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Figure S1. A. Example aerial view of logging road layout for Reduced-Impact Logging 5 

(RIL) and conventional logging (CL) in tropical forests. Logging roads under RIL are 6 

planned after a forestry inventory, and typically result in 20% less total logging road area. 7 

Minimum felling diameters and distances between extracted trees are used. Trees felled under 8 

RIL are winched to logging roads (reducing the overall road lengths), and directional felling 9 

and vine cutting are used to minimise damage to adjacent trees (vine cutting prevents 10 

connected trees from being dragged down during felling). RIL guidelines vary by context and 11 

country, and include many other treatments and technologies (e.g. reducing soil compaction, 12 

mitigating impacts to watercourses, setting of maximum operational slopes, use of specialised 13 

tree hauling equipment). RIL is economically viable and can result in greater profits than CL 14 

over the long-term [S1]. There is freely available financial modelling software to enable a 15 

rapid assessment of the economic viability of RIL under specific contexts (RILSIM: 16 

http://blueoxforestry.com). B. RIL has received increasing interest in recent years, as 17 

evidenced by the cumulative number of studies published with “Reduced-Impact Logging” in 18 

the title, keywords, or abstract from 1990 – 2013 (ISI Web of Science).   19 
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Figure S2. Mean effect size (Hedge’s g ± 95%CI) of Reduced-Impact Logging (RIL: blue) 21 

and Conventional Logging (CL: reds) impacts on tropical forest biodiversity. Black vertical 22 

line shows the mean, and the box width indicates the confidence intervals. Lighter reds with 23 

dashed mean include CL studies where the logged sites were harvested at levels comparable 24 

to RIL (≤30 m3 ha-1). n gives the number of comparisons used in the calculation of effect 25 

sizes. A. Partitioned by bats and non-volant mammals. B. Partitioned by continent; America 26 

includes tropical South and Central America.27 



Experimental procedures 28 

Inclusion criteria for studies used in the meta-analysis 29 

 Using ISI Web of Science and Scopus, we searched for all logging effect studies 30 

published between 1975 and May 2014. We used the terms “logging” OR “forestry” OR 31 

“timber” combined with “tropic*” AND “fauna” OR “wildlife” OR “biodiversity” OR 32 

“bird*” OR “bat*” OR “mammal*” OR “frog*” OR “amphibian*” OR “invertebrate*”. We 33 

also checked for further studies in the reference lists of papers identified by the search. In 34 

total, 1053 studies were located, which we filtered and retained if they met the following 35 

inclusion criteria: (i) reported the effects of industrial logging uncoupled from other 36 

anthropogenic disturbance in tropical forests (e.g. fragmentation, hunting, etc.); (ii) included 37 

measures of biodiversity abundance at sites in both primary and logged forests to allow 38 

calculation of effect sizes; and, (iii) indicated that the primary forests had not been subject to 39 

human disturbance. We also added data from our own study in Guyana (Bicknell et al. in 40 

review) which met these criteria. Where studies did not report the raw data or the variability 41 

of abundance estimates, we contacted the authors for this information. In some cases the 42 

authors had misplaced the data, and in others we received no response, so these studies were 43 

excluded. Where the same data were published in more than one study, we used them only 44 

once, utilizing the data from the most recent publication. To account for the spatial 45 

heterogeneity of logging impacts across production landscapes, all studies included in the 46 

analysis had a minimum of two independent samples across the study area. In most cases, 47 

these were randomly distributed. A small set of studies targeted specific interventions (e.g., 48 

gaps, logging roads/skid trails, etc.), and were only included if they also sampled the wider 49 

logged landscape. 50 

 51 
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Data extraction 53 

 To ensure that each effect size calculation was produced from a properly replicated 54 

sample, where a study sampled multiple sites from one forest patch, we took the mean of 55 

these, rather than drawing comparisons from potentially non-independent samples [S2]. We 56 

excluded measures of richness, as under low impact disturbance such as selective logging, the 57 

number of species does not sufficiently represent changes in species composition, as logged 58 

forests regularly hold similar richness to neighbouring undisturbed forests for most 59 

taxonomic groups [S3]. Additionally, richness metrics do not take account for the community 60 

becoming dominated by generalist species, alongside the loss of some specialists. Indeed, 61 

similar numbers of selective logging studies have reported decreases in biodiversity as have 62 

reported increases [S4], thus obscuring the signal. We therefore included all pairwise effect 63 

size comparisons of abundance for every species in each study to represent changes in 64 

community composition. Each comparison was classified by logging type, logging intensity, 65 

time since logging, taxonomic group, and geographic region. For studies that had been logged 66 

over more than one cutting cycle, we used the cumulative logging intensity from all cutting 67 

cycles. To directly compare CL with RIL at equal logging intensities we took the subset of 68 

CL studies that were logged at intensities ≤30 m3 ha-1 as this was the maximum logging 69 

intensity under the RIL studies included. We also categorised region into continents (tropical 70 

Asia, Africa, South and Central America, Australia); and taxonomic group into birds, 71 

mammals, arthropods and amphibians. We further separated bats from non-volant mammals 72 

as these taxa use forest resources in different ways (Fig. S2). Our final dataset included 73 

studies from across the tropics, among multiple logging intensities and timeframes. Likewise, 74 

it comprised of data on bats, birds, terrestrial large and small mammals, primates, frogs and 75 

several groups of arthropods (e.g. butterflies, ants, bees, beetles, termites, spiders and flies).  76 
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Meta-analysis 78 

 For each pairwise measure of species abundance, we calculated the bias-corrected 79 

Hedges’ g of the difference between primary and logged means, standardised by the pooled 80 

standard deviation following [S5]. We used the random-effects model to calculate the mean 81 

effect size, where each study was weighted by the inverse of its variance, plus the inter-study 82 

variance. We calculated the effect size for RIL and CL separately, and for each categorical 83 

subgroup (logging intensity, taxonomic group and region). We tested the dataset for possible 84 

publication bias by visually examining a funnel plot of the effect size plotted against the 85 

standard error of the effect size. The symmetry of the points either side of zero, and the fact 86 

that small effect sizes were not published at a lower frequency, indicated that publication bias 87 

did not affect the dataset. 88 

 89 

 Data extracted from studies which did not report logging intensity were only used in 90 

the overall calculation of effect size for the entire dataset. Furthermore, because logging 91 

intensities in all of the RIL studies that met the inclusion criteria were ≤30 m3 ha-1, we 92 

repeated effect size calculations under comparable intensities of CL. All of the RIL suitable 93 

studies were from South and Central America and, therefore, we conducted a separate 94 

analysis partitioned by region. Where studies reported logging intensities as trees ha-1, we 95 

converted this to m3 ha-1 based on the mean conversion from other studies in the same 96 

geographic region that reported both tree and volume extraction intensities, as done by [S4] 97 

and only affected <3% of the sample. Finally, we conducted meta-regressions of the effect 98 

sizes against logging intensities and time since logging for the entire dataset and separately 99 

for RIL and CL. Effect sizes and meta-regression were calculated in the programme 100 

Comprehensive Meta-analysis [S6]. 101 
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