Chapter 15. Software Hazard and Requirements Analysis

one. The choice of operating system, interrupt logic, scheduling priority, and
system design parameters will be influenced by the latency requirements. Also,
behavioral analysis of the requirements to determine consistency with process
functional requirements and constraints may not be correct unless the value of
this behavioral parameter is known and specified for the software. Therefore, the
requirements specification must include the allowable latency factor.

o A latency factor must be included when an output is triggered by an interval
of time without a specified input and the upper bound on the interval is not
a simple, observable event.

Triggering an output on an interval of time without a specified event occut-
ring always requires the specification of a latency factor between the end of the
interval and the occurrence of the output. Where the upper bound on the interval
is a simple, observable event, latency is not an issue. However, where the intent
is to signal the nonoccurrence of an input after some other event, a latency speci-
fication is required.”

o Contingency action may need to be specified to handle events that occur
within the latency period.

Additional requirements may need to be specified to handle the case where
an event is observed within the latency period. For example, if an action is taken
based on the assumption that some input never arrived and if it is later discovered
that the input actually did arrive but too late to affect the output, it may then be
necessary to take corrective action.

o A latency factor must be specified for changeable human—computer inter-
Jace data displays used for critical decision making. Appropriate contin-
gency action must be specified for data affecting the display that arrives
within the latency period.

Latency considerations also affect specification of the human-computer in-
terface. Whenever a data display changes just prior to an operator basing a crit-
ical decision on it, the computer may need to query the operator as to whether
the change was noted before action selection. The display might involve, for ex-
ample, showing a set of operator options, including a recommended option and
several indications of poor ones. If the arrival of asynchronous data results in
a change to the recommended action, then whether the operator had sufficient
opportunity to observe that change will affect the required human-computer in-
terface behavior. As another example, an operator decision to fire a missile at
a target that has just had its displayed threat value reduced (but not completely
eliminated) may warrant extra interaction between the program and the operator.

0 A hysteresis delay action must be specified for human—computer interface
data to allow time for meaningful human interpretation. Requirements may
also be needed that state what 10 do if data should have been changed during
the hysteresis period.

FM-UP
FM-DOWN FM-DOWN
CcwW
CHIRP
Time T1

FIGURE 15.2 )
Two consecutive snapshots of an operation action menu with the recommended
action highlighted. The recommendation must be constant long enough for
meaningful human interpretation. Requirements are also needed to deal with
latency problems when the recommended action changes.

Variable data, such as a computer-recommended operator action, must be con-
stant long enough for meaningful human interpretation, which leads to a require-
ment for a hysteresis delay (Figure 15.2). An additional requirement will then be
needed to cope with situations where the action is selected after the occurrence
of an event that should have changed the displayed data but did not because it
occurred before the expiration of the hysteresis delay from the previous change.

15.4.6 Output to Trigger Event Relationships

Some criteria for analyzing requirements specifications relate not to input or
output specifications alone but to the relationship between them. Although, i
general, the relationship depends on the control function being specified, Umw_n
process control concepts can be used to generate criteria that apply to all process
control systems, such as fecdback and stability requirements.

Responsiveness and spontaneity deal with the actual behavior of the con-
trolled process and how it reacts (or does not react) to output produced by S.o
controller. In particular, does a given output cause the process to change, and if
50, is that change detectable by means of some input? Basic process control mod-
els include feedback to provide information about expected responses to changes
in the manipulated variables and information about state changes caused by dis-
turbances in the process.

o Basic feedback loops, as defined by the process control function, must be
included in the software requirements. That is, there should be an input that
the software can use to detect the effect of any output on the process. The




386

Chapter 15. Software Hazard and Requirements Analysis

requirements must include appropriate checks on these inputs in order to
detect internal or external failures or errors.

Feedback is a basic property of almost all process control systems: If feed-
back information is not used by the software, the requirements specification is
probably deficient. Basic feedback loops need to be included in the software re-
quirements, while missing feedback loops provide clues as to incompleteness in
the specification.

As an example, an accident occurred when a steel plant furnace was returned
to production after being shut down for repair [16]. A power supply had burned
out in a digital thermometer during power-up so that the thermometer continually
registered a low constant temperature. The controller, knowing it was a cold start,
ordered 100 percent power to the gas tubes. The furnace should have reached
operating temperature within one hour, but the computer failed to check (and
thus detect) that the thermometer inputs were not increasing as they should have
been. After four hours, the furnace had burned itself out, and major repairs were
required.

This situation could easily have been avoided if information about the char-
acteristics of the process had been used to predict and check for the expected
behavior of the system. In this case, the only information needed to avoid the
accident was that the temperature should increase if the burners are on.

If the process does not respond to an output as expected and within a given
time period, there is presumably something wrong and the software should be
required to act accordingly—perhaps by trying a different output, by alerting a
human operator, or, at the least, by logging the abnormality for future, off-line
analysis.

Ideally, process control systems should be designed such that the effects
of every output affecting a manipulated variable in the system can be detected
by some input provided by the feedback loop. The situation is not always that
simple, however. Disturbances interfering with the process can cause changes that
are not initiated by the computer or can inhibit changes that the computer has
commanded.

o Every output to which a detectable input is expected must have associated
with it: (1) a requirement to handle the normal response and (2) require-
ments to handle a response that is missing, too late, too early, or has an
unexpected value.

Every output to which a detectable response is expected within a given time
period induces at least two requirements: The “normal” response requirement
and a requirement to deal with a failure of the process to produce the expected
response. The failure could involve the response having an erroneous or unrea-
sonable value, the response arriving at the wrong time, or the expected response
might be missing entirely.

o Spontaneous receipt of a nonspontaneous input must be detected and re-
sponded to as an abnormal condition.

e

15.4. Completeness Criteria for Requirements Analysis

If the environment responds too quickly, coincidence rather than appropri-
ate stimulus-response behavior may be responsible. Most processes do not react
instantaneously, but only after a delay (time lag). Thus, the specification of a la-
tency factor is required. A value-based handshake protocol can be used to elim-
inate the need for the latency factor: Some field of the input I identifies it as a
unique response to some specific output O.

Some inputs are spontaneous—they may be triggered by environmental fac-
tors not necessarily caused by some prior output. However, an input that is sup-
posed to be nonspontaneous (it is only supposed to arrive in response to some
prior system output) induces yet another requirement to respond to a presumably
erroneous (spontaneous) input.

o Stability requirements must be specified when the process is potentially un-
stable.

In addition to feedback requirements, stability requirements, such as a phase
margin of at least 45 degrees and a gain margin of at least 3 decibels, may need
to be specified for one or more operating states. The stability requirements apply
to the process-control function, which is described by a control law or a transfer
function relating output to input (23].

15.4.7 Specification of Transitions Between States

Requirements analysis may involve examining not only the triggers and outputs
associated with each state and the relationship between them, but also the paths
between states. These paths are uniquely defined by the sequence of trigger events
along the path. Transitions between modes are particularly hazardous and suscep-
tible to incomplete specification, and they should be carefully checked.

Reachability

a All specified states must be reachable from the initial state.

Informally, a state is said to be reachable from another state if there is a path
from the first to the second. In most systems, all states must be reachable from
the initial state. If a state is unreachable, therc are two possibilities: (1) either
the state has no function and can be eliminated from the specification, or (2) the
state should be reachable and the requirements document is incorrect and must be
modified accordingly.

Most state-based models include techniques for reachability analysis. In
complex systems, complete reachability analysis is often impractical, but it may
be possible in some cases to devise algorithms that reduce the necessary state
space search by focusing on a few properties. The backward-reachability hazard
analysis techniques for state machine models described in Chapter 14 are exam-
ples of algorithms that limit the amount of the reachability graph that must be

387




388

Chapter 15. Software Hazard and Requirements Analysis

generated to get enough information to eliminate hazardous states from the re-
quirements specification.

Recurrent Behavior

Most process control software is cyclic—it is not designed to terminate under
normal operation. Its purpose is to control and monitor a physical environment;
the nature of the application usually calls for it to repeat one single task continu-
ously, to alternate between a finite set of distinct tasks, or to repeat a sequence of
tasks while in a given mode. Most systems, however, include some states with
noncyclic behavior such as temporary or permanent shutdown states or those
where the software changes to a different operating mode.

o Desired recurrent behavior must be part of at least one cycle. Required
sequences of events must be implemented in and limited by the specified
transitions.

The specification should be analyzed to verify that desired behavior is re-
peatable. To be repeatable, the behavior must be part of at least one cycle, but
in many cases checking this behavior alone will not be sufficient; more complex
sequences of events may need to be identified. An output to turn on a piece of
equipment, for example, may be inappropriate unless the last output turned the
equipment off. Consider an output to start a piece of equipment. The equipment
may need to be started more than once, but it could be damaged if two START
commands are issued without an intermediate sToP command. To prevent this
hazard, every cycle that includes a START also has o include a sTOP.

a States should not inhibit the production of later required outputs.

An inhibiting state for an output is a state from which the output cannot
be generated. If every state from which the output can be generated is unreach-
able from an inhibiting state, then the output cannot be generated again once the
inhibiting state is reached. Whether or not this condition represents an incom-
pleteness depends upon the application.

Reversibility

In a process control system, a command issued to an actuator often can be can-
celed or reversed by some other command or combination of commands. This
capability is referred to as reversibility.

o Output commands should usually be reversible.

Outputs will usually require reversing commands. Therefore, outputs should
be reviewed and classified as to their reversibility. For an oN command to be re-
versible, the state in which the canceling OFF command is issued must be reach-
able from the state in which the oN command was issued. For example, an alert
condition to an operator (such as a below-minimum-safe-altitude warning to an

15.4. Completeness Criteria for Requirements Analysis

air traffic controller) should be reversible when the condition no longer holds (the
aircraft is now at a safe altitude).

a If x is to be reversible by y, there must be a path between the state where x
is issued and a state where y Is issued.

There will usually be several different classes of the reversing outputs. The
appropriate reversing output, for example, may depend on whether the controller
has acknowledged the receipt of the original alert, is in the process of review-
ing the alert, or has taken positive action to ameliorate the alert condition. The
human—computer interface in particular is full of complex classes of reversible
phenomena [135].

Preemption

When the same physical resource, such as a data entry device or display, must
be used in distinct multistep actions at the human—computer interface, require-
ments will be needed to deal with preemption logic. In addition, some actions
may have to be prohibited until others are completed. An action to recompute
estimated time of arrival might be prohibited until an in-progress, manual naviga-
tional update is completed or explicitly canceled.

o Preemption requirements must be specified for any multistep transactions in
conjunction with all other possible control activations.

In general, there are three possible system responses to an operator action
from a parallel-entry source prior to completion of a transaction initiated by some
previous control activation: (1) normal processing in parallel with the uncom-
pleted transaction, (2) refusal to accept the new action, and (3) preemption of the
partially completed transaction.

If preemption is possible, then the attempted activation of a multistep se-
quence requiring the use of a resource already involved in another incomplete
transaction provides the following three choices:

1. The new request could completely cancel the previous, incomplete transac-
tion, clearing or replacing any displays associated with it. :

2. The new request could preempt the shared resources, but the displayed state
could be preserved and restored upon completion of the new transaction.

3. The operator could be prompied and required to indicate the disposition
of the incomplete transaction, in which case there will in general be four
alternatives:

a. Cancel the incomplete transaction and start the newly requested one.

b. Complete the old transaction and then proceed automatically with the
new request.

¢. Cancel the new request and continue with the old, incomplete transac-
tion.

d. Defer but do not cancel the old, incomplete transaction.




Chapter 15. Software Hazard and Requirements Analysis

If any transactions are deferred and restored, obsolete information must be iden-
tified, as discussed previously.

Path Robustness

For most safety-critical, process-control software, there are concerns beyond pure
reachability: Even if a state fulfills all reachability requirements, there is still the
question of the robustness of the path, or paths, affecting a particular state.

Consider an output that has the possible values of up and pown. Suppose
that every possible path from a state where an UP command is issued to any
state where a DOWN command is issued includes the arrival of input /. Then
if the computer’s ability to receive / is ever lost (perhaps because of sensor
failure), there are circumstances under which it will not be able to issue a DOWN
command. Thus, the loss of the ability to receive I can be said to be a soft failure
mode, since it could inhibit the software from providing an output with the value
DOWN.

If the receipt of input 7 occurs in every path expression from all states that
produce UP commands to all states that produce DOWN commands, the loss of the
ability to receive / is now said to be a hard failure mode, since it will inhibit the
software from producing a DowN command.

o Soft and hard failure modes should be eliminated for all hazard-reducing
outputs. Hazard-increasing outputs should have both soft and hard failure
modes.

The more failure modes the requirements state machine specification has,
whether soft or hard, the less robust with respect to external disturbances will be
the software that is correctly built to that specification. Robustness, in this case,
may conflict with safety. A fail-safe system should have no soft failure modes,
much less hard ones, on paths between dangerous states and safe states. At the
same time, hard failure modes are desirable on the paths from safe to hazardous
(but unavoidable) states. An unsafe state, where a hazardous output such as a
command to launch a weapon can be produced, should have at least one, and
possibly several, hard failure modes for the production of the output command:
No input received from the proper authority, no weapons launch.

w Multiple paths should be provided for state changes that maintain or en-
hance safety. Multiple inputs or triggers should be required for paths from
safe to hazardous states.

In general, operators should be provided with multiple logical ways to is-
sue the commands needed to maintain the safety of the system so that a single
hardware failure cannot prevent the operator from taking action (o avoid a haz-
ard. On the other hand, multiple interlocks and checks should be associated with
potentially hazardous human actions—such as a requirement for two indepen-
dent inputs or triggers before a potentially hazardous command is executed by
the computer.

15.5. Constraint Analysis

15.5 Constraint Analysis

In addition to satisfying general completencss criteria, the requirements must also
be shown to include the identified, system-specific safety requirements and to be
consistent with the identified software system safety constraints.

o Transitions must satisfy software system safety requirements and constraints.

In a system hazard analysis, hazards are traced to the software-system in-
terface. Such hazards involve specific software behavior expressed in terms of
the value and timing of outputs (or lack of outputs). In general, software-related
hazards involve

o Failing to perform a required function: The function is never executed or no
answer is produced.

o Performing an unintended (unrequired) function, getting the wrong answer,
issuing the wrong control instruction, or doing the right thing but under
inappropriate conditions (such as activating an actuator inadvertently, too
early or tao late, or failing to cease an operation at a prescribed time).
Performing functions at the wrong time or in the wrong order (such as failing
to ensure that two things happen at the same time, at different times, or in a
particular order).

o Failing to recognize a hazardous condition requiring corrective action.

o Producing the wrong response to a hazardous condition.

Constraint analysis on the software requirements specification includes a
reachability analysis to determine whether the software, as specified, could reach
the identified hazardous states.

o Reachable hazardous states should be eliminated or; if that is not possible
(they are needed to achieve the goals of the system), their frequency and
duration reduced.

It is not always possible o enforce a requirement that the software cannot
reach hazardous states—sometimes a hazardous state is unavoidable. But this
possibility should be known so that steps can be taken to minimize the risk as-
sociated with the hazard, such as minimizing the exposure or adding system safe-
guards to protect the system against such states.

The type of analysis required to guarantee consistency between the software
requirements specification and the safety constraints depends upon the type of
constraints involved. The presence of constraints can potentially affect most of
the criteria that have been described in this chapter. Some types of constraints
can be ensured by the criteria already described; others require additional analy-
sis. For example, basic reachability analysis can verify that only safe states are
reachable.

Basic reachability analysis may need to be extended, however, to consider
additional constraints on the scquence of events. To illustrate, consider a simple




392

Chapter 15. Software Hazard and Requirements Analysis

control system to move the control rods in a reactor up and down. The output
actions to move the rods may be properly reachable and the paths robust. In addi-
tion, a constraint may require that a rod not be allowed to move within 30 sgconds
of its previous movement. To guarantee this constraint, all transitions where a
MOVE RoD! command can be issued must first be identified. Path analysis can
then be used to find the sequences of events that will make the software issue
two consecutive MOVE ROD1 commands. By showing that all possible paths de-
scribed by these sequences will take at least 30 seconds to traverse, the constraint
is guaranteed to be satisfied. If all the criteria described in this chapter for com-
plete specification of timing requirements are satisfied, this analysis should be
theoretically possible for a state-machine specification.

More generally, the specification may be checked for a general safety policy
that is defined for the particular system. This process is very similar to checking
that a specification satisfies a particular security policy [180]. The following is an
example of a general safety policy for which the specification could be checked:

1. There must be no paths to unplanned hazardous states.

The computer never initiates a control action (output) that will move
the process from a safe to an unplanned hazardous state.

2. Every hazardous state must have a path to a safe state. All paths from the
hazardous state must lead to safe states. Time in the hazardous state must be
minimized, and contingency action may be necessary to reduce risk while in
the hazardous state.

If the system gets into a hazardous state (by an unplanned transition
that is not initiated by the computer such as component failures, human
erTor, or environmental stress), then the computer controller will transform
the hazardous state into a safe state (every path from a hazardous state leads
to a safe state). The time in the hazardous state will be minimized to reduce
the likelihood of an accident.

There may be several possible safe states, depending on the type of
hazard or on conditions in the environment. For example, the action to be
taken if there is a failure in a flight-control system may depend on whether
the aircraft is in level flight or is landing.

3. If a safe state cannot be reached from a hazardous state, all paths from that
state must lead to a minimum risk state. At least one such path must exist.

If a system gets into a hazardous state and there is no possible path to
a safe state, then the computer will transform the state into one with the
minimum risk possible given the hazard and the environmental conditions,
and it will do so such that the system is in a hazardous state for the minimum
amount of time possible.

It may not be possible to build a completely safe system—that is, to avoid all
hazardous states or to get from every hazardous state to a safe state. In that event,
the system must be redesigned or abandoned, or some risk must be accepted. This
risk can be reduced by providing procedures to minimize the probability of the

e h

15.6. Checking the Specification Against the Criteria

hazardous state leading to an accident or to minimize the effects of an accident.
For example, activation of a carbon dioxide firefighting system in what may be
an occupied space may kill any occupants, but it may be necessary to prevent the
loss of an entire ship. Such difficult decisions obviously must be considered and
specified carefully.

15.6 Checking the Specification Against the Criteria

The actual procedures that can be used to analyze a particular requirements spec-
ification will depend on the form of that specification. The criteria for com-
pleteness of states, inputs and outputs, and the relationship between inputs and
outputs are easily checked for any type of specification. Criteria for the transi-
tions between states will be checkable to a greater or lesser extent depending on
the formality of the specification, the size of the specification, and the availability
of software tools to help with the checking.

Heimdahl has automated the checking of the robustness and nondetermin-
ism criteria (Sections 15.4.4.1 and 15.4.4.2) for specifications written in RSML,
and validated his tools on an avionics collision avoidance system {116, 117]. Ad-
ditional tools are being created for safety analysis of RSML requirements speci-
fications.

Some criteria can be enforced simply by using a specification language that
incorporates enforcement in its syntax. For example, a language that requires
specifying value and time intervals for all inputs and data age limits on all outputs
will not require additional analysis. Even if the language syntax does not require
specifying a particular characteristic of the inputs or outputs, a syntax that makes
omissions immediately apparent will be helpful in locating them.

On many projects, requirements are not complete before software develop-
ment begins. In addition, changes are often made as the design of the other parts
of the system becomes more detailed and problems are found that necessitate
changes in the desired software behavior. It is therefore unlikely that the analy-
sis will be completed before software design begins. To avoid costly redesign and
recoding, the requirements specification and analysis should be as complete as
possible as early as possible. Realistically, however, some of the analysis may
need to be put off or redone as the software and system development proceeds.

393




