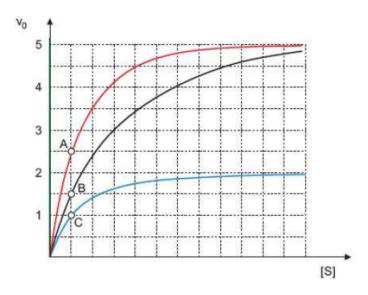
Exercícios Cinética Enzimática

1. As velocidades de uma reação enzimática foram determinadas para diversas concentrações de substrato, conforme a tabela abaixo:

[S] (μM)	V (μmol/L/min)
5	22
10	39
20	65
50	102
100	120
200	135

Os gráficos de, respectivamente, V em função de [S] e 1/V em função de 1/[S] podem servir para determinar K_m e V_{max} ? Como? Dê os valores de Km e V_{max} .

- 2. Diga se as afirmações são falsas ou verdadeiras e justifique.
- a) Uma enzima que apresente mecanismo de reação com múltiplas etapas (mais que duas etapas) pode seguir mecanismo cinético de Michaelis-Menten.
- b) Numa reação enzimática, K_m sempre pode ser usado como indicador de afinidade dentre enzima e substrato.
- 3. O gráfico a seguir representa a cinética de uma reação enzimática na presença de um inibidor competitivo, um inibidor não competitivo e sem inibidores.
- a) Indique a que curva cada uma dessas condições se refere. Explique.
- b) Os pontos A, B e C dessas curvas mostram os resultados obtidos com três tubos contendo a mesma concentração de substrato e de enzima. Para que pontos A e/ou B e/ou C são válidas as seguintes afirmações:



b) [S] =
$$K_{M}$$

e)
$$v_0 = V_{máx}$$

f)
$$v_0 = k [E_{total}]$$

g)
$$[E_{total}] > [ES] + [E_{livre}]$$

4. O que são enzimas alostéricas? Explique como estas enzimas são importantes na regulação de vias bioquímicas?