CERÂMICAS AVANÇADAS: APLICAÇÃO DO NITRETO DE ALUMÍNIO

Anna Leticia Soares Raimundo - 10289680

Joao Vitor do Amaral Briamonte - 11213335

Materiais Cerâmicos

- Constituídos de elementos metálicos e elementos não metálicos, ligados por ligações de caráter misto, iônico-covalente.
- Alto ponto de fusão
- São geralmente isolantes elétricos
- Comumente estáveis sob condições ambientais severas.
- Duros e frágeis (pouca deformação plastica)
- Os principais materiais cerâmicos são:
- Materiais Cerâmicos Tradicionais : cerâmicas estruturais, louças, refratários (provenientes de matérias primas argilosas).
- Vidros e Vitro-Cerâmicas.
- Abrasivos.
- Cimentos.
- Cerâmicas "Avançadas"

Cerâmica Avançada

As matérias primas são muito mais caras, porque tem qualidade muito melhor controlada (controle do nível de impurezas é crítico).

Aplicações específicas como:

- Elétricas: sensores de temperatura (NTC, PTC) ferroelétricos (capacitores, piezoelétricos) varistores (resistores não lineares) dielétricos (isolantes)
- Térmicas
- Químicas sensores de gases e vapores magnéticas
- Ópticas
- Biológicas

Cerâmicas de nitreto de alumínio

1.917 Å 1.917 Å N₃ 1.885 Å N₃

Fonte: CRUZ, 2007.

Estrutura

Cristalina hexagonal wurtzite

Na figura à direita: as esferas pretas representam o Al e as brancas o N

Processamento

Matérias Primas:

É sintetizada a partir de matérias-primas industrializadas, como pós de

alumínio (Al) ou de óxido de alumínio (Al2O3)

Processamento: Síntese do pó

Métodos usuais na indústria:

Redução carbotérmica e nitretação (RCN) do pó de Al2O3;

$$Al_2O_3+3C+N_2 -> AlN+3CO$$

• Nitretação direta (ND) do pó de alumínio

$$2AI+N2 -> 2AIN$$

Processamento-Síntese do pó

- Para diminuir a temperatura:
- RCN: agentes catalisadores (CaF2, CaF2-SrCO3, CaF2-Li2CO3 e CaF2-Y2O3-Li2CO3)
- ND: sais à base de lítio (LiNO3, LiOH.H2O e Li2CO3)

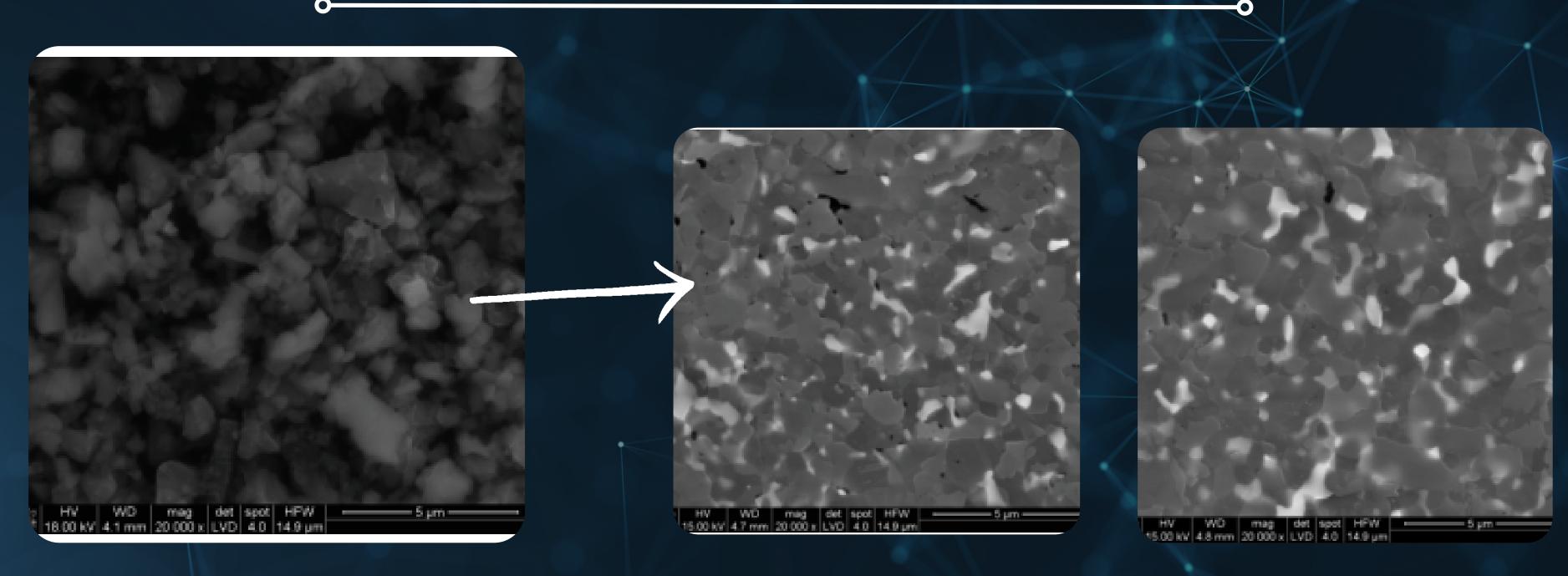
Processamento

Mistura das matérias Primas

Remoção do carbono residual por tratamento térmico (RCN)

01

02


03

04

Queima em um forno de grafite com atmosfera de nitrogênio

Secagem em estufa a vácuo

Microscopia eletrônica de varredura

Morfologia do pó de AIN

Microestrutura de AlN sinterizado em PPS com 5%wt e 10%wt de Y203 a 1500 °C por 600 s

Aluminium Nitrate AI(NO3)3

Propriedades

- Condutividade térmica muito alta (320W/mK)
- Alta capacidade de isolamento elétrico (resistividade elétrica 10^6 Ω.m)
- Baixa expansão térmica
- Boa capacidade de metalização

Aplicações

- Dissipadores de calor
- Substratos para pacotes eletronicos
- Pacotes de dispositivos de microondas

Industria Microeletrônica

Tabela I - Propriedades térmicas, elétricas e físicas das cerâmicas de AlN, Al₂O₃ e BeO usadas na indústria de microeletrônica [18].

[Table I - Thermal, electrical, and physical properties of AlN, Al_2O_3 and BeO ceramics used in the microelectronic industry [18].]

Propriedade	AlN	Al_2O_3	BeO
Térmica			
Condutividade térmica a 25 °C (W/mK)	170-220	20-30	250-300
Coeficiente de expansão térmica entre 25 e 400 °C (x10 ⁻⁶ °C ⁻¹)	4,3-4,6	6,7-7,3	7,5-8,0
Resistência ao choque térmico, ΔTc (°C)	550	150	-
Elétrica			
Constante dielétrica a 25 °C e 1 MHz	8,8-8,9	8,8-8,9	6,5-6,7
Perda dielétrica a 25°C e 1 MHz (x10 ⁻⁴)	1-5	2-3	1-5
Resistividade elétrica a 25 °C (Ω.cm)	>1014	>1014	>1014
Rigidez dielétrica a 25 °C (kV/cm)	140-170	100	100
Física			
Densidade (kg/m³)	3260	3970	3010
Resistência à flexão (MPa)	400-500	300	250
Dureza Vickers (GPa)	12,0	25,0	12,0
Módulo de Young (GPa)	343	378	378

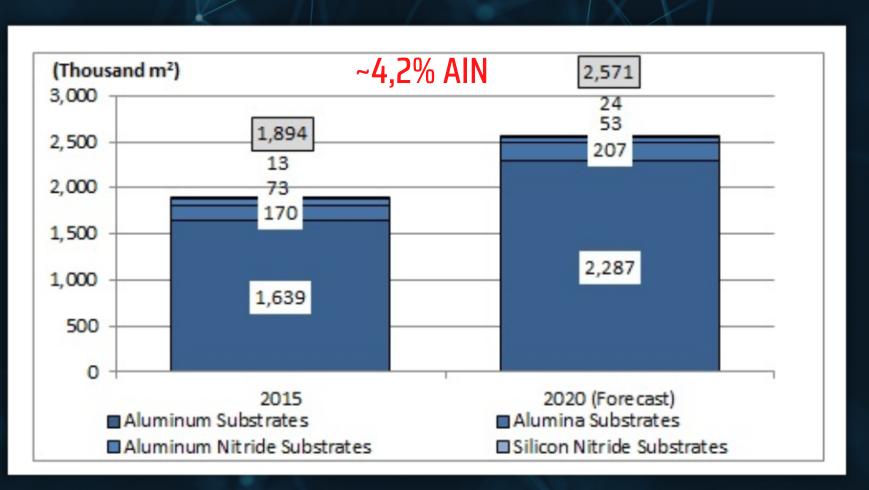
Instituto de Pesquisa Yano

Mercado global de materiais condutores térmicos

Preenchimento Condutivo Térmico

(Unit: Tons)				
	2015	2020 (Forecast)		
Fine Alumina	5,149	6,760		
Spherical Alumina	2,733	3,448		
High Purity Alumina	344	464		
Boron Nitride	141	171		
Aluminum Nitride	10	39		
Total	8,377	10,882		

Fonte: Instituto de Pesquisa Yano,2016


Período de pesquisa: dezembro 2015 a maio de 2016

Empresas-alvo: Fabricantes de componentes e módulos condutores térmicos

Mercado Global de Placas de circuito impresso (PCB condutores térmicos)

(Unit: Thousand Square Meters)

	2015	2020 (Forecast)		
Aluminum Substrates	1,639	2,287		
Alumina Substrates	170	207		
Aluminum Nitride Substrates	73	53		
Silicon Nitride Substrates	13	24		
Total	1,894	2,571		

Fonte: Instituto de Pesquisa Yano, 2016

A pesquisa sobre o mercado global de materiais condutores térmicos mostrou que o AlN não substituiu o Al2O3 em aplicações eletrônicas.

Vantagens e Desvantagens

Vantagem:

Propriedades físicas: alta condutividade térmica e isolamento elétrico

Desvantagem:

- Elevado custo de produção do pó cerâmico
- Preço médio de 110 US\$/kg para o nitreto de alumínio e de 5 US\$/kg para a alumina

Tecnologia LED

- Tecnologia de iluminação avançada
- Sistema de resfriamento Ceramcool
- Vida útil das lâmpadas "temperatura operacional 10°C mais baixa duplica a vida útil do produto". Por isso é essencial resfriar o LED.
- Consumo de energia

Referências

GLOBAL Thermal Conductive Materials Market: Key Research Findings 2016. [S. l.], 6 mar. 2016. Disponível em: yanoresearch.com/en/press-release/show/press_id/1540. Acesso em: 26 maio 2023.

MOLISANI, A. L.. Processamento, propriedades e aplicações das cerâmicas de nitreto de alumínio. **Cerâmica**, [S.L.], v. 63, n. 368, p. 455-469, dez. 2017. FapUNIFESP (SciELO). Disponível em: https://www.scielo.br/j/ce/a/kfhpmKK6jGRhCzrTjcKRLJr/?lang=pt. Acesso em: 23 maio 2023.

RUTKOWSKI, Paweł J.; KATA, Dariusz. Thermal properties of AlN polycrystals obtained by pulse plasma sintering method. Journal of Advanced Ceramics, [S. l.], p. 180–184, 16 maio 2023.

Fu Li, Qiao Liang, Zheng Jingwu, Ying Yao, Li Wangchang, Che Shenglei, Yu Jing, Phase, microstructure and sintering of aluminum nitride powder by the carbothermal reduction-nitridation process with Y2O3 addition, Journal of the European Ceramic Society, Volume 38, Issue 4, 2018, Pages 1170-1178, ISSN 0955-2219,

Bianchi, E. C. et al. Advanced ceramics: evaluation of the ground surface. Cerâmica [online]. 2003, v. 49, n. 311 [Accesso 8 maio 2023], pp. 174-177

Obrigado!