Princípios de RMN (Teoria)

Roberto K. Salinas

IQUSP

Spin nuclear

Número quântico de spin = I

Multiplicidade:
$$S = 2I + 1$$

$$m_z = -\frac{1}{2}$$

Hidrogênio (${}^{1}H$): I = 1/2

Magnetismo nuclear

O momento magnético do núcleo interage com um campo magnético externo

$$E = - \overrightarrow{\mu} \cdot \overrightarrow{B}$$

RMN detecta transições entre estados do spin nuclear com diferentes energias na presença de um campo magnético estático

A frequência de Larmor (w₀) depende do campo e da razão giromagnética do núcleo

Deslocamento químico: a frequência de ressonância do spin nuclear depende da densidade eletrônica ao redor do núcleo

More conveniently expressed as parts per million (ppm) by comparison to a reference frequency: H₃CO 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 ppm

Chemical shift

$$v = \frac{\gamma B_0}{2\pi} (1 - \sigma)$$

shielding constant

More conveniently expressed as part per million by comparison to a reference frequency:

$$\delta = 10^6 \frac{v - v_{ref}}{v_{ref}}$$

Acoplamento escalar

Sistema de 2 spins isolados

Estrutura fina devido ao acoplamento escalar

Como RMN funciona?

Magnetização macroscópica (M) no equilíbrio térmico

 $\Delta E = 3.3 \ 10^{-25} \ J \ para \ ^{1}H \ a \ 11.74T$ $k_B T = 4.1 \ 10^{-21} \ J \ para \ Temp. \ ambiente$

$$M_0 = N\gamma\hbar \left(\frac{1}{2}f_{\alpha} - \frac{1}{2}f_{\beta}\right) = \frac{N\hbar^2\gamma^2 B_0}{4k_BT}. \qquad \frac{p_{\alpha}}{p_{\beta}} = exp\left(\frac{\Delta E}{k_BT}\right)$$

Como podemos detectar M?

Movimento de precessão

O sinal é detectado à medida em que M precessa ao redor de B_0 com velocidade angular w_0

$$M_x(t) = M_0 \cos(\omega_0 t) \exp(-R_2 t)$$

$$M_y(t) = M_0 sen(\omega_0 t) exp(-R_2 t)$$

Sinal

O espectro é obtido a partir da transformada de Fourier do sinal detectado

 R_2 é a velocidade de decaimento da magnetização transversal (spin spin) ($R_2 = 1/T_2$)

Frequência de Larmor

Dois mecanismos de relaxação diferentes: relaxação spin-rede (T1 ou R1), e relaxação spin-spin (T2 ou R2)

 R_2 é a velocidade de decaimento da magnetização transversal (spin spin) ($R_2 = 1/T_2$)

Como retiramos M do equilíbrio?

Neste caso M assume um movimento de precessão ao redor de B_{efetivo}

B₁ é modulado por uma frequência ω_{rf}

$$\overrightarrow{B}_{rf}(t) = 2B_1 \cos(\omega_{rf} t + \phi) \widehat{i},$$

ω_{rf} ~ ω₀ (condição de ressonância)

Campo efetivo

B1 está oscilando com frequência ω_{ref}

Off-resonance

$$Beff = \sqrt{B_1^2 + \Delta B^2}$$

$$\omega eff = \sqrt{\omega_1^2 + \Omega^2}$$

Condição de ressonância ΔB =0, e Beff=B1

Ilustração: Multidimensional NMR in Liquids, FJM van de Ven, VHC Publishers, Inc, 1995, UK.

Pulsos de RF

φ, fase

$$\frac{\beta}{N+\Delta/2}$$

$$-\alpha$$
 N+ Δ /2

equilibrio

excitação

inversão

Equação de Bloch

$$\frac{d\overrightarrow{M}}{dt} = \overrightarrow{M} \times \gamma \overrightarrow{B} + \hat{R}(\overrightarrow{M} - \overrightarrow{M}_{eq})$$

$$\overrightarrow{M} = \begin{pmatrix} M_x \\ M_y \\ M_z \end{pmatrix} \quad \overrightarrow{M}_{eq} = \begin{pmatrix} 0 \\ 0 \\ M_0 \end{pmatrix} \quad \overrightarrow{B} = \begin{pmatrix} 0 \\ 0 \\ \Delta B \end{pmatrix} \quad \hat{R} = \begin{pmatrix} -R_2 & 0 & 0 \\ 0 & -R_2 & 0 \\ 0 & 0 & -R_1 \end{pmatrix}$$

$$M^{+} = M_x + iM_y \qquad \frac{dM^{+}}{dt} = i(\Omega - R_2)M^{+}$$

$$M^{+}(t) = e^{i\Omega t}e^{-R_{2}t}M^{+}(0)$$

RMN multidimensional

Richard R. Ernst

Encoding information

• mixing/magnetization transfer

spin-spin interactions

Richard Ernst e Jean Jeener

Magnetization transfer

- J-coupling interaction
 - through 3-4 bonds max.
 - chemical connectivities
 - assignment
 - also conformation dependent

- Magnetic dipole interaction (NOE)
 - Nuclear Overhauser Effect
 - through space
 - distance dependent (1/r6)
 - **NOESY** -> distance restraints

dipole-dipole interaction

Quem acopla com quem?

2D NMR

Encodes information between spins

• Type of information depends on transfer mechanism

COSY (Correlated Spectroscopy)

3D NMR

Figure 1. Illustration of the increase in resolution afforded by the increase in dimensionality. In the 2D spectrum, four cross-peaks overlap. By correlation with a third resonance frequency, each cross-peak obtains a different position along a line in the 3D spectrum, thus resolving the overlap problem.

(Unister, Ph. D. Thesis, 1991)

heteronuclear NMR

- measure frequencies of different nuclei; e.g. ¹H, ¹⁵N, ¹³C
- no diagonal peaks
- mixing not possible using NOE, only via J

J coupling constants

¹⁵N-filter - selecting a subspectrum

¹⁵N-HSQC: fingerprint

¹H-¹⁵N HSQC: 'protein fingerprint'

Peaks not resolved in 2D

• The third frequency dimension will likely resolve all peaks

Klaartje Houben