000	7.589	3,04	0,04
50.001 a 100.000	9.472	2,92	0,03
mais de 100.000	10.267	2,02	0,02
BRASIL	34.550	2,79	0,02
* DDASII (2002)	•		•

^{* -} BRASIL (2003)

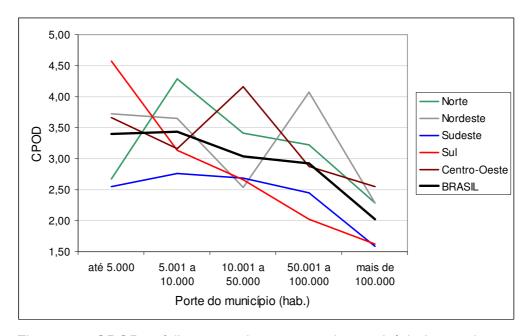


Figura 8 – CPOD médio por região e porte do município baseado no levantamento epidemiológico SB Brasil 2003.

Assim como nos levantamentos anteriores, para determinar o CPOD para as regiões e para o Brasil fez-se simplesmente uma média aritmética do CPOD das crianças avaliadas, sem levar em consideração que havia, em muitos casos, mais crianças representando estratos populacionais menos populosos, não havendo nenhuma ponderação para corrigir estas distorções.

Para corrigir o fato de termos, na amostra, um número de crianças não proporcional à população de crianças por região representada, há necessidade que para um cálculo mais adequado o CPOD médio seja ponderado pela população de crianças de 12 anos em cada estrato representado. Foram utilizadas, para a ponderação, as populações verificadas no censo do IBGE do ano 2000.

Visando estabelecer o peso de ponderação para cada criança da amostra foi utilizada a fórmula 5.2. Com isto a somatória dos pesos das 34.550 crianças totalizou 3.524.814, que era a população estimada de crianças de 12 anos no Brasil, no ano 2000.

Na tabela 18 estão mostrados os resultados dos cálculos do peso de ponderação. Para ilustrar a importância da ponderação estão também mostrados o percentual com que cada município contribuiu para a amostra total e o percentual ideal para manter a proporcionalidade entre amostra e população. Observou-se que o município de São Paulo-SP participou com 0,72% da amostra total enquanto para manter sua representatividade com relação ao total do Brasil deveria ter participado com 12,27% da amostra. Já outros municípios como, por exemplo, Divinópolis do Tocantins-TO que participou com 0,23% da amostra total tinha como representatividade na população apenas 0,01%. Com o ajuste pelos pesos de ponderação estas distorções foram corrigidas.

Além do peso de ponderação, o método de amostragem por conglomerados influencia no cálculo do erro padrão da média. No caso do levantamento de 2003 o primeiro estágio do sorteio foram os municípios, e

este fato foi incluído no desenho amostral, nos cálculos aqui executados, como primeira unidade de amostragem.

Tabela 18 – Descrição da amostra coletada, porcentagem ideal para manter proporcionalidade com a população, e peso atribuído a cada criança para correção da desproporcionalidade, no levantamento epidemiológico de 2003.

		Am	ostra	F	População	O*	% ideal de	Peso atribuído
Região / Porte	Município	n	%	munic.	munic. da região	região	crianças na amostra**	a cada criança
	Chupinguaia-RO	48	0,14	131			0,03	22,3
ċ	Pimenteiras do Oeste-RO	29	0,08	49			0,01	13,8
hak	Serra do Navio-AP	67	0,19	79			0,02	9,7
0	Araguacema-TO	64	0,19	138			0,03	17,6
9.	Carrasco Bonito-TO	50	0,14	85			0,02	13,9
é 5	Lizarda-TO	52	0,15	121	940	7.694	0,03	19,0
Norte / até 5.000 hab.	Marianópolis do Tocantins-TO	44	0,13	62	940	7.094	0,01	11,5
), T	Pequizeiro-TO	71	0,21	109			0,03	12,6
ž	Silvanópolis-TO	60	0,17	122			0,03	16,6
	Taipas do Tocantins-TO	30	0,09	44			0,01	12,0
	Mâncio Lima-AC	85	0,25	323			0,03	13,7
ab.	Rodrigues Alves- AC	102	0,30	229			0,02	8,1
Ϋ́	Amaturá-AM	94	0,27	210			0,02	8,1
0.000	Atalaia do Norte- AM	84	0,24	300			0,03	12,9
4	Canutama-AM	103	0,30	301			0,03	10,5
Ξ.	Parintins-AM	153	0,44	2.534	4.753	17.138	0,26	59,7
8	Nova Ipixuna-PA	115	0,33	332			0,03	10,4
Norte / 5.001 a 10.000 hab.	Aliança do Tocantins-TO	76	0,22	150			0,02	7,1
Nor	Divinópolis do Tocantins-TO	78	0,23	137			0,01	6,3
	Nova Olinda-TO	119	0,34	237			0,02	7,2
<u>.</u>	Jutaí-AM	105	0,30	705			0,29	96,6
50.000 hab.	São Paulo de Olivença-AM	106	0,31	698			0,28	94,7
00	Uarini-AM	54	0,16	310			0,13	82,6
0.	Augusto Corrêa-PA	149	0,43	868			0,35	83,8
a 5	Capitão Poço-PA	132	0,38	1.377			0,56	150,1
	Moju-PA	201	0,58	1.445	8.698	125.152	0,59	103,4
9.	Prainha-PA	163	0,47	764			0,31	67,4
10	Uruará-PA	146	0,42	1.145			0,47	112,8
ф	Xinguara-PA	143	0,41	859			0,35	86,4
Norte / 10.001	Miracema do Tocantins-TO	139	0,40	527			0,22	54,6

^{*} população de crianças de 12 anos no ano 2000, fonte: IBGE

^{**} para manter proporcionalidade com a população representada

Tabela 18 (cont.) – Descrição da amostra coletada, porcentagem ideal para manter proporcionalidade com a população, e peso atribuído a cada criança para correção da desproporcionalidade, no levantamento epidemiológico de 2003.

ão /		Am	ostra	ı	População)*	% ideal de	Peso atribuído
Região / Porte	Município	n	%	munic.	munic. da região	região	crianças na amostra**	a cada criança
ab	Ariquemes-RO	160	0,46	1.700			0,14	31,2
0 h	Cruzeiro do Sul-AC	170	0,49	1.709			0,14	29,5
00.	Itacoatiara-AM	126	0,36	1.920			0,16	44,8
00	Tefé-AM	152	0,44	1.888			0,16	36,5
a 1	Bragança-PA	176	0,51	2.492			0,21	41,6
10	Cametá-PA	191	0,55	2.812	17.820	52.362	0,23	43,3
Norte / 50.001 a 100.000 hab	Inhangapi-PA	101	0,29	208			0,02	6,1
/ 5	Marituba-PA	178	0,52	1.691			0,14	27,9
rte	Monte Alegre-PA	204	0,59	1.615			0,13	23,3
Š	Parauapebas-PA	173	0,50	1.785			0,15	30,3
Norte /mais de 100.000 hab	Porto Velho-RO	154	0,45	7.803			0,25	57,0
) hs	Rio Branco-AC	169	0,49	5.579			0,18	37,1
00	Manaus-AM	102	0,30	28.903			0,92	318,6
00	Boa Vista-RR	186	0,54	4.486			0,14	27,1
-	Ananindeua-PA	229	0,66	8.374			0,27	41,1
ğ	Belém-PA	247	0,71	25.580	100.184	112.638	0,82	116,4
Jais	Castanhal-PA	172	0,50	3.168			0,10	20,7
u/e	Santarém-PA	207	0,60	6.636			0,21	36,0
orte	Macapá-AP	79	0,23	6.768			0,22	96,3
Ž	Palmas-TO	170	0,49	2.887			0,09	19,1
	Coronel José Dias- Pl	68	0,20	90			0,06	31,1
Þ.	Júlio Borges-PI	68	0,20	126			0,08	43,5
ha	Marcos Parente-PI	52	0,15	102			0,07	46,1
Nordeste / até 5.000 hab.	Novo Santo Antônio-PI	54	0,16	77			0,05	33,5
, / até	Tamboril do Piauí- Pl	67	0,19	69	1.009	23.691	0,05	24,2
este	Wall Ferraz-PI	67	0,19	105			0,07	36,8
rde	Sertãozinho-PB	68	0,20	82			0,05	28,3
ž	Ingazeira-PE	68	0,20	107			0,07	36,9
	Jundiá-AL	86	0,25	123			0,08	33,6
	Pinhão-SE	82	0,24	128		,	0,09	36,7

^{*} população de crianças de 12 anos no ano 2000, fonte: IBGE

^{**} para manter proporcionalidade com a população representada

Tabela 18 (cont.) – Descrição da amostra coletada, porcentagem ideal para manter proporcionalidade com a população, e peso atribuído a cada criança para correção da desproporcionalidade, no levantamento epidemiológico de 2003.

/ o		Am	ostra	F	População	o*	% ideal de	Peso atribuído
Região / Porte	Município	n	%	munic.	munic. da região	região	crianças na amostra**	a cada criança
	Cedral-MA	81	0,23	295			0,29	124,0
Nordeste / 5.001 a 10.000 hab.	Feira Nova do Maranhão-MA	96	0,28	250			0,24	88,7
8.	Palhano-CE	92	0,27	227			0,22	84,0
10	Pureza-RN	105	0,30	189			0,18	61,3
1	Cubati-PB	122	0,35	183			0,18	51,1
00	Nova Floresta-PB	116	0,34	228	2.195	74.762	0,22	66,9
.5	Santa Filomena-PE	111	0,32	310			0,30	95,1
Ę.	Elísio Medrado-BA	109	0,32	184			0,18	57,5
des	Firmino Alves-BA	107	0,31	117			0,11	37,2
No	Lajedo do Tabocal- BA	136	0,39	212			0,20	53,1
Ъ.	Paulino Neves-MA	69	0,20	345			0,80	409,7
ha	Urbano Santos-MA	92	0,27	523			1,22	465,8
8	Brejo Santo-CE	186	0,54	1.016			2,36	447,6
.00	Belém de Maria-PE	197	0,57	252			0,59	104,8
1 5(Exu-PE	168	0,49	906			2,11	441,9
.001 a	Taquaritinga do Norte-PE	180	0,52	464	6.285	514.997	1,08	211,2
10	Buerarema-BA	167	0,48	535			1,24	262,5
(e	Inhambupe-BA	173	0,50	734			1,71	347,7
ordest	Muquém de São Francisco-BA	43	0,12	227			0,53	432,6
ž	Tucano-BA	176	0,51	1.283			2,98	597,3
ab.	Quixadá-CE	211	0,61	1.661			0,44	72,8
, h	Tianguá-CE	188	0,54	1.485			0,39	73,1
00	Bayeux-PB	235	0,68	1.953			0,51	76,9
0.	Belo Jardim-PE	215	0,62	1.510			0,40	65,0
a 10	Escada-PE	237	0,69	1.416			0,37	55,3
Ξ.	Ipojuca-PE	226	0,65	1.378	10 575	150.000	0,36	56,4
0.	Rio Largo-AL	220	0,64	1.350	16.575	153.320	0,35	56,8
Nordeste/50.001 a 100.000 hab. Nordeste / 10.001 a 50.000 hab.	Campo Formoso- BA	231	0,67	1.639			0,43	65,6
ğ	Eunápolis-BA	135	0,39	2.119			0,56	145,2
Š	Serrinha-BA	216	0,63	2.064			0,54	88,4

^{*} população de crianças de 12 anos no ano 2000, fonte: IBGE

^{**} para manter proporcionalidade com a população representada

Tabela 18 (cont.) – Descrição da amostra coletada, porcentagem ideal para manter proporcionalidade com a população, e peso atribuído a cada criança para correção da desproporcionalidade, no levantamento epidemiológico de 2003.

io /		Am	ostra		População)*	% ideal de	Peso atribuído
Região / Porte	Município	n	%	munic.	munic. da região	região	crianças na amostra**	a cada criança
ab	São Luís-MA	162	0,47	20.664			1,02	221,3
90	Teresina-PI	207	0,60	16.223			0,80	136,0
0.0	Fortaleza-CE	161	0,47	45.256			2,23	487,7
100	Natal-RN	190	0,55	14.910			0,73	136,1
ge	João Pessoa-PB	179	0,52	12.310			0,61	119,3
ajs (Caruaru-PE	231	0,67	5.481	213.057	369.624	0,27	41,2
"E	Recife-PE	106	0,31	26.828			1,32	439,1
ste,	Maceió-AL	202	0,58	16.379			0,81	140,7
g	Aracaju-SE	335	0,97	9.385			0,46	48,6
Nordeste/mais de 100.000hab	Salvador-BA	229	0,66	45.621			2,25	345,6
	Canaã-MG	55	0,16	128			0,13	83,0
	Catas Altas-MG	58	0,17	93			0,09	57,2
ab.	Glaucilândia-MG	58	0,17	64			0,06	39,3
o he	Goianá-MG	58	0,17	52	050		0,05	32,0
Sudeste / até 5.000 hab.	José Gonçalves de Minas-MG	58	0,17	148			0,15	91,0
ate	José Raydan-MG	68	0,20	87	858	30.582	0,09	45,6
ţe/	Silveirânia-MG	53	0,15	26			0,03	17,5
es	Boracéia-SP	69	0,20	80			0,08	41,3
Suc	Itapirapuã Paulista- SP	65	0,19	91			0,09	49,9
	Sabino-SP	62	0,18	89			0,09	51,2
	Guidoval-MG	99	0,29	138			0,15	51,8
Ġ.	Ibiraci-MG	149	0,43	215			0,23	53,7
ha	Luisburgo-MG	99	0,29	128			0,14	48,1
0.000	Monsenhor Paulo- MG	109	0,32	139			0,15	47,4
Sudeste / 5.001 a 10.000 hab.	São Gonçalo do Rio Abaixo-MG	60	0,17	182	1.636	60.845	0,19	112,8
/ 5.00	Conceição do Castelo-ES	137	0,40	244	1.030	00.040	0,26	66,2
ste	Dumont-SP	72	0,21	132			0,14	68,2
ъ	Irapuru-SP	103	0,30	141			0,15	50,9
Ñ	Uchoa-SP	100	0,29	169			0,18	62,9
	Vargem-SP	102	0,30	148			0,16	54,0

^{*} população de crianças de 12 anos no ano 2000, fonte: IBGE

^{**} para manter proporcionalidade com a população representada

Tabela 18 (cont.) – Descrição da amostra coletada, porcentagem ideal para manter proporcionalidade com a população, e peso atribuído a cada criança para correção da desproporcionalidade, no levantamento epidemiológico de 2003.

io /		Am	ostra	F	População	*	% ideal de	Peso atribuído
Região / Porte	Município	n	%	munic.	munic. da região	região	crianças na amostra**	a cada criança
ab	Além Paraíba-MG	208	0,60	589			0,82	139,1
μ̈́	Caldas-MG	152	0,44	218			0,30	70,4
00	Guaranésia-MG	187	0,54	376			0,52	98,8
50.	Jaíba-MG	190	0,55	714			0,99	184,6
B	Minas Novas-MG	183	0,53	977			1,36	262,2
00	Iguaba Grande-RJ	187	0,54	256	5.401	265.271	0,36	67,2
0.	Mangaratiba-RJ	188	0,54	459			0,64	119,9
e.	Castilho-SP	186	0,54	304			0,42	80,3
lest	Itápolis-SP	201	0,58	712			0,99	174,0
Sud	Jales-SP	189	0,55	796			1,11	206,9
ap	Januária-MG	225	0,65	1.626			0,44	68,5
0 h	Nova Lima-MG	322	0,93	1.231			0,33	36,2
00	Paracatu-MG	213	0,62	1.719			0,46	76,5
00	Japeri-RJ	133	0,38	1.687			0,45	120,2
a 1	Bebedouro-SP	332	0,96	1.420			0,38	40,5
10	Jaboticabal-SP	190	0,55	1.249	15.752	149.322	0,34	62,3
0.0	Mairiporã-SP	92	0,27	1.188	13.732	149.322	0,32	122,4
/2(Sertãozinho-SP	253	0,73	1.887			0,51	70,7
ste	Tatuí-SP	192	0,56	1.854			0,50	91,5
Sudeste /50.001 a 100.000 hab Sudeste /10.001 a 50.000 hab	Várzea Paulista- SP	264	0,76	1.891			0,51	67,9
·	Belo Horizonte-MG	300	0,87	38.700			2,64	310,5
hak	Itabira-MG	297	0,86	1.998			0,14	16,2
000.	Ribeirão das Neves-MG	180	0,52	5.250			0,36	70,2
00	Santa Luzia-MG	188	0,54	3.782			0,26	48,4
<u>e</u>	Vitória-ES	286	0,83	5.272			0,36	44,4
Sudeste / mais de 100.000 hab.	Duque de Caxias- RJ	249	0,72	14.763	353.803	851.595	1,01	142,7
) / E	Rio de Janeiro-RJ	116	0,34	89.360			6,10	1854,2
)Ste	Piracicaba-SP	225	0,65	5.862			0,40	62,7
nde	São Paulo-SP	249	0,72	179.674			12,27	1736,8
S	Sorocaba-SP	241	0,70	9.142			0,62	91,3

^{*} população de crianças de 12 anos no ano 2000, fonte: IBGE

^{**} para manter proporcionalidade com a população representada

Tabela 18 (cont.) – Descrição da amostra coletada, porcentagem ideal para manter proporcionalidade com a população, e peso atribuído a cada criança para correção da desproporcionalidade, no levantamento epidemiológico de 2003.

ão /		Am	ostra	F	População	0*	% ideal de	Peso atribuído
Região / Porte	Município	n	%	munic.	munic. da região	região	crianças na amostra**	a cada criança
	Corumbataí do Sul- PR	93	0,27	134			0,14	51,4
	Lobato-PR	55	0,16	71			0,07	46,0
g.	Rio Branco do Ivaí- PR	55	0,16	103			0,10	66,8
) he	Doutor Pedrinho-SC	47	0,14	57			0,06	43,3
00	Jaborá-SC	43	0,12	83			0,08	68,8
5.	André da Rocha-RS	20	0,06	18	721	25.717	0,02	32,1
até	Inhacorá-RS	15	0,04	55	721	25.717	0,06	130,8
Sul / até 5.000 hab.	Mariana Pimentel- RS	42	0,12	65			0,07	55,2
0)	Santo Expedito do Sul-RS	43	0,12	58			0,06	48,1
	São João da Urtiga- RS	43	0,12	77			0,08	63,9
·	Espigão Alto do Iguaçu-PR	85	0,25	134			0,13	54,3
hal	Pranchita-PR	78	0,23	132		0,13	58,3	
Sul / 5.001 a 10.000 hab.	Vera Cruz do Oeste-PR	80	0,23	184			0,18	79,3
10	Agrolândia-SC	92	0,27	154			0,15	57,7
<u>а</u>	Grão Pará-SC	79	0,23	114	1.260	43.422	0,11	49,7
9	Cidreira-RS	79	0,23	162			0,16	70,7
5.(Ibiaçá-RS	77	0,22	85			0,08	38,0
Sul/	São Miguel das Missões-RS	40	0,12	141			0,14	121,5
	Tuparendi-RS	89	0,26	154			0,15	59,6
	Altônia-PR	152	0,44	352			0,28	65,4
Ġ.	Arapoti-PR	167	0,48	513			0,41	86,8
hab.	Matinhos-PR	135	0,39	502			0,40	105,1
0	Realeza-PR	151	0,44	328			0,26	61,4
000	Canoinhas-SC	168	0,49	1.080			0,87	181,7
a 50	Faxinal dos Guedes-SC	160	0,46	247	F 407	145 104	0,20	43,6
01	Videira-SC	147	0,43	745	5.137	145.184	0,60	143,2
)O.C	Charqueadas-RS	129	0,37	475			0,38	104,1
Sul / 10.001 a	Pinheiro Machado- RS	188	0,54	241			0,19	36,2
	Santo Antônio da Patrulha-RS	195	0,56	654			0,52	94,8

^{*} população de crianças de 12 anos no ano 2000, fonte: IBGE

^{**} para manter proporcionalidade com a população representada

Tabela 18 (cont.) – Descrição da amostra coletada, porcentagem ideal para manter proporcionalidade com a população, e peso atribuído a cada criança para correção da desproporcionalidade, no levantamento epidemiológico de 2003.

/ oz		Am	ostra	F	População	D*	% ideal de	Peso atribuído
Região / Porte	Município	n	%	munic.	munic. da região	região	crianças na amostra**	a cada criança
	Campo Mourão-PR	206	0,60	1.728			0,24	41,9
ab	Umuarama-PR	178	0,52	1.646			0,23	46,1
	Araranguá-SC	175	0,51	1.170			0,17	33,4
Sul / 50.001 a 100.000 hab.	Balneário Camboriú-SC	198	0,57	1.316			0,19	33,2
l a 10	Bento Gonçalves- RS	203	0,59	1.502	13.921	69.463	0,21	36,9
9	Camaquã-RS	219	0,63	1.071			0,15	24,4
0.0	Guaíba-RS	187	0,54	1.835			0,26	49,0
7	Santo Ângelo-RS	207	0,60	1.432			0,20	34,5
Ιχ	Sapiranga-RS	198	0,57	1.266			0,18	31,9
0)	Taquara-RS	224	0,65	955			0,14	21,3
þ.	Apucarana-PR	245	0,71	2.123			0,13	19,3
Sul / mais de 100.000 hab.	Colombo-PR	215	0,62	3.719			0,23	38,5
8	Curitiba-PR	263	0,76	27.319			1,73	231,2
0.0	Blumenau-SC	260	0,75	4.915			0,31	42,1
10	Florianópolis-SC	268	0,78	5.992			0,38	49,8
de	Itajaí-SC	224	0,65	2.865	87.512	194.793	0,18	28,5
ais	Joinville-SC	177	0,51	8.558			0,54	107,6
Ë	Canoas-RS	338	0,98	5.824			0,37	38,4
<u>_</u>	Gravataí-RS	200	0,58	4.425			0,28	49,2
S	Porto Alegre-RS	187	0,54	21.772			1,37	259,2
	Corguinho-MS	47	0,14	93			0,04	27,3
) hab	General Carneiro- MT	61	0,18	93			0,04	21,0
õ	Ponte Branca-MT	4	0,01	38			0,01	131,1
5.0	Ribeirãozinho-MT	46	0,13	41			0,02	12,3
ıté	Caturaí-GO	56	0,16	76			0,03	18,7
0	Itaguari-GO	62	0,18	88	744	10.269	0,03	19,6
ste	Nova Roma-GO	82	0,24	91	744	10.269	0,04	15,3
Centro-Oeste / até 5.000 hab.	Santa Cruz de Goiás-GO	34	0,10	62			0,02	25,2
Centr	Taquaral de Goiás- GO	48	0,14	82			0,03	23,6
	Turvelândia-GO	39	0,11	80			0,03	28,3

^{*} população de crianças de 12 anos no ano 2000, fonte: IBGE

^{**} para manter proporcionalidade com a população representada

Tabela 18 (cont.) – Descrição da amostra coletada, porcentagem ideal para manter proporcionalidade com a população, e peso atribuído a cada criança para correção da desproporcionalidade, no levantamento epidemiológico de 2003.

/ og /	<u>. </u>	Am	ostra	F	População)*	% ideal de	Peso atribuído
Região / Porte	Município	n	%	munic.	munic. da região	região	crianças na amostra**	a cada criança
	Bandeirantes-MS	23	0,07	123			0,04	55,4
hab.	Dois Irmãos do Buriti-MS	96	0,28	204			0,06	22,0
8	Alto Garças-MT	65	0,19	168			0,05	26,8
0.	Apiacás-MT	81	0,23	149			0,04	19,1
10	Nortelândia-MT	72	0,21	180			0,05	25,9
)01 a	São José do Xingu- MT	93	0,27	113			0,03	12,6
e / 5.(Nova Monte Verde- MT	55	0,16	139	1.657	17.160	0,04	26,2
Oest	Cachoeira Dourada- GO	87	0,25	179			0,05	21,3
Centro-Oeste / 5.001 a 10.000 hab.	Corumbá de Goiás- GO	58	0,17	229			0,07	40,9
Ö	Petrolina de Goiás- GO	45	0,13	173			0,05	39,8
<u>ප</u>	Paranaíba-MS	160	0,46	770			0,26	58,2
ř	Araputanga-MT	88	0,25	330			0,11	45,3
00	Barra do Garças-MT	121	0,35	1.104			0,38	110,3
Centro-Oeste / 10.001 a 50.000 hab.	Chapada dos Guimarães-MT	24	0,07	387			0,13	194,9
10	Juína-MT	199	0,58	772			0,26	46,9
0.0	Juscimeira-MT	126	0,36	271	5.870	70.955	0,09	26,0
7	Niquelândia-GO	148	0,43	888	3.070	70.555	0,30	72,5
)este	Palmeiras de Goiás- GO	153	0,44	371			0,13	29,3
9	Pirenópolis-GO	152	0,44	458			0,16	36,4
Cent	São Luís de Montes Belos-GO	166	0,48	519			0,18	37,8
0.000hab	Corumbá-MS	49	0,14	2.042			0,09	65,8
90	Três Lagoas-MS	146	0,42	1.595			0,07	17,2
0.0	Cáceres-MT	192	0,56	1.923			0,09	15,8
	Sinop-MT	164	0,47	1.601			0,07	15,4
Ø	Catalão-GO	205	0,59	1.216			0,05	9,4
201	Formosa-GO	156	0,45	1.820			0,08	18,4
20.0	Itumbiara-GO	212	0,61	1.489	16.459	25.975	0,07	11,1
te/E	Planaltina-GO	232	0,67	1.614			0,07	11,0
Centro-Oeste/50.001 a 10	Senador Canedo- GO	111	0,32	1.165			0,05	16,6
Centro	Valparaíso de Goiás-GO	49	0,14	1.994			0,09	64,2

^{*} população de crianças de 12 anos no ano 2000, fonte: IBGE

^{**} para manter proporcionalidade com a população representada

Tabela 18 (cont.) – Descrição da amostra coletada, porcentagem ideal para manter proporcionalidade com a população, e peso atribuído a cada criança para correção da desproporcionalidade, no levantamento epidemiológico de 2003.

ão /		Amo	ostra		Populaçã	ăo*	% ideal de _ crianças	Peso atribuíd
Região Porte	Município	n	%	munic.	munic. da região	região	na amostra**	o a cada criança
00	Campo Grande- MS	163	0,47	13.341			0,39	85,3
100.000	Dourados-MS Cuiabá-MT	173 196	0,50 0,57	3.362 10.236			0,10 0,30	20,2 54,4
is de	Rondonópolis- MT	165	0,48	3.140			0,09	19,8
/ mais hab.	Várzea Grande- MT	207	0,60	4.671	108.367	112.883	0,14	23,5
ste	Anápolis-GO	190	0,55	5.594			0,17	30,7
Centro-Oeste	Aparecida de Goiânia-GO	232	0,67	7.058			0,21	31,7
ıntr	Goiânia-GO	203	0,59	19.946			0,59	102,4
ပိ	Luziânia-GO	179	0,52	2.935			0,09	17,1
	Brasília-DF	134	0,39	38.084			1,13	296,1
	TOTAL	34.550	100	990.614	990.614	3.524.814	100,00	

^{*} população de crianças de 12 anos no ano 2000, fonte: IBGE

A tabela 19 mostra os resultados obtidos por região e porte do município, ajustando-se os dados para o desenho amostral.

A tabela 20 mostra a comparação dos resultados quando foi levado em consideração o desenho amostral (com ponderação) e quando o desenho não foi levado em consideração (sem ponderação).

^{**} para manter proporcionalidade com a população representada

Tabela 19 – Média, erro padrão da média, e intervalo de confiança a 95% para o CPOD, por região e porte do município, do levantamento de SB Brasil 2003, fazendo a ponderação da amostra em relação a população representada, e o desenho amostral.

Dogião	Douto*			CPOD	
Região	Porte*	n	média	epm	IC 95%
	1	515	2,75	0,38	2,01 - 3,50
Ø)	2	1009	4,65	0,34	3,98 - 5,31
Norte	3	1338	3,43	0,25	2,93 - 3,92
2	4	1631	3,21	0,31	2,61 - 3,81
	5	1715	2,34	0,36	1,62 - 3,06
	1	680	3,65	0,42	2,83 - 4,47
ste	2	1075	3,78	0,22	3,35 - 4,21
Nordeste	3	1451	2,34	0,21	1,92 - 2,76
8	4	2114	3,93	0,95	2,05 - 5,80
	5	2002	2,14	0,25	1,64 - 2,64
<u>o</u>	1	479	3,58	0,29	3,01 - 4,15
Centro-Oeste	2	675	3,13	0,52	2,10 - 4,16
0-0	3	1337	4,69	0,79	3,14 - 6,24
enti	4	1516	2,99	0,23	2,54 - 3,45
0	5	1842	2,44	0,15	2,14 - 2,74
	1	604	2,73	0,27	2,20 - 3,25
ete	2	1030	2,85	0,31	2,24 - 3,45
Sudeste	3	1871	2,59	0,41	1,77 - 3,40
Su	4	2216	2,65	0,38	1,90 - 3,40
	5	2331	1,54	0,15	1,25 - 1,83
	1	456	4,58	0,45	3,69 - 5,47
	2	699	3,02	0,39	2,25 - 3,79
Sul	3	1592	2,68	0,32	2,05 - 3,30
	4	1995	1,98	0,20	1,59 - 2,37
	5	2377	1,36	0,10	1,16 - 1,57

^{* 1-} até 5.000 hab.

^{2-5.001} a 10.000 hab.

^{3- 10.001} a 50.000 hab.

^{4-50.001} a 100.000 hab.

⁵⁻ mais de 100.000 hab.

Tabela 20 – Comparação do CPOD calculado sem e com ponderação, por região e porte do município, no levantamento epidemiológico SB Brasil 2003.

Região	Porto*	n	Se ponde		Co ponde		dif.	dif. %
riegiao	TOILE	"	média	epm	média	epm	. un.	GII. 78
	1	515	2,67	0,13	2,75	0,38	0,08	3,1
d)	2	1009	4,29	0,11	4,65	0,34	0,36	8,3
Norte	3	1338	3,42	0,09	3,43	0,25	0,01	0,2
2	4	1631	3,22	0,07	3,21	0,31	-0,01	-0,4
	5	1715	2,29	0,06	2,34	0,36	0,05	2,2
	1	680	3,73	0,13	3,65	0,42	-0,08	-2,1
ste	2	1075	3,65	0,10	3,78	0,22	0,13	3,5
Nordeste	3	1451	2,53	0,08	2,34	0,21	-0,19	-7,5
2	4	2114	4,08	0,10	3,93	0,95	-0,15	-3,8
	5	2002	2,28	0,06	2,14	0,25	-0,14	-6,2
φ	1	479	3,66	0,17	3,58	0,29	-0,08	-2,2
)est	2	675	3,16	0,12	3,13	0,52	-0,03	-1,0
Centro-Oeste	3	1337	4,16	0,11	4,69	0,79	0,53	12,7
ent	4	1516	2,87	0,08	2,99	0,23	0,12	4,3
	5	1842	2,54	0,07	2,44	0,15	-0,10	-3,8
	1	604	2,55	0,11	2,73	0,27	0,18	6,9
ste	2	1030	2,76	0,09	2,85	0,31	0,09	3,2
Sudeste	3	1871	2,68	0,07	2,59	0,41	-0,09	-3,4
S	4	2216	2,45	0,06	2,65	0,38	0,20	8,2
	5	2331	1,58	0,05	1,54	0,15	-0,04	-2,3
	1	456	4,57	0,18	4,58	0,45	0,01	0,2
	2	699	3,13	0,11	3,02	0,39	-0,11	-3,5
Sul	3	1592	2,67	0,07	2,68	0,32	0,01	0,2
	4	1995	2,02	0,05	1,98	0,20	-0,04	-1,9
	5	2377	1,62	0,05	1,36	0,10	-0,26	-15,8

^{* 1-} até 5.000 hab.

^{2-5.001} a 10.000 hab.

^{3- 10.001} a 50.000 hab.

^{4-50.001} a 100.000 hab.

⁵⁻ mais de 100.000 hab.

A maior diferença percentual ocorreu em relação à região Sul em municípios com mais de 100.000 habitantes, onde o cálculo com ponderação resultou em um valor médio de CPOD 15,8% menor. Analisando-se as tabelas 15 e 18 verificou-se que isto ocorreu porque municípios com baixos valores de CPOD como Porto Alegre-RS (CPOD = 1,06) , Florianópolis-SC (CPOD = 1,30) e Curitiba-PR (CPOD = 1,39) estavam sub-representados, enquanto municípios com altos valores de CPOD como Apucarana-PR (CPOD = 3,33) e Itajaí-SC (CPOD = 1,82) estavam sobre-representados.

Na tabela 20 verificou-se também que o erro padrão da média, calculado levando-se em conta o desenho amostral, é maior. Isto deveu-se principalmente ao fato de utilizar amostragem por conglomerados e a não homogeneidade dentro dos estratos (HANSEN; HURWITZ; MADOW, 1953). Destaca-se a diferença para a região Nordeste em municípios de 50.001 a 100.000 habitantes, onde o valor do epm passou de 0,10 para 0,95. Neste estrato a variação do CPOD médio dos municípios foi a maior de todos os estrados, indo de 1,79 (Serrinha-BA) até 11,96 (Campo Formoso-BA) (tabela 15).

As tabelas 21 e 22 mostram os valores agregados por região, assim como a comparação entre os métodos com e sem ponderação. Verificaramse diferenças entre os dois tipos de cálculo, sendo que a maior variação (18,2%) ocorreu na região Nordeste.

As tabelas 23 e 24 mostram os dados agregados por porte do município, e a comparação pelos dois métodos de cálculo.

Tabela 21 – Média, erro padrão da média, e intervalo de confiança a 95% para o CPOD, por região, do levantamento de SB Brasil 2003*, fazendo a ponderação da amostra em relação a população representada.

Região	n –	CPOD				
		média	epm	IC 95%		
Norte	6208	3,05	0,18	2,69 - 3,41		
Nordeste	7322	2,61	0,20	2,22 - 3,00		
Centro-Oeste	5849	3,27	0,31	2,65 - 3,89		
Sudeste	8052	1,95	0,15	1,65 - 2,26		
Sul	7119	2,17	0,18	1,83 - 2,52		
BRASIL	34.550	2,38	0,12	2,14 - 2,62		

^{* -} BRASIL (2003)

Tabela 22 – Comparação do CPOD calculado sem e com ponderação, por região, no levantamento epidemiológico SB Brasil 2003*.

Região —	Sem ponderação		Com pon	deração	dif.	dif. %
	média	epm	média	epm	uii.	uii. 76
Norte	3,13	0,03	3,05	0,18	-0,08	-2,5
Nordeste	3,19	0,03	2,61	0,20	-0,58	-18,2
Centro- Oeste	3,16	0,04	3,27	0,31	0,11	3,6
Sudeste	2,30	0,04	1,95	0,15	-0,35	-15,0
Sul	2,31	0,04	2,17	0,18	-0,14	-5,9
BRASIL	2,79	0,02	2,38	0,12	-0,41	-14,7

^{* -} BRASIL (2003)

Tabela 23 – Média, erro padrão da média, e intervalo de confiança a 95% para o CPOD, por porte do município, do levantamento de SB

Brasil 2003*, fazendo a ponderação da amostra em relação a população representada.

Porte (hab.)	n	CPOD				
Forte (nab.)	n -	média	epm	IC 95%		
até 5.000	2.734	3,53	0,18	3,18 - 3,87		
5.001 a 10.000	4.488	3,38	0,17	3,05 - 3,70		
10.001 a 50.000	7.589	2,71	0,17	2,38 - 3,05		
50.001 a 100.000	9.472	3,07	0,35	2,38 - 3,75		
mais de 100.000	10.267	1,77	0,10	1,58 - 1,96		
BRASIL (2002)	34.550	2,38	0,12	2,14 - 2,62		

^{* -} BRASIL (2003)

Tabela 24 – Comparação do CPOD calculado sem e com ponderação, por porte do município, no levantamento epidemiológico SB Brasil 2003*.

Porte (hab.)	Sem ponderação		Com ponderação		dif.	dif. %	
	média	epm		média	epm		
até 5.000	3,40	0,06		3,53	0,18	0,13	3,8
5.001 a 10.000	3,44	0,05		3,38	0,17	-0,06	-1,8
10.001 a 50.000	3,04	0,04		2,71	0,17	-0,33	-10,9
50.001 a 100.000	2,92	0,03		3,07	0,35	0,14	4,8
mais de 100.000	2,02	0,02		1,77	0,10	-0,25	-12,2
BRASIL	2,79	0,02		2,38	0,12	-0,41	-14,7

^{* -} BRASIL (2003)

Calculando-se o CPOD ponderado pela população de crianças de 12 anos de cada município o CPOD Brasil passou de 2,79 para 2,38, uma redução de 14,7%. Se pensarmos o método ponderado como o mais correto, ao fazer a média sem ponderação o resultado foi inflado em 17,2%.

Nos levantamentos de saúde bucal, para estimativas mais adequadas, deve-se considerar nos cálculos a complexidade do desenho amostral, principalmente quando observamos cada vez mais uma polarização na doença cárie, onde certos grupos populacionais têm alto índice de cárie enquanto outros possuem valor próximo a zero. Levantamentos epidemiológicos que não levem em consideração estes fatores, no seu planejamento, execução e análise, terão cada vez menor importância, pois estarão representando uma média geral que pouco significado tem.

Deste modo, falar de cárie dentária pela média de uma população tão heterogênea como o Brasil serve para acompanhamento e comparação global da situação no país, porém, tem pouco significado prático na análise, interpretação e possíveis tomadas de ação sobre este problema. Há a necessidade de estimativas específicas e contínuas para os diversos subgrupos da população brasileira.

Os cálculos aqui propostos mostraram melhores indicadores de cárie dentária, para o Brasil, do que os cálculos sem ponderação. Com isto podese imaginar que ao atingir a meta geral preconizada pela OMS de CPOD=3,00 para o ano 2000 (FDI, 1982) estamos perto de ter uma condição adequada de saúde bucal. Ter CPOD médio igual a 2,38 distribuído homogeneamente pela população como um todo tem um significado totalmente diferente do que quando esta média ocorre em uma situação tão polarizada como é a que se apresenta no Brasil. Isto pode ser observado quando se analisa os dados do SB Brasil 2003 em nível municipal. A distribuição do CPOD médio por município está mostrada na figura 9.

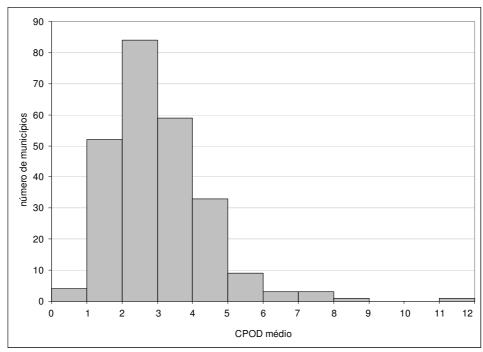


Figura 9 – Histograma do CPOD médio aos 12 anos, por município, no levantamento epidemiológico SB Brasil 2003.

A média do CPOD dos 249 municípios foi de 3,02, sendo que chama a atenção o município de Campo Formoso-BA com CPOD de 11,96. Vemos ainda que 50 dos 249 municípios estudados possuíam CPOD médio acima de 4.

Para confirmar a desigualdade na distribuição da cárie, na figura 10 observa-se, por meio das curvas de Lorenz, que nas regiões mais desenvolvidas do país era onde existia maior desigualdade na distribuição da cárie.

A tabela 25 mostra o fenômeno da polarização da cárie por meio do coeficiente de Gini. As regiões com CPOD menor eram as que possuíam maior desigualdade na distribuição do CPOD, o que indica que a redução da cárie não atingiu homogeneamente a população como um todo.

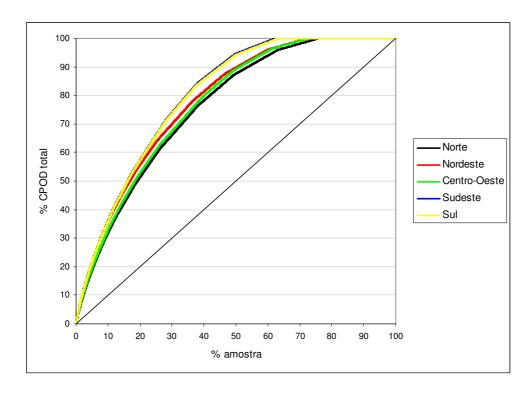


Figura 10 - Curvas de Lorenz mostrando a distribuição do CPOD com relação ao total da amostra por região, no levantamento SB Brasil 2003.

Tabela 25 – Índice CPOD médio e coeficiente de Gini para as cinco regiões do levantamento SB Brasil, 2003.

Região	CPOD	Gini
Norte	3,05	0,52
Nordeste	2,61	0,57
Centro-Oeste	3,27	0,54
Sudeste	1,95	0,60
Sul	2,17	0,60

Os resultados demonstraram a necessidade de estudos específicos nos vários estratos populacionais, e o estabelecimento de metas gerais para o país como um todo tem pouca validade em um país tão heterogêneo como o Brasil. Este fato é corroborado pelo artigo de Hobdell et al. (2003) onde as

propostas da FDI, OMS e IADR ao estabelecerem metas para o ano 2020 não fixam valores gerais para os países. Nestas novas propostas os valores devem ser determinados localmente em função das especificidades de cada país e região dentro do mesmo.

5.4 Análise dos três levantamentos nacionais

A figura 11 mostra a evolução da distribuição geral do CPOD nos levantamentos de 1986, 1996 e 2003. Observou-se a clara tendência de redução dos valores de CPOD, principalmente do levantamento de 1986 para os dois outros.

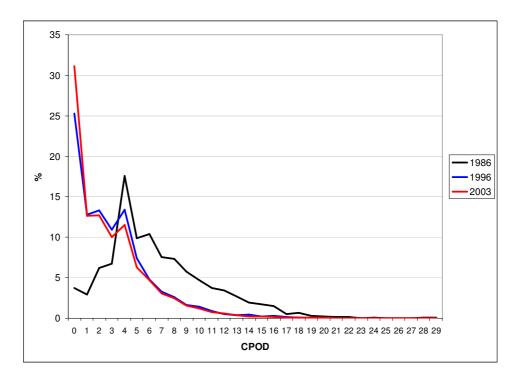


Figura 11 – Curvas de distribuição do CPOD aos 12 anos de idade nos levantamentos epidemiológicos de 1986, 1996 e 2003.

Como os levantamentos de 1986 e 1996 só coletaram dados nas capitais das unidades federativas, para fazer uma análise só das capitais a figura 12 mostra a distribuição do CPOD levando em conta somente os dados das capitais no levantamento de 2003. Pode-se notar mais claramente a evolução da redução do CPOD do levantamento de 2003 com relação aos outros dois.

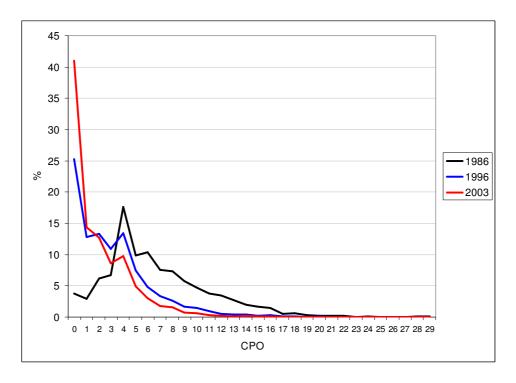


Figura 12 – Curvas de distribuição do CPOD aos 12 anos de idade nos levantamentos epidemiológicos de 1986, 1996 e 2003 só para as capitais das unidades federativas.

A tabela 26 mostra os dados do CPOD obtidos ns três levantamentos utilizando-se a ponderação da amostra em relação a população representada. Nota-se claramente uma sensível queda do CPOD médio do primeiro para o segundo e o terceiro levantamento, sem grandes alterações do segundo para o terceiro. Esta comparação é limitada pois nos levantamentos de 1986 e 1996 foram amostradas apenas as regiões urbanas das capitais das unidades federativas, enquanto no de 2003 foram amostradas regiões urbanas e rurais, nas capitais e no interior.

Tabela 26 – CPOD, aos 12 anos de idade, obtidos nos levantamentos epidemiológicos de 1986, 1996 e 2003, por região e para o Brasil.

Região ₋	1986		199	96	200	2003		
	média	epm	média	epm	média	epm		
Norte	7,27	0,28	3,72	0,13	3,05	0,18		
Nordeste	7,12	0,23	2,59	0,08	2,61	0,2		
Centro- Oeste	8,41	0,36	2,59	0,12	3,27	0,31		
Sudeste	6,25	0,18	2,23	0,13	1,95	0,15		
Sul	6,62	0,28	2,26	0,12	2,17	0,18		
BRASIL	6,74	0,11	2,46	0,06	2,38	0,12		

Para uma melhor comparação entre os três levantamentos foi feito o cálculo do CPOD médio utilizando-se só os dados das capitais federativas para representar as regiões. Neste cálculo também foi feita a ponderação entre amostra e população representada. Com isto pode-se verificar mais claramente a queda no período de 1996 para 2003.

Tabela 27 – CPOD, aos 12 anos de idade, obtidos nos levantamentos epidemiológicos de 1986, 1996 e 2003*, por região e para o Brasil.

Pogião	1986		199	96	200	2003*		
Região	média	epm	média	epm	média	epm		
Norte	7,27	0,28	3,72	0,13	2,38	0,15		
Nordeste	7,12	0,23	2,59	0,08	2,12	0,07		
Centro- Oeste	8,41	0,36	2,59	0,12	2,42	0,12		
Sudeste	6,25	0,18	2,23	0,13	1,52	0,09		
Sul	6,62	0,28	2,26	0,12	1,25	0,07		
BRASIL	6,74	0,11	2,46	0,06	1,81	0,05		

^{* -} só para as capitais das unidades federativas

Para analisar a evolução da redução do CPOD médio ao longo do tempo, baseado somente nos dados das capitais, a figura 13 mostra os valores médios por região e levantamento, assim como a curva de tendência, baseada na função exponencial, que foi a que mais se adaptou à evolução dos valores de CPOD ao longo do tempo.

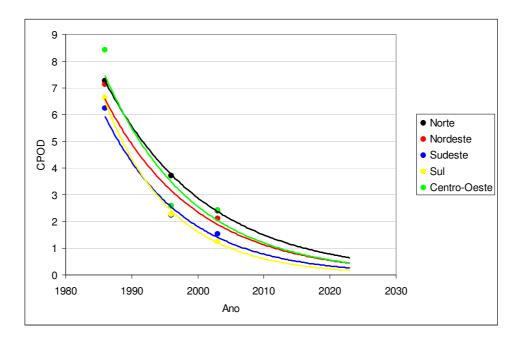


Figura 13 – Curvas de regressão, por região, baseadas nos levantamentos de 1986, 1996 e 2003,com dados das capitais.

O mesmo tipo de curva, para o Brasil, está mostrada na figura 14. Também nestes cálculos, para o levantamento de 2003 só foram utilizados os dados das capitais federativas.

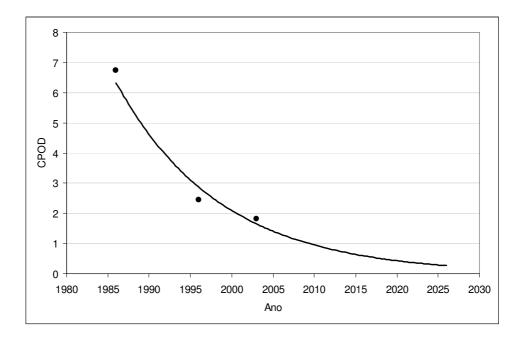


Figura 14 – Curva de regressão para o CPOD no Brasil, baseada nos levantamentos de 1986, 1996 e 2003 só com dados das capitais federativas.

A curva de regressão exponencial mostrada na figura 14 foi determinada pela seguinte equação:

$$CPOD = 6,3239 \times e^{-0.0789(x-1986)}$$
 (5.6)

Onde o valor de x é o ano da estimativa.

Baseado nesta expressão foi feita uma estimativa do CPOD médio para os próximos anos (tabela 28).

Tabela 28 – Estimativa para os próximos anos do CPOD médio das capitais do Brasil, baseada nos levantamentos de 1986, 1996 e 2003.

Ano	CPOD
2010	0,95
2015	0,64
2020	0,43
2025	0,29
2050	0,04

Esta estimativa é baseada apenas nas médias dos três levantamentos e para as capitais das unidades federativas. Para que ocorram os valores previstos há a necessidade que a atual tendência de queda permaneça nos próximos anos, caso isto ocorra, dentro de 50 anos estaremos próximos ao CPOD zero. Ações mais centradas na parcela da população que detém a maior parte do CPOD podem acelerar esta redução.

Como estimativa geral para o Brasil a tabela 29 mostra os valores usuais citados como representantes do CPOD Brasil, isto é, valores obtidos pela média aritmética geral e divulgados nos relatórios oficiais dos levantamentos. São também mostrados os valores calculados levando em conta o desenho amostral dos levantamentos. Cálculos estes que foram propostos neste trabalho como de melhor representação do parâmetro populacional. Verificou-se uma pequena diferença quando comparados os métodos de cálculo no levantamento de 1986, já para os levantamentos de 1996 e 2003 as diferenças foram significativas, demonstrando a importância do desenho amostral em levantamentos complexos.

Tabela 29 – Comparação entre os resultados do CPOD médio para o Brasil, calculado com e sem ponderação da representatividade da amostra em relação à população, nos levantamentos epidemiológicos de 1986, 1996 e 2003.

Levantamento	média geral	média ponderada	diferença	diferença percentual
1986	6,65*	6,74	0,09	+1,4%
1996	3,06**	2,46	-0,60	-19,6%
2003	2,78***	2,38	-0,40	-14,4%

^{* -} BRASIL (1988)

Para analisar a homogeneidade da distribuição do CPOD na população as figuras 15 e 16 mostram as curvas de Lorenz da distribuição do CPOD para os três levantamentos epidemiológicos, sendo que na figura 16 foram considerados apenas os dados das capitais das unidades federativas no levantamento de 2003.

^{** -} BRASIL (1996)

^{*** -} BRASIL (2004)

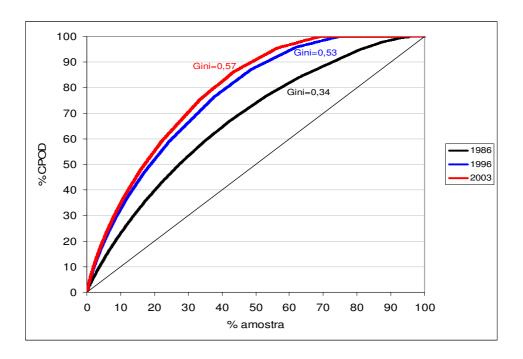


Figura 15 – Curvas de Lorenz e coeficiente de Gini, do CPOD aos 12 anos de idade, nos levantamentos de 1986, 1996 e 2003, no Brasil.

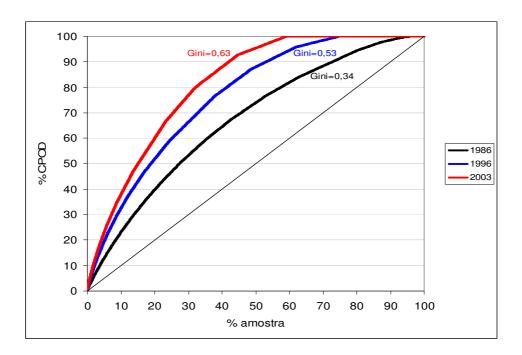


Figura 16 – Curvas de Lorenz e coeficiente de Gini, do CPOD aos 12 anos de idade, nos levantamentos de 1986, 1996 e 2003, só para as capitais do Brasil.

Verificou-se uma clara tendência de aumento da desigualdade na distribuição da cárie com o passar do tempo. A redução do CPOD médio foi acompanhada de uma polarização da distribuição. Em 2003, tomando em conta apenas as capitais, 41% das crianças tinham CPOD zero, enquanto 20% das crianças respondiam por 60% de todo o CPOD. Ficou evidente a necessidade de estudos localizados com intuito de identificar e dirigir ações específicas para estes estratos populacionais que ainda possuem alta incidência da doença cárie. Estes achados são semelhantes aos encontrados por Antunes, Jahn e Camargo (2004) em estudo realizado com dados do Estado de São Paulo. Bastos et al. (2005), analisando dados de Bauru-SP, e Cardoso et al. (2003) estudando crianças de Pareci Novo-RS, também mostraram a ocorrência do fenômeno da polarização dentro dos próprios municípios.

5.5 Estudo ecológico por município no período de 1980 a 2005

Aplicando a metodologia descrita no capítulo Material e Método para busca de artigos com dados de CPOD aos 12 anos por município, o levantamento gerou uma lista inicial de 670 artigos, sendo 358 do Lilacs, 222 da BBO e 90 do Medline. Após a seleção dos artigos, de acordo com os critérios adotados, restaram 67 artigos. A grande redução do número inicial de artigos ocorreu por vários motivos, sendo que os principais foram:

- dados não específicos para a idade de 12 anos
- artigos que utilizavam dados primários dos levantamentos oficiais
- artigos utilizando dados de outros artigos
- outros índices que não o CPOD

Estes artigos contribuíram com 111 registros de CPOD médio por município. Os levantamentos nacionais de 1986, 1996 e 2003 contribuíram com 292 registros, sendo 16 de 1986, 27 de 1996 e 249 de 2003. Os levantamentos oficiais do Estado de São Paulo contribuíram com mais 147 registros, sendo 131 do levantamento de 1998 e 16 do levantamento de 2002.

O banco de dados final contou com 550 registros de CPOD de 428 municípios diferentes (ANEXO 1). Embora os dados tenham sido tabelados por município, e um único levantamento epidemiológico podia abranger vários municípios, por facilidade de terminologia adotou-se chamar os dados de cada município como um "levantamento epidemiológico".

A distribuição dos levantamentos epidemiológicos, por estado e região geográfica, está mostrada na tabela 30.

Os resultados mostraram que mais da metade (52,00%) dos levantamentos por município, no período estudado, ocorreu na região

Sudeste. Isto se deve principalmente ao levantamento do estado de São Paulo feito em 1998 onde foram amostrados 131 municípios. Como a prevalência da cárie dentária é bastante variável de município para município, esta concentração de informação em uma única região mostra que há necessidade da realização de mais levantamentos, principalmente nas regiões economicamente menos privilegiadas.

Quanto à distribuição ao longo do tempo (figura 17), os anos de maior ocorrência de levantamentos são coincidentes com os anos dos levantamentos públicos, com destaque para 2003, ano em que foi feito o maior levantamento no país. O segundo pico foi em 1998, ano no qual foi conduzido um grande levantamento no Estado de São Paulo (SÃO PAULO, 1999).

A figura 18 mostra a distribuição quanto a proporção de registros de municípios com e sem fluoretação de águas de abastecimento. A distribuição foi semelhante com 53,27% dos registros em municípios com fluoretação e 46,73% em municípios sem fluoretação.

Tabela 30 – Distribuição dos levantamentos epidemiológicos, de CPOD aos 12 anos, segundo a região geográfica.

Estado	n	%	Região	n	%
DF	5	0,91			
GO	27	4,91			
MS	12	2,18	Centro-Oeste	78	14,18
MT	21	3,82			
TO	13	2,36			
AC	5	0,91			
AM	12	2,18			
AP	3	0,55	Norte	47	8,55
PA	20	3,64	Norte	47	0,55
RO	5	0,91			
RR	2	0,36			
AL	5	0,91			
BA	17	3,09			
CE	7	1,27			
MA	7	1,27			
PB	9	1,64	Nordeste	74	13,45
PE	15	2,73			
PI	8	1,45			
RN	3	0,55			
SE	3	0,55			
PR	19	3,45			
RS	26	4,73	Sul	65	11,82
SC	20	3,64			
ES	3	0,55			
MG	35	6,36	Sudeste	286	52,00
RJ	7	1,27	Suuesie	200	32,00
SP	241	43,82			
Total	550	100,00	Total	550	100,00

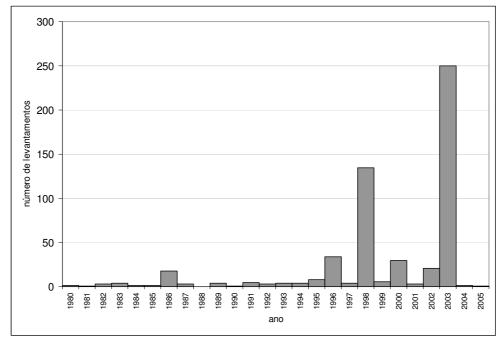


Figura 17 — Distribuição dos levantamentos epidemiológicos, de CPOD aos 12 anos, segundo o ano de coleta dos dados.

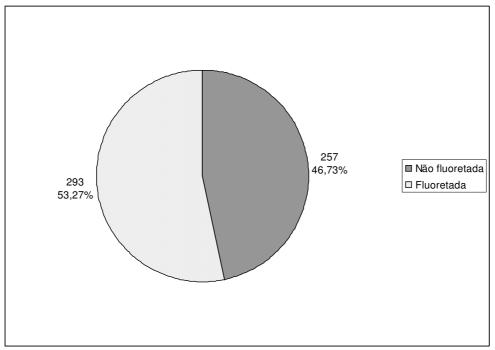


Figura 18 — Distribuição dos levantamentos epidemiológicos, de CPOD aos 12 anos, segundo a fluoretação de água de abastecimento do município.

Dos 550 registros, 24 não tinham informação identificável do número de crianças participantes da amostra. Nos 526 registros com informação o total de crianças foi de 72.637. A distribuição dos levantamentos, quanto ao tamanho das amostras de cada um está mostrada na figura 19.

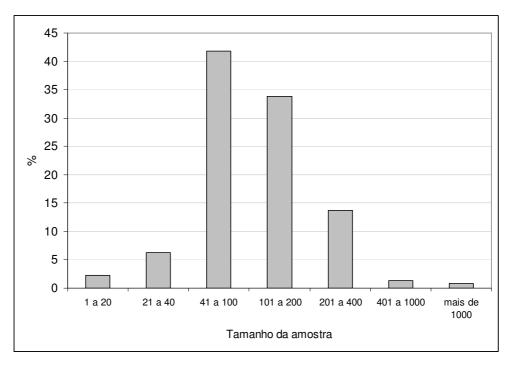


Figura 19 – Distribuição dos levantamentos epidemiológicos, de CPOD aos 12 anos, quanto ao tamanho da amostra.

Quanto ao porte dos municípios amostrados verificou-se que a maior quantidade de levantamentos ocorreu em municípios de pequeno porte (figura 20), com mais de 30% dos registros feitos em municípios de até 10.000 habitantes.

Quanto ao IDH-M dos municípios amostrados, mais da metade dos levantamentos foram executados em municípios de IDH-M na faixa de 0,700 a 0,799, que é considerada uma faixa de valor de médio desenvolvimento humano, refletindo o perfil geral do Brasil (figura 21).

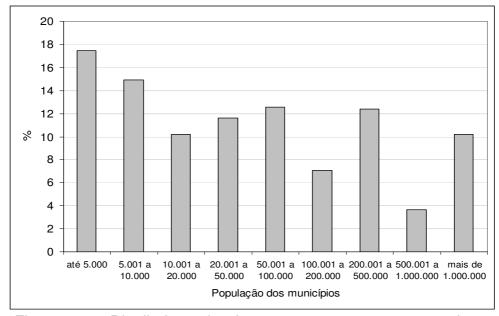


Figura 20 — Distribuição dos levantamentos quanto a população dos municípios.

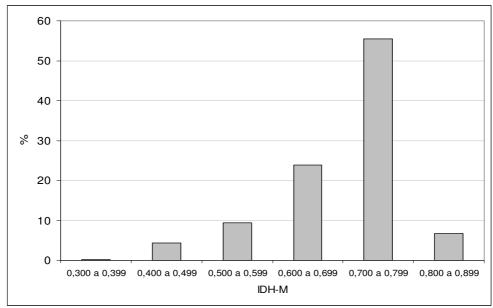


Figura 21 – Distribuição dos levantamentos quanto ao IDH-M dos municípios.

A figura 22 mostra a distribuição do CPOD médio dos municípios pelo ano de coleta dos dados

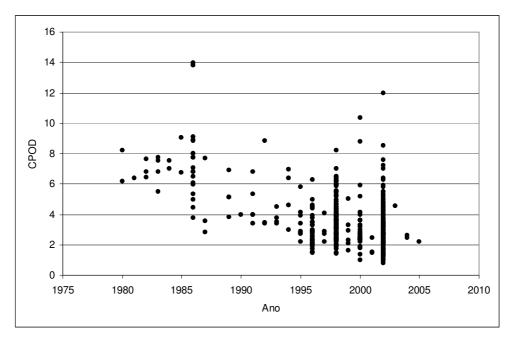


Figura 22 – Distribuição do CPOD dos levantamentos por ano da coleta dos dados.

Para analisar a influência do tempo, fluoretação das águas de abastecimento, porte do município e IDH-M do município no valor do CPOD médio foi conduzida uma análise de regressão múltipla não linear utilizando estes fatores como variáveis independente e o CPOD como variável dependente.

Para o tempo, em anos, tomou-se como base o ano de 1980, assim para estimar o CPOD em 2020 o valor de tempo considerado foi 40 anos.

O município foi considerado como tendo fluoretação das águas de abastecimento quando esta já existia há pelo menos cinco anos antes da data da coleta dos dados. Para a fuloretação de águas o valor 1 indicava sim, e o valor 0 indicava não.

Foram inseridos no banco de dados informações do IDH-M para os anos de 1991 e 2000, e ambos foram inseridos na análise, um de cada vez.

O porte do município foi classificado segundo as seguintes faixas populacionais mostradas na tabela 31, as mesmas adotadas no levantamento SB Brasil 2003.

Tabela 31 – Classificação do porte dos municípios de acordo com a população no ano da coleta de dados.

População (hab.)	Faixa
até 5.000	1
5.001 a 10.000	2
10.001 a 50.000	3
50.001 a 100.000	4
mais de 100.000	5

No modelo, para a variável tempo adotou-se um efeito exponencial, pois esta foi função que mais se adaptou nas análises executadas no três levantamentos nacionais de 1986, 1996 e 2003 (figura 14). Já para as variáveis fluoretação, porte populacional e IDH-M adotou-se efeito linear. A função original de regressão foi:

$$CPOD = a + b \times e^{c \times \text{tempo}} + d \times \text{fluor} + e \times \text{porte} + f \times \text{IDHM}$$
 (5.7)

Sendo: a, b, c, d, e, e f os coeficientes que foram determinados.

O método adotado foi o *backward stepwise*. Método este onde todas as variáveis independentes foram inseridas no modelo e as de menor influência foram retiradas. O coeficiente de determinação (R²) era então avaliado para decidir se a variável permanecia ou era excluída do modelo.

Como os levantamentos possuíam tamanho de amostra bastante variável, e o tamanho da amostra está relacionado com uma maior precisão do CPOD calculado, o tamanho da amostra em cada levantamento foi utilizado como peso de ponderação. Isto levou a uma redução do número de

levantamentos de 550 para 526, pois 24 deles não possuíam informação do número de indivíduos na amostra.

No resultado da análise de regressão as quatro variáveis independentes mostraram-se com influência estatisticamente significante no CPOD. A utilização do IDH-M de 1991 ou de 2000 levou aos mesmos resultados, isto porque havia uma forte correlação entre os mesmos (r = 0,97; p<0,001). Verificou-se também correlação estatisticamente significante entre o IDH-M e o porte do município (r = 0,49; p<0,001). Quando o IDH-M foi retirado do modelo, o coeficiente de determinação geral (R²) não foi alterado, motivo pelo qual o IDH-M não permaneceu no modelo final.

Moysés (2000), em estudo da levantamento epidemiológico de 1996, encontrous correlação entre o IDH-M e o CPOD. Ressalta-se porém que municípios de maior porte e com fluoretação das águas são normalmente os de maior IDH-M, e consequentemente a influência do IDH-M pode ter sido minimizada pela maior relação destes outros fatores.

Após a condução da regressão, foi feita uma análise dos resíduos e, apesar da distribuição geral dos mesmos apresentar semelhança com a distribuição normal, identificou-se quatro valores como *outliers*. Estes quatro levantamentos foram então retirados e a análise foi refeita contando com 522 dados de CPOD por município.

O resultado final da análise de regressão múltipla não linear está mostrado na tabela 32.

Tabela 32 – Análise de regressão	múltipla	tendo	como	variável	dependente
o CPOD médio do município.					

Fonte	Parâmetro	Valor estimado	erro padrão	р	R	R ²	р
Constante	а	2,708	0,049	<0,000*			
Tempo (anos-1980)	b	7,974	0,039	<0,001*			
	С	-0,067	0,001	<0,001*	0,73	0,54	<0,001*
Fluoretação (0-não; 1-sim)	d	-0,940	0,009	<0,001*			
Porte** populacional	е	-0,347	0,004	<0,001*			

^{* -} estatisticamente significante (p<0,05)

A função de regressão final ficou como descrito abaixo.

$$CPOD = 2,708 + 7,974 \times e^{-0.067 \times \text{tempo}} -0.940 \times \text{fluor} -0.347 \times \text{porte}$$
 (5.8)

A análise de regressão múltipla assume que os resíduos devem ser "normalmente" distribuídos, e que a relação entre as variáveis independentes e a dependente seja linear. Analisando os resíduos das estimativas verificou-se grande semelhança com a distribuição normal, pressuposição necessária na análise de regressão múltipla (figura 23). A distribuição dos resíduos relacionados aos valores estimados mostrou o mesmo padrão de distribuição ao longo da faixa de valores estimados, isto evidencia uma linearidade entre as variáveis independentes e a dependente (figura 24). Isto demonstrou que o modelo adotado atendeu os pressupostos básicos da análise de regressão, podendo o modelo adotado ser considerado como válido para a análise dos dados.

^{** 1-} até 5.000 hab.

^{2-5.001} a 10.000 hab.

^{3-10.001} a 50.000 hab.

^{4-50.001} a 100.000 hab.

⁵⁻ mais de 100.000 hab.

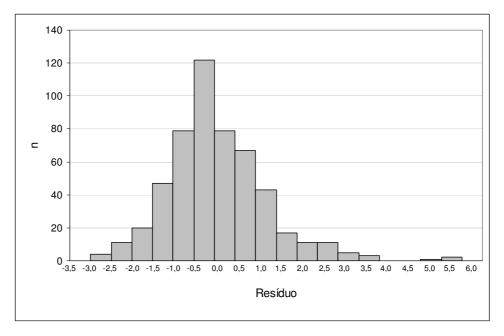


Figura 23 – Distribuição de freqüência dos resíduos da função de regressão não linear múltipla.

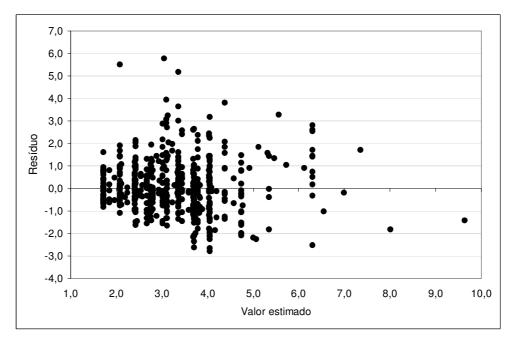


Figura 24 — Gráfico de dispersão do valor estimado contra o resíduo da função de regressão não linear múltipla.

Pelo resultado do coeficiente de determinação mostrado na tabela 32 $(R^2 = 0.54)$, estima-se que o modelo aqui proposto explica 54% da variação do CPOD. Isto implica em dizer que 54% da variação do CPOD de município

para município pode ser explicada pelo ano de avaliação, a fluoretação das águas de abastecimento e o porte populacional do município.

Pela análise de regressão ficou clara a influência da fluoretação das águas de abastecimento, com uma redução média de 0,94 no CPOD dos municípios fluoretados quando comparados com os não fluoretados. Vários trabalhos na literatura mostram a influência do flúor na redução do CPOD. Bastos et al. (2001) concluíram que principalmente nas décadas de 80 e 90 a fluoretação das águas de abastecimento foi determinante na redução da cárie dentária. Em avaliação de períodos mais recentes (SALES-PERES; BASTOS, 2002) esta influência foi considerada menor possivelmente pela ingestão de outras formas de flúor.

O porte populacional também mostrou um efeito negativo no CPOD, o que significa que quanto maior o porte do município menor o CPOD médio do mesmo.

O tempo também se relacionou negativamente com o CPOD, indicando a tendência de redução do CPOD com o passar dos anos.

É evidente que o tempo e o porte populacional não guardam relação de causa e efeito com o CPOD. Outros fatores não avaliados nestes levantamentos, como educação em saúde bucal, acesso a tratamento odontológico, nível de informação sobre higiene em geral, entre outros, têm melhorado nos últimos anos, e os habitantes de municípios de maior porte têm mais acesso a estes fatores propiciando assim uma relação entre porte do município e tempo com o CPOD.

Utilizando-se a função 5.8 fez-se uma estimativa da evolução do CPOD no Brasil para os próximos anos. Nestas estimativas foram considerados a fluoretação ou não das águas de abastecimento dos municípios, e o porte populacional (tabela 33 e figura 25).

Tabela 33 – Estimativa do CPOD médio dos municípios brasileiros, por porte populacional e adição de flúor nas águas de abastecimento, para os anos 2010, 2015, 2020, 2025 e 2030.

Eluorotooão	Porte	Ano					
Fluoretação	populacional	2010	2015	2020	2025	2030	
	até 5.000	2,48	2,18	1,96	1,81	1,70	
	5.001 a 10.000	2,13	1,83	1,61	1,46	1,35	
Sim	10.001 a 50.000	1,79	1,48	1,27	1,11	1,00	
	50.001 a 100.000	1,44	1,14	0,92	0,77	0,66	
	mais de 100.000	1,09	0,79	0,57	0,42	0,31	
	até 5.000	3,42	3,12	2,90	2,75	2,64	
	5.001 a 10.000	3,07	2,77	2,55	2,40	2,29	
Não	10.001 a 50.000	2,73	2,42	2,21	2,05	1,94	
	50.001 a 100.000	2,38	2,08	1,86	1,71	1,60	
	mais de 100.000	2,03	1,73	1,51	1,36	1,25	

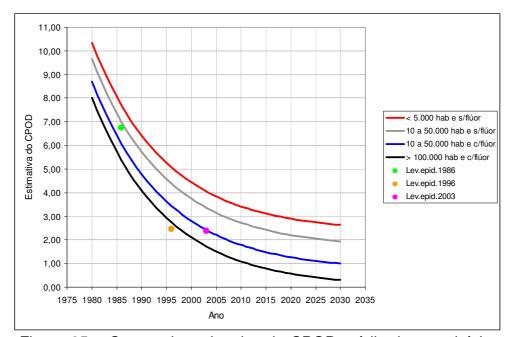


Figura 25 – Curvas de estimativa do CPOD médio dos municípios brasileiros, por porte populacional e adição de flúor nas águas de abastecimento.

Na figura 25 foram adicionados, além das estimativas, os valores gerais obtidos para o Brasil nos levantamentos de 1986, 1996 e 2003. O

valor do levantamento de 1986 está bem no centro das curvas, isto parece ser coerente, pois o levantamento foi realizado em 16 capitais sem fluoretação das águas de abastecimento na sua maioria. O valor de 1996 está próximo da curva para municípios de mais de 100.000 habitantes com fluoretação. O levantamento foi realizado nas 27 capitais e cerca de metade tinha fluoretação das águas. Já o valor do levantamento de 2003 localizouse próximo ao centro das curvas, um pouco mais próximo das cidades de médio e grande porte, que é onde vive a maioria da população brasileira. Esta comparação dos valores dos levantamentos nacionais com as curvas estimadas serviu para verificar a viabilidade das curvas. Deve-se ressaltar que os próprios dados dos levantamentos nacionais foram utilizados na regressão e, portanto contribuíram com grande parte da informação para a construção das curvas.

Utilizando-se a função 5.8 foi possível fazer uma quantificação da redução do CPOD que vem ocorrendo nos últimos 25 anos. Para tanto utilizou-se como padrão um município de médio porte (50.001 a 100.000 habitantes) com fluoretação das águas de abastecimento. O resultado pode ser visto na tabela 34.

Tabela 34 – Estimativa da redução do CPOD médio no período de 1980 a 2005.

	CPOD estimado no período						
Período ———Ir	Início	Fim	redução	% de redução			
1980 - 1985	8,36	6,08	2,28	27,3%			
1985 - 1990	6,08	4,45	1,63	26,8%			
1990 - 1995	4,45	3,29	1,16	26,1%			
1995 - 2000	3,29	2,46	0,83	25,2%			
2000 - 2005	2,46	1,86	0,60	24,4%			

A redução média absoluta do CPOD vem caindo nos últimos anos. Isto já seria de se esperar haja vista que com a diminuição do valor absoluto do CPOD a margem de redução do mesmo também diminui. Por outro lado é interessante que se tenha observado uma manutenção na redução percentual do CPOD, com uma redução média de cerca de 25% a cada cinco anos. Com a diminuição do CPOD e aumento da polarização da cárie, para redução do índice geral deve-se buscar uma melhoria geral das condições de saúde bucal de toda população, porém principalmente dos estratos mais atacados pela cárie dentária.

Todas as estimativas aqui descritas devem ser vistas com cautela, pois vários fatores não avaliados no presente estudo podem influenciar a incidência da cárie dentária, e consequentemente o CPOD. Foram estimativas considerando dados dos últimos 25 anos vindos de 522 levantamentos epidemiológicos que tinham uma grande concentração de informação do Estado de São Paulo, o que pode causar um viés quando extrapoladas para o país como um todo.

Deve-se também ter o cuidado de reconhecer que estudos ecológicos têm validade para as populações como um todo, e a particularização para indivíduos pode ser uma falácia (ANTUNES; NARVAI; NUGENT, 2004).

6 CONCLUSÃO

Baseado no estudo feito concluiu-se que:

- 1- Os dados históricos de CPOD aos 12 anos mostraram uma redução sensível da cárie dentária no país como um todo nos últimos 25 anos. Esta redução, no entanto não se deu de maneira homogênea na população, tendo com o passar do tempo havido maior desigualdade na distribuição da mesma.
- 2- Os grandes levantamentos executados por órgãos públicos tiveram um planejamento científico cuidadoso, porém cada um deles utilizou metodologia diferente na determinação e forma de seleção da amostra, assim como quais estratos sócio-econômicos seriam avaliados. Quanto ao cálculo dos resultados finais, levantamentos com desenho amostral complexo, utilizando amostragem estratificada e por conglomerados, devem ser ajustados pelo desenho amostral no cálculo dos dados agregados. Muitos dos levantamentos de menor porte, publicados em revistas científicas, deixaram a desejar no planejamento científico e descrição da metodologia empregada principalmente no que se refere a determinação do tamanho da amostra, forma de seleção da mesma e calibração de examinadores.
- 3- O CPOD mostrou relação estatisticamente significante com o tempo, fluoretação das águas de abastecimento e porte do município. A tendência geral mostrou que houve redução do CPOD com o passar do tempo, houve redução do CPOD quando o município possuía fluoretação das águas de abastecimento e municípios de maior porte tiveram CPOD menor que os de menor porte.

ANEXO 1 – Descrição dos dados obtidos por município.

Referência	Cidade	Estado	Ano	CPOD	n	Fluore- tação	População	IDH 1991	IDH 2000
BASTING; PEREIRA; MENEGHIM, 1997	Piracicaba	SP	1980	6,17	144	S	214.307	0,789	0,836
MOREIRA; PEREIRA; OLIVEIRA, 1996	Paulínia	SP	1980	8,20	173	N	20.753	0,790	0,847
OLIVEIRA et al., 1998.	Belo Horizonte	MG	1981	6,39		S	1.799.354	0,791	0,839
KALAMATIANOS; NARESSI, 1988	São José dos Campos	SP	1982	7,63		S	314.071	0,805	0,849
NARVAI; CASTELLANOS FERNANDES; FRAZÃO, 2000	São Paulo	SP	1982	6,41		N	8.690.950	0,805	0,841
VERTUAN, 1986	Araraquara	SP	1982	6,80	108	S	134.733	0,789	0,830
ARCIERI et al., 1986	Uberlândia	MG	1983	5,50	12	S	274.503	0,778	0,830
KALAMATIANOS; NARESSI, 1988	São José dos Campos	SP	1983	7,73		S	328.704	0,805	0,849
NARVAI; CASTELLANOS FERNANDES; FRAZÃO, 2000	São Paulo	SP	1983	7,53		N	8.799.908	0,805	0,841
OLIVEIRA et al., 1998.	Belo Horizonte	MG	1983	6,80		S	1.844.516	0,791	0,839
KALAMATIANOS; NARESSI, 1988	São José dos Campos	SP	1984	7,53		S	343.299	0,805	0,849
BASTOS et al., 2005	Bauru	SP	1984	7,01	321	S	213.483	0,791	0,825
ROSA; MARTILDES; NARVAI, 1992	São José dos Campos	SP	1985	6,75	567	S	357.846	0,805	0,849
VERTUAN; PEREIRA, 1985	Américo Brasiliense	SP	1985	9,06	93	N	15.593	0,755	0,788
KALAMATIANOS; NARESSI, 1988	São José dos Campos	SP	1986	6,04		S	372.257	0,805	0,849
OLIVEIRA et al., 1998.	Belo Horizonte	MG	1986	4,47		S	1.911.814	0,791	0,839
BRASIL, 1986*	Belém	PA	1986	7,73	184	N	1.103.699	0,767	0,806
BRASIL, 1986*	Belo Horizonte	MG	1986	5,33	325	S	1.911.814	0,791	0,839
BRASIL, 1986*	Brasília	DF	1986	7,98	61	N	1.409.053	0,799	0,844
BRASIL, 1986*	Cuiabá	MT	1986	9,09	23	N	315.310	0,760	0,821
BRASIL, 1986*	Curitiba	PR	1986	6,81	118	S	1.183.710	0,799	0,856
BRASIL, 1986*	Florianópolis	SC	1986	13,94	16	N	224.815	0,824	0,875
BRASIL, 1986*	Fortaleza	CE	1986	7,74	85	N	1.559.902		0,786
BRASIL, 1986*	Goiânia	GO	1986	8,84	64	N	828.027	0,778	0,832
BRASIL, 1986*	João Pessoa	PB	1986	7,04	28	N	421.695	0,719	0,783
BRASIL, 1986*	Maceió	AL	1986	13,81	36	N	525.025	0,687	0,739
BRASIL, 1986*	Manaus	AM	1986	6,81	64	N	833.534	0,745	0,774
BRASIL, 1986*	Porto Alegre	RS	1986	4,96	133	S	1.200.961	0,824	0,865
BRASIL, 1986* BRASIL, 1986*	Recife Salvador	PE BA	1986 1986	8,89 3,76	83 144	N N	1.253.925	0,740	0,797
BRASIL, 1986*	São Luís	MA	1986	5,76	39	N N	584.567	0,731	0,803
BRASIL, 1986*	São Paulo	SP	1986	6,47	389	N N	9.124.164	0,721	0,778
NORMANDO; ARAÚJO, 1990	Abaetetuba	PA	1987	7,70	15	N	90.803	0,619	0,706
VIEGAS; VIEGAS, 1988	Barretos	SP	1987	3,54	223	S	87.239	0,752	0,802
WITT, 1992	Porto Alegre	RS	1987	2,80	180	S	1.213.605	0,732	0,865
, 1002	. 51.67.10g10			_,50	. 50		1.2.0.000	0,0 L ¬	0,000

^{* -} dados primários fornecidos por Vitor Gomes Pinto, pesquisador responsável pelo levantamento (Brasil, 1988).

ANEXO 1 – Descrição dos dados obtidos por município.

Referência	Cidade	Estado	Ano	CPOD	n	Fluore- tação	População	IDH 1991	IDH 2000
BASTING; PEREIRA; MENEGHIM, 1997	Curitiba	PR	1989	5,10		S	1.261.746	0,799	0,856
BASTING; PEREIRA; MENEGHIM, 1997	Santos	SP	1989	5,10		S	426.674	0,838	0,871
TOLEDO et al., 1989	Brasília	DF	1989	6,90	27	N	1.523.184	0,799	0,844
VASCONCELOS; SILVA, 1992	Araraquara	SP	1989	3,81	283	S	159.637	0,789	0,830
BASTOS et al., 2005	Bauru	SP	1990	3,97	253	S	253.794	0,791	0,825
DINI; VERTUAN; PINCELLI, 1993	Araraquara	SP	1991	4,00	23	N	166.731	0,789	0,830
OLIVEIRA et al., 1998.	Belo Horizonte	MG	1991	5,33		S	2.020.161	0,791	0,839
ROSA; MARTILDES; NARVAI, 1992	São José dos Campos	SP	1991	3,96	646	S	442.370	0,805	0,849
PEREIRA et al., 2001	Iracemápolis	SP	1991	6,80	200	N	11.752	0,785	0,828
PEREIRA et al., 2001	Piracicaba	SP	1991	3,40	211	S	283.833	0,789	0,836
BASTING; PEREIRA; MENEGHIM, 1997	Piracicaba	SP	1992	3,47	123	S	283.098	0,789	0,836
DINI et al., 1996	Araraquara	SP	1992	3,40	1131	S	165.121	0,789	0,830
VASCONCELOS et al., 1994	Santa Lúcia	SP	1992	8,83	114	N	6.470	0,734	0,782
BARROS; SCAPINI; TOVO,1993	Porto Alegre	RS	1993	3,78	69	S	1.280.114	0,824	0,865
BASTING; PEREIRA; MENEGHIM, 1997	Curitiba	PR	1993	3,40		S	1.364.321	0,799	0,856
BASTING; PEREIRA; MENEGHIM, 1997	Santos	SP	1993	3,50		S	419.475	0,838	0,871
OLIVEIRA et al., 1998.	Belo Horizonte	MG	1993	4,51		S	2.060.806	0,791	0,839
FREIRE et al.,1997	Goiânia	GO	1994	4,59	200	S	973.477	0,778	0,832
MOREIRA; PEREIRA; OLIVEIRA, 1996	Paulínia	SP	1994	3,00	184	S	39.601	0,790	0,847
SANTOS; LENZA; FREIRE, 1998	Anápolis	GO	1994	6,37	24	S	253.610	0,721	0,788
MORAIS; LENZA; FREIRE, 2000	Dom Aquino	MT	1994	6,97	70	N	8.677	0,658	0,722
OLIVEIRA; TRAEBERT, 1996	Blumenau	SC	1995	2,87	2232	S	227.892	0,813	0,855
PERES; BASTOS; LATORRE, 2000	Florianópolis	SC	1995	2,21		S	274.776	0,824	0,875
PERIN; BERTOZ; SALIBA, 1997	Guaiçara	SP	1995	5,83	138	N	6.782	0,711	0,778
PERIN; BERTOZ; SALIBA, 1997	Lins	SP	1995	3,41	134	S	61.542	0,785	0,827
PEREIRA et al., 2001	Iracemápolis	SP	1995	3,90	160	N	12.806	0,785	0,828
PEREIRA et al., 2001	Piracicaba	SP	1995	2,70	142	S	299.514	0,789	0,836
SANTOS; PORDEUS; FERREIRA, 2000	Belo Horizonte	MG	1995	2,75		S	2.106.819	0,791	0,839
BASTOS et al., 2005	Bauru	SP	1995	4,13	377	S	282.116	0,791	0,825
BASTING; PEREIRA; MENEGHIM, 1997	Paulínia	SP	1996	2,10		S	44.431	0,790	0,847
BASTING; PEREIRA; MENEGHIM, 1997	Piracicaba	SP	1996	2,00	189	S	302.886	0,789	0,836

ANEXO 1 – Descrição dos dados obtidos por município.

Referência	Cidade	Estado	Ano	CPOD	n	Fluore- tação	População	IDH 1991	IDH 2000
BASTING; PEREIRA; MENEGHIM, 1997	Santos	SP	1996	1,70		S	412.243	0,838	0,871
CANGUSSU; COSTA, 2001.	Salvador	ВА	1996	2,70	81	N	2.211.539	0,751	0,805
DINI; HOLT; BEDI, 1998	Araraquara	SP	1996	2,30	293	S	172.746	0,789	0,830
DINI; HOLT; BEDI, 1998	Gavião Peixoto	SP	1996	2,80	157	N	4.500	0,726	0,763
NARVAI; CASTELLANOS FERNANDES; FRAZÃO, 2000	São Paulo	SP	1996	2,06	495	S	9.839.066	0,805	0,841
BRASIL, 1996	Aracaju	SE	1996	1,50	160	S	428.194	0,734	0,794
BRASIL, 1996	Belém	PA	1996	4,49	160	N	1.144.312	0,767	0,806
BRASIL, 1996	Belo Horizonte	MG	1996	2,41	160	S	2.091.371	0,791	0,839
BRASIL, 1996	Boa Vista	RR	1996	6,30	160	N	165.518	0,731	0,779
BRASIL, 1996	Brasília	DF	1996	1,90	160	S	1.821.946	0,799	0,844
BRASIL, 1996	Campo Grande	MS	1996	2,95	160	S	10.289	0,770	0,814
BRASIL, 1996	Cuiabá	MT	1996	3,29	160	N	433.355	0,760	0,821
BRASIL, 1996	Curitiba	PR	1996	2,23	160	S	1.476.253	0,799	0,856
BRASIL, 1996	Florianópolis	SC	1996	2,83	160	S	271.281	0,824	0,875
BRASIL, 1996	Fortaleza	CE	1996	2,34	160	S	1.965.513	0,717	0,786
BRASIL, 1996	Goiânia	GO	1996	3,27	160	S	1.003.477	0,778	0,832
BRASIL, 1996	João Pessoa	РВ	1996	3,94	160	N	549.363	0,719	0,783
BRASIL, 1996	Macapá	AP	1996	2,56	160	N	220.962	0,730	0,772
BRASIL, 1996	Maceió	AL	1996	2,89	160	N	723.142	0,687	0,739
BRASIL, 1996	Manaus	AM	1996	2,54	160	N	1.157.357	0,745	0,774
BRASIL, 1996	Natal	RN	1996	3,78	160	N	656.037	0,733	0,788
BRASIL, 1996	Palmas	ТО	1996	4,62	160	N	86.116	0,696	0,800
BRASIL, 1996	Porto Alegre	RS	1996	2,16	160	S	1.288.879	0,824	0,865
BRASIL, 1996	Porto Velho	RO	1996	4,99	160	N	294.227	0,710	0,763
BRASIL, 1996	Recife	PE	1996	2,96	160	N	1.346.045	0,740	0,797
BRASIL, 1996	Rio Branco	AC	1996	4,37	160	N	228.857	0,703	0,754
BRASIL, 1996	Rio de Janeiro	RJ	1996	2,09	160	S	5.551.538	0,798	0,842
BRASIL, 1996	Salvador	BA	1996	1,52	160	N	2.211.539	0,751	0,805
BRASIL, 1996	São Luís	MA	1996	3,51	160	N	780.833		0,778
BRASIL, 1996	São Paulo	SP	1996	2,28	160	S	9.839.066	0,805	0,841
BRASIL, 1996	Teresina	PI	1996	3,44	160	N	655.473	0,713	0,766
BRASIL, 1996	Vitória	ES	1996	1,47	160	S	265.874	0,797	0,856
MENEGHIM; SALIBA; PEREIRA, 1999	Iracemápolis	SP	1997	4,06	452	N	14.615	0,785	0,828
PEREIRA et al., 2001	Iracemápolis	SP	1997	2,90	314	N	14.615	0,785	0,828
PEREIRA et al., 2001	Piracicaba	SP	1997	2,20	190	S	308.914	0,789	0,836
PATTUSI, 2000	Brasília	DF	1997	2,70	1025	S	1.877.015	0,799	0,844
CYPRIANO et al., 2003.	Sorocaba	SP	1998	2,50	393	S	455.706	0,777	0,828
CYPRIANO et al., 2003.	Sorocaba	SP	1998	3,10	56	N	455.706	0,777	0,828
SILVA FILHO et al., 2001	Rio de Janeiro	RJ	1998	1,70	307	S	5.584.048	0,798	0,842
TRAEBERT et al., 2001	Blumenau	SC	1998	1,46	499	S	240.301	0,813	0,855
				.,				-,	-,500

ANEXO 1 – Descrição dos dados obtidos por município.

Referência	Cidade	Estado	Ano	CPOD	n	Fluore- tação	População	IDH 1991	IDH 2000
SÃO PAULO, 1998**	Aguas da Prata	SP	1998	3,28	78	S	7.416	0,763	0,810
SÃO PAULO, 1998**	Aguas de São Pedro	SP	1998	3,50	22	S	1.740	0,848	0,908
SÃO PAULO, 1998**	Altair	SP	1998	2,00	47	S	3.635	0,723	0,766
SÃO PAULO, 1998**	Andradina	SP	1998	2,65	103	N	54.437	0,747	0,798
SÃO PAULO, 1998**	Aramina	SP	1998	2,74	121	N	4.280	0,739	0,794
SÃO PAULO, 1998**	Arco Iris	SP	1998	6,20	56	N	2.063	0,667	0,708
SÃO PAULO, 1998**	Areias	SP	1998	2,75	8	N	3.514	0,626	0,723
SÃO PAULO, 1998**	Assis	SP	1998	2,41	56	S	86.126	0,774	0,829
SÃO PAULO, 1998**	Barra Bonita	SP	1998	6,38	88	N	34.029	0,783	0,820
SÃO PAULO, 1998**	Barra do Chapéu	SP	1998	3,37	100	S	5.083	0,590	0,646
SÃO PAULO, 1998**	Barretos	SP	1998	2,41	96	S	103.049	0,752	0,802
SÃO PAULO, 1998**	Batatais	SP	1998	3,89	63	N	49.725	0,767	0,825
SÃO PAULO, 1998**	Bauru	SP	1998	3,57	97	S	307.016	0,791	0,825
SÃO PAULO, 1998**	Bilac	SP	1998	5,28	69	N	5.809	0,754	0,809
SÃO PAULO, 1998**	Birigui	SP	1998	2,45	100	S	91.765	0,753	0,829
SÃO PAULO, 1998**	Bom Sucesso de Itararé	SP	1998	2,63	8	N	2.924	0,594	0,693
SÃO PAULO, 1998**	Boracéia	SP	1998	3,00	38	S	3.599	0,684	0,783
SÃO PAULO, 1998**	Botucatu	SP	1998	3,08	96	S	105.524	0,783	0,822
SÃO PAULO, 1998**	Buritizal	SP	1998	5,15	73	S	3.085	0,729	0,777
SÃO PAULO, 1998**	Cabrália Paulista	SP	1998	5,51	45	N	4.853	0,688	0,743
SÃO PAULO, 1998**	Caçapava	SP	1998	2,19	59	S	69.182	0,761	0,834
SÃO PAULO, 1998**	Cachoeira Paulista	SP	1998	2,86	59	S	26.388	0,756	0,794
SÃO PAULO, 1998**	Caconde	SP	1998	4,83	78	N	17.752	0,697	0,782
SÃO PAULO, 1998**	Caiabú	SP	1998	3,10	41	S	3.595	0,698	0,779
SÃO PAULO, 1998**	Cajamar	SP	1998	2,69	106	S	45.614	0,735	0,786
SÃO PAULO, 1998**	Cajobi	SP	1998	2,48	98	S	10.714	0,742	0,775
SÃO PAULO, 1998**	Campo Limpo Paulista	SP	1998	3,61	66	N	56.173	0,738	0,805
SÃO PAULO, 1998**	Cananéia	SP	1998	4,00	72	S	9.381	0,705	0,775
SÃO PAULO, 1998**	Cândido Rodrigues	SP	1998	3,72	36	S	2.560	0,718	0,776
SÃO PAULO, 1998**	Canitar	SP	1998	4,65	52	N	3.069	0,643	0,738
SÃO PAULO, 1998**	Carapicuiba	SP	1998	2,54	115	S	348.198	0,764	0,793
SÃO PAULO, 1998**	Castilho	SP	1998	4,34	109	N	15.499	0,718	0,760
SÃO PAULO, 1998**	Cerqueira César	SP	1998	6,01	82	S	14.466	0,713	0,764
SÃO PAULO, 1998**	Coroados	SP	1998	4,21	19	S	4.430	0,731	0,802
SÃO PAULO, 1998**	Corumbataí	SP	1998	4,38	81	N	3.784	0,729	0,780
SÃO PAULO, 1998**	Cubatão	SP	1998	1,40	131	S	100.760	0,723	0,772
SÃO PAULO, 1998**	Cunha	SP	1998	6,46	95	N	21.160	0,658	0,733
SÃO PAULO, 1998**	Divinolândia	SP	1998	6,16	25	S	11.253	0,715	0,788
SÃO PAULO, 1998**	Dobrada	SP	1998	4,23	60	N	7.252	0,719	0,745
SÃO PAULO, 1998**	Estiva	SP	1998	5,43	72	N	10.182	0,680	0,747
SÃO PAULO, 1998**	Estrela do Norte	SP	1998	2,38	37	S	2.786	0,711	0,767
SÃO PAULO, 1998**	Flórida Paulista	SP	1998	4,67	96	S	11.385	0,704	0,767
**	: -	F-:		1			D 1 100	0/	

^{** -} dados primários fornecidos por Antonio Carlos Frias, pesquisador do levantamento (São Paulo, 1999)

ANEXO 1 – Descrição dos dados obtidos por município.

Referência	Cidade	Estado	Ano	CPOD	n	Fluore- tação	População	IDH 1991	IDH 2000
SÃO PAULO, 1998**	Franca	SP	1998	2,80	88	S	282.920	0,783	0,820
SÃO PAULO, 1998**	Franco da Rocha	SP	1998	1,91	66	S	105.607	0,736	0,778
SÃO PAULO, 1998**	Glicério	SP	1998	5,55	31	N	4.044	0,692	0,761
SÃO PAULO, 1998**	Guaraci	SP	1998	3,03	67	N	8.991	0,699	0,758
SÃO PAULO, 1998**	Guararema	SP	1998	4,35	37	S	18.024	0,705	0,798
SÃO PAULO, 1998**	Guaratinguetá	SP	1998	2,98	83	S	101.802	0,791	0,818
SÃO PAULO, 1998**	Guariba	SP	1998	3,08	83	S	30.918	0,709	0,756
SÃO PAULO, 1998**	Guarujá	SP	1998	1,49	88	S	233.787	0,720	0,788
SÃO PAULO, 1998**	Guatapará	SP	1998	4,13	68	N	6.190	0,752	0,776
SÃO PAULO, 1998**	Holambra	SP	1998	3,13	31	N	7.171	0,746	0,827
SÃO PAULO, 1998**	Hortolândia	SP	1998	4,04	92	N	129.438	0,743	0,790
SÃO PAULO, 1998**	Ibaté	SP	1998	3,14	71	N	25.242	0,724	0,790
SÃO PAULO, 1998**	Igaratá	SP	1998	3,37	57	S	5.930	0,704	0,764
SÃO PAULO, 1998**	Inúbia Paulista	SP	1998	3,94	64	S	3.079	0,716	0,786
SÃO PAULO, 1998**	Iperó	SP	1998	2,73	56	S	15.392	0,745	0,779
SÃO PAULO, 1998**	Ipeúna	SP	1998	3,67	55	N	3.580	0,725	0,786
SÃO PAULO, 1998**	Iporanga	SP	1998	3,88	25	S	4.810	0,632	0,693
SÃO PAULO, 1998**	Itaóca	SP	1998	2,27	48	S	3.298	0,577	0,650
SÃO PAULO, 1998**	Itapetininga	SP	1998	1,89	99	S	117.165	0,739	0,786
SÃO PAULO, 1998**	Itapirapuã Paulista	SP	1998	3,19	48	N	3.048	0,574	0,645
SÃO PAULO, 1998**	Itaquaquecetuba	SP	1998	2,76	51	S	257.465	0,704	0,744
SÃO PAULO, 1998**	Itariri	SP	1998	3,41	61	S	11.688	0,694	0,750
SÃO PAULO, 1998**	Itirapuã	SP	1998	4,09	90	S	5.561	0,699	0,760
SÃO PAULO, 1998**	Ituverava	SP	1998	3,61	93	N	34.649	0,732	0,789
SÃO PAULO, 1998**	Jaborandi	SP	1998	3,88	89	S	9.369	0,710	0,760
SÃO PAULO, 1998**	Jacareí	SP	1998	2,74	54	S	169.535	0,761	0,809
SÃO PAULO, 1998**	Jaú	SP	1998	3,53	88	N	107.956	0,780	0,819
SÃO PAULO, 1998**	Júlio Mesquita	SP	1998	4,49	45	N	3.998	0,653	0,755
SÃO PAULO, 1998**	Jundiaí	SP	1998	2,33	99	S	295.259	0,807	0,857
SÃO PAULO, 1998**	Juquitiba	SP	1998	2,39	66	S	22.637	0,668	0,754
SÃO PAULO, 1998**	Leme	SP	1998	3,31	90	S	83.599	0,732	0,796
SÃO PAULO, 1998**	Marabá Paulista	SP	1998	3,19	37	N	3.739	0,642	0,728
SÃO PAULO, 1998**	Mariápolis	SP	1998	6,17	60	S	3.777	0,693	0,739
SÃO PAULO, 1998**	Marília	SP	1998	3,39	83	S	185.204	0,774	0,821
SÃO PAULO, 1998**	Mogi-Guaçu	SP	1998	3,08	71	S	120.869	0,762	0,813
SÃO PAULO, 1998**	Mombuca	SP	1998	3,65	71	S	2.930	0,712	0,750
SÃO PAULO, 1998**	Monte Alegre do Sul	SP	1998	6,23	65	N	6.212	0,732	0,812
SÃO PAULO, 1998**	Monteiro Lobato	SP	1998	2,88	32	S	3.227	0,676	0,775
SÃO PAULO, 1998**	Nantes	SP	1998	3,71	24	N	2.182	0,639	0,722
SÃO PAULO, 1998**	Natividade da Serra	SP	1998	3,92	25	N	6.862	0,624	0,733
SÃO PAULO, 1998**	Olímpia	SP	1998	2,85	89	N	45.581	0,760	0,815
SÃO PAULO, 1998**	Palmares	SP	1998	6,30	96	N	56.026	0,558	0,653

^{** -} dados primários fornecidos por Antonio Carlos Frias, pesquisador do levantamento (São Paulo, 1999)

ANEXO 1 – Descrição dos dados obtidos por município.

	0,710	
CÃO DALIJO 4000** Dendinka CD 4000 5.00 00 0 1.055		0,783
SÃO PAULO, 1998** Pardinho SP 1998 5,90 69 S 4.355	0,723	0,788
SÃO PAULO, 1998** Paulistânia SP 1998 4,95 63 N 1.607	0,662	0,774
SÃO PAULO, 1998** Pederneiras SP 1998 7,03 96 S 35.145	0,730	0,780
SÃO PAULO, 1998** Pedra Bela SP 1998 5,86 77 S 5.147	0,634	0,733
SÃO PAULO, 1998** Pedranópolis SP 1998 3,11 35 N 2.781	0,729	0,778
SÃO PAULO, 1998** Pedregulho SP 1998 2,28 125 S 15.328	0,736	0,794
SÃO PAULO, 1998** Penápolis SP 1998 2,66 105 S 53.281	0,743	0,810
SÃO PAULO, 1998** Pirapora do Bom SP 1998 3,99 70 N 11.313	0,708	0,767
SÃO PAULO, 1998** Pirapozinho SP 1998 2,30 96 S 22.296	0,718	0,783
SÃO PAULO, 1998** Pongaí SP 1998 3,50 16 S 3.433	0,714	0,794
SÃO PAULO, 1998** Porto Feliz SP 1998 2,24 90 N 45.899	0,747	0,800
SÃO PAULO, 1998** Pratânia SP 1998 5,89 44 N 3.709	0,681	0,745
SÃO PAULO, 1998**	0,794	0,846
SÃO PAULO, 1998** Queluz SP 1998 1,97 34 S 8.637	0,681	0,766
SÃO PAULO, 1998** Ribeirão Bonito SP 1998 3,90 86 S 10.968	0,741	0,781
SÃO PAULO, 1998** Ribeirão do Sul SP 1998 4,04 89 S 4.415	0,686	0,762
SÃO PAULO, 1998** Ribeirão Pires SP 1998 2,00 61 S 104.789	0,776	0,807
SÃO PAULO, 1998** Ribeirão Preto SP 1998 2,36 59 S 467.906	0,822	0,855
SÃO PAULO, 1998** Rinópolis SP 1998 5,95 96 N 9.940	0,670	0,757
SÃO PAULO, 1998** Rio Claro SP 1998 2,71 135 S 14.896	0,786	0,825
SÃO PAULO, 1998** Rio das Pedras SP 1998 4,84 93 N 23.993	0,745	0,791
SÃO PAULO, 1998** Rio Grande da Serra SP 1998 1,77 61 S 37.314	0,727	0,764
SÃO PAULO, 1998** Santa Adélia SP 1998 5,47 100 N 12.640	0,730	0,776
SÃO PAULO, 1998** Santa Branca SP 1998 3,15 86 N 21.602	0,736	0,796
SÃO PAULO, 1998** Santa Cruz da Esperança SP 1998 5,53 32 S 1.765	0,754	0,794
SÃO PAULO, 1998** Santa Ernestina SP 1998 4,20 54 N 5.469	0,728	0,770
SÃO PAULO, 1998** Santo Antônio do Jardim SP 1998 3,88 96 S 6.268	0,718	0,766
SÃO PAULO, 1998** Santo Antônio do Pinhal SP 1998 3,64 59 S 6.004	0,700	0,796
SÃO PAULO, 1998** São Carlos SP 1998 2,21 110 S 183.465	0,803	0,841
SÃO PAULO, 1998** São José da Bela SP 1998 5,25 171 N 8.030	0,714	0,753
SÃO PAULO, 1998** São José do Rio Preto SP 1998 3,15 100 N 343.017	0,792	0,834
SÃO PAULO, 1998** São Paulo SP 1998 2,06 125 S 9.928.219	0,805	0,841
SÃO PAULO, 1998** São Pedro do Turvo SP 1998 6,47 70 N 6.565	0,696	0,756
SÃO PAULO, 1998** Serra Azul SP 1998 2,38 42 S 7.472	0,691	0,742
SÃO PAULO, 1998** Taguaí SP 1998 6,02 53 S 7.324	0,703	0,768
SÃO PAULO, 1998** Taquaral SP 1998 4,48 44 N 2.763	0,714	0,765
SÃO PAULO, 1998** Tejupá SP 1998 8,20 74 N 5.270	0,630	0,704
SÃO PAULO, 1998** Timburi SP 1998 4,65 63 S 2.631	0,644	0,749

^{** -} dados primários fornecidos por Antonio Carlos Frias, pesquisador do levantamento (São Paulo, 1999)

ANEXO 1 – Descrição dos dados obtidos por município.

Referência	Cidade	Estado	Ano	CPOD	n	Fluore- tação	População	IDH 1991	IDH 2000
SÃO PAULO, 1998**	Três Fronteiras	SP	1998	4,02	42	S	4.803	0,693	0,761
SÃO PAULO, 1998**	Tuiuti	SP	1998	3,67	63	N	4.976	0,686	0,763
SÃO PAULO, 1998**	Tupi Paulista	SP	1998	3,24	93	N	13.145	0,722	0,792
SÃO PAULO, 1998**	Turiuba	SP	1998	3,61	41	S	1.884	0,737	0,800
SÃO PAULO, 1998**	Urânia	SP	1998	4,37	98	S	8.428	0,732	0,765
SÃO PAULO, 1998**	Valinhos	SP	1998	3,47	72	S	77.295	0,780	0,842
SÃO PAULO, 1998**	Vargem	SP	1998	3,89	104	S	6.590	0,719	0,782
SÃO PAULO, 1998**	Votuporanga	SP	1998	3,82	88	S	72.378	0,766	0,817
CARDOSO; MORAES, 2003	Alagoinhas	ВА	1999	2,29	231	S	126.821	0,653	0,729
CARDOSO; MORAES, 2003	Pojuca	ВА	1999	2,95	223	N	24.361	0,650	0,708
FAGUNDES; LEITE, 2000	Descoberto	MG	1999	5,00	10	N	4.726	0,661	0,748
GOMES et al., 2003	Capivari	SP	1999	3,28	74	S	40.269	0,767	0,803
PERES et al., 2003	Chapecó	SC	1999	2,07	684	S	144.159	0,761	0,848
SILVA; MALTZ, 2001	Porto Alegre	RS	1999	1,63	1000	S	1.314.033	0,824	0,865
CANGUSSU; COELHO; CASTELLANOS- FERNANDES, 2001	Itatiba	SP	2000	2,30	90	S	81.197	0,766	0,828
CYPRIANO; SOUSA; WADA, 2005	Águas de Lindóia	SP	2000	3,62	76	S	16.190	0,749	0,807
CYPRIANO; SOUSA; WADA, 2005	Arthur Nogueira	SP	2000	3,59	100	N	33.124	0,760	0,796
CYPRIANO; SOUSA; WADA, 2005	Atibaia	SP	2000	3,19	59	S	111.300	0,760	0,819
CYPRIANO; SOUSA; WADA, 2005	Bom Jesus dos Perdões	SP	2000	2,98	61	N	13.313	0,718	0,780
CYPRIANO; SOUSA; WADA, 2005	Bragança Paulista	SP	2000	2,51	84	N	125.031	0,763	0,820
CYPRIANO; SOUSA; WADA, 2005	Cabreúva	SP	2000	2,17	64	S	33.100	0,715	0,774
CYPRIANO; SOUSA; WADA, 2005	Cosmópolis	SP	2000	2,34	85	S	44.355	0,756	0,799
CYPRIANO; SOUSA; WADA, 2005	Hortolândia	SP	2000	4,00	92	N	152.523	0,743	0,790
CYPRIANO; SOUSA; WADA, 2005	Indaiatuba	SP	2000	1,84	88	S	147.050	0,765	0,829
CYPRIANO; SOUSA; WADA, 2005	Itupeva	SP	2000	2,33	104	S	26.166	0,734	0,807
CYPRIANO; SOUSA; WADA, 2005	Jaguariúna	SP	2000	1,88	85	S	29.597	0,764	0,829
CYPRIANO; SOUSA; WADA, 2005	Jarinú	SP	2000	2,71	90	S	17.041	0,705	0,759
CYPRIANO; SOUSA; WADA, 2005	Joanópolis	SP	2000	2,51	130	S	10.409	0,691	0,766
CYPRIANO; SOUSA; WADA, 2005	Jundiaí	SP	2000	2,30	99	S	323.397	0,807	0,857
CYPRIANO; SOUSA; WADA, 2005	Louveira	SP	2000	2,43	87	N	23.903	0,750	0,800

^{** -} dados primários fornecidos por Antonio Carlos Frias, pesquisador do levantamento (São Paulo, 1999)

ANEXO 1 – Descrição dos dados obtidos por município.

Referência	Cidade	Estado	Ano	CPOD	n	Fluore- tação	População	IDH 1991	IDH 2000
CYPRIANO; SOUSA; WADA, 2005	Monte Mor	SP	2000	2,71	87	S	37.340	0,736	0,783
CYPRIANO; SOUSA; WADA, 2005	Nova Odessa	SP	2000	2,41	102	S	42.071	0,769	0,826
CYPRIANO; SOUSA; WADA, 2005	Pedra Bela	SP	2000	5,20	123	S	5.609	0,634	0,733
CYPRIANO; SOUSA; WADA, 2005	Pedreira	SP	2000	1,76	54	N	35.219	0,765	0,810
CYPRIANO; SOUSA; WADA, 2005	Pinhalzinho	SP	2000	3,28	68	S	10.986	0,733	0,826
CYPRIANO; SOUSA; WADA, 2005	Piracaia	SP	2000	2,64	73	S	23.347	0,719	0,792
CYPRIANO; SOUSA; WADA, 2005	Santo Antônio da Posse	SP	2000	2,42	86	S	18.124	0,733	0,790
CYPRIANO; SOUSA; WADA, 2005	Vinhedo	SP	2000	2,83	81	S	47.215	0,789	0,857
GOMES et al., 2004	Paulínia	SP	2000	1,00	125	S	51.326	0,790	0,847
GUEIROS; SILVA, 2003	Camaragibe	PE	2000	8,81	22	N	128.702	0,681	0,747
GUEIROS; SILVA, 2003	Recife	PE	2000	5,90	10	N	1.422.905	0,740	0,797
GUEIROS; SILVA, 2003	Recife	PE	2000	10,36	25	N	1.422.905	0,740	0,797
MARTINS et al., 2002	Belo Horizonte	MG	2000	1,37	115	S	2.238.526	0,791	0,839
MARTINS et al., 2006	Bilac	SP	2000	4,11	63	N	6.088	0,754	0,809
CANGUSSU et al., 2002.	Salvador	ВА	2001	1,44	1750	S	2.485.699	0,751	0,805
MELLO; ANTUNES, 2004	Itapetininga	SP	2001	2,45	149	S	128.306	0,739	0,786
BASTOS et al., 2005	Bauru	SP	2001	1,53		S	322.554	0,791	0,825
BASTOS; NOMURA; PERES, 2004	Florianópolis	SC	2002	1,21	88	S	360.603	0,824	0,875
LANGLOIS et al., 2003	Pitimbu	PB	2002	3,30		N	14.869	0,482	0,594
MOREIRA; SEVERO; ROSENBLATT, 2003	João Pessoa	РВ	2002	4,00	33	N	619.051	0,719	0,783
QUELUZ, 2002	Piracicaba	SP	2002	2,65	200	S	339.772	0,789	0,836
MARTINS et al., 2006	Bilac	SP	2002	3,47	73	N	6.221	0,754	0,809
BRASIL, 2003	Agrolândia	SC	2002	4,70	92	S	7.939	0,711	0,775
BRASIL, 2003	Além Paraíba	MG	2002	2,04	208	S	34.174	0,715	0,777
BRASIL, 2003	Aliança do Tocantins	то	2002	2,49	76	N	6.266	0,635	0,717
BRASIL, 2003	Alto Garças	MT	2002	6,34	65	N	8.337	0,666	0,795
BRASIL, 2003	Altônia	PR	2002	2,30	152	S	18.106	0,663	0,743
BRASIL, 2003	Amaturá	AM	2002	3,22	94	N	7.849	0,536	0,631
BRASIL, 2003	Ananindeua	PA	2002	1,34	229	N	423.326	0,733	0,782
BRASIL, 2003	Anápolis	GO	2002	2,15	190	S	293.474	0,721	0,788
BRASIL, 2003	André da Rocha	RS	2002	3,00	20	N	1.123	0,735	0,815
BRASIL, 2003	Aparecida de Goiânia	GO	2002	2,34	232	S	369.618	0,677	0,764
BRASIL, 2003	Apiacás	MT	2002	1,59	81	N	6.570	0,662	0,713
BRASIL, 2003	Apucarana	PR	2002	3,33	245	S	110.511	0,715	0,799
BRASIL, 2003	Aracaju	SE	2002	0,91	335	S	473.990	0,734	0,794
BRASIL, 2003	Araguacema	ТО	2002	3,58	64	N	5.608	0,595	0,673
-									

ANEXO 1 – Descrição dos dados obtidos por município.

i	Referência	Cidade	Estado	Ano	CPOD	n	Fluore- tação	População	IDH 1991	IDH 2000
BRASIL	, 2003	Arapoti	PR	2002	3,39	167	S	24.508	0,673	0,761
BRASIL	, 2003	Araputanga	MT	2002	4,58	88	N	13.908	0,680	0,754
BRASIL	, 2003	Araranguá	SC	2002	3,47	175	S	56.907	0,725	0,814
BRASIL	, 2003	Ariquemes	RO	2002	2,66	160	S	78.042	0,660	0,752
BRASIL	, 2003	Atalaia do Norte	AM	2002	4,74	84	N	10.483	0,507	0,559
BRASIL	, 2003	Augusto Corrêa	PA	2002	3,71	149	N	33.577	0,509	0,618
BRASIL	, 2003	Balneário Camboriú	SC	2002	1,30	198	S	80.431	0,797	0,867
BRASIL	, 2003	Bandeirantes	MS	2002	2,70	23	N	33.612	0,678	0,756
BRASIL	, 2003	Barra do Garças	MT	2002	7,58	121	S	53.448	0,720	0,791
BRASIL	, 2003	Bayeux	PB	2002	3,59	235	N	89.679	0,600	0,689
BRASIL	, 2003	Bebedouro	SP	2002	2,17	332	S	76.299	0,774	0,819
BRASIL	, 2003	Belém	PA	2002	1,58	247	N	1.322.682	0,767	0,806
BRASIL	, 2003	Belém de Maria	PE	2002	3,95	197	N	10.294	0,493	0,590
BRASIL	, 2003	Belo Horizonte	MG	2002	1,02	300	S	2.284.469	0,791	0,839
BRASIL	, 2003	Belo Jardim	PE	2002	5,19	215	N	70.392	0,520	0,625
BRASIL	, 2003	Bento Gonçalves	RS	2002	2,20	203	S	92.495	0,799	0,870
BRASIL	, 2003	Blumenau	SC	2002	1,12	260	S	272.283	0,813	0,855
BRASIL	, 2003	Boa Vista	RR	2002	2,67	186	N	214.541	0,731	0,779
BRASIL	, 2003	Boracéia	SP	2002	1,46	69	S	3.795	0,684	0,783
BRASIL	, 2003	Bragança	PA	2002	2,93	176	S	96.620	0,557	0,662
BRASIL	, 2003	Brasília	DF	2002	2,45	134	S	2.145.838	0,799	0,844
BRASIL	, 2003	Brejo Santo	CE	2002	2,75	186	N	39.483	0,550	0,673
BRASIL	, 2003	Buerarema	BA	2002	2,19	167	S	18.757	0,536	0,631
BRASIL	, 2003	Cáceres	MT	2002	3,53	192	S	84.116	0,652	0,737
BRASIL	, 2003	Cachoeira Dourada	GO	2002	2,13	87	S	2.305	0,653	0,759
BRASIL	, 2003	Caldas	MG	2002	3,32	152	S	12.845	0,707	0,782
BRASIL	, 2003	Camaquã	RS	2002	2,98	219	S	61.511	0,702	0,768
BRASIL	, 2003	Cametá	PA	2002	2,94	191	N	100.243	0,621	0,671
BRASIL	, 2003	Campo Formoso	BA	2002	11,96	231	N	61.906	0,472	0,613
BRASIL	, 2003	Campo Grande	MS	2002	2,80	163	S	8.944	0,770	0,814
BRASIL	, 2003	Campo Mourão	PR	2002	2,11	206	S	81.008	0,703	0,774
BRASIL	, 2003	Canaã	MG	2002	2,75	55	S	4.655	0,578	0,678
BRASIL	, 2003	Canoas	RS	2002	1,63	338	S	313.844	0,759	0,815
BRASIL	, 2003	Canoinhas	SC	2002	3,49	168	S	52.047	0,696	0,780
BRASIL	, 2003	Canutama	AM	2002	8,54	103	N	10.439	0,481	0,546
BRASIL	, 2003	Capitão Poço	PA	2002	2,83	132	N	50.675	0,514	0,615
BRASIL	, 2003	Carrasco Bonito	TO	2002	1,96	50	N	3.574	0,355	0,562
BRASIL	, 2003	Caruaru	PE	2002	2,97	231	N	262.036	0,651	0,713
BRASIL	, 2003	Castanhal	PA	2002	2,01	172	N	141.319	0,673	0,746
BRASIL	, 2003	Castilho	SP	2002	3,08	186	N	15.016	0,718	0,760
BRASIL	, 2003	Catalão	GO	2002	2,79	205	S	66.415	0,724	0,818
BRASIL	, 2003	Catas Altas	MG	2002	3,00	58	N	4.332	0,668	0,756
BRASIL	, 2003	Caturaí	GO	2002	4,50	56	N	4.375	0,637	0,728
BRASIL	, 2003	Cedral	MA	2002	3,69	81	N	10.137	0,746	0,803
	·		·					·		

ANEXO 1 – Descrição dos dados obtidos por município.

Referência	Cidade	Estado	Ano	CPOD	n	Fluore- tação	População	IDH 1991	IDH 2000
BRASIL, 2003	Chapada dos Guimarães	MT	2002	7,00	24	N	16.378	0,606	0,711
BRASIL, 2003	Charqueadas	RS	2002	0,80	129	S	31.057	0,761	0,806
BRASIL, 2003	Chupinguaia	RO	2002	2,48	48	N	5.840	0,597	0,707
BRASIL, 2003	Cidreira	RS	2002	1,34	79	S	9.705	0,726	0,808
BRASIL, 2003	Colombo	PR	2002	1,63	215	S	197.122	0,691	0,764
BRASIL, 2003	Conceição do Castelo	ES	2002	2,65	137	S	10.990	0,637	0,709
BRASIL, 2003	Corguinho	MS	2002	2,68	47	N	3.582	0,640	0,723
BRASIL, 2003	Coronel José Dias	PI	2002	5,04	68	N	4.457	0,476	0,580
BRASIL, 2003	Corumbá	MS	2002	3,73	49	S	97.238	0,723	0,771
BRASIL, 2003	Corumbá de Goiás	GO	2002	1,72	58	S	9.760	0,654	0,716
BRASIL, 2003	Corumbataí do Sul	PR	2002	4,42	93	S	4.590	0,580	0,678
BRASIL, 2003	Cruzeiro do Sul	AC	2002	5,89	170	N	71.570	0,731	0,802
BRASIL, 2003	Cubati	PB	2002	3,17	122	N	6.409	0,472	0,591
BRASIL, 2003	Cuiabá	MT	2002	3,03	196	N	500.290	0,760	0,821
BRASIL, 2003	Curitiba	PR	2002	1,39	263	S	1.644.599	0,799	0,856
BRASIL, 2003	Divinópolis do Tocantins	ТО	2002	3,19	78	N	5.875	0,578	0,660
BRASIL, 2003	Dois Irmãos do Buriti	MS	2002	4,02	96	N	9.460	0,609	0,686
BRASIL, 2003	Dourados	MS	2002	2,58	173	S	171.042	0,734	0,788
BRASIL, 2003	Doutor Pedrinho	SC	2002	5,81	47	S	3.093	0,734	0,802
BRASIL, 2003	Dumont	SP	2002	2,71	72	N	6.588	0,752	0,802
BRASIL, 2003	Duque de Caxias	RJ	2002	2,08	249	S	798.102	0,700	0,753
BRASIL, 2003	Elísio Medrado	ВА	2002	2,82	109	N	7.860	0,564	0,655
BRASIL, 2003	Escada	PE	2002	2,26	237	N	57.660	0,541	0,645
BRASIL, 2003	Espigão Alto do Iguaçu	PR	2002	4,08	85	S	5.261	0,627	0,708
BRASIL, 2003	Eunápolis	ВА	2002	2,42	135	S	86.976	0,607	0,704
BRASIL, 2003	Exu	PE	2002	2,26	168	N	32.522	0,498	0,592
BRASIL, 2003	Faxinal dos Guedes	SC	2002	4,54	160	S	11.080	0,716	0,819
BRASIL, 2003	Feira Nova do Maranhão	MA	2002	4,74	96	N	7.539	0,466	0,569
BRASIL, 2003	Firmino Alves	ВА	2002	2,19	107	N	5.095	0,548	0,641
BRASIL, 2003	Florianópolis	SC	2002	1,30	268	S	360.603	0,824	0,875
BRASIL, 2003	Formosa	GO	2002	2,27	156	S	82.543	0,698	0,750
BRASIL, 2003	Fortaleza	CE	2002	1,75	161	S	2.219.836	0,717	0,786
BRASIL, 2003	General Carneiro	MT	2002	3,25	61	N	14.453	0,631	0,711
BRASIL, 2003	Glaucilândia	MG	2002	1,91	58	N	2.809	0,594	0,697
BRASIL, 2003	Goianá	MG	2002	1,79	58	N	3.374	0,630	0,741

ANEXO 1 – Descrição dos dados obtidos por município.

Referência	Cidade	Estado	Ano	CPOD	n	Fluore- tação	População	IDH 1991	IDH 2000
BRASIL, 2003	Goiânia	GO	2002	1,81	203	S	1.129.274	0,778	0,832
BRASIL, 2003	Grão Pará	SC	2002	3,48	79	S	5.912	0,739	0,826
BRASIL, 2003	Gravataí	RS	2002	1,61	200	S	243.485	0,766	0,811
BRASIL, 2003	Guaíba	RS	2002	1,41	187	S	97.582	0,760	0,815
BRASIL, 2003	Guaranésia	MG	2002	2,78	187	S	19.129	0,685	0,769
BRASIL, 2003	Guidoval	MG	2002	2,33	99	N	7.551	0,612	0,736
BRASIL, 2003	Ibiaçá	RS	2002	2,55	77	S	4.707	0,715	0,838
BRASIL, 2003	Ibiraci	MG	2002	1,99	149	S	10.587	0,675	0,762
BRASIL, 2003	Iguaba Grande	RJ	2002	3,71	187	N	16.681	0,708	0,796
BRASIL, 2003	Ingazeira	PE	2002	2,10	68	N	4.601	0,514	0,638
BRASIL, 2003	Inhacorá	RS	2002	5,00	15	N	2.378	0,679	0,754
BRASIL, 2003	Inhambupe	BA	2002	2,58	173	N	30.393	0,481	0,567
BRASIL, 2003	Inhangapi	PA	2002	3,15	101	N	7.895	0,605	0,678
BRASIL, 2003	Ipojuca	PE	2002	2,61	226	N	62.196	0,530	0,658
BRASIL, 2003	Irapuru	SP	2002	2,64	103	N	7.287	0,707	0,760
BRASIL, 2003	Itabira	MG	2002	2,13	297	S	100.997	0,727	0,798
BRASIL, 2003	Itacoatiara	AM	2002	3,56	126	N	74.913	0,657	0,711
BRASIL, 2003	Itaguari	GO	2002	3,42	62	N	4.445	0,641	0,720
BRASIL, 2003	Itajaí	SC	2002	1,82	224	S	153.357	0,755	0,825
BRASIL, 2003	Itapirapuã Paulista	SP	2002	3,32	65	N	3.644	0,574	0,645
BRASIL, 2003	Itápolis	SP	2002	4,18	201	N	38.736	0,727	0,785
BRASIL, 2003	Itumbiara	GO	2002	2,07	212	S	82.871	0,704	0,782
BRASIL, 2003	Jaborá	SC	2002	3,12	43	S	4.145	0,709	0,794
BRASIL, 2003	Jaboticabal	SP	2002	2,79	190	N	69.148	0,762	0,815
BRASIL, 2003	Jaíba	MG	2002	0,93	190	S	29.267	0,527	0,652
BRASIL, 2003	Jales	SP	2002	1,49	189	S	47.201	0,750	0,804
BRASIL, 2003	Januária	MG	2002	1,47	225	N	63.298	0,467	0,600
BRASIL, 2003	Japeri	RJ	2002	4,16	133	N	86.961	0,643	0,724
BRASIL, 2003	João Pessoa	PB	2002	3,51	179	N	619.051	0,719	0,783
BRASIL, 2003	Joinville	SC	2002	1,19	177	S	453.765	0,779	0,857
BRASIL, 2003	José Gonçalves de Minas	MG	2002	3,12	58	N	4.734	0,552	0,646
BRASIL, 2003	José Raydan	MG	2002	2,04	68	S	3.621	0,493	0,625
BRASIL, 2003	Juína	MT	2002	6,37	199	N	38.447	0,666	0,749
BRASIL, 2003	Júlio Borges	PI	2002	3,63	68	N	5.002	0,504	0,593
BRASIL, 2003	Jundiá	AL	2002	3,93	86	N	3.202	0,469	0,560
BRASIL, 2003	Juscimeira	MT	2002	2,72	126	N	12.298	0,650	0,718
BRASIL, 2003	Jutaí	AM	2002	3,37	105	N	24.103	0,488	0,533
BRASIL, 2003	Lajedo do Tabocal	ВА	2002	4,26	136	N	8.445	0,491	0,624
BRASIL, 2003	Lizarda	ТО	2002	4,79	52	N	3.709	0,568	0,634
BRASIL, 2003	Lobato	PR	2002	3,27	55	S	4.124	0,725	0,795
BRASIL, 2003	Luisburgo	MG	2002	2,88	99	N	6.525	0,576	0,701
BRASIL, 2003	Luziânia	GO	2002	2,54	179	S	154.227	0,678	0,756

ANEXO 1 – Descrição dos dados obtidos por município.

Referência	Cidade	Estado	Ano	CPOD	n	Fluore- tação	População	IDH 1991	IDH 2000
BRASIL, 2003	Macapá	AP	2002	1,10	79	N	306.580	0,730	0,772
BRASIL, 2003	Maceió	AL	2002	2,91	202	N	833.260	0,687	0,739
BRASIL, 2003	Mairiporã	SP	2002	3,04	92	S	64.354	0,761	0,803
BRASIL, 2003	Manaus	AM	2002	3,21	102	N	1.488.805	0,745	0,774
BRASIL, 2003	Mâncio Lima	AC	2002	4,98	85	N	11.778	0,545	0,642
BRASIL, 2003	Mangaratiba	RJ	2002	1,98	188	N	26.369	0,706	0,790
BRASIL, 2003	Marcos Parente	PI	2002	5,25	52	N	4.339	0,542	0,626
BRASIL, 2003	Mariana Pimentel	RS	2002	4,38	42	N	3.874	0,711	0,787
BRASIL, 2003	Marianópolis do Tocantins	ТО	2002	2,20	44	N	3.542	0,595	0,695
BRASIL, 2003	Marituba	PA	2002	3,26	178	N	82.097	0,649	0,713
BRASIL, 2003	Matinhos	PR	2002	2,29	135	S	26.892	0,726	0,793
BRASIL, 2003	Minas Novas	MG	2002	3,46	183	S	30.973	0,525	0,633
BRASIL, 2003	Miracema do Tocantins	ТО	2002	2,68	139	N	25.524	0,697	0,743
BRASIL, 2003	Moju	PA	2002	2,75	201	N	55.585	0,553	0,643
BRASIL, 2003	Monsenhor Paulo	MG	2002	3,42	109	S	7.730	0,674	0,764
BRASIL, 2003	Monte Alegre	PA	2002	2,70	204	N	62.043	0,603	0,690
BRASIL, 2003	Muquém de São Francisco	ВА	2002	1,07	43	N	9.217	0,466	0,603
BRASIL, 2003	Natal	RN	2002	2,76	190	N	734.503	0,733	0,788
BRASIL, 2003	Niquelândia	GO	2002	3,27	148	S	38.113	0,609	0,739
BRASIL, 2003	Nortelândia	MT	2002	1,36	72	N	6.651	0,622	0,718
BRASIL, 2003	Nova Floresta	PB	2002	4,65	116	N	9.878	0,490	0,606
BRASIL, 2003	Nova Ipixuna	PA	2002	3,28	115	N	12.571	0,520	0,664
BRASIL, 2003	Nova Lima	MG	2002	0,98	322	S	66.909	0,744	0,821
BRASIL, 2003	Nova Monte Verde	MT	2002	3,62	55	N	7.416	0,625	0,722
BRASIL, 2003	Nova Olinda	TO	2002	2,44	119	N	9.747	0,566	0,643
BRASIL, 2003	Nova Roma	GO	2002	4,00	82	N	3.508	0,570	0,679
BRASIL, 2003	Novo Santo Antônio	PI	2002	4,19	54	N	3.149	0,411	0,509
BRASIL, 2003	Palhano	CE	2002	4,16	92	N	8.212	0,521	0,649
BRASIL, 2003	Palmas	TO	2002	2,42	170	S	161.138	0,696	0,800
BRASIL, 2003	Palmeiras de Goiás	GO	2002	4,31	153	S	18.071	0,678	0,760
BRASIL, 2003	Paracatu	MG	2002	1,71	213	S	77.836	0,680	0,760
BRASIL, 2003	Paranaíba	MS	2002	2,62	160	S	38.747	0,700	0,772
BRASIL, 2003	Parauapebas	PA	2002	2,80	173	N	78.303	0,657	0,741
BRASIL, 2003	Parintins	AM	2002	4,84	153	N	96.750	0,658	0,696
BRASIL, 2003	Paulino Neves	MA	2002	3,46	69	N	11.717	0,401	0,508
BRASIL, 2003	Pequizeiro	TO	2002	2,59	71	N	4.866	0,599	0,659
BRASIL, 2003	Petrolina de Goiás	GO	2002	4,44	45	S	10.311	0,641	0,733
BRASIL, 2003	Pimenteiras do Oeste	RO	2002	3,38	29	N	2.560	0,624	0,715
BRASIL, 2003	Pinhão	SE	2002	2,17	82	S	5.419	0,602	0,713

ANEXO 1 – Descrição dos dados obtidos por município.

BRASIL, 2003 Pinheiro Machado RS 2002 1,36 188 S 13,955 0,691 0,752 BRASIL, 2003 Piracicaba SP 2002 1,98 255 S 339,772 0,789 0,838 3,713 BRASIL, 2003 Pirandina GO 2002 2,16 232 S 80,769 0,644 0,723 BRASIL, 2003 Ponto Alegre RS 2002 1,06 187 S 1,384,545 0,620 0,703 BRASIL, 2003 Ponto Velho RO 2002 2,34 154 N 347,643 0,710 0,738 BRASIL, 2003 Prainha PA 2002 2,34 153 N 29,728 0,555 0,621 BRASIL, 2003 Pracza RN 2002 3,44 163 N 29,728 0,555 0,621 BRASIL, 2003 Pareza RN 2002 3,44 105 N 7,001 0,47 0,573	Referência	Cidade	Estado	Ano	CPOD	n	Fluore- tação	População	IDH 1991	IDH 2000
BRASIL, 2003 Pirenépolis GO 2002 3,68 152 S 21.245 0,638 0,713 BRASIL, 2003 Planaltina GO 2002 2,16 232 S 80.769 0,644 0,723 BRASIL, 2003 Ponto Alegre RS 2002 1,06 187 S 1,383,454 0,824 0,865 BRASIL, 2003 Porto Velho RO 2002 2,34 154 N 347,843 0,710 0,763 BRASIL, 2003 Pranchita PA 2002 2,34 164 N 347,843 0,710 0,763 BRASIL, 2003 Pranchita PR 2002 4,01 78 S 6,063 0,891 0,803 BRASIL, 2003 Pranchita PR 2002 3,44 105 N 7,001 0,470 0,577 BRASIL, 2003 Releiza PR 2002 3,44 105 N 1,449,138 0,740 0,792 BRASIL, 2003	BRASIL, 2003	Pinheiro Machado	RS	2002	1,36	188	S	13.955	0,691	0,752
BRASIL, 2003 Planaltina GO 2002 2,16 232 S 80,769 0,644 0,723 BRASIL, 2003 Ponte Branca MT 2002 5,50 4 N 2,039 0,670 0,738 BRASIL, 2003 Porto Velho RO 2002 2,34 154 N 29,728 0,555 0,621 BRASIL, 2003 Prainha PA 2002 3,34 163 N 29,728 0,555 0,621 BRASIL, 2003 Pranchita PR 2002 4,01 78 S 6,063 0,691 0,605 BRASIL, 2003 Pureza RN 2002 4,01 78 S 6,063 0,691 0,067 BRASIL, 2003 Pureza RN 2002 3,10 151 N 71,382 0,572 0,673 BRASIL, 2003 Realeza PR 2002 3,80 151 S 15,787 0,704 0,783 BRASIL, 2003 Rio	BRASIL, 2003	Piracicaba	SP	2002	1,98	225	S	339.772	0,789	0,836
BRASIL, 2003 Ponte Branca MT 2002 5,50 4 N 2.039 0,670 0,738 BRASIL, 2003 Porto Alegre RS 2002 1,06 187 S 1,383,454 0,824 0,865 BRASIL, 2003 Porto Veliho RO 2002 2,34 154 N 347,843 0,710 0,763 BRASIL, 2003 Prainha PA 2002 3,4 163 N 29,728 0,603	BRASIL, 2003	Pirenópolis	GO	2002	3,68	152	S	21.245	0,638	0,713
BRASIL, 2003 Porto Alegre RS 2002 1,06 187 S 1,383,454 0,824 0,865 BRASIL, 2003 Porto Velho RO 2002 2,34 154 N 347,843 0,710 0,763 BRASIL, 2003 Prainha PA 2002 4,01 78 S 6,063 0,557 0,621 BRASIL, 2003 Pureza RN 2002 2,40 11 N 7,1382 0,572 0,673 BRASIL, 2003 Pureza RN 2002 2,40 211 N 7,1382 0,572 0,673 BRASIL, 2003 Realeza PR 2002 3,80 151 S 1,757 0,704 0,749 BRASIL, 2003 Recife PE 2002 1,21 180 S 268,517 0,740 0,749 BRASIL, 2003 Rio Branco AC 2002 3,18 169 N 267,741 0,703 0,754 BRASIL, 2003 <t< td=""><td>BRASIL, 2003</td><td>Planaltina</td><td>GO</td><td>2002</td><td>2,16</td><td>232</td><td>S</td><td>80.769</td><td>0,644</td><td>0,723</td></t<>	BRASIL, 2003	Planaltina	GO	2002	2,16	232	S	80.769	0,644	0,723
BRASIL, 2003 Porto Velino RO 2002 2,34 154 N 347,843 0,710 0,763 BRASIL, 2003 Prainha PA 2002 3,34 163 N 29,728 0,555 0,621 BRASIL, 2003 Pranchita PR 2002 4,01 78 S 6,063 0,691 0,803 BRASIL, 2003 Pureza RN 2002 3,14 105 N 7,001 0,470 0,577 BRASIL, 2003 Pereza RN 2002 3,80 151 S 15,787 0,704 0,783 BRASIL, 2003 Realeza PR 2002 1,72 106 N 1,449,136 0,740 0,793 BRASIL, 2003 Ribeirão das Meves MG 2002 1,21 180 S 268,517 0,674 0,749 BRASIL, 2003 Rio Branco AC 2002 3,44 55 S 3,649 0,557 0,670 BRASIL, 2003	BRASIL, 2003	Ponte Branca	MT	2002	5,50	4	N	2.039	0,670	0,738
BRASIL, 2003 Prainha PA 2002 3,34 163 N 29,728 0,555 0,621 BRASIL, 2003 Pranchita PR 2002 4,01 78 \$ 6,063 0,691 0,803 BRASIL, 2003 Pureza RN 2002 2,40 105 N 7,001 0,470 0,577 0,677 0,677 0,677 0,677 0,677 0,677 0,677 0,677 0,677 0,677 0,677 0,677 0,677 0,677 0,677 0,678 3,80 151 S 15,787 0,704 0,783 0,783 BRASIL, 2003 Recife PE 2002 1,72 106 N 1,491,136 0,740 0,749 9,782 0,749 9,782 0,783 8,861,100 0,740 0,749 9,842 8,842 1,849 N 2,674 0,749 9,842 8,842 1,849 N 2,673 0,672 0,671 9,671 9,672 0,671 0,671 <t< td=""><td>BRASIL, 2003</td><td>Porto Alegre</td><td>RS</td><td>2002</td><td>1,06</td><td>187</td><td>S</td><td>1.383.454</td><td>0,824</td><td>0,865</td></t<>	BRASIL, 2003	Porto Alegre	RS	2002	1,06	187	S	1.383.454	0,824	0,865
BRASIL, 2003 Pranchita PR 2002 4,01 78 S 6,063 0,691 0,803 BRASIL, 2003 Pureza RN 2002 3,14 105 N 7,001 0,470 0,577 BRASIL, 2003 Quixadá CE 2002 2,40 211 N 7,1382 0,572 0,673 BRASIL, 2003 Realeza PR 2002 3,80 151 S 15,787 0,704 0,783 BRASIL, 2003 Recife PE 2002 1,21 180 S 268,517 0,674 0,749 BRASIL, 2003 Ribeiráozinho MT 2002 5,35 46 N 2,095 0,625 0,739 BRASIL, 2003 Rio Branco do Ivaí PR 2002 3,44 55 S 3,649 0,557 0,670 BRASIL, 2003 Rio de Janeiro RJ 2002 1,28 116 S 5,937.251 0,798 0,842 BRASIL, 2003	BRASIL, 2003	Porto Velho	RO	2002	2,34	154	N	347.843	0,710	0,763
BRASIL, 2003 Pureza RN 2002 3,14 105 N 7,001 0,470 0,577 BRASIL, 2003 Quixadá CE 2002 2,40 211 N 71,382 0,572 0,673 BRASIL, 2003 Realeza PR 2002 3,80 151 S 15,787 0,704 0,783 BRASIL, 2003 Recife PE 2002 1,72 106 N 1,449,136 0,740 0,779 BRASIL, 2003 Ribeiráozinho MG 2002 1,21 180 S 268,517 0,674 0,749 BRASIL, 2003 Ribeiráozinho MT 2002 5,35 46 N 2,095 0,652 0,730 0,754 BRASIL, 2003 Rio Branco do Ivaí PR 2002 3,44 55 S 3,649 0,557 0,670 BRASIL, 2003 Rio de Janeiro RJ 2002 1,28 116 S 5,937,251 0,792 BRASIL, 2	BRASIL, 2003	Prainha	PA	2002	3,34	163	N	29.728	0,555	0,621
BRASIL, 2003 Quixadá CE 2002 2,40 211 N 71.382 0.572 0,673 BRASIL, 2003 Realeza PR 2002 3,80 151 S 15.787 0,704 0,783 BRASIL, 2003 Recife PE 2002 1,72 106 N 1.449,136 0,740 0,797 BRASIL, 2003 Ribeirão das Neves MG 2002 1,21 180 S 268,517 0,674 0,749 BRASIL, 2003 Ribeirão zinho MT 2002 3,55 46 N 2.095 0,625 0,730 BRASIL, 2003 Rio Branco AC 2002 3,44 55 S 3,649 0,557 0,670 BRASIL, 2003 Rio de Janeiro RJ 2002 1,28 116 S 5,937.251 0,798 0,842 BRASIL, 2003 Rio Largo AL 2002 3,24 220 N 6,431 0,557 0,670 BRASIL,	BRASIL, 2003	Pranchita	PR	2002	4,01	78	S	6.063	0,691	0,803
BRASIL, 2003 Realeza PR 2002 3,80 151 S 15.787 0,704 0,783 BRASIL, 2003 Recife PE 2002 1,72 106 N 1.449,136 0,740 0,797 BRASIL, 2003 Ribeirão das Neves MG 2002 1,21 180 S 268.517 0,674 0,749 BRASIL, 2003 Ribeirão zinho MT 2002 3,18 169 N 2.095 0,625 0,730 BRASIL, 2003 Rio Branco AC 2002 3,18 169 N 267.741 0,703 0,754 BRASIL, 2003 Rio de Janeiro RJ 2002 3,44 55 S 3,649 0,557 0,670 BRASIL, 2003 Rio Largo AL 2002 3,44 55 S 3,649 0,557 0,670 BRASIL, 2003 Rodrigues Alves AC 2002 4,67 102 N 8,400 0,714 0,791 BRA	BRASIL, 2003	Pureza	RN	2002	3,14	105	N	7.001	0,470	0,577
BRASIL, 2003 Recife PE 2002 1,72 106 N 1.449.136 0,740 0,797 BRASIL, 2003 Ribeirão das Neves MG 2002 1,21 180 S 268.517 0,674 0,749 BRASIL, 2003 Ribeirãozinho MT 2002 5,35 46 N 2.095 0,625 0,730 BRASIL, 2003 Rio Branco do Ivai AC 2002 3,18 169 N 267.741 0,703 0,754 BRASIL, 2003 Rio Branco do Ivai PR 2002 3,44 55 S 3,649 0,557 0,670 BRASIL, 2003 Rio de Janeiro RJ 2002 1,28 116 S 5,937.251 0,798 0,842 BRASIL, 2003 Rodrigues Alves AC 2002 1,28 116 S 5,937.251 0,798 0,842 BRASIL, 2003 Rodrigues Alves AC 2002 4,67 102 N 8,40 0,655 0,671	BRASIL, 2003	Quixadá	CE	2002	2,40	211	N	71.382	0,572	0,673
BRASIL, 2003 Ribeirão das Neves MG 2002 1,21 180 S 268.517 0,674 0,749 BRASIL, 2003 Ribeirãozinho MT 2002 5,35 46 N 2.095 0,625 0,730 BRASIL, 2003 Rio Branco AC 2002 3,18 169 N 267.741 0,703 0,754 BRASIL, 2003 Rio Branco do Ivaí PR 2002 3,44 55 S 3.649 0,557 0,670 BRASIL, 2003 Rio de Janeiro RJ 2002 1,28 116 S 5.937.251 0,798 0,842 BRASIL, 2003 Rio Largo AL 2002 3,24 220 N 64.316 0,567 0,671 BRASIL, 2003 Rodrigues Alves AC 2002 3,66 165 N 155.804 0,714 0,791 BRASIL, 2003 Salvador BA 2002 1,45 229 S 2.520.505 0,751 0,805 <t< td=""><td>BRASIL, 2003</td><td>Realeza</td><td>PR</td><td>2002</td><td>3,80</td><td>151</td><td>S</td><td>15.787</td><td>0,704</td><td>0,783</td></t<>	BRASIL, 2003	Realeza	PR	2002	3,80	151	S	15.787	0,704	0,783
BRASIL, 2003 Neves MG 2002 1,21 180 S 268.517 0,674 0,749 BRASIL, 2003 Ribeirãozinho MT 2002 5,35 46 N 2.095 0,625 0,730 BRASIL, 2003 Rio Branco do Ivaí PR 2002 3,18 169 N 267.741 0,703 0,754 BRASIL, 2003 Rio Branco do Ivaí PR 2002 3,44 55 S 3,649 0,557 0,670 BRASIL, 2003 Rio Largo AL 2002 1,28 116 S 5,937.251 0,798 0,842 BRASIL, 2003 Rodrigues Alves AC 2002 4,67 102 N 8,400 0,486 0,550 BRASIL, 2003 Rondonópolis MT 2002 4,94 62 N 5.031 0,715 0,792 BRASIL, 2003 Salvador BA 2002 1,45 229 S 2.520.505 0,751 0,805	BRASIL, 2003	Recife	PE	2002	1,72	106	N	1.449.136	0,740	0,797
BRASIL, 2003	BRASIL, 2003		MG	2002	1,21	180	S	268.517	0,674	0,749
BRASIL, 2003	BRASIL, 2003	Ribeirãozinho	MT	2002	5,35	46	N	2.095	0,625	0,730
BRASIL, 2003 Ivaí PR 2002 3,44 55 S 3,649 0,57 0,70	BRASIL, 2003	Rio Branco	AC	2002	3,18	169	N	267.741	0,703	0,754
BRASIL, 2003 Rio Largo AL 2002 3,24 220 N 64.316 0,567 0,671 BRASIL, 2003 Rodrígues Alves AC 2002 4,67 102 N 8.400 0,486 0,550 BRASIL, 2003 Rondonópolis MT 2002 3,96 165 N 155.804 0,714 0,791 BRASIL, 2003 Sabino SP 2002 4,34 62 N 5.031 0,715 0,792 BRASIL, 2003 Salvador BA 2002 1,45 229 S 2.520.505 0,751 0,805 BRASIL, 2003 Santa Cruz de Goiás GO 2002 4,26 34 N 3.519 0,693 0,782 BRASIL, 2003 Santa Filomena PE 2002 3,75 111 N 6.117 0,532 0,618 BRASIL, 2003 Santa Luzia MG 2002 1,59 188 S 73.121 0,686 0,754 BRA	BRASIL, 2003		PR	2002	3,44	55	S	3.649	0,557	0,670
BRASIL, 2003 Rodrígues Alves AC 2002 4,67 102 N 8.400 0,486 0,550 BRASIL, 2003 Rondonópolis MT 2002 3,96 165 N 155.804 0,714 0,791 BRASIL, 2003 Sabino SP 2002 4,34 62 N 5.031 0,715 0,792 BRASIL, 2003 Salvador BA 2002 1,45 229 S 2.520.505 0,751 0,805 BRASIL, 2003 Santa Cruz de Goiás GO 2002 4,26 34 N 3.519 0,693 0,782 BRASIL, 2003 Santa Filomena PE 2002 3,75 111 N 6.117 0,532 0,618 BRASIL, 2003 Santa Luzia MG 2002 1,59 188 S 73.121 0,686 0,754 BRASIL, 2003 Santo Ângelo RS 2002 1,82 207 N 266.392 0,661 0,746 <td< td=""><td>BRASIL, 2003</td><td>Rio de Janeiro</td><td>RJ</td><td>2002</td><td>1,28</td><td>116</td><td>S</td><td>5.937.251</td><td>0,798</td><td>0,842</td></td<>	BRASIL, 2003	Rio de Janeiro	RJ	2002	1,28	116	S	5.937.251	0,798	0,842
BRASIL, 2003 Rondonópolís MT 2002 3,96 165 N 155.804 0,714 0,791 BRASIL, 2003 Sabino SP 2002 4,34 62 N 5.031 0,715 0,792 BRASIL, 2003 Salvador BA 2002 1,45 229 S 2.520.505 0,751 0,805 BRASIL, 2003 Santa Cruz de Goiás GO 2002 4,26 34 N 3.519 0,693 0,782 BRASIL, 2003 Santa Filomena PE 2002 3,75 111 N 6.117 0,532 0,618 BRASIL, 2003 Santa Luzia MG 2002 1,59 188 S 73.121 0,686 0,754 BRASIL, 2003 Santa Élomena PA 2002 3,20 207 N 266.392 0,661 0,746 BRASIL, 2003 Santo Élomena RS 2002 1,82 207 S 77.705 0,762 0,821 <td< td=""><td>BRASIL, 2003</td><td>Rio Largo</td><td>AL</td><td>2002</td><td>3,24</td><td>220</td><td>N</td><td>64.316</td><td>0,567</td><td>0,671</td></td<>	BRASIL, 2003	Rio Largo	AL	2002	3,24	220	N	64.316	0,567	0,671
BRASIL, 2003 Sabino SP 2002 4,34 62 N 5.031 0,715 0,792 BRASIL, 2003 Salvador BA 2002 1,45 229 S 2.520.505 0,751 0,805 BRASIL, 2003 Santa Cruz de Goiás GO 2002 4,26 34 N 3.519 0,693 0,782 BRASIL, 2003 Santa Filomena PE 2002 3,75 111 N 6.117 0,532 0,618 BRASIL, 2003 Santa Luzia MG 2002 1,59 188 S 73.121 0,686 0,754 BRASIL, 2003 Santarém PA 2002 3,20 207 N 266.392 0,661 0,746 BRASIL, 2003 Santo Ántônio da Patrulha RS 2002 1,82 207 S 77.705 0,762 0,821 BRASIL, 2003 Saño Expedito do Sul RS 2002 4,73 60 N 8.499 0,611 0,702	BRASIL, 2003	Rodrigues Alves	AC	2002	4,67	102	N	8.400	0,486	0,550
BRASIL, 2003 Salvador BA 2002 1,45 229 S 2.520.505 0,751 0,805 BRASIL, 2003 Santa Cruz de Goiás GO 2002 4,26 34 N 3.519 0,693 0,782 BRASIL, 2003 Santa Filomena PE 2002 3,75 111 N 6.117 0,532 0,618 BRASIL, 2003 Santa Luzia MG 2002 1,59 188 S 73.121 0,686 0,754 BRASIL, 2003 Santa Filomena PA 2002 3,20 207 N 266.392 0,661 0,746 BRASIL, 2003 Santo Ángelo RS 2002 1,82 207 S 77.705 0,762 0,821 BRASIL, 2003 Santo Antônio da Patrulha RS 2002 2,22 195 S 37.541 0,713 0,770 BRASIL, 2003 São Gonçalo do Sul RS 2002 4,73 60 N 8.499 0,611 0,702 </td <td>BRASIL, 2003</td> <td>Rondonópolis</td> <td>MT</td> <td>2002</td> <td>3,96</td> <td>165</td> <td>N</td> <td>155.804</td> <td>0,714</td> <td>0,791</td>	BRASIL, 2003	Rondonópolis	MT	2002	3,96	165	N	155.804	0,714	0,791
BRASIL, 2003 Santa Cruz de Goiás GO 2002 4,26 34 N 3.519 0,693 0,782 BRASIL, 2003 Santa Filomena PE 2002 3,75 111 N 6.117 0,532 0,618 BRASIL, 2003 Santa Luzia MG 2002 1,59 188 S 73.121 0,686 0,754 BRASIL, 2003 Santo Antém PA 2002 3,20 207 N 266.392 0,661 0,746 BRASIL, 2003 Santo Ángelo RS 2002 1,82 207 S 77.705 0,762 0,821 BRASIL, 2003 Santo Antônio da Patrulha RS 2002 2,22 195 S 37.541 0,713 0,770 BRASIL, 2003 São Gonçalo do Gio Albaixo RS 2002 6,28 43 N 2,617 0,643 0,740 BRASIL, 2003 São João da Urtiga RS 2002 7,21 43 N 4.869 0,685 0,774 </td <td>BRASIL, 2003</td> <td>Sabino</td> <td>SP</td> <td>2002</td> <td>4,34</td> <td>62</td> <td>N</td> <td>5.031</td> <td>0,715</td> <td>0,792</td>	BRASIL, 2003	Sabino	SP	2002	4,34	62	N	5.031	0,715	0,792
BRASIL, 2003 Goiás GO 2002 4,26 34 N 3.519 0,693 0,782 BRASIL, 2003 Santa Filomena PE 2002 3,75 111 N 6.117 0,532 0,618 BRASIL, 2003 Santa Luzia MG 2002 1,59 188 S 73.121 0,686 0,754 BRASIL, 2003 Santo Antônio da Patrulha RS 2002 1,82 207 N 266.392 0,661 0,746 BRASIL, 2003 Santo Antônio da Patrulha RS 2002 2,22 195 S 37.541 0,713 0,770 BRASIL, 2003 Santo Expedito do Sul RS 2002 6,28 43 N 2.617 0,643 0,740 BRASIL, 2003 São Gonçalo do Rio Abaixo MG 2002 4,73 60 N 8.499 0,611 0,702 BRASIL, 2003 São Jošé do Xingu MT 2002 7,21 43 N 4.869 0,685 0,	BRASIL, 2003	Salvador	ВА	2002	1,45	229	S	2.520.505	0,751	0,805
BRASIL, 2003 Santa Luzia MG 2002 1,59 188 S 73.121 0,686 0,754 BRASIL, 2003 Santarém PA 2002 3,20 207 N 266.392 0,661 0,746 BRASIL, 2003 Santo Ángelo RS 2002 1,82 207 S 77.705 0,762 0,821 BRASIL, 2003 Santo Antônio da Patrulha RS 2002 2,22 195 S 37.541 0,713 0,770 BRASIL, 2003 Santo Expedito do Sul RS 2002 6,28 43 N 2.617 0,643 0,740 BRASIL, 2003 São Gonçalo do Rio Abaixo MG 2002 4,73 60 N 8.499 0,611 0,702 BRASIL, 2003 São João da Urtiga RS 2002 7,21 43 N 4.869 0,685 0,774 BRASIL, 2003 São Luís MA 2002 3,89 93 N 5.500 0,608 0,681 <	BRASIL, 2003		GO	2002	4,26	34	N	3.519	0,693	0,782
BRASIL, 2003 Santarém PA 2002 3,20 207 N 266.392 0,661 0,746 BRASIL, 2003 Santo Ângelo RS 2002 1,82 207 S 77.705 0,762 0,821 BRASIL, 2003 Santo Antônio da Patrulha RS 2002 2,22 195 S 37.541 0,713 0,770 BRASIL, 2003 Santo Expedito do Sul RS 2002 6,28 43 N 2.617 0,643 0,740 BRASIL, 2003 São Gonçalo do Rio Abaixo MG 2002 4,73 60 N 8.499 0,611 0,702 BRASIL, 2003 São João da Urtiga RS 2002 7,21 43 N 4.869 0,685 0,774 BRASIL, 2003 São José do Xingu MT 2002 3,89 93 N 5.500 0,608 0,681 BRASIL, 2003 São Luís de Montes Belos GO 2002 2,08 166 S 26.663 0,669	BRASIL, 2003	Santa Filomena	PE	2002	3,75	111	N	6.117	0,532	0,618
BRASIL, 2003 Santo Ângelo RS 2002 1,82 207 S 77.705 0,762 0,821 BRASIL, 2003 Santo Antônio da Patrulha RS 2002 2,22 195 S 37.541 0,713 0,770 BRASIL, 2003 Santo Expedito do Sul RS 2002 6,28 43 N 2.617 0,643 0,740 BRASIL, 2003 São Gonçalo do Rio Abaixo MG 2002 4,73 60 N 8.499 0,611 0,702 BRASIL, 2003 São João da Urtiga RS 2002 7,21 43 N 4.869 0,685 0,774 BRASIL, 2003 São José do Xingu MT 2002 3,89 93 N 5.500 0,608 0,681 BRASIL, 2003 São Luís MA 2002 3,23 162 N 906.567 0,721 0,778 BRASIL, 2003 São Luís de Montes Belos GO 2002 2,08 166 S 26.663 0,669	BRASIL, 2003	Santa Luzia	MG	2002	1,59	188	S	73.121	0,686	0,754
BRASIL, 2003 Santo Antônio da Patrulha RS 2002 2,22 195 S 37.541 0,713 0,770 BRASIL, 2003 Santo Expedito do Sul RS 2002 6,28 43 N 2.617 0,643 0,740 BRASIL, 2003 São Gonçalo do Rio Abaixo MG 2002 4,73 60 N 8.499 0,611 0,702 BRASIL, 2003 São João da Urtiga RS 2002 7,21 43 N 4.869 0,685 0,774 BRASIL, 2003 São José do Xingu MT 2002 3,89 93 N 5.500 0,608 0,681 BRASIL, 2003 São Luís MA 2002 3,23 162 N 906.567 0,721 0,778 BRASIL, 2003 São Luís de Montes Belos GO 2002 2,08 166 S 26.663 0,669 0,752 BRASIL, 2003 São Miguel das Missões RS 2002 2,42 40 S 7.378 0,659 <td>BRASIL, 2003</td> <td>Santarém</td> <td>PA</td> <td>2002</td> <td>3,20</td> <td>207</td> <td>N</td> <td>266.392</td> <td>0,661</td> <td>0,746</td>	BRASIL, 2003	Santarém	PA	2002	3,20	207	N	266.392	0,661	0,746
BRASIL, 2003 Patrulha RS 2002 2,22 195 S 37.541 0,713 0,770 BRASIL, 2003 Santo Expedito do Sul RS 2002 6,28 43 N 2.617 0,643 0,740 BRASIL, 2003 São Gonçalo do Rio Abaixo MG 2002 4,73 60 N 8.499 0,611 0,702 BRASIL, 2003 São João da Urtiga RS 2002 7,21 43 N 4.869 0,685 0,774 BRASIL, 2003 São José do Xingu MT 2002 3,89 93 N 5.500 0,608 0,681 BRASIL, 2003 São Luís MA 2002 3,23 162 N 906.567 0,721 0,778 BRASIL, 2003 São Luís de Montes Belos GO 2002 2,08 166 S 26.663 0,669 0,752 BRASIL, 2003 São Miguel das Missões RS 2002 2,42 40 S 7.378 0,659 0,7	BRASIL, 2003	Santo Ângelo	RS	2002	1,82	207	S	77.705	0,762	0,821
BRASIL, 2003 São Gonçalo do Rio Abaixo MG 2002 4,73 60 N 8.499 0,611 0,702 BRASIL, 2003 São João da Urtiga RS 2002 7,21 43 N 4.869 0,685 0,774 BRASIL, 2003 São José do Xingu MT 2002 3,89 93 N 5.500 0,608 0,681 BRASIL, 2003 São Luís MA 2002 3,23 162 N 906.567 0,721 0,778 BRASIL, 2003 São Luís de Montes Belos GO 2002 2,08 166 S 26.663 0,669 0,752 BRASIL, 2003 São Miguel das Missões RS 2002 2,42 40 S 7.378 0,659 0,763	BRASIL, 2003		RS	2002	2,22	195	S	37.541	0,713	0,770
BRASIL, 2003 Rio Abaixo Mid 2002 4,73 60 N 8.499 0,611 0,702 BRASIL, 2003 São João da Urtiga RS 2002 7,21 43 N 4.869 0,685 0,774 BRASIL, 2003 São José do Xingu MT 2002 3,89 93 N 5.500 0,608 0,681 BRASIL, 2003 São Luís MA 2002 3,23 162 N 906.567 0,721 0,778 BRASIL, 2003 São Luís de Montes Belos GO 2002 2,08 166 S 26.663 0,669 0,752 BRASIL, 2003 São Miguel das Missões RS 2002 2,42 40 S 7.378 0,659 0,763	BRASIL, 2003		RS	2002	6,28	43	N	2.617	0,643	0,740
BRASIL, 2003 Urtiga RS 2002 7,21 43 N 4.869 0,685 0,774 BRASIL, 2003 São José do Xingu MT 2002 3,89 93 N 5.500 0,608 0,681 BRASIL, 2003 São Luís MA 2002 3,23 162 N 906.567 0,721 0,778 BRASIL, 2003 São Luís de Montes Belos GO 2002 2,08 166 S 26.663 0,669 0,752 BRASIL, 2003 São Miguel das Missões RS 2002 2,42 40 S 7.378 0,659 0,763	BRASIL, 2003		MG	2002	4,73	60	N	8.499	0,611	0,702
BRASIL, 2003 Xingu M1 2002 3,89 93 N 5.500 0,608 0,681 BRASIL, 2003 São Luís MA 2002 3,23 162 N 906.567 0,721 0,778 BRASIL, 2003 São Luís de Montes Belos GO 2002 2,08 166 S 26.663 0,669 0,752 BRASIL, 2003 São Miguel das Missões RS 2002 2,42 40 S 7.378 0,659 0,763	BRASIL, 2003		RS	2002	7,21	43	N	4.869	0,685	0,774
BRASIL, 2003 São Luís MA 2002 3,23 162 N 906.567 0,721 0,778 BRASIL, 2003 São Luís de Montes Belos GO 2002 2,08 166 S 26.663 0,669 0,752 BRASIL, 2003 São Miguel das Missões RS 2002 2,42 40 S 7.378 0,659 0,763	BRASIL, 2003		MT	2002	3,89	93	N	5.500	0,608	0,681
BRASIL, 2003 Montes Belos GO 2002 2,06 166 S 26.663 0,669 0,752 BRASIL, 2003 São Miguel das Missões RS 2002 2,42 40 S 7.378 0,659 0,763	BRASIL, 2003	São Luís	MA	2002	3,23	162	N	906.567	0,721	0,778
Missões RS 2002 2,42 40 S 7.378 0,659 0,763	BRASIL, 2003		GO	2002	2,08	166	S	26.663	0,669	0,752
BRASIL, 2003 São Paulo SP 2002 1,75 249 S 10.600.059 0,805 0,841	BRASIL, 2003	· ·	RS	2002	2,42	40	S	7.378	0,659	0,763
	BRASIL, 2003	São Paulo	SP	2002	1,75	249	S	10.600.059	0,805	0,841

ANEXO 1 – Descrição dos dados obtidos por município.

Referência	Cidade	Estado	Ano	CPOD	n	Fluore- tação	População	IDH 1991	IDH 2000
BRASIL, 2003	São Paulo de Olivença	AM	2002	4,75	106	N	25.107	0,518	0,536
BRASIL, 2003	Sapiranga	RS	2002	1,83	198	S	71.982	0,727	0,806
BRASIL, 2003	Senador Canedo	GO	2002	3,87	111	N	59.250	0,634	0,729
BRASIL, 2003	Serra do Navio	AP	2002	2,72	67	N	3.590	0,684	0,743
BRASIL, 2003	Serrinha	ВА	2002	1,79	216	S	7.356	0,566	0,658
BRASIL, 2003	Sertãozinho	PB	2002	4,22	68	N	3.634	0,776	0,833
BRASIL, 2003	Sertãozinho	SP	2002	4,51	253	N	3.634	0,776	0,833
BRASIL, 2003	Silvanópolis	TO	2002	1,38	60	N	4.482	0,583	0,667
BRASIL, 2003	Silveirânia	MG	2002	1,79	53	S	2.150	0,623	0,721
BRASIL, 2003	Sinop	MT	2002	3,98	164	S	82.992	0,764	0,807
BRASIL, 2003	Sorocaba	SP	2002	1,38	241	S	517.553	0,777	0,828
BRASIL, 2003	Taipas do Tocantins	ТО	2002	1,27	30	N	1.612	0,566	0,637
BRASIL, 2003	Tamboril do Piauí	PI	2002	5,49	67	N	2.362	0,403	0,550
BRASIL, 2003	Taquara	RS	2002	1,54	224	S	55.003	0,770	0,819
BRASIL, 2003	Taquaral de Goiás	GO	2002	2,79	48	S	3.486	0,621	0,726
BRASIL, 2003	Taquaritinga do Norte	PE	2002	2,23	180	N	20.317	0,587	0,688
BRASIL, 2003	Tatuí	SP	2002	2,02	192	S	97.325	0,730	0,794
BRASIL, 2003	Tefé	AM	2002	2,45	152	N	66.665	0,620	0,663
BRASIL, 2003	Teresina	PI	2002	2,52	207	S	740.016	0,713	0,766
BRASIL, 2003	Tianguá	CE	2002	4,48	188	N	61.031	0,523	0,640
BRASIL, 2003	Três Lagoas	MS	2002	2,87	146	N	81.352	0,708	0,784
BRASIL, 2003	Tucano	ВА	2002	1,56	176	N	51.862	0,472	0,582
BRASIL, 2003	Tuparendi	RS	2002	2,85	89	N	9.473	0,726	0,802
BRASIL, 2003	Turvelândia	GO	2002	2,31	39	S	3.756	0,626	0,685
BRASIL, 2003	Uarini	AM	2002	4,59	54	N	11.274	0,611	0,599
BRASIL, 2003	Uchoa	SP	2002	1,62	100	N	9.183	0,703	0,750
BRASIL, 2003	Umuarama	PR	2002	1,63	178	S	92.217	0,723	0,800
BRASIL, 2003	Urbano Santos	MA	2002	2,53	92	N	17.445	0,475	0,556
BRASIL, 2003	Uruará	PA	2002	4,41	146	N	49.380	0,587	0,713
BRASIL, 2003	Valparaíso de Goiás	GO	2002	2,65	49	S	103.128	0,739	0,795
BRASIL, 2003	Vargem	SP	2002	3,73	102	S	7.391	0,719	0,782
BRASIL, 2003	Várzea Grande	MT	2002	2,09	207	N	4.480	0,703	0,790
BRASIL, 2003	Várzea Paulista	SP	2002	3,06	264	S	97.823	0,752	0,795
BRASIL, 2003	Vera Cruz do Oeste	PR	2002	2,14	80	S	9.290	0,666	0,737
BRASIL, 2003	Videira	SC	2002	2,35	147	S	43.273	0,774	0,851
BRASIL, 2003	Vitória	ES	2002	1,25	286	S	299.358	0,797	0,856
BRASIL, 2003	Wall Ferraz	PI	2002	1,94	67	N	4.050	0,421	0,536
BRASIL, 2003	Xinguara	PA	2002	2,99	143	N	33.624	0,668	0,739
SÃO PAULO, 2002	Campinas	SP	2002	1,34	209	S	995.024	0,811	0,852
	· ·			-				-	•

ANEXO 1 – Descrição dos dados obtidos por município.

Referência	Cidade	Estado	Ano	CPOD	n	Fluore- tação	População	IDH 1991	IDH 2000
SÃO PAULO, 2002	Dois Córregos	SP	2002	3,19	269	S	23.297	0,739	0,786
SÃO PAULO, 2002	Dourado	SP	2002	1,65	69	S	8.789	0,743	0,780
SÃO PAULO, 2002	lacanga	SP	2002	2,74	130	N	8.430	0,738	0,779
SÃO PAULO, 2002	Ipeúna	SP	2002	2,31	55	N	4.685	0,725	0,786
SÃO PAULO, 2002	Itanhaém	SP	2002	1,81	248	S	77.449	0,730	0,779
SÃO PAULO, 2002	Lutécia	SP	2002	4,91	65	S	2.952	0,688	0,755
SÃO PAULO, 2002	Marianápolis	SP	2002	5,22	55	S	3.747	0,693	0,739
SÃO PAULO, 2002	Palmares Paulista	SP	2002	4,31	108	S	8.672	0,724	0,765
SÃO PAULO, 2002	Pedreira	SP	2002	2,21	205	S	36.743	0,765	0,810
SÃO PAULO, 2002	Rosana	SP	2002	2,43	176	S	24.967	0,751	0,815
SÃO PAULO, 2002	Santos	SP	2002	1,32	241	S	418.092	0,838	0,871
SÃO PAULO, 2002	São José do Rio Preto	SP	2002	2,02	300	S	374.745	0,792	0,834
SÃO PAULO, 2002	Taboão da Serra	SP	2002	1,75	205	S	205.547	0,767	0,809
SÃO PAULO, 2002	Urupês	SP	2002	3,08	200	S	12.006	0,746	0,795
SÃO PAULO, 2002	Zacarias	SP	2002	2,62	60	S	1.947	0,708	0,777
CRIVELLI, 2005.	Taquarussu	MS	2003	4,53		N	3.171	0,644	0,705
CRIVELLI, 2005.	Taquarussu	MS	2004	2,47		N	3.070	0,644	0,705
MARTINS et al., 2006	Bilac	SP	2004	2,62	82	N	6.340	0,754	0,809
CRIVELLI, 2005.	Taquarussu	MS	2005	2,18		N	2.841	0,644	0,705

REFERÊNCIAS BIBLIOGRÁFICAS

REFERÊNCIAS BIBLIOGRÁFICAS *

- ABREU, M. H. N. G.; MODENA, C. M.; PORDEUS, I. A. Populações residentes em zona rural e cárie dentária: revisão sistemática. Rev Fac Odontol Univ Passo Fundo, Passo Fundo, v.9, n. 2, p. 48-54, jul./dez. 2004.
- ALMEIDA FILHO, N. Anotações sobre a história da epidemiologia. In: ROUQUAYROL, M. Z. (Ed) **Epidemiologia & Saúde**. 4ª ed. Rio de Janeiro: MEDSI, 1994. p. 1-6.
- ANTUNES, J. L.; JAHN, G. M.; CAMARGO, M. A. Increasing inequalities in the distribution of dental caries in the Brazilian context in Finland. <u>Community Dent Health</u>, <u>Londres</u>, v. 22, n. 2, p. 94-100, jun. 2004.
- ANTUNES, J. L.; NARVAI, P. C.; NUGENT, Z. J. Measuring inequalities in the distribution of dental caries. <u>Community Dent Oral Epidemiol</u>, Copenhagen, v. 2, n. 1, p. 41-48, feb. 2004.
- ANTUNES, J. L.; PERES, M. A.; FRAZÃO, P. Cárie dentária. In: ANTUNES, J. L. F.; PERES, M. A. (Ed) Epidemiologia da saúde bucal. Rio de Janeiro: Guanabara Koogan, 2006. p. 49-67.
- 6. ARCIERI, R. M. et al. Estudo comparativo da prevalência da cárie dentária após 10 (dez) anos de adição de flúor nas águas de abastecimento público de Uberlândia MG. Rev Paul Odontol, São Paulo, v. 8, n. 2, p. 46-55, mar./abr. 1986.

^{*} Normas recomendadas para uso no âmbito da Universidade de São Paulo, com base no documento "Referências Bibliográficas: exemplos", emanados do Conselho Supervisor do Sistema Integrado de Bibliotecas da USP, em reunião de 20 de setembro de 1990. ABNT – NBR 6023 (ago. 2002).

- 7. BARROS, E. R. C.; SCAPINI, C.; TOVO, M. F. Resultados da fluoretação da água / Water fluoridation results. **RGO (Porto Alegre)**, Porto alegre, v. 41, n. 5, p. 303-304, 307-308, set./out. 1993.
- 8. BASTING, R. T.; PEREIRA, A. C.; MENEGHIM, M. C. Avaliação da prevalência de cárie dentária em escolares do Município de Piracicaba-SP, Brasil, após 25 anos de fluoretação das águas de abastecimento público. Rev Odontol Univ São Paulo, São Paulo, v. 11, n. 4, p. 287-292, out./dez. 1997.
- BASTOS, J. L. D.; NOMURA, L. H.; PERES, M. A. Tendência de cárie dentária em escolares de 12 e 13 anos de idade de uma mesma escola no período de 1971 a 2002, em Florianópolis, Santa Catarina, Brasil. Cad Saúde Pública, Rio de Janeiro, v. 20, n. 1, p. 117-122, jan./fev. 2004.
- BASTOS, J. R. M. et al. Declínio de cárie dentária em Bauru-SP relacionado ao uso de flúor. Rev Inst Ciênc Saúde, São Paulo, v. 19, n. 2, p. 115-119, jul./dez. 2001.
- BASTOS, R. S. et al. Trends in dental caries prevalence in 12-year-old schoolchildren between 1976 and 2001 in Bauru, Brazil. Public Health, Londres, v. 119, n. 4, p.269-275, 2005.
- 12. BRASIL. Ministério da Saúde. Secretaria Nacional de Programas Especiais de Saúde. Divisão Nacional de Saúde Bucal. Fundação Serviços de Saúde Pública. Levantamento epidemiológico em saúde bucal: Brasil, zona urbana, 1986. Brasília, DF: Centro de Documentação do Ministério da Saúde, 1988. 137 p.
- 13. BRASIL. Ministério da Saúde. Datasus. Levantamento epidemiológico em saúde bucal 1996, cárie dental. Disponível em http://tabnet.datasus.gov.br/cgi/sbucal/sbdownload.htm#instrucoes. Acesso em: 08 jul. 2005. 1996.

- 14. BRASIL. Ministério da Saúde. Secretaria de Políticas de Saúde. Departamento de Atenção Básica. Área Técnica de Saúde Bucal. Projeto SB2000: condições de saúde bucal da população brasileira no ano 2000. Brasília, DF: Ministério da Saúde, 2000. 43 p.
- 15. BRASIL. Ministério da Saúde. Coordenação Nacional de Saúde Bucal. Banco de dados da pesquisa "Condições de saúde bucal da população brasileira Projeto SB Brasil 2003". Disponível em http://dtr2004.saude.gov.br/dab/saudebucal/banco_dados.php. Acesso em: 16 jul. 2005. 2003.
- 16. BRASIL. Ministério da Saúde. Secretaria de Atenção à Saúde. Departamento de Atenção Básica. Projeto SB Brasil 2003: condições de saúde bucal da população brasileira 2002-2003: resultados principais. 1ª ed. Brasília, DF: Ministério da Saúde, 2004. 68 p.
- 17. BRASIL. Organização Pan-Americana da Saúde. Desenvolvimento de sistemas e serviços de saúde: a política nacional de saúde bucal do Brasil: registro de uma conquista histórica. Brasília, DF: Organização Pan-Americana da Saúde, 2006. 70 p.
- 18. BROWN, M. Using Gini-style indices to evaluate the spatial patterns of health practitioners: theoretical considerations and an application based on Alberta data. **Soc Sci Med**, v. 38, n. 9, p. 1243-1256, 1994.
- CANGUSSU, M. C. T. et al. Cárie dentária em escolares de 12 e 15 anos de escolas públicas e privadas de Salvador, Bahia, Brasil, 2001.
 Pesqui Odontol Bras, São Paulo, v. 16, n. 4, p. 379-384, out./dez. 2002.
- CANGUSSU, M. C. T.; COELHO, E. O.; CASTELLANOS FERNANDES, R. A. Epidemiologia e iniquidade em saúde bucal aos 5, 12 e 15 anos de idade no município de Itatiba, São Paulo, 2000.
 Rev Fac Odontol Bauru, Bauru, v. 9, n. 1/2, p. 77-85, jan./jun. 2001.

- 21. CANGUSSU, M. C. T.; COSTA, M. C. N. O flúor tópico na redução da cárie dental em adolescentes de Salvador BA, 1996. Pesqui Odontol Bras, São Paulo, v. 15, n. 4, p. 348-353, out./dez. 2001.
- 22. CARDOSO, A. C. C.; MORAES, L. R. S. A associação entre cárie e fluorose dentária com a fluoretação das águas em dois municípios do estado da Bahia. Rev Baiana Saúde Pública, Salvador, v. 27, n. 1/2, p. 7-18, jan./jul. 2003.
- 23. CARDOSO, L. et al. Polarização da cárie em município sem água fluoretada. **Cad Saúde Pública**, Rio de Janeiro, v. 19, n. 1, p. 237-243, jan./fev. 2003.
- 24. CASTELLANOS, R. A. Aspectos epidemiológicos da cárie dental em escolares brancos e não brancos de ambos os sexos internos em sete orfanatos da cidade de São Paulo, Brasil, 1972. Rev Saúde Pública, São Paulo, v. 8, p. 51-62, 1974.
- 25. CASTRO, A. L. S.; VIANNA, M. I. P.; REIS, S. R. A. Um novo índice para medir a cárie dental: índice reversível de cárie dental IRCD. Rev Fac Odontol Univ Fed Bahia, Salvador, v. 18, p. 35-40, jul./dez. 1999.
- 26. CHAVES, M. M. **Manual de odontologia sanitária:** 1ª parte teoria da odontologia sanitária. São Paulo, 1960. 391 p.
- 27. CHAVES, M. M. **Odontologia social**. 3ª ed. São Paulo: Artes Médicas, 1986. 448 p.
- 28. COCHRAN, W. G. **Técnicas de amostragem**. Rio de Janeiro: Ed. Fundo de Cultura, 1965. 555 p.
- 29. CRIVELLI, D. D. Programa de saúde bucal do município de Taquarussu. **Divulg Saúde Debate**, Rio de Janeiro, n. 32, p. 78-83, maio 2005.

- 30. CYPRIANO, S. et al. A saúde bucal de escolares residentes em locais com ou sem fluoretação nas águas de abastecimento público na região de Sorocaba, São Paulo, Brasil. Cad Saúde Pública, Rio de Janeiro, v. 19, n. 4, p. 1063-1101, jul./ago. 2003.
- 31. CYPRIANO, S.; SOUSA, M. L. R.; WADA, R. S. Avaliação de índices CPOD simplificados em levantamentos epidemiológicos de cárie dentária. Rev Saúde Pública, São Paulo, v. 39, n. 2, p. 285-292, abr. 2005.
- 32. DINI, E. L. et al. Changes in dental caries prevalence of school children in Araraquara, SP. Int Dent J, Londres, v. 46, n. 2, p. 82-85, Apr. 1996.
- 33. DINI, E. L.; HOLT, R. D.; BEDI, R. Prevalence and severity of caries in 3-12-year-old children from three districts with different fluoridation histories in Araraquara, SP, Brazil. **Community Dent Health**, London, v. 15, n. 1, p. 44-48, Mar. 1998.
- 34. DINI, E. L.; VERTUAN, V.; PINCELLI, C. A. S. Condições bucais de escolares da área rural do Município de Araraquara-SP. **Rev Odontol UNESP**, Marília, v. 22, n. 1, p. 125-133, jan./jun. 1993.
- 35. FAGUNDES, A. L. A.; LEITE, I. C. G. Inter-relações entre dieta, história de cárie, saliva e função intestinal em crianças de cinco a 13 anos em Descoberto, Minas Gerais. **Rev do CROMG**, Belo Horizonte, v. 6, n. 1 p. 18-28, jan./abr. 2000.
- 36. FÉDÉRATION DENTAIRE INTERNATIONALE. Goals for oral health in the year 2000. **Int Dent J**, London, v. 32, n. 1, p. 74-77, 1982.
- 37. FREIRE, M. C. M. et al. Prevalência de cárie e necessidades de tratamento em escolares de seis a doze anos de idade, Goiânia, GO, Brasil, 1994. Rev Saúde Pública, São Paulo, v. 31, n. 1, p. 44-52, fev. 1997.

- 38. FRIAS, A. C.; ANTUNES, J. L. F.; NARVAI, P. C. Precisão e validade de levantamentos epidemiológicos em saúde bucal: cárie dentária na Cidade de São Paulo, 2002. **Rev Bras Epidemiol**, São Paulo, v. 7, n. 2, p. 144-154, 2004.
- 39. GOMES, P. R. et al. Paulínia, São Paulo, Brasil: situação da cárie dentária com relação às metas OMS 2000 e 2010. **Cad Saúde pública**, Rio de Janeiro, v. 20, n. 3, p. 866-870, maio/jun. 2004.
- 40. GOMES, V. E. et al. Prevalência de cárie e necessidades de tratamento em pré-escolares e escolares de Capivari-SP, Brasil. **Arq Odontol**, Belo Horizonte, v. 39, n. 2, p. 75-162, abr./jun. 2003.
- 41. GUEIROS, L. A. M.; SILVA, M. D. P. Inquérito de cárie dentária e perfil alimentar em escolares de 6 a 12 anos de duas populações da Região Metropolitana do Recife. **Odontol Clín Cient**, Recife, v. 2, n. 3, p. 201-209, set./dez. 2003.
- 42. HANSEN, M. H.; HURWITZ, W. N.; MADOW, W. G. **Sample survey** methods and theory. New York: John Wiley & Sons, 1953. 638 p.
- 43. HOBDELL, M. et al. Global goals for oral health 20020. **Int Den J**, London, v. 53, n. 5, p. 285-288, 2003.
- 44. INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE). Diretoria de Pesquisas. Coordenação de Índices de Preços. Pesquisa de orçamentos familiares 2002-2003: primeiros resultados. Rio de Janeiro: IBGE, 2004. 276 p.
- 45. KALAMATIANOS, P. A.; NARESSI, W. G. Estudo comparativo do índice CPO: antes e depois do advento da educação sanitária, nas escolas da rede municipal da cidade de São José dos Campos/SP. RGO (Porto Alegre), Porto Alegre, v. 36, n. 5, p. 327-330, set./out. 1988.

- KLEIN, H.; PALMER, C. E. Studies on dental caries X: a procedure for recording and statistical processing of dental examination findings. J Den Res, v. 19, p. 243-256, 1940.
- 47. LANGLOIS, C. O. et al. Cárie e alterações linguais em crianças de Pitimbu Paraíba Brasil. **Rev Bras Ciênc Saúde**, João Pessoa, v. 7, n. 1, p. 17-24, jan./abr. 2003.
- 48. LAST, I. M. **A dictionary of epidemiology**. New York: Oxford University Press, 1988
- 49. LAURENTI, R. Análise da informação em saúde: 1893-1993, cem anos da Classificação Internacional de Doenças. **Rev Saúde Públ**, São Paulo, v. 25, n. 6, p. 407-417, 1991.
- 50. MARTINS, C. C. et al. Impacto da manutenção preventiva na experiência de cárie dentária em crianças de 12 anos de idade. JBP J Bras Odontopediatr Odontol Bebê, Curitiba, v. 5, n. 26, p. 302-308, jul./ago. 2002.
- 51. MARTINS, R. J. et al. Declínio da cárie em um município da região noroeste do Estado de São Paulo, Brasil, no período de 1998 a 2004. Cad Saúde Pública, Rio de Janeiro, v. 22, n. 5, p. 1035-1041, mai. 2006.
- 52. MEDEIROS, U. V.; WEYNE, S. C. A doença cárie dentária no Brasil e no mundo. **UFES Rev Odontol**, Vitória, v. 3, n. 1, p. 88-95, jan./jun. 2001.
- 53. MELLO, T. R. C.; ANTUNES, J. L. F. Prevalência de cárie dentária em escolares da região rural de Itapetininga, São Paulo, Brasil. **Cad Saúde Pública**, Rio de Janeiro, v. 20, n. 3, p. 829-835, maio/jun. 2004.
- 54. MENEGHIM, M. C.; SALIBA, N. A.; PEREIRA, A. C. Importância do primeiro molar permanente na determinação do índice CPOD. **JBP J**

- **Bras Odontopediatr Odontol Bebê**, Curitiba, v. 2, n. 5, p. 37-41, jan./fev. 1999.
- 55. MORABIA, A. Snow and Farr: a scientific duet. **Soz Präventivmed**, Basel, v. 46, p. 223-224, 2001. Editorial.
- 56. MORAIS, N. D.; LENZA, M. A.; FREIRE, M. C. M. Prevalência de cárie em escolares de 6 a 12 anos da rede pública de ensino do município de Dom Aquino-MT. Rev Bras Odont Saúde Coletiva, Brasília, v. 1, n. 2, p. 45-49, 2000.
- 57. MOREIRA, B. W.; PEREIRA, A. C; OLIVEIRA, S. P. Avaliação da prevalência de cárie dentária em escolares de localidade urbana da região sudeste do Brasil. Rev Saúde Pública, São Paulo, v. 30, n. 3, p. 280-284, jun. 1996.
- 58. MOREIRA, P. V. L.; SEVERO, A. M. R.; ROSENBLATT, A. Prevalência de cárie dentária em adolescentes de 12-15 anos de escolas públicas da cidade de João Pessoa PB, estudo piloto. Arq Odontol, Belo Horizonte, v. 39, n. 1, p. 12-20, jan./mar. 2003.
- 59. MOYSÉS, S. J. Desigualdades em saúde bucal e desenvolvimento humano: um ensaio em preto, branco e alguns tons de cinza. Rev Bras Odont Saúde Coletiva, Brasília, v.1, n. 2, p. 7-17, jan./jun. 2000.
- 60. NADANOVSKY, P. O declínio da cárie. In: PINTO, V. G. **Saúde Bucal Coletiva**. 4ª ed. São Paulo: Ed. Santos, 2000. p. 341-351.
- 61. NARVAI, P. C. et al. Diagnóstico da cárie dentária: comparação dos resultados de três levantamentos epidemiológicos numa mesma população. **Rev Bras Epidemiol**, São Paulo, v. 4, n. 2, p. 72-80, ago. 2001.
- 62. NARVAI, P. C.; CASTELLANOS FERNANDES, R. A.; FRAZÃO, P. Prevalência de cárie em dentes permanentes de escolares do

- Município de São Paulo, SP, 1970-1996. **Rev Saúde Pública**, São Paulo, v. 34, n. 2, p. 196-200, abr. 2000.
- 63. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE. **Framingham**heart study. Disponível em
 http://www.nhlbi.nih.gov/about/framingham/. Acesso em 10 out. 2005.
- 64. NITHILA, A. et al. Banco Mundial de Datos sobre Salud Bucodental de la OMS, 1986-1996: panorámica de las encuestas de salud bucodental a los 12 años de edad. **Rev Panam Salud Pública**, São Paulo, v. 4, n. 6, p. 411-418, 1998.
- 65. NORMANDO, A. D. C.; ARAÚJO, I. C. Prevalência de cárie dental em uma população de escolares da região Amazônica. **Rev Saúde Pública**, São Paulo, v. 24, n. 4, p. 294-299, ago. 1990.
- 66. OLIVEIRA, A. G. R. C. Levantamentos epidemiológicos em saúde bucal no Brasil. In: ANTUNES, J. L. F.; PERES, M. A. (Ed) Epidemiologia da saúde bucal. Rio de Janeiro: Guanabara Koogan, 2006. p. 32-48.
- 67. OLIVEIRA, A. G. R. C. et al. Influência de modificações nos critérios de diagnóstico de cárie nos levantamentos epidemiológicos. **Rev do CROMG**, Belo Horizonte, v. 4, n. 1, p. 54-60, jan./jun. 1998a.
- 68. OLIVEIRA, A. G. R. C. et al. Levantamentos epidemiológicos em saúde bucal: análise da metodologia proposta pela Organização Mundial da Saúde. **Rev Bras Epidemiol**, São Paulo, v. 1, n. 2, p. 177-189, 1998b.
- 69. OLIVEIRA, C. M. B. et al. A fluoração da água como método de controle da cárie dentária na Regional Barreiro em Belo Horizonte-MG. **Rev ABO Nac**, São Paulo, v. 6, n. 3, p. 153-158, jun./jul. 1998.

- 70. OLIVEIRA, J.; TRAEBERT, J. L. Prevalência de cárie dental em escolares do município em Blumenau SC. **Rev Ciênc Saúde**, Florianópolis, v. 15, n. 1/2, p.220-236, jan./dez. 1996.
- 71. ORGANIZAÇÃO MUNDIAL DE SAÚDE. Levantamentos básicos em saúde bucal. 4ª ed. São Paulo: Santos Editora, 1999. 66 p.
- 72. PATTUSI, M. P. As desigualdades na distribuição da cárie dentária em escolares de 12 anos residentes em diferentes regiões socioeconômicas do Distrito Federal, Brasil 1997. **Rev Bras Odont Saúde Coletiva**, Brasília, v. 1, n. 1 p.19-28, 2000.
- 73. PEREIRA, A. C. et al. Prevalência de cárie e fluorose dentária em escolares de cidades com diferentes concentrações de flúor na água de abastecimento. **Rev Bras Odont Saúde Coletiva**, Brasília, v. 2, n. 1 p. 34-39, 2001.
- 74. PEREIRA, A. C.; MOREIRA, B. H. W. Diagnóstico da cárie dentária: estudo comparativo de diferentes métodos de exame utilizados em odontologia. **RGO (Porto Alegre),** Porto Alegre, v. 43, n. 3, p.127-130, maio/jun. 1995.
- 75. PERES, K. G. A.; BASTOS, J. R. M.; LATORRE, M. R. D. O. Severidade de cárie em crianças e relação com aspectos sociais e comportamentais. **Rev Saúde Pública**, São Paulo, v. 34, n. 4, p. 402-408, ago. 2000.
- 76. PERES, K. G. et al. Impacto da cárie e da fluorose dentária na satisfação com a aparência e com a mastigação de crianças de 12 anos de idade. **Cad Saúde Pública**, Rio de Janeiro, v. 19, n. 1, p. 323-330, jan./fev. 2003.
- 77. PERES, M. A. A; NARVAI, P. C.; CALVO, M. C. M. Prevalência de cárie dentária aos 12 anos de idade, em localidades do Estado de São Paulo, Brasil, período 1990-1995. **Rev Saúde Pública**, São Paulo, v. 31, n. 6, p. 594-600, 1997.

- 78. PERES, M. A.; ANTUNES, J. L. F. O método epidemiológico de investigação e sua contribuição para a saúde bucal. In: ANTUNES, J. L. F.; PERES, M. A. (Ed) **Epidemiologia da saúde bucal**. Rio de Janeiro: Guanabara Koogan, 2006. p. 3-18.
- 79. PERIN, P. C. P.; BERTOZ, F. A.; SALIBA, N. A. Influência da fluoretação da água de abastecimento público na prevalência de cárie dentária e maloclusão. **Rev Fac Odontol Lins**, Lins, v. 10, n. 2, p. 10-15, jan./dez. 1997.
- 80. PINTO, V. G. Índice de cárie no Brasil e no mundo: sua relação com o consumo de açúcar, população, renda e desenvolvimento humano (CPO-D aos 12 anos). **RGO (Porto Alegre)**, Porto Alegre, v. 44, n. 1, p. 8-12, jan./fev. 1996.
- 81. PINTO, V. G. Correções de rumo para o levantamento epidemiológico em saúde bucal do ano 2000. **Rev Bras Odont Saúde Coletiva**, Brasília, v.1, n. 2, p. 26-29, 2000a.
- 82. PINTO, V. G. Identificação de problemas. In: _____. Saúde bucal coletiva. 4ª ed. São Paulo: Ed. Santos, 2000b. p. 139-222.
- 83. PNUD. Programa da Nações Unidas para o Desenvolvimento.
 Desenvolvimento humano e IDH. Disponível em http://www.pnud.org.br/idh/. Acesso em 10 out. 2005. 2004.
- 84. QUELUZ, D. P. Perfil de escolares das escolas públicas e particulares em relação à prevalência de cárie nas faixas etárias de 12 e 18. **JBC J Bras Clin Odontol Integr**, Curitiba, v. 6, n. 34, p. 304-311, jul./ago. 2002.
- 85. RONCALLI, A. G. Epidemiologia e saúde bucal coletiva: um caminho compartilhado. **Ciênc Saúde Coletiva**, Rio de Janeiro, v. 11, n. 1, p. 105-114, 2006.

- 86. RONCALLI, A. G. et al. Projeto SB2000: uma perspectiva para a consolidação da epidemiologia em saúde bucal coletiva. **Rev Bras Odont Saúde Coletiva**, Brasília, v. 1, n. 2, p. 9-25, 2000.
- 87. ROSA, A. G. F.; MARTILDES, M. L. R.; NARVAI, P. C. Programa de reorientação do atendimento odontológico escolar com ênfase na prevenção: análise da prevalência da cárie dental em escolares de 7 a 14 anos, matriculados nas escolas municipais de São José do Campos/SP, em 1979, 1985 e 1991. **RGO (Porto Alegre)**, Porto Alegre, v. 40, n. 2, p. 110-114, mar./abr. 1992.
- 88. ROTHMAN, K. J. Lessons from John Graunt. **The Lancet**, v. 347, n. 6, p. 37-39, jan. 1996.
- 89. SALES-PERES S. H.; BASTOS J. R. Perfil epidemiológico de cárie dentária em crianças de 12 anos de idade, residentes em cidades fluoretadas e não fluoretadas, na Região Centro-Oeste do Estado de São Paulo, Brasil. **Cad Saude Pública**, Rio de Janeiro, v. 18, n. 5, p. 1281-1288, set./out. 2002.
- SANTOS, R. M.; PORDEUS, I.A.; FERREIRA, R. C. Distribuição da cárie dentária nos usuários do SUS em Belo Horizonte - um estudo de prevalência. Rev Bras Odont Saúde Coletiva, Brasília, v. 1, n. 1, p.63-73, 2000.
- 91. SANTOS, V. B.; LENZA, M. A.; FREIRE, M. C. M. Experiência de cárie e situação de higiene oral em crianças dos orfanatos de Anápolis-GO. **ROBRAC**, Goiânia, v. 7 n. 23 p. 16-19, jun. 1998.
- 92. SÃO PAULO. Faculdade de Saúde Pública da Universidade de São Paulo. Núcleo de Estudos e Pesquisas de Sistemas de Saúde. Secretaria de Estado da Saúde de São Paulo. Levantamento epidemiológico em saúde bucal: estado de São Paulo, 1998. São Paulo: Secretaria de Saúde, 1999. 96 p.

- 93. SÃO PAULO. Secretaria de Estado da Saúde de São Paulo. Centro Técnico de Saúde Bucal. Universidade de São Paulo. Faculdade de Saúde Pública. Núcleo de Estudos e Pesquisas de Sistemas de Saúde. Condições de saúde bucal no estado de São Paulo em 2002: relatório final. 1ª ed. São Paulo: Secretaria da Saúde, 2002. 41 p.
- 94. SERVIÇO SOCIAL DA INDÚSTRIA. Estudo epidemiológico sobre prevalência de cárie dental em crianças de 3 a 14 anos Brasil, 1993. Brasília: SESI-DN, 1996.
- 95. SILVA FILHO, C. F. et al. Prevalência de cárie e performance de escovação em escolares do Rio de Janeiro. **Rev Bras Odontol**, Rio de Janeiro, v. 58, n. 5, p. 336-339, set./out. 2001.
- 96. SILVA, B. B.; MALTZ, M. Prevalência de cárie, gengivite e fluorose em escolares de 12 anos de Porto Alegre RS Brasil, 1998/1999. **Pesqui Odontol Bras**, São Paulo, v. 15, n. 3, p. 208-214, jul./set. 2001.
- 97. SOUZA, J. P. M.; SILVA, E. C. P.; MATTOS, O. B. Prevalência da cárie dentária em Brasília, Brasil. **Rev Saúde Pública**, São Paulo, v. 3, p. 133-140, 1969.
- 98. TAGLIAFERRO, E. P. S.; RIHS, L. B.; SOUSA, M. L. R. Prevalência de cárie, fluorose dentária e necessidades de tratamento em escolares, Leme, SP. **Arq Odontol**, Belo Horizonte, v. 38, n. 3, p. 213-221, jul./set. 2002.
- 99. TOLEDO, O. A. et al. Cárie e estado nutricional: prevalência da cárie dentária relacionada com o estado nutricional em população infantil de baixa renda. **RGO (Porto Alegre)**, Porto Alegre, v. 37, n. 4, p. 295-298, jul./ago. 1989.

- 100. TRAEBERT, J. L. et al. Prevalência e severidade da cárie dentária em escolares de seis e doze anos de idade. Rev Saúde Pública, São Paulo, v. 35, n. 3, p. 283-288, 2001.
- 101. VASCONCELOS, M. C. C. et al. Distribuição de cárie dentária na dentição permanente de escolares: experiência por dente. Rev Odontol Univ São Paulo, São Paulo, v. 8, n. 2, p. 125-130, abr./jun. 1994.
- 102. VASCONCELOS, M. C. C.; SILVA, S. R. C. Distribuição de cárie dentária na dentição permanente de escolares, em Araraquara SP. Rev Odontol Univ São Paulo, São Paulo, v. 6, n. 1/2, p. 61-65, jan./jun. 1992.
- 103. VERTUAN, V. Redução de cáries com água fluoretada: após 19 anos de fluoretação das águas de abastecimento de Araraquara São Paulo Brasil. RGO (Porto Alegre), Porto Alegre, v. 34, n. 6, p. 469-471, nov./dez. 1986.
- 104. VERTUAN, V.; PEREIRA, R. L. C. C. Prevalência de cárie nos escolares de Américo Brasiliense SP. **Rev Assoc Paul Cir Dent**, São Paulo, v. 39, n. 3, p. 132, 134-135, maio/jun. 1985.
- 105. VIEGAS, A. R. Estudos operacionais sobre métodos preventivos em programas de odontologia em saúde pública. Rev Assoc Paul Cir Dent, São Paulo, v. 46, n. 1, p. 677-680, jan./jun. 1992.
- 106. VIEGAS, Y.; VIEGAS, A. R. Análise dos dados de prevalência de cárie dental na cidade de Campinas, SP, Brasil, depois de dez anos de fluoretação da água de abastecimento público. Rev Saúde Pública, São Paulo, v. 8, p. 399-409, 1974.
- 107. VIEGAS, Y.; VIEGAS, A. R. Prevalência de cárie dental em Barretos, SP, Brasil, após dezesseis anos de fluoretação da água de abastecimento público. Rev Saúde Pública, São Paulo, v. 22, n. 1, p. 25-35, 1988.

- 108. WITT M. C. Pattern of caries experience in a 12-year-old Brazilian population related to socioeconomic background. **Acta Odontol Scand**, Oslo, v. 50, n. 1, p. 25-30, 1992.
- 109. ZAR, J. H. Biostatistical analysis. Upper Saddle River: Prentice-Hall,1996. 662 p.

ABSTRACT

ABSTRACT

Dental caries in 12 year old children in Brazil: retrospective study of epidemiological surveys from 1980 to 2005

Dental caries is the most prevalent illness of the oral cavity. DMFT index is the most used measure in epidemiological surveys of dental caries, and the age of 12 years is a standard for WHO (World Health Organization) in the evaluation of oral health condition. In national level, three great epidemiological surveys had been conducted in Brazil, in the years of 1986, 1996 and 2003. Beyond these surveys several others, of smaller size, were published in scientific magazines. The objective of this research was to analyze data of epidemiological surveys conducted in Brazil between 1980 and 2005 of dental caries in 12 years old children, verifying the relation between DMFT and water supply fluoridation. Human Development Index (HDI), size of city and time. The data analyzed was obtained from available scientific literature. The results showed a clear trend of decline in the value of the DMFT, but this decline was not evenly distributed in the population, with a great amount of dental caries concentrated in a small parcel of the population. It was also observed that the three national surveys were conducted with different methodology, making it difficult a more precise analysis of the data from the historical point of view. Great part of the smaller surveys, published in the scientific magazines, lacks scientific methodology. Our finding showed that DMFT had a statistically significant correlation with time, water fluoridation and size of the city.