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has an additional step of membrane ultrafiltration, with 
contrasting expected MC-LR removal efficiencies. We 
considered reference values for infants (0.30 μg  L−1), 
children/adults (1.60 μg  L−1), or the population in gen-
eral (1.0 μg  L−1). For most scenarios for Cascata, the 
95% upper confidence level of the HQ indicated high 
risks of exposure for the population (HQ > 1), particu-
larly for infants (HQ = 30.910). The water treatment 
in Cascata was associated to the potential exposure to 
MC-LR due to its limited removal capacity, with up 
to 263  days/year with MC-LR above threshold val-
ues. The Guarapiranga system had the lowest MC-LR 
in the raw water as well as higher expected removal 
efficiencies in the DWTP, resulting in negligible risks. 
We reinforce the importance of integrating raw water 
quality characteristics and treatment technologies to 
reduce the risks of exposure to MC-LR, especially for 
vulnerable population groups. Our results can serve 
as a starting point for risk management strategies to 
minimize cases of MC-LR intoxication in Brazil and 
other developing countries.

Keywords Cyanotoxins · Drinking supply 
reservoirs · Environmental monitoring · Hazard 
quotients · Public health · Risk assessment

Introduction

Eutrophic reservoirs have gradually become a major con-
cern regarding provision of drinking water and assurance 

Abstract While the presence of microcystin-LR 
(MC-LR) in raw water from eutrophic reservoirs poses 
human health concerns, the risks associated with the 
ingestion of MC-LR in drinking water are not fully 
elucidated. We used a time series of MC-LR in raw 
water from tropical urban reservoirs in Brazil to esti-
mate the hazard quotients (HQs) for non-carcinogenic 
health effects and the potential ingestion of MC-LR 
through drinking water. We considered scenarios of 
MC-LR removal in the drinking water treatment plants 
(DWTPs) of two supply systems (Cascata and Guara-
piranga). The former uses coagulation/flocculation/
sedimentation/filtration/disinfection, while the latter 
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of public health, more particularly in urban areas. Under 
specific environmental conditions (e.g., organic mat-
ter availability, favorable light conditions, water column 
stratification, and high content of nutrients, such as phos-
phorus and nitrogen) (Cunha et al., 2018; Huisman et al., 
2018; USEPA, 2019a, 2019b; Weber et al., 2020; WHO, 
2015), harmful cyanobacterial blooms (HCBs) can be 
exacerbated. While these blooms have been a global  
concern (Huisman et al., 2018; Munoz et al., 2020; Sha  
et al., 2021), they can be more frequent in tropical and 
subtropical regions (Cunha et  al., 2018), especially 
in developing countries where point and non-point  
water pollution sources are significant. While more detailed  
studies on HCBs are still lacking in South American 
countries (Dörr et  al., 2010) in comparison to other 
regions (Chorus & Bartram, 2021; Massey et al., 2020), 
there have been growing reports showing the ubiqui-
tous occurrence of cyanobacteria in Brazil (Barros et al., 
2019; Moura et al., 2017; Walter et al., 2018), Argentina 
(Aguilera et  al., 2018), Uruguay (Aubriot et  al., 2020), 
and Chile (Almanza et al., 2016).

Cyanobacteria can produce cyanotoxins that severely 
affect both human health (Azevedo et al., 2002; Bernard 
et al., 2017) and wildlife (Wang et al., 2021). In the for-
mer case, cyanobacteria pose a significant threat to water 
supply and recreational uses. Accordingly, the effective-
ness of drinking water treatment can be compromised 
due to taste and odor problems, aesthetic issues, and the 
presence of contaminants (e.g., cyanotoxins) above safe 
levels in treated water (Devi et  al., 2021; Kelly et  al., 
2019; Schreidah et  al., 2020). Furthermore, the tech-
niques to control and remove HCBs (e.g., artificial mix-
ing/aeration and algicides) are site specific and frequently 
cost-prohibitive (Vu et  al., 2020). For example, in the 
USA, the economic losses were estimated at about US$4 
billion per year associated with HCBs (Ho et al., 2019). 
In China, more than US$15.1 billion were spent to con-
trol HCBs in the Lake Taihu since 2007 (see Jiang et al., 
2021).

The exposure of humans to cyanotoxins is usu-
ally related to the ingestion of contaminated drinking 
water (Funari & Testai, 2008; Pouria et al., 1998), and 
it has been reported worldwide (Gaget et  al., 2017; 
Tamele & Vasconcelos, 2020; Vu et al., 2020; WHO, 
2017). More specifically, 14 episodes of massive 
cyanotoxin poisoning in humans and animals were 
recorded in South America, with the highest number 
of episodes in Brazil and Argentina (Svirčev et  al., 
2019). In Brazil, one of the most serious poisoning 

events, known as the “Caruaru syndrome,” caused 
76 deaths in 1996 (Azevedo et al., 2002; Dixon et al., 
2011). Accidental ingestion, inhalation, and skin 
contact can also occur during recreational activities 
(Giannuzzi et al., 2011; Menezes et al., 2017; Turner 
et al., 1990). The main concerns regarding the expo-
sure to cyanotoxins are associated to the extensive 
list of negative implications to the human health after 
short-term (24 h or less) recreational or oral exposure, 
including skin irritations, allergic reactions, gastroin-
testinal illnesses, liver failure, and neurotoxic effects 
(Sarkar et al., 2019; Sotero-Santos et al., 2006; Zhang 
et  al., 2010). However, long-term exposure to lower 
concentrations (e.g., in ng  L−1 or µg  L−1 levels) of 
cyanotoxins can lead to chronic adverse effects or car-
cinogenic effects that are still not fully elucidated (He 
et al., 2017; Yi et al., 2019). The health care treatment 
costs due to the exposure to cyanotoxins also remain 
mostly uncharacterized, but some studies reported 
values between US$86 and US$12,605 as digestive 
illness costs per patient (in mild, moderate, or severe 
cases) (Kouakou & Poder, 2019).

The cyanotoxins can occur inside the cells (intra-
cellular) or dissolved in the water (extracellular) as a 
result of the senescence of the cyanobacterial blooms 
or the cell lysis following water treatment processes 
(Pietsch et al., 2002; Teixeira & Rosa, 2006). Micro-
cystin (MC) is one of the most common cyanotoxins 
related to cases of water contamination (Huisman 
et  al., 2018). While more than 250 variants of MCs 
have been identified (Spoof & Catherine, 2017), 
MC-LR (leucine-arginine) has been studied world-
wide as it is produced by a variety of cyanobacteria, 
including Microcystis, Anabaena (Dolichospermum), 
Aphanizomenon, Cylindrospermopsis, Nostoc, Oscil-
latoria (Planktothrix), and Rivularia (Rastogi et  al., 
2015). MC-LR is relatively stable and resistant to 
chemical hydrolysis or oxidation, with half-life rang-
ing from 4 to 14 days (USEPA, 2015a).

The International Agency for Research on Cancer 
categorized MC-LR as a possible carcinogen to humans 
(group 2B) (IARC, 2010). Also, MC-LR is well known 
as a potent cyanotoxin reported by the majority of toxi-
cological studies and frequently observed at up to μg 
 L−1 levels during cyanobacterial blooms in aquatic sys-
tems (USEPA, 2015b). For example, Cunha et al. (2018) 
reported MC-LR yearly means ranging from < 0.1 to 
17 μg  L−1 in six Brazilian reservoirs. Several countries 
included MC-LR in their risk management frameworks 
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for water quality programs (Ibelings et  al., 2014) and 
established guidelines to avoid or minimize intoxication 
episodes. The US Environmental Protection Agency 
(USEPA) established a 10-day health advisory dosage 
of MC-LR as a protective measure for non-carcinogenic 
effects of MC-LR in drinking water and recreational 
exposure (USEPA, 2015b). Although the health advi-
sory dosage is not legally enforceable, it is used as an 
informal technical guidance for stakeholders of water 
systems and state agencies to protect public health 
(USEPA, 2015b).

The most restrictive health advisory dosage of MC-LR 
(0.30 μg  L−1) was established for children under 6 years 
old and other sensitive populations (e.g., pregnant women, 
nursing mothers, or individuals under dialysis treatment 
with impaired liver function or other health ailments). For 
people older than 6, such dosage was set as 1.60 μg  L−1 
(USEPA, 2015a; Yeager & Carpenter, 2019). The World 
Health Organization (WHO) proposed a tolerable daily 
intake (TDI) of 0.04 µg of MC-LR per kg of body weight 
(WHO, 2003, 2017). This value was based on the no-
observed-adverse-effect level (40.00 μg of MC-LR per kg 
of body weight) established for mice in a 13-week study 
(Fawell et  al., 1999). It should be noted that this TDI 
includes both intracellular and dissolved MC-LR, being 
valid for chronic (long-term) exposure (Szlag et al., 2015). 
In Brazil, the upper limit for MC-LR concentration in 
drinking water was established as 1.00 μg  L−1, the same 
value recommended by the WHO (Brasil, 2017, 2021; 
WHO, 2017).

Due to the physical and chemical properties of the 
MC-LR molecules (i.e., water-solubility, cyclic structure, 
and stability under sunlight and neutral pH) (Akcaalan 
et al., 2006; Morón-lópez et al., 2017; Zhang et al., 2010), 
conventional drinking water treatment processes (i.e., 
coagulation, flocculation, sedimentation or dissolved air 
flotation, rapid sand filtration, and disinfection) usually 
provide limited removal of dissolved MC-LR (USEPA, 
2015a). If not dissolved, the expected intracellular 
MC-LR removal efficiencies in drinking water treatment 
plants (DWTPs) can reach relatively high percentages (see  
Drikas et al., 2001; Lahti et al., 2001; Hoeger et al., 2004; 
Mkhonto et  al., 2020), especially if cyanobacterial cells 
are kept intact. However, if the DWTPs operation leads 
to cell lysis (increasing the dissolved MC-LR concentra-
tions), additional processes (e.g., adsorption, chemical 
oxidation, biodegradation, or membrane filtration) can  
be necessary (USEPA, 2015b). These advanced processes 
can further increase the overall removal efficiency even 

in the presence of dissolved MC-LR (Almuhtaram et al., 
2018; He et al., 2016; Shang et al., 2018).

Since 2004, the WHO recommended the adop-
tion of water safety plans (WSPs) by water suppliers, 
which include a model of risk analysis, assessment 
and management applied to all water supply compo-
nents (i.e., from the raw water sources to the consum-
ers of finished water). Thus, the WSPs can assist in 
the identification of hazards (i.e., physical, biological, 
chemical, or radiological agents that can cause harm 
to public health) and hazardous events (i.e., events that 
introduce hazards to, or fail to remove hazards from 
the water supply system) to help the assessment of 
risks (i.e., the probability that harm will be caused). 
This might allow minimizing adverse events and eval-
uating how water treatment processes contribute to 
health risk reduction (Codd et al., 2020; WHO, 2009). 
In this context, there is a gap of information in devel-
oping countries like Brazil regarding cyanotoxins and 
the potential health risks associated with oral expo-
sure due to the insufficient capacity of water treatment 
technologies to reach acceptable limits in finished 
water.

To the best of our knowledge, no previous study 
performed a preliminary risk assessment related to 
the exposure to MC-LR via ingestion of contami-
nated drinking water in Brazil. Since conventional 
DWTPs are common in the country and can present 
limited capacity to perform MC-LR abatement from 
raw water, the present study considered different 
scenarios for intracellular and dissolved MC-LR 
removal in two Brazilian water supply systems 
(Cascata and Guarapiranga) with contrasting treat-
ment technologies in their DWTP. For the expo-
sure scenarios, we estimated the hazard quotients 
(HQs) values for non-carcinogenic health effects, 
the probabilities of exceeding the thresholds val-
ues (using both USEPA and WHO references), and 
the minimum number of days of potential ingestion 
of MC-LR per year through drinking water when 
the cyanotoxin was potentially above the accept-
able thresholds. As the occurrence of cyanotoxins 
becomes more and more frequent worldwide (Brasil 
et  al., 2016; Huisman et  al., 2018; Amorim et  al., 
2021), the contributions made here have broad 
applicability for management strategies to mitigate 
the hazards posed by MC-LR, especially in devel-
oping countries where ensuring the provision of 
safe drinking water is still a challenge.

Environ Monit Assess (2022) 194: 253 Page 3 of 15    253



 

1 3
Vol:. (1234567890)

Material and methods

Study area and MC-LR dataset

We considered a dataset of 8  years (2011–2018) of 
MC-LR in raw water sources of two water supply systems  
in the São Paulo State (Brazil) with contrasting sizes, 
Cascata and Guarapiranga (Fig.  1). The raw water 
for the former system came from the Cascata Reser-
voir (surface area < 1  km2), while the latter system 
was supplied by two reservoirs: Guarapiranga (27 
 km2) and Billings-Taquacetuba (127  km2) (Fig.  1). 
The DWTP of the Cascata system has a conventional 

process with a treatment capacity of about 0.1  m3  s−1. 
The Guarapiranga system has the same conventional 
process but followed by a membrane ultrafiltration 
unit. This DWTP has a treatment capacity of 15.0 
 m3   s−1 and supplies people living in the west and 
south zones of the city of São Paulo. Additional char-
acteristics of each system are presented in Table 1 and 
Table  S1. The MC-LR data were publicly available 
from different sources: São Paulo State Inland Water 
Quality Reports (CETESB, 2014, 2015, 2016, 2017, 
2018, 2019a, 2020), CETESB Monitoring Network 
— Infoáguas System (CETESB, 2019b), Integrated 
Water Resources Management System (SIGRH-SP) 

Fig. 1  Location of the 
study area (São Paulo State, 
Brazil) and the water supply 
systems: Cascata (A) and 
Guarapiranga (B and C)
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(São Paulo, 2016), Information System for Monitoring 
Water Quality for Human Consumption (SISAGUA 
— Ministry of Health) (Brasil, 2019), and Sustainabil-
ity Reports and Operational Information of the Sani-
tation Company of the State of São Paulo (SABESP) 
(SABESP, 2019a). The MC-LR concentrations are 
reported in micrograms per liter in these sources and 
were quantified by the respective institutions using 
one of the following methods: USEPA method 544 
(liquid chromatography couple with tandem mass 
spectrometry) or 546 (enzyme-linked immunosorb-
ent assays) (USEPA, 2012). Cyanobacterial develop-
ment is common in both Cascata and Guarapiranga 
reservoirs, with frequent blooms of Microcystis spp., 
Woronichinia spp., and Aphanocapsa spp. (CETESB, 
2019a).

The MC-LR concentrations were initially compared 
year-by-year using the Mann–Whitney test (α = 0.05), 
as the data had non-normal distribution (Shapiro–Wilk 
test (p < 0.05)). The statistical procedures were per-
formed with Origin 9.0®.

Scenarios of MC-LR removal by the water treatment 
processes

Eleven studies (Chorus & Bartram, 1999; Drikas 
et al., 2001; Lahti et al., 2001; Gijsbertsen-Abrahamse 
et al., 2006; Teixeira & Rosa, 2006; Daly et al., 2007; 
Zamyadi et al., 2012; Merel et al., 2013a; Swanepoel 
et al., 2017; Shang et al., 2018; Mkhonto et al., 2020) 
were previously screened for assessing the expected 
efficiencies of intracellular and extracellular MC-LR 
removal by conventional and advanced water treat-
ment processes (i.e., with ultrafiltration unit). In our 

study, these previously reported removal percentages 
were used to calculate the expected MC-LR concen-
trations in the treated water. The MC-LR removal 
efficiency depends on treatment technology, micro-
cystin form (i.e., dissolved or intracellular), hydraulic 
aspects (e.g., water residence time), as well as design 
and operational parameters in the DWTP (Teixeira 
et  al., 2020). Due to these variations, in our subse-
quent analyses, we assumed that the optimistic sce-
narios would have the best conditions for removing 
MC-LR, while the pessimistic scenarios would have 
unfavorable conditions for the MC-LR abatement. 
Thus, eight scenarios were considered to evaluate 
the expected concentrations of MC-LR after water 
treatment in both Cascata (C) and Guarapiranga (G) 
systems. Considering the MC-LR form (i.e., intracel-
lular (I) or dissolved (D)), the optimistic scenarios 
(O) assumed the following removal efficiencies: 95% 
(COI), 15% (COD), 99% (GOI), and 92% (GOD) 
and for the pessimistic scenarios (P): 64% (CPI), 0% 
(CPD), 96% (GPI) and 90% (GPD) (Table 2).

The values of mean, median, and 95% upper con-
fidence interval (UCL95%) for the expected MC-LR 
concentrations in drinking water were estimated 
through the ProUCL5.1 Software (USEPA, 2015c). 
The assumed MC-LR concentrations in finished 
water following each scenario were used to estimate 
the probability of exceeding the reference values 
(e.g., USEPA and WHO guidelines, see more infor-
mation below) considering an empirical distribution 
(i.e., the cumulative distribution function that gener-
ated the data points). The data were organized in the 
ascending order and the probability of no compliance 
with the guidelines was obtained according to Eq. 1. 

Table 1  Main characteristics of the Cascata and Guarapiranga water supply systems

a Adapted from SABESP (2019a, 2019b)
b Drinking Water Treatment Plant
c Coagulation, flocculation, sedimentation, filtration, disinfection, and fluoridation

Water supply 
 systema

City Reservoir (Fig. 1) Surface 
area 
 (km2)

Geographic 
coordinates

Drinking water 
production in the 
 DWTPb  (m3  s−1)

Water treatment processes

Cascata Marília Cascata Reservoir 
(A)

 < 1 23°14′06.7″S 
46°23′34.8″W

0.1 Conventionalc

Guarapiranga Itapecerica da 
Serra

Guarapiranga 
Reservoir (B)

27 23°37′22.6″S 
46°23′34.8″W

15.0 Conventionalc + advanced 
treatment (ultrafiltration)

Taboão da Serra Billings-
Taquacetuba (C)

23°49′50″S 
46°37′50″W

127
São Paulo
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The minimum number of days per year that MC-LR 
concentrations in drinking water were expected to be 
above the reference values was estimated by multiply-
ing the probability (Eq. 1) by the number of days in 
1 year (i.e., 365 days).

Nabove: total number of samples with MC-LR con-
centrations equal or above the reference values.

Ntotal: total number of samples.

Risk assessment

Due to the limited information to assess the carcino-
genic potential of MCs in general (USEPA, 2015b), 
the MC-LR non-carcinogenic risk (i.e., chronic 
effects) for each drinking water exposure scenario 
was determined based on current scientific evidence 
(USEPA, 2015a). The HQ for non-carcinogenic 
health effects for each scenario was estimated by the 
ratio between the expected MC-LR concentration in 
drinking water and the reference values that represent 
the tolerable concentrations (Eq. 2).

HQ: hazard quotient; Cdw: expected concentration 
of MC-LR (µg  L−1) in drinking water for each sce-
nario (see Table  2); RfC: reference concentration of 
MC-LR (µg  L−1) in drinking water. HQ ≤ 1 indicates 
that the exposure does not result in significant adverse 

(1)Probability(%) =
Nabove

Ntotal

100

(2)HQ =
Cdw

RfC

non-carcinogenic effects, while HQ ˃ 1 indicates poten-
tial adverse health effects. The specific HQ values indi-
cate the potential to cause adverse effects on health, but 
not the value of the risk (USEPA, 2014).

The HQ values were estimated using different 
sources for the reference concentrations (RfC). The 
first one was based on the WHO guideline for drink-
ing water (1.00 µg  L−1), which is the same adopted by 
Brazilian legislation (Brasil, 2017, 2021). The second 
one was based on the 10-day health advisory estab-
lished by USEPA (2015a) for children above 6 years 
old and adults (hereafter referred to as “children and 
adults”) (1.60 µg  L−1) and for bottle-fed infants and 
young children of pre-school (“infants”) (0.30  µg 
 L−1). These values are based on both body weight and 
drinking water intake by each age interval. The val-
ues of mean, median, and UCL95% of HQ in drinking 
water were estimated through the ProUCL5.1 Soft-
ware (USEPA, 2015c, 2015d). The UCL95% values 
for HQs were calculated because they are considered 
more conservative and appropriate for estimating 
long-term risks than mean values (USEPA, 2015c).

Results

MC-LR in raw water in the Cascata and 
Guarapiranga systems

Our dataset from 2011 to 2018 had cases of MC-LR 
higher than 1.00 μg  L−1 in the raw water from both 
Cascata and Guarapiranga systems, but especially 

Table 2  Intracellular and dissolved MC-LR removal efficiencies considered for each scenario

a Based on the following studies: Chorus and Bartram (1999); Drikas et al. (2001); Lahti et al. (2001); Gijsbertsen-Abrahamse et al. 
(2006); Teixeira and Rosa (2006); Daly et al. (2007); Zamyadi et al., (2012); Merel et al. (2013a); Swanepoel et al. (2017); Shang 
et al. (2018);Mkhonto et al. (2020)

System Scenario MC‑LR form in the water Abbreviation Assumed removal 
efficiencya (%)

Cascata Optimistic Intracellular COI 95
Dissolved COD 15

Pessimist Intracellular CPI 64
Dissolved CPD 0

Guarapiranga Optimistic Intracellular GOI 99
Dissolved GOD 92

Pessimist Intracellular GPI 96
Dissolved GPD 90
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from the former. Considering the full dataset, the 
yearly mean MC-LR concentrations in the Cascata 
system were higher in comparison to the Guara-
piranga system, with significant statistical differences 
for the years 2013 and 2016 (Fig. 2).

Evaluation of the scenarios of MC-LR removal by 
the water treatment processes

Due to the different treatment processes, the expected 
residual MC-LR concentrations in the finished water 

varied between the Cascata and Guarapiranga sys-
tems (Table S3) for both intracellular and extracellu-
lar MC-LR. The Guarapiranga system showed lower 
probabilities of exceeding the RfC at all considered 
scenarios in comparison to the Cascata system. The 
most restrictive RfC (0.30 µg  L−1) showed the highest 
probabilities to be exceeded in the considered scenar-
ios (Table 3; Tables S4 and S5; Fig. S1).

For the Cascata system, the dissolved MC-LR had 
a probability of exceeding the RfC for infants higher 
than 69% regardless of the scenario, potentially lead-
ing to at least 252  days of exposure to concentra-
tions above the threshold value of 0.30  µg  L−1 per 
year (Table  3). Also in Cascata, children and adults 
exhibited a significant potential exposure to dissolved 
MC-LR for a minimum of 142 and 172 days per year, 
considering the thresholds from USEPA (1.60  µg 
 L−1) and WHO (1.00  µg  L−1), respectively. If the 
MC-LR remained in the intracellular form (scenario 
COI), the probability of exceeding the RfC was at 
least 11.5 times lower (for infants) than the one for 
the dissolved form (scenario COD) in the optimistic 
scenario. In addition, for the pessimistic scenario, 
the probability of exceeding the RfC was 1.4 times 
(for infants) and 5.5 times (for children and adults) 
lower in comparison to the probabilities for the dis-
solved MC-LR (Table  3). The exposure scenarios 
for the Guarapiranga system indicated that the prob-
abilities of exceeding the RfC were always below 6% 
(i.e., 22 days of exposure per year) for all RfC consid-
ered and regardless of the MC-LR form (dissolved or 
intracellular).

2011 2012 2013 2014 2015 2016 2017 2018 AofP
0.1

1

10

100

*

*

M
ic

ro
cy

st
in

-L
R

 (
g 

L-1
)

year

Cascata
Guarapiranga

*μ

Fig. 2  Microcystin-LR (MC-LR) concentrations (µg  L−1) in 
the Guarapiranga and Cascata systems. Data range from 2011 
to 2018, including an average of the whole period (AofP). 
Error bars are the calculated standard deviations. The symbol 
asterisk indicates significant statistical differences (Mann–
Whitney test, p < 0.05) between the systems

Table 3  Probability of 
exceedance (%) of different 
MC-LR thresholds and the 
minimum number of days 
per year during which the 
MC-LR exposure through 
drinking water can exceed 
the reference concentration 
values

a Ten-day health advisory 
dosage (0.30 µg  L−1)
b Ten-day health advisory 
dosage (1.60 µg  L−1)
c WHO (1.00 µg  L−1)

USEPA health advisory dosage of MC-LR WHO guideline value

System/
scenarios

Infantsa Children and  adultsb Population (all ages)c

Probability of 
exceeding (%)

Min 
(days)

Probability of 
exceeding 
(%)

Min 
(days)

Probability of 
exceeding 
(%)

Min (days)

COI 6 22 3 11 3 11
COD 69 252 39 142 47 172
CPI 53 193 8 30 19 69
CPD 72 263 44 161 50 183
GOI 0 0 0 0 0 0
GOD 5 18 1 4 2 7
GPI 2 7 0 0 0 0
GPD 6 22 2 7 2 7
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Risk assessment

For the Guarapiranga system, all scenarios evaluated 
had HQ < 1 (Table  4). However, for the Cascata sys-
tem, the pessimistic scenario for intracellular MC-LR 
(CPI) and both scenarios for dissolved MC-LR (COD 
and CPD) resulted in HQ > 1 for infants, regardless of 
the statistical parameter considered (mean, median, 
or UCL95%) (Table  4). Overall, considering the other 
RfC (i.e., 1.6  µg  L−1 and 1.0  µg  L−1), most scenarios 
for Cascata also resulted in HQ > 1 considering mean 
and UCL95% (but not median) values. Therefore, the 
potential non-carcinogenic risk posed to the population 
exposed to MC-LR in drinking water from Cascata was 
very high, especially for infants whose UCL95% values 
ranged from 1.550 to 30.910 from optimistic to pessi-
mistic scenarios.

Discussion

Our dataset showed relatively high levels of MC-LR 
in the raw water from both the Cascata and Guara-
piranga systems during the period analyzed. Tropical 
urban reservoirs in general have been experiencing 
increased nutrient pollution in the last decades (Forde 
et  al., 2019) mainly due to anthropogenic influences 
of unplanned urban growth, untreated sewage dis-
posal, and riparian vegetation removal associated 
with the worsening effects of climate change. In the 

tropical reservoirs of São Paulo State, higher MC-LR 
yields seem to be stimulated by nutrient enrichment 
(mainly phosphorus), lower wind velocities, and 
higher air temperatures (Cunha et  al., 2018). Previ-
ous studies in Cascata and Guarapiranga have already 
reported increasing trophic status in both systems 
associated to high concentrations of nutrients and 
chlorophyll (Moschini-Carlos et  al., 2009; Oliver & 
Ribeiro, 2016; Sonobe et  al., 2019). Besides water 
quality deterioration due to untreated sewage and 
urban runoff (Fontana et al., 2014; Bicudo & Bicudo, 
2017), our dataset suggested that the cyanobacterial 
community in both waterbodies (Cascata and Guara-
piranga) has been consistently producing MC-LR and 
therefore increasing the risks of human intoxication.

Conventional water treatment processes like the 
one in the Cascata system are widely used in Brazil 
and can remove intracellular MC-LR (unless cells 
are lysed or damaged). However, they usually have 
limited effectiveness for removing dissolved MC-LR 
(Drikas et  al., 2001; Ewerts et  al., 2013; Mkhonto 
et  al., 2020). Furthermore, increasing dissolved 
MC-LR in the water can be caused by the chloride 
disinfection step in DWTPs, leading to damages to 
cells’ integrity by chemical oxidation (Merel et  al., 
2013b; Zamyadi et al., 2013).

Due to the difficulty of ensuring the removal of 
intact cyanobacterial cells, additional separation tech-
nologies, such as adsorption or membrane filtration, 
can be considered to further eliminate the residual 

Table 4  HQ estimated considering USEPA health advisory dosage of MC-LR and WHO values. HQ ≥ 1.00 (highlighted in bold) 
represents risks of adverse health effect; HQ ≤ 1.00, no adverse health effect is expected

a Ten-day health advisory dosage (0.30 µg  L−1)
b Ten-day health advisory dosage (1.60 µg  L−1)
c WHO (1.00 µg  L−1)

USEPA health advisory dosage of MC-LR WHO guideline value

System/
scenarios

Infantsa Children and  adultsb Population (all ages)c

Mean Median UCL 95% Mean Median UCL 95% Mean Median UCL 95%
COI 0.503 0.150 1.550 0.094 0.028 0.291 0.151 0.045 0.465
COD 8.487 2.583 15.743 1.591 0.484 2.952 2.546 0.775 4.723
CPI 3.593 1.100 11.127 0.674 0.206 2.086 1.078 0.330 3.338
CPD 9.980 3.050 30.910 1.871 0.572 5.796 2.994 0.915 9.273
GOI 0.029 0.007 0.064 0.005 0.001 0.012 0.009 0.002 0.019
GOD 0.224 0.043 0.510 0.042 0.008 0.096 0.067 0.013 0.153
GPI 0.112 0.020 0.254 0.021 0.004 0.048 0.034 0.006 0.076
GPD 0.280 0.053 0.637 0.053 0.010 0.119 0.084 0.016 0.191
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dissolved toxin (Antoniou et  al., 2014; Dixon et  al., 
2011). The use of powdered or granular activated 
carbon can be an interesting alternative to remove 
MC-LR due to its efficiency and low cost (Villars 
et al., 2020). Notwithstanding, special attention has to 
be taken to the characteristics of the activated carbon 
and water to ensure an efficient removal (Park et al., 
2020). Gijsbertsen-Abrahamse et  al. (2006) reported 
no damage to cells during the membrane ultra/nano-
filtration. However, the control of operational param-
eters in membrane filtration is essential to avoid the 
rapid increase of transmembrane pressure throughout 
the filtration process (Newcombe et al., 2021).

In our study, the HQs were high for the Cascata 
system (Table 4). For this reservoir, the UCL95% of 
the HQs varied from 1.550 to 30.910 (infants), 0.291 
to 5.796 (children and adults), and 0.465 to 9.273 
(population from all ages), indicating potential risks 
of MC-LR exposure for all considered ages. In addi-
tion, special attention should be given for infants 
since, regardless of the scenario considered, the 
UCL95% values of the HQs were always > 1. These 
results are similar to those observed in a study per-
formed in conventional DWTPs in Quebec (Canada) 
and for alternative water treatment technologies (i.e., 
riverbank filtration) in Kubani (Nigeria) (Uche et al., 
2017). Uche et al. (2017) also observed that although 
the conventional DWTP could remove 98% of 
MC-LR from the raw water, the HQs varied between 
1.6 and 4.1 for adults and infants. The alternative 
treatment in turn was able to remove around 36% of 
MC-LR, resulting in HQs from 2.5 to 4.6.

Advanced treatment units (e.g., ozonation, mem-
brane filtration) are especially important when target-
ing the dissolved form of MC-LR (Pietsch et al., 2002). 
More conventional processes such as coagulation, floc-
culation and filtration, are usually not able to remove 
MC-LR (Munoz et al., 2020), especially if it is in the 
dissolved form (Weir et  al., 2020). These observa-
tions were reinforced in our study as the HQs for the 
dissolved MC-LR were greater in comparison to the 
values for the intracellular form. Our results indicated 
that the water treatment technology used in the Cas-
cata system was probably inappropriate in face of the 
relatively high MC-LR concentrations in the raw water, 
leading to HQ values frequently > 1 for most scenarios 
considered. On the other hand, the expected higher 
efficiencies of the membrane ultrafiltration units cou-
pled with the already lower MC-LR concentrations 

in the raw water in Guarapiranga were associated to 
lower HQs and therefore safer drinking water for all 
scenarios considered (Table  4). These observations 
are probably associated to the low-pressure mem-
branes (i.e., < 5  bar) in Guarapiranga. Ultrafiltration 
membranes are able to retain particles with diameter 
as small as 1 nm (Obotey Ezugbe & Rathilal, 2020), 
whereas the dimension of MC-LR molecules are usu-
ally around 1.4–2.9  nm (Abbas et  al., 2020; Zhang 
et  al., 2011). Thus, the presence of an ultrafiltration 
unit, such as observed in Guarapiranga, probably lead 
to high removal of MC-LR, reducing the HQs. On the 
other hand, our results highlighted the need of higher 
removal efficiencies in the DWTP of the Cascata sys-
tem, since this system had higher MC-LR concentra-
tions in the raw water and therefore greater risks for the 
supplied population (Table 4).

The USEPA health advisory dosage of MC-LR pro-
vides information on contaminants in drinking water 
that can cause adverse effects in humans. There are 
different health advisory dosages of MC-LR, such as 
1-day health advisory, 10-day health advisory, drink-
ing water equivalent level, and lifetime health advisory 
(USEPA, 2018). The health advisory period consists 
of the concentration of contaminants in drinking water 
that should not cause any non-carcinogenic effects 
for a specific period of exposure days. Therefore, for 
longer periods, lower RfC will be more appropriate 
(for example, benzene 10-day health advisory dos-
age is 200 µg  L−1, while lifetime health advisory dos-
age is 3 µg  L−1) (USEPA, 2018). Regarding MC-LR, 
USEPA considers the ten-day health advisory dosage 
of MC-LR based on the study from Heinze (1999). 
This health advisory dosage indicates that USEPA 
considers a maximum of 10 days of exposure to unsafe 
concentrations of MC-LR per year could be tolerable. 
This observation is interesting once even in the opti-
mistic scenarios, populations supplied by Cascata may 
be exposed to MC-LR for more than 10 days per year 
(Table 3, maximum of 263 days) and, consequently, a 
more restrictive RfC should be used.

Although the 10-day health advisory dosage is not 
to be construed as legally enforceable federal stand-
ards, they describe technical guidance to assist fed-
eral, state, and local officials, as well as managers of 
public or community water systems, in protecting 
public health (USEPA, 2015a). In 2014, a 48-h “do 
not drink” advisory was issued for Toledo, USA, due 
to high concentration of MC-LR and, in 2007, up to 2 
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million inhabitants of Wuxi, China, were not supplied 
with drinking water due to a massive toxic bloom of 
Microcystis spp. (Huisman et  al., 2018). These events 
reinforce the importance of a constant monitoring of 
cyanobacteria in water supply systems in addition to 
risk assessment.

Considering our scenarios for the Cascata system, 
the risks of non-carcinogenic health effects for infants 
were critical even when the more permissive MC-LR 
reference values were considered (Table  4). Drink-
ing water is a significant source of potential exposure 
to toxic substances among infants. Infants present 
the highest rate of water intake relative to their body 
weight, since water is the primary liquid in their diet, 
mainly for those younger than 6 (Grandjean, 2004; 
Mokoena et al., 2016; Popkin et al., 2010). For children 
older than 6, other foods and liquids are introduced 
into their diet, decreasing relative water consumption 
and making it similar to the intake by adults (USEPA, 
2015a). As for the MC-LR impacts on the infants’ 
health, they are more vulnerable than adults because 
of different parameters related to toxicodynamic (i.e., 
exposures can occur during periods of enhanced sus-
ceptibility) and/or toxicokinetic (i.e., absorption, excre-
tion, and metabolism) (USEPA, 2002; Weirich & 
Miller, 2014). A study conducted by Li et  al. (2011) 
suggested that chronic exposure to MC-LR (MC-LR 
daily intake of 2.03  µg  L−1) was probably associated 
with liver damage in children from the Three Georges 
Reservoir Region, China. Although adults are thus less 
vulnerable to MC-LR intoxication, our study revealed 
that this part of the population could also be affected 
since HQ values > 1 were observed for most sce-
narios in Cascata, even for the optimistic one (COD, 
UCL95% of HQ = 2.952; Table 4).

Finally, our results evidenced two main perspec-
tives to be considered in respect to drinking water 
quality to protect consumers’ health in Brazil. The 
first one is related to the protection of the water 
sources, including the provision of gray infrastructure  
(e.g., sewer networks and wastewater treatment plants).  
Also, remediating impacted water bodies through 
canopy cover restoration and other ecological engi-
neering techniques (Palmer et  al., 2014) can bring 
benefits to the raw water quality and even decrease 
treatment costs (Cunha et al., 2016). The second one 
follows a more reactive approach to update existing 
DWTPs or propose complementary/advanced treat-
ment techniques to effectively remove MC-LR from 

raw water when necessary. Combining more con-
ventional treatments with new technologies can be 
promising for the removal of total MC-LR, even its 
dissolved fraction (Şengül et  al., 2018; Weir et  al., 
2020). Further studies are needed to fully understand 
the dynamics of MC-LR in water bodies, the mecha-
nisms of human exposure, and the health effects due 
to long-term exposure to MC-LR. Our study can be a 
starting point for more complete risk analyses focus-
ing on preventive actions to improve water treat-
ment efficiency and avoid human health implications 
related to MC-LR intoxication that can be applied 
elsewhere. In addition, the use of HQ in public health 
management could help identifying priority areas and 
populations that should receive special attention from 
decision makers and health authorities.

Conclusions

To the best of our knowledge, the present study is one 
of the first to provide a preliminary risk assessment of 
MC-LR intoxication related to drinking water in Bra-
zil. While such investigations are relatively common in 
other countries (mainly from North America, Oceania, 
and Europe), they are still scarce in Brazil, despite the 
frequent occurrence of HCBs in local eutrophic reser-
voirs. The assessment of the non-carcinogenic risks 
associated with the ingestion of MC-LR from drinking  
water was conducted in two water supply systems from the  
São Paulo state in Brazil: Cascata and Guarapiranga. 
As a limitation of our investigation, due to data avail-
ability constraints, we considered MC-LR removal 
efficiencies achieved by conventional and advanced 
DWTPs as reported in previous studies for the intra-
cellular and dissolved forms.

We found that people of all ages potentially have 
high probability of being exposed to the studied 
cyanotoxin, and we reported high non-carcinogenic 
risks of MC-LR exposure for all scenarios in the 
Cascata system, even after drinking water treatment. 
These results reinforced the limited expected removal 
efficiency of conventional water treatment, especially 
regarding the dissolved form of MC-LR. On the other 
hand, the presence of an ultrafiltration step in DWTPs 
(as in Guarapiranga) probably reduces the exposure 
to unsafe MC-LR concentrations in drinking water to 
acceptable levels (HQ < 1). Although epidemiologi-
cal information regarding human health long-term 

Environ Monit Assess (2022) 194: 253 253   Page 10 of 15



1 3
Vol.: (0123456789)

exposure to MC-LR concentrations remains unclear, 
the possible association of exposure to MC-LR with 
other adverse and genotoxic effects cannot be under-
estimated. Developing countries, such as Brazil, have 
been facing challenges related to the lack of invest-
ments in water supply systems and sanitation infra-
structure in general due to economic, social, financial, 
technological, and political issues. Our research raises 
a critical perspective about how changes or deterio-
ration in raw water quality associated with inappro-
priate technology in DWTPs can pose high risks for 
children and adults due to the consumption of con-
taminated water. In addition, the risks reported in our 
study emphasizes the necessity to develop strategies 
to avoid and reduce the exposure to MC-LR in drink-
ing water, in order to prevent negative human health 
implications associated with eutrophic freshwaters.
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