348

Chapter 14. Hazard Analysis Models and Techniques

State Machine Hazard Analysis (SMHA) was first developed to identify
software-related hazards {186]. Software and other component behavior is mod-
eled at a high level of abstraction, and faults and failures are modeled at the
interfaces between the software and the hardware; thus, the procedure can be per-
formed early in the system and software development process.

SMHA can be used to analyze a design for safety and fault tolerance, to de-
termine software safety requirements (including timing requirements if the model
includes timing) directly from the system design, to identify safety-critical soft-
ware functions, and to help in the design of failure detection and recovery proce-
dures and fail-safe requirements. Since the model used is formal (that is, it has
a mathematical definition), the analysis procedures can be implemented on a
computer.

Life-Cycle Phase

SMHA works on a model, not the design itself. Therefore, it can theoretically
be used at any stage of the life cycle, including early in the conceptual stage, to
evaluate alternative designs and design features. The procedure is most effective
if performed before the detailed design of the system components begins.

Evaluation

SMHA can be carried out before detailed design of the system is finished, al-
though the partitioning of functions to components must be at least tentatively
complete. Since the analysis is performed on a formal, written model, it can be
automated and does not depend on the analyst’s mental model of how the system
works. The model is explicitly specified and can be checked for correctness by
expert review and sometimes for various desirable properties by additional auto-
mated procedures. Often, the state machine model itself can be executed using
test data and simulators.

SMHA’s most important limitation is that a model must be built, which may
be difficult and time consuming. State machine models have been built for parts
of systems and for relatively small systems, but are often impractical for sys-
temns that are large or complex. Petri nets, on which the algorithms were first
defined, are not a practical modeling language for most real systems. Recent ad-
vances in state machine modeling languages have overcome this problem some-
what by defining new types of higher-level abstractions [111]. These abstractions
have been incorporated into several languages, one of which, Requirements State
Machine Language (RSML), was adopted by the FAA to model the system re-
quirements for TCAS II, an airborne collision avoidance system required on most
aircraft in the United States [360].

The SMHA analysis algorithms have been adapted for the RSML language
and are being applied experimentally to real systems. Work is also proceeding
on automatically generating fault trees and additional standard hazard analysis
models from the RSML specification. Other new state machine models could be,

=
=

14.12. State Machine Hazard Analysis

but have not been, used for safet si i
put have nos beer, use y analysis, nor have safety analysis procedures

Some of the effort in building the model is justified by the fact that it can
be used as the system requirements specification. To be used for this purpose
the specification must be readable by people without advanced mathematical mm..
ucation. The mathematical model analyzed by the SMHA algorithms is actually
generated from the high-level RSML specification language, which is readable by
mu@:omzo: experts with very little training. RSML was developed while specify-
ing the system requirements for TCAS II, which had to be easily readable and
n.mimémc_a by engineers, pilots, airline representatives, and others in its func-
tion as the FAA system specification. The RSML specification can also be sim-
ulated (both general and application-specific simulators have been built) so the
model can be executed, and test data (for the later software implementation of
z._m specification) can be generated from it. The practicality of the SMHA analy-
sis procedures for RSML has yet to be verified, however, and though the analysis
procedures have been experimentally applied to the TCAS II specification, they
have not yet been used on other projects. ,

A second limitation of SMHA is that the analysis is performed on a model
not on the system itself —it will apply to the as-built system only if the m%mamah
matches the model. This limitation holds, of course, for any analysis that is per-
formed early in the life cycle, but appropriate design and verification procedures
must be used to ensure that the implemented system matches the model on which
the analysis was originally performed.

Other types of mathematical models, such as logic or algebraic models of
mo?zmnm or systems, also could be used for hazard analysis by using mathemat-
ical proof methods to show that the models satisfy the safety requirements [137
283]. Many logic and algebraic models and modeling languages have been ?,o.,
posed for software. Unfortunately, most have been tried only on very small ex-
amples, and it is not at all clear that they will scale up to realistic systems. In
.ma&aos, writing down the model may not be as much of a problem as the effort
1=<o_<ma in mathematically proving the safety properties of the system and the
inability of reviewers to understand those proofs.

The most important limitation of these algebraic and logic languages is that .
E.m% are usually very hard to learn and use (including performing proofs on them)
.s;EaE an advanced degree in mathematics. This factor by itself is not necessar-
ily a problem, as people with such training exist or the training can be provided,
but .En resulting models and proofs cannot readily be understood or checked by
engineers and application experts who do not have this training. One of the most
_E.noam:: uses of any hazard analysis is as an aid for designers and as a represen-
tation of the problcm and what is being done about it so that open discussion can
be stimulated and supported. If the analysis cannot be audited and understood by
application experts, confidence in the results is undermined.

In addition, the modcls and languages used must match the way that engi-
neers think about the systems they are building, or the translation between the
engineer’s or expert’s mental model and the written formal model will be error

349

Chapter 14. Hazard Analysis Models and Techniques

prone. The advantage of state machine models is that they seem to match the in-
ternal models many people use in trying to understand complex systems.

14.13 Task and Human Error Analysis Techniques

14.13.1 Qualitative Techniques

Much more emphasis in hazard analysis has been on cquipment failures than
on human errors. Some analysis methods for human error have been suggested,
however, including Procedure (Task) Analysis, Operator Task Analysis, Work
Safety Analysis, and Action Error Analysis.

A procedure is an ordered set of instructions or actions to accomplish a task.
Procedure or Task Analysis [106] reviews procedures to verify that they are ef-
fective and safe within the context of the mission tasks, the equipment that must
be operated, and the environment in which the personnel must work. Such ana-
lyses involve determination of the required tasks, exposures to hazards, criticality
of each task and procedural step, equipment characteristics, and mental and phys-
ical demands. As with FMEAs, the results of the analysis are entered on a form
with columns labeled Task, Danger, Effects, Causes, Corrective Measures, and so
on. Possible results include recommendations for corrective or preventive mea-
sures to minimize the possibilities that an crror will result in a hazard, changes
or improvements in hardware or procedures, warning and caution notes, special
training, and special equipment (including protective clothing).

Operator Task Analysis [172) appears to be another name for Procedure
Analysis. The operator’s task is broken down into separate operations, and the
analysis looks for difficulties in executing either the individual operations or the
overall plan. Neither of these first two analyses (Procedure Analysis and Operator
Task Analysis) seems to have a specific procedure associated with it, and they
may simply be generic terms for the goals involved.

Action Error Analysis (AEA) (323, 326] uses a forward search strategy to
identify potential deviations in human performance. The analysis consists of a
systematic description of the operation, task, and maintenance procedures along
with an investigation of the potential for performance deviations (such as for-
getting a step, wrong ordering of steps, and taking too long for a step). Inter-
nal phases of data processing associated with an operator’s tasks are usually
excluded; instead, only the external outcomes of the error modes in different
steps are studied. Some information about physical malfunctions may result from
the analysis, since it includes the effects of human malfunctions on the physical
equipment. This method is very similar to FMEA, bul is applied to the steps in
human procedures rather than to hardware components or parts. The results are
entered in a table, this time with columns labeled Work Step, Action Error, Pri-
mary Consequences, Secondary Consequences, Detection, and Measures.

Work Safety Analysis (WSA) [323, 342] was developed by Suokas and
Rouhiainen in Finland in the early 1980s. It is similar to HAZOP, but the search

14.13. Task and Human Error Analysis Technigues

process is applied to work steps. The goal is to identify hazards and En,:. causes.
The search starts, s in the other methods, by breaking a task down into a se-
quence of steps. Each of the steps is examined with respect H.o a list of general
hazards and examples of their causes (deviations and determining Q—Qo"&. All
types of system functions and states, including :o.nsm_ states, are considered. ,_.Ara
analyst examines the consequences of (1) forgetting a éo.aw step, (2) va&ogﬁsm
a step too early or oo late or too long, and (3) unavailability of the usual equip-
ment. Because of the nature of the search pattern, certain types of hazards will ~.~op
be identified, such as those related to management procedures or those related in-
directly to the operator’s task but not to the task being analyzed (for example,
contact with chemicals or an explosion in the proximity of the operator) [326).

14.13.2 Quantitative Techniques

All the human error analysis methods described so far focus on the onnnwﬁna,m
task. The goal is to obtain the information necessary to design a r:—..amnlimor_:n
interface that reduces human behavior leading to accidents and improves the
operators’ ability to intervene successfully to prevent momﬁmza. Human error
is not considered inevitable, but a result of human-task mismatches maa. EQ
interface or operating procedures design. When the focus is design, qualitative
or semi-quantitative results are usually adequate to achieve the goals. .

Probabilistic assessment of human error, on the other hand, necessarily ac-
cepts the inevitability of human error. Despite its limited :%?50.& in .»Enﬁof.:m
the human—machine interface, the application of reliability engineering, which
focuses on numerical assessment, to process control systems (especially nuclear
power plants) has led to a demand for assessing the reliability of the process oper-
ator in order to assess risk for the system as a whole. The assignment of probabil-
ities to human error is especially important in system risk assessment because of
the large proportion of accidents that are attributed to human error. .

Simply having a nced is not enough to guarantee that the need can be satis-
fied. Probabilistic assessment of human error is not very advanced. woﬁ.ﬁ of the
problems in collecting and classifying human error data were discussed in Chap-
ter 13. This rest of this section describes the current state of the art; readers can
determine for themselves how much confidence they want to place on the result-
ing numbers.)

Most of the numerical data and assessment are based on task m:m_u\mj and
task models of errors rather than on cognitive models. Following Lees’ classifica-
tion (see Chapter 10), tasks are divided into simple, vigilance, and complex.

Simple and Vigilance Tasks

Simple tasks are relatively simple sequences of operations involving :Ea. deci-
sion making. Some of these tasks or suboperations may involve the detection of

signals (vigilance). . .
The most common way to assign probabilities to these tasks is to break

Chapter 14. Hazard Analysis Models and Techniques

a task down into its constituent parts, assign a reliability to the execution of
each part, and then estimatc the reliability of the entire task by combining the
reliability estimates of the parts using a structural model of their interaction. The
most common models involve either series relationships (and thus use product
laws) or tree relationships (and use Boolean evaluation methods). The accuracy
of the method depends upon the accuracy of the individual part reliabilities and
the appropriateness of the structural model.

The sophistication of the quantitative reliability estimates varies greatly
[172]. The simplest approaches often use an average task error rate of 0.01. This
number is based on the assumption that the average error rate of the constituent
task components is 0.001 and that there are, on average, 10 components per task.

A second approach to assigning human error rates uses human experts to
rank tasks in order of their error likeliness and then uses ranking techniques to
obtain error rates. Sophisticated statistical methods, such as paired comparisons,
can be used to produce a ranking [130).

The techniques described so far rely on human judgment to assign error
rates to tasks, or they make very simple assumptions. Other approaches collect
and use empirical and experimental data evaluated with respect to performance-
shaping factors. Data Store was developed by the American Institute for Research
in 1962 to predict operator performance in the use of controls and displays [108].
The data indicates the probability of successful performance of a task, the time
required to operate particular instruments, and the features that degrade perfor-
mance. To analyze a task using Data Store, the task components are identified
and assigned probabilities using tables for standardized tasks. The reliabilities are
then multiplied to determine a task reliability.

Data Store and similar techniques assume that the discrete task components
are independent. THERP (Technique for Human Error Rate Prediction), devel-
oped by Swain at Sandia National Laboratories, relaxes this assumption. Bell and
Swain describe a methodology for Human Reliability Analysis (HRA) that en-
compasses both task analysis and THERP [22].

Most of the errors identified and analyzed in HRA involve not following
written, oral, or standard procedures. Only occasionally are actions that are out-
side the scope of the specified operations (such as extraneous acts) considered.

The first part of HRA (and of most similar methods) involves task analysis,
where a task is defined by Bell and Swain as a quantity of activity or performance
that the operator views as a unit, either because of its performance characteristics
or because the activity is required as a whole to accomplish some part of a sys-
tem goal. The correct procedure for accomplishing an operation is identified and
then broken down into individual units of physical or mental performance. For
example, the tasks involved in pressurizing a tank to a prescribed level from a
high-pressure source [106] include

1. Opening the shutoff valve to the tank
2. Opening the high-pressure regulator from the source

14.13. Task and Human Error Analysis Techniques

TABLE 14.3
Typical human error data.

Probability Activity

1072 General human error of omission where there is no display in the
control room of the status of the item omitted, such as failure to
return a manually operated test valve to the proper position after
maintenance.
Error of omission where the items being omitted are embedded in a
procedure rather than at the end.
General human error of commission, such as misreading a label
and therefore selecting the wrong switch.
Simple arithmetic error with self-checking, but without repeating the
calculation by redoing it on another piece of paper.
Monitor or inspector failure to recognize an initial error by operator.
Personnel on different workshift fail to check the condition of
hardware unless required by a checklist or written directive.

Observing the pressure gauge downstream from the regulator until the pre-
scribed level is reached in the tank

. Shutting off the high-pressure regulator

. Shutting the valve to the tank

Next, specific potential errors (human actions or their absence) are identified
for each unit of behavior in the task analysis. Acts of commission and omission
are considered errors if they have the potential for reducing the probability of
some desired system event or condition. In the above example, the operator could
forget to open the high-pressure regulator from the source (step 2), open the
wrong valve (step 1), or execute the actions out of proper sequence. The actions
actually considered are limited. For example, if the error being examined is the
manipulation of a wrong switch, perhaps because of the control panel layout, the
analysis does not usually try to predict which other switch will be chosen, nor
does it deal with the systemn effects of the operator selecting a specific incorrect
switch.

The next step in HRA is to determine the likelihood of specific event se-
quences using event trees. Each error defined in the task analysis is entered on
the tree as a binary event. If order matters, then the events need to be ordered
chronologically. Care must be taken to consider all alternatives, including “no ac-
tion taken.” Other logical models, such as fault trees, can also be used.

Probabilities are assigned to each of the events in the tree, using handbooks
or tables of human error probabilities. If an exact match of crrors is not possible,
similar tasks are used and extrapolations are made. Table 14.3 is a small example
of this type of table [172].

The data in the THERP handbook is based on a set of assumptions that limit
the applicability of the data [22}:

Chapter 14, Hazard Analysis Models and Techniques

The operator’s stress level is optimal.

No protective clothing is worn.

The level of administrative control is average for the industry.

The personnel are qualified and experienced.

The environment in the control room is not adverse.

All personnel act in a manner they believe to be in the best interests of the
plant (malevolent action is not considered).

Because these assumptions may not hold and because of natural variabil-
ity in human performance, environmental factors, and task aspects, the THERP
handbook gives a best estimate along with uncertainty bounds. The uncertainty
bounds represent the middle 90 percent range of behavior expected under all pos-
sible scenarios for a particular action; they are based on subjective judgment
rather than empirical data. The analyst is expected to modify the probabilities
used in HRA to reflect the actual situation. Examples of performance shaping
factors that can affect error rates are

o Level of presumed psychological stress
Quality of human engineering of controls and displays

D
o Quality of training and practice

o Presence and quality of written instructions and methods of use
o

a

Coupling of human actions
Personnel redundancy (such as the use of inspectors)

Bell and Swain [22] suggest that if, for example, the labeling scheme at a
particular plant is very poor compared to labeling at other plants, the probabil-
ities should be increased toward the upper uncertainty bound;? if the tagging is
particularly good, the probabilities for certain errors might be decreased. These
performance shaping factors either affect the whole task or affect certain types
of errors regardless of the types of tasks in which they occur. Other factors may
have an overriding influence on the probability of occurrence of all types of errors
under all conditions.

Dependencies or coupling may exist between pairs of tasks or between the
performance of two or more operators. The dependencies in the specific situation
need to be assessed and estimates made of the conditional probabilities of success
and failure.

Once all these steps have been accomplished, the end point of each path
through the event tree can be labeled a success or a failure, and the probability
of each path can be computed by multiplying the probabilities associated with
each path segment. Then the success and failure probabilities of all the paths are
combined to determine the total system success and failure probabilities. The
results of HRA are often used as input to fauit trees and other system hazard

2 The system safety engineer might suggest instead that the labeling at the plant be
improved.

14.13. Task and Human Error Analysis Techniques

TABLE 14.4
Typical error rates used for emergency situations.

Probability Activity

02-03 The general error rate given very high stress levels where
dangerous activities are occurring rapidly.

1.0 Operator fails to act correctly in first 60 seconds after the onset of
an extremely high stress condition.
Operator fails to act correctly in the first 5 minutes after the onset of
an extremely high stress condition.
Operator fails to act correctly in the first 30 minutes of an extreme
stress condition.
Operator fails to act correctly in the first several hours of a high
stress condition.

analyses, although care must be taken that the limitations and assumptions are
not violated.

Humans make errors, but they also often detect their errors and correct them
before they have a negative effect on the system state. If it is possible to recover
from an error in this way, the actual error rate for the task may be reduced by or-
ders of magnitude from the computed rate [172]. The probability of recovery de-
pends greatly on the cues available to the operator from the displays and controls
and from the plant in general. Bell and Swain suggest that the effects of recov-
ery factors in a sequence of actions not be considered until after the total system
success and failure probabilities are determined. These may be sufficiently low,
without considering the effects of recovery, so that the sequence does not rep-
resent a dominant failure mode. Sensitivity analyses (manipulating a particular
parameter to determine how changes to its value affect the final value) can also be
performed to identify errors that have a very large or very small effect on system
reliability.

Most of these probabilities do not apply to tasks under emergency condi-
tions, where stress is likely to be high. Analyses usually assume that the probabil-
ity of ineffective behavior during emergencies is much greater than during normal
processing. In general, exror probability goes down with greater response time.
For short response times, very little credit is normally given for operator action
in an emergency. Table 14.4 shows some typical error rates used for emergency
situations [172].

One other factor needs to be considered when computing or using these
numbers, and that is sabotage or deliberate damaging actions by the operator,
including suicide. Most of the available data on human behavior assumes that
the operator is not acting malevolently; instead it assumes that any intentional
deviation from standard operating procedures is made because employees believe
their method of operation to be safer, more economical, or more efficient, or
because they believe the procedure is unnecessary [22]. Ablitt, in a UK Atomic

355

Chapter 14. Hazard Analysis Models and Techniques

Energy Authority publication discusses the possibility of suicide by destruction
of a nuclear power plant:

The probability per annum that a responsible officer will deliberately attempt
to drop a fuel element into the reactor is taken as 1073 since in about 1000
reactor operator years, there have been two known cases of suicide by re-
actor operators and at least one case in which suicide by reactor explosion
was a suspected possibility. The typical suicide rate for the public in general
is about 10~ per year although it does vary somewhat between countries
(quoted in {172, p.411]).

Other human reliability estimation techniques have been proposed, although
THERP is probably the most widely used. A weakness of all these techniques,
as noted, is that they do not apply to emergency situations (very little data on
human errors in emergencies is available). If one accepts Rasmussen’s Skill-
Rule-Knowledge model, the error mechanisms embedded in a familiar, frequent
task and in an infrequent task will differ because the person’s internal control of
the task will be different [270]. Therefore, error rates obtained from general error
reports will not apply for infrequent responses.

Another weakness is that the techniques cannot cope with human decisions
and tasks that involve technical judgment. Factors other than immediate task and
environmental factors are also ignored.

Embrey [77] has suggested an approach to investigating human mistakes
linked to organizational weaknesses. His Goal Method relates the goals of an
operator responsible for specific equipment to the goals of the plant as a whole.
Hope and colleagues [126] say that this approach is helpful in training operating
teams, particularly for emergency situations.

Many of these human reliability assessment techniques were proposed and
the data collected before plants became highly automated, especially by comput-
ers. We are automating exactly those tasks that can be measured and leaving op-
erators with the tasks that cannot. Therefore, measurement of this type is bound
to be of diminishing importance.

Complex Control Tasks

The measurement approaches described in the previous section consider human
performance as a concatenation of standard actions and routines for which error
characteristics can be specified and frequencies determined by observing similar
activities in other settings. In such analyses, the task is modeled rather than the
person. Rasmussen and others argue that such an approach may succeed when
the rate of technological change is slow, but is inadequate under the current
conditions of rapid technological change [278].

Computers and other modern technology are removing repetitive tasks from
humans, leaving them with supervisory, diagnostic, and backup roles. Tasks can
no longer be broken down into simple actions; humans are more often engaged in
decision making and complex problem solving for which several different paths

14.14, Evaluations of Hazard Analysis Techniques

may lead (o the same result. Only the goal serves as a reference point when
Judging the quality of performance-—task sequence is flexible and very situation
and person specific. Analysis, therefore, needs to be performed in terms of the
oo.miaﬁ information processing activities related to diagnosis, goal evaluation,
priority setting, and planning—that is, in the knowledge-based domain.

From this viewpoint, performance on a task can no longer be assumed to
be at a relatively stable level of training. Learning and adaptation during perfor-
mance will have a significant impact on human behavior. If the models of be-
havior used do not merely consider external characteristics of the task but have
a significant cognitive component, then measurement (and, of course, design)
needs to be related to internal psychological mechanisms in terms of capabilities
and limitations {274]. If, as Rasmussen recommends, the concept of human er-
ror is replaced by human—task mismatch, then task actions cannot be separated
from their context. Rasmussen suggests that a FMEA can serve as a basis for
analysis of a2 human—task mismatch. Numbers for these models do not exist and
deriving them will be difficult, however, as the cognitive activities involved in
complex and emergency situations cannot easily be identified in incident reports.
Top-down analysis can also be used (and seems more promising) to relate critical
operator errors to cognitive human error models.

14.14 Evaluations of Hazard Analysis Techniques

Given the widespread use of hazard analysis techniques, the small amount of
careful evaluation is surprising. The techniques are often criticized as incomplete
and inaccurate, but this criticism is based on logical argument rather than on
scientific evaluation. Only a few critical evaluations of hazard analysis methods
have been performed, and most simply evaluate the structure of the methods.
Taylor, Suokas, and Rouhiainen, however, have actually performed empirical
evaluations.

Taylor applied HAZOP and AEA to two plants and compared the results.
with problems found during commissioning and a short operating period. HA-
ZOP found 22 percent and 80 percent of the hazards, while the corresponding
Mww_m__ﬁm for AEA were 60 percent and 20 percent for the two analyses evaluated

Suokas compared HAZOP to AEA, WSA, and accident investigations for
two gas storage and loading—unloading systems. HAZOP identified 77 contrib-
utors to a gas release. AEA and WSA found 23 additional factors not found by
HAZOP. When the results were quantified with fault trees, the contributors iden-
tified only by AEA increased the total frequency of gas release by 28 percent in
one system and by 38 percent in the other [327].

Suokas and Pyy evaluated four methods—HAZOP, FMEA, AEA, and
MORT--by collecting incident and accident information in seven process plants
and one accident database. They defined the search patterns and types of factors

357

358

Chapter 14. Hazard Analysis Models and Technigues

covered by the methods, and three groups evaluated which of the causal factors
the methods could have identified. HAZOP was the best, identifying 36 percent
of the contributors. However, only 55 percent of the contributors were expected
to be covered by the four methods [323, 322]. This result is particularly poor
given that the analysis involved only determining which factors could potentially
be identified by the methods—the number actually identified in any application
would be expected to be lower.

Many evaluations of the predictive accuracy of reliability estimates have
been done for individual instruments and components; these studies vary widely
in their results. In a reliability benchmark exercise, 10 teams from 17 organiza-
tions and from 9 European countries performed parallel reliability analyses on
a nuclear power plant primary cooling system. The purpose was to determine the
effect of differcnces in modeling and data. The ratio between the highest and low-
est frequencies calculated for the top event of the different fault trees was 36.
When a unified fault tree was quantified by different teams using what each con-
sidered to be the best data, the corresponding ratio was reduced to 9.

14.15 Conclusions

Many different hazard analysis techniques have been proposed and are used, but
all have serious limitations and only a few are useful for software. But whether
these techniques or more ad hoc techniques are used, we need to identify the
software behaviors that can contribute to system hazards. Information about these
hazardous behaviors is the input to the software requirements, design, and verifi-
cation activities described in the rest of this book.

Chapter

Software Hazard and
Requirements Analysis

Computers do not produce new sorts of errors. They merely provide
new and easier opportunities for making the old errors.

—Trevor Kletz
Wise After the Event

The vast majority of accidents in which software was involved can be traced to
requirements flaws and, more specifically, to incompleteness in the specified and
implemented software behavior—that is, incomplete or wrong assumptions about
the operation of the controlled system or required operation of the computer and
unhandled controlled-system states and environmental conditions. Although cod-
ing errors often get the most attention, they have more of an effect on reliability
and other qualities than on safety [80, 200].

This chapter describes completeness and safety criteria for software require-
ments specifications. The criteria were developed both from experience in build-
ing such systems and from theoretical considerations [135, 136} and, in essence,
are the equivalent of a requirements safety checklist for software. They can be
used to develop informal or formal inspection procedures or tools for automated
analysis of specifications. The criteria are general and apply to all systems, unlike
the application-specific safcty requirements identified in a system hazard analy-
sis. Both application-specific hazards and general criteria need to be checked—in
fact, one of the general criteria requires checking the application-specific hazards.

359

Chapter 15. Software Hazard and Requirements Analysis

Lutz applied the criteria experimentally in .nrnnwzmﬁ form to 192 safety-
critical requirements errors in the Voyager and Galileo spacecraft software. H._._nmm
errors had not been discovered until late integration and system test, m:.a theréfore
they had escaped the usual requirements <mnmn_mao= and software am::m. process
[201]. The criteria identified 149 of the errors. Any after-the-fact experiment of
this sort is always suspect, of course; no proof is offered :_m”. these errors Jzo:_a
have been found if the criteria had been applied to the 3@5«@.5@55 o_”_m:,m:v»
but the fact that they were related to so many real, safety-critical Re.EmEmEm
deficiencies is encouraging. It is not necessarily surprising, roim<wﬁ since most
of the criteria were developed using experience with critical errors, incidents, and
accidents in real systems.

Jaffe and colleagues have related the original criteria to a mmsonm._ state ma-
chine model of process control systems [136] that can be used to derive formal,
automated safety analysis procedures for specification Enmcmmmm. based on state
machines. This chapter describes additional criteria that were not included in ear-
lier papers. The criteria are described only informally here; readers are referred
to the research papers for a formal treatment.

15.1 Process Considerations

The software hazard analysis process will be influenced by ”rn.caana_ﬁcm acci-
dent model being used and its assumptions about the oozﬁccsoﬁw of ncnﬁc.aa
to accidents. Computers contribute to system hazards by mojﬁo_ﬂyzm the actions
of other components (including humans) either directly or indirectly. Ec:_m.sm are
controlled to some degree by providing the information to operators or designers
on which they base their decisions.)

In an energy or chain-of-events model of accidents, software contributes to
hazards through computer control of the energy sources, the release or flow of
energy, the barriers, or the events that lead to accidents. In a systems theory model
that assumes accidents arise from the interactions among ooBmo:m:?. software
contributes directly to safety through computer control of these interactions.

The tasks of the software safety process defined in Section 12.1.1 that relate

to software hazard analysis include:

1. Trace identified system hazards to the software—hardware interface. H_.m.sm.
late the identified software-related hazards into requirements and constraints
on software behavior.

2. Show the consistency of the software safety constraints with the software
requirements specification. Demonstrate the completeness of the software

1 Most of the unidentified errors involved design and thus were not the focus of the
checklist.

15.1. Process Considerations

requirements, including the human-computer interface requirements, with
respect to system safety properties.

The most direct way to accomplish the first step is with a top-down hazard
analysis that traces system hazards down to and into the subsystems. In this
type of analysis, the software-related hazards are identified and traced into the
software requirements and design. Currently, this goal is often accomplished by a
fault tree analysis down to the software interface.

In addition, because software can do more than what is specified in the re-
quirements (the problem of unintended function), the code itself must be analyzed
to ensure that it cannot exhibit hazardous behavior—that the code satisfies its re-
quirements (even if the required behavior is shown to be safe) is not enough. This
chapter looks at requirements analysis, while design and code analysis are de-
scribed in later chapters.

Software may also be the focus of a bottom-up subsystem hazard analysis.
The practicality of this analysis is limited by the large number of ways that
computers can contribute to system hazards. For example, a valve that has only
two or three relevant discrete states (such as open, closed, or partially open)
can be examined for the potential effects of these states on the system state.
Computers, however, can assume so many states, exhibit so many visible and
potentially important behaviors, and have such a complex effect on the system
that complete bottom-up system analyses are, in most cases, impractical.

Bottom-up analyses may have some uses for software, but probably not
for identifying software hazards. For example, some specific types of computer
failure and incorrect behavior can be analyzed in a bottom-up manner for their
effects on the system. In addition, forward analysis can examine (to some degree)
a specification of software behavior to make sure that the behavior cannot lead
to an identified hazard. To accomplish the latter, the software behavior must be
specified completely, and the specification language should have a rigorously
and unambiguously defined semantics and be readable by application experts
and the user community. If the specification and analysis is not readable and
reviewable by system safety and application experts, confidence in the results will
be lessencd.

Readability and reviewability will be enhanced by using languages that al-
low building models that are semantically close to the user’s mental model of the
system. That is, the semantic distance between the model in the expert’s mind and
the specification model should be minimized. In addition, reading the specifica-
tion or reviewing the results of an analysis should not require training in advanced
mathematics. Ideally, the specification language should reflect the way that engi-
neers and application experts think about the system, not the way mathemati-
cians do.

The second step of the process is to document the identified software be-
havioral requirements and constraints and to show that the software requirements

Chapter 15. Software Hazard and Requirements Analysis

specification satisfies them. This step also includes demonstrating the complete-
ness of the software requirements specification with respect to general system
safety properties. .,4

Most current software hazard and requirements analyses are ao_,a in an ad
hoc manner. Some more systematic approaches have been Eov.omna in research
papers, but they have not been validated in practice on real Een&m. <<.n do not
know at this point which ones, if any, will turn out to be useful and EQ:@EW them
here would meke this book obsolete almost immediately. Instead, this chapter
examines what needs to be accomplished in such an analysis.

15.2 Requirements Specification Components

Requirements specifications have three components: (1) a vm.mwn ?zomc.z or ob-
jective, (2) constraints on operating conditions, and (3) prioritized quality goals
to help make tradeoff decisions. .

The constraints define the range of conditions within which the mv\m@ﬁ may
operate while achieving its objectives. They are :.9 part of 9.0 oc.u.moaém“ Ewﬁwa,
they limit the set of acceptable designs to achieve the o.EmQQm.m. .Oo:m:.m::m
arise from quality considerations (including safety), physical _.E.Em:oum of the
equipment, equipment performance considerations (such as m<oa:.~m .o<m_._omn of
equipment in order to reduce maintenance), and process characteristics (such as
limiting process variables to minimize production of _uvﬁnom:oﬂm.v.)

Safety may be and often is involved in both functionality requirements
and constraints. In an airborne collision avoidance system, for QSE.EP the
basic mission—to maintain a minimum physical separation between aircraft—
obviously involves safety. There are also safety-related nncm:mwamlwmoa example,
the surveillance part of the system must not in any way ES_,?R with the radars
and message communication used by the ground-based air traffic control (ATC)
system; the system must operate with an acceptably low level of :.35_:3 &w:.:m
(advisories to the pilot); and the deviation of the aircraft from their >H0.mm.m~m.=oa
tracks must be minimized. These constraints are not part of the system mission;
in fact, they could most easily be accomplished by not UE.EEW the system at all.
Rather, they are limitations on how such a collision avoidance system may be
realized.

Goals and constraints often conflict. Early in the development process, trade-
offs among functional goals and constraints must be Emzamn.m and Rmo_.<ma ac-
cording to priorities assigned to each. We are most interested in the conflicts and
tradeoffs involving safety goals and constraints and in how mamacmn.o_% these goals
and constraints are rcalized in the actual requirements. Goals are _:wﬂ :z:.|5m%
may not be completely achievable. Part of the safety process is to identify not
only conflicts, but safety-related goals for the software that cannot be 8:6_2.«_%
achieved. Decisions can then be made about how to protect the &@83 using
means other than the software or about the acceptability of the risks if no other

15.3. Completeness in Requirements Specifications

means exist, There is no formal or automated technique for this process; it re-
quires the cooperation and joint efforts of the system and software engineers in
applying their own expertise and Jjudgment.

15.3 Completeness in Requirements Specifications

The most important property of the requirements specification with respect to
safety is completeness or lack of ambiguity. The desired software behavior must
have been specified in sufficient detail to distinguish it from any undesired pro-
gram that might be designed. If a requirements document contains insufficient
information for the designers to distinguish between observably distinct behav-
ioral patterns that represent desired and undesired (or safe and unsafe) behavior,
then the specification is ambiguous or incomplete [135, 136].

The term “completeness” here is not used in the mathematical sense, but
rather in the sense of a lack of mEEm::v\. from the application perspective: The
specification is incomplete if the system or software behavior is not specified
precisely enough because the required behavior for some events or conditions is
omitted or is ambiguous (is subject to more than one interpretation).

If the behavioral difference between two programs that satisfy the same re-
quirements is not significant for a subset of the requirements or constraints, such
as those related to safety, then the ambiguity or incompleteness may not matter,
at least for that subset: The specification is sufficiently complete. A set of require-
ments may be sufficiently complete with respect to safety without being abso-
lutely complete: The requirement specification must simply be complete enough
that it specifies safe behavior in all circumstances in which the system is to op-
erate. Absolute completeness may be unnecessary and uneconomical for many
situations.

Sufficient completeness, as defined here, holds only for a particular system
and environment. The same specification that s sufficiently complete for one sys-
tem may not be sufficiently complete for another. Therefore, software built from
a sufficiently complete, but not absolutely complete, requirements specification
may not be safe when rcused in a different system. If the software is to be reused,
either the specification must be absolutely complete (probably impossible in most
cases) or a further requirements analysis is necessary.

The rest of this chapter defines criteria for completeness of software require-
ments specifications. Software requirements for the human-computer interface
are no different than other requirements and are included in the completeness
criteria described here. The criteria themselves (especially those for the human—
computer interface) are not complete themselves and do not constitute the only
checks that should be made. But they are useful in detecting incompleteness that
is assoctated with hazards and accidents. In a sense, they represent a starting point
for a safety checklist for requirements specification to which additions may be
made as we discover the necessity.

363

364

Chapter 15. Software Hazard and Requirements Analysis

Many types of incompleteness are application dependent and must be iden-
tified using system hazard analysis or top-down analysis. Jaffe notes that in any
application, at any given point in time, there is a set of kernel requirements that >
derive from current knowledge of the needs and environment of the applica-
tion itself [135). These kernel requirements are analytically independent of one
another_—the need for the existence of any one of them cannot be determined
from the existence of the others. For example, an autopilot program may or may
not control the throttle along with the aerodynamic surfaces.

Without knowledge of the intent of the application, there can be no way to
ascertain whether a particular requirements specification has a complete set of
kernel requirements. This type of incompleteness must be identified by system
engineering techniques that include modeling and analysis of the entire system
with respect to various desired properties (such as safety). In other words, any
safety implications of such incompleteness must be identified using system haz-
ard analysis (as described, for example, in Section 14.12) rather than the type of
subsystem hazard analysis described in this chapter. ,

On the other hand, subsystem hazard analysis applied to requirements can
detect incompletely specified kernel requirements. In addition, this type of analy-
sis, involving rigorous examination of the specified software behavior, may also
be able to detect some genuine functionality inadvertently omitted during the sys-
tem engineering process. For example, a specification that includes a requirement
to generate an alert condition to tell an air traffic controller that an aircraft is too
low is probably incomplete unless it also includes another requirement to inform
the controller that an aircraft previously noted as too low is now back at a safe
altitude [135]. Safety and robustness considerations can be exploited to develop
application-independent criteria for detecting such incompleteness.

15.4 Completeness Criteria for Requirements Analysis

A requirements specification describes the required black-box behavior of the
component. Although design information is sometimes included in software re-
quirements specifications, the safety analysis described here is concerned only
with the black-box behavior of the software, which is the only aspect of the speci-
fication that can directly affect system hazards. Design analysis is covered in later

chapters.
The requirements specification defines the function to be implemented by

the computer. A description of any process control function uses as inputs

o The current process state inferred from measurements of the controlled
process variables

a Past process states that were measured and inferred

o Past corrective actions (outputs) that were issued by the controller

o Prediction of future states of the controlled process

15.4. Completeness Criteria for Requirements Analysis 365

Disturbances

ﬁ \

— Process options

Process inputs —*
Controlled Process

Controlled
variables

Measured
variables

Actuators Sensors

Controller

Internal model
of process

ﬂ

Set points, control aigorithms

FIGURE 15.1
A black-box ﬂmn:.:mamam specification captures the controller's internal model of
the process. Accidents occur when the internal model does not accurately reflect
the state of the controlled process.

and produces the corrective actions (or current outputs) needed to achieve the
process goals while satisfying the constraints on its behavior.

In this chapter, the control function is described using a state machine
model. State machines are convenient models for describing computer behavior,
and many specification languages use these models. The criteria are described
here in terms of the components of a state machine model, but they could be
translated to other models or applied to informal requirements specifications.

A state machine is simply a model that describes a system in terms of states
and the transitions between the states. State machines are defined in Section 14.12
and an example is shown in Figure 14.11. The controller outputs to actuators are
associated with state changes in the model, which are triggered by measurements
of process variables (see Figure 15.1).

Theoretical control laws are defined using the true values of the process
state. At any time, however, the controller has only measured values, which may

Chapter 15. Software Hazard and Regquirements Analysis

be subject to time lags®> or measurement inaccuracies. The controller must use
these measured values (o infer the true state of the process and to determine
the corrective actions necessary to maintain certain desirable properties in the
controlled system. Considering the problems of measurement error and time lags
is cssential in developing safe control software.

A state machine model is an abstraction. As used here, it models the view
of the process maintained by the computer (the internal model of the process),
which is necessarily incomplete (Figure 15.1). Hazards and accidents can resuit
from mismatches between the software view of the process and the actual state
of the process—that is, the model of the process used by the software gets out of
synch with the real process. For example, the software does not think the tank is
full and therefore does not stop the flow into the tank, or it does not know that the
plane is on the ground and raises the landing gear.

The mismatch occurs because the internal model is incorrect or incomplete
or the computer does not have accurate information about the process state. For
example, the model may not include a check for the proper process conditions be-
fore doing something hazardous—a check for weight on wheels is not included
on the state transition associated with the output to raise the landing gear. Al-
ternatively, the check may be included, but the computer may not have correct
information about the current state of the plane.

Safety then depends on the completeness and accuracy of the software (in-
ternal) model of the process. A state machine specification of requirements ex-
plicitly describes this model and the functions performed by the software. The
goal of completeness analysis basically is to ensure that the model of the process
used by the software is sufficiently complete and accurate that hazardous process
states do not occur. Completeness criteria are defined for each of the state ma-
chine parts: the states, the transition (triggering) events, the inputs and outputs,
and the relationship betwcen the transition events and their related outputs.

Completeness requires that both the characteristics of the outputs and the
assumptions about their triggering events be specified:

trigger == output

In response to a single occurrence of the given stimulus or trigger, the program
must produce only a single output set. A black-box statement of behavior allows
statements and observations to be made only in terms of outputs and the exter-
nally observable conditions or events that stimulate or trigger them (the triggers
for short). In terms of the state machine, this restriction means that both the states
and the events on the transitions must be externally observable.

Not only must the output be produced given a particular trigger, but it must
not be produced without the trigger:

trigger <= output

2 Time lags are dclays in the system caused by sensor polling intervals or by the reaction
time of the sensors, actuators, and the actual Process.

15.4. Completeness Criteria for Requirements Analysis

A complete trigger specification must include all conditions that trigger the out-
put, that is, the set of conditions that can be inferred from the existence of an
output. Such conditions represent assumptions about the environment in which
the program or system is to execute.

The next sections informally describe what is required for a complete spec-
ification of the triggers and outputs and the other parts of a black-box state
machine model of software behavior. Most of this discussion is taken from

Jaffe [135].

15.4.1 Human-Computer Interface Criteria

The human—computer interface has many possible completeness criteria. These
criteria can be framed in terms of high-level abstractions applicable to this in-
terface. Jaffe suggests that an alert gueue, for example, is an abstraction with
completeness criteria related to alert review and disposal, automatic reprioritiza-
tion, and deletion [135]. An alert queue is an abstraction external to the computer
and thus appropriate for a black-box requirements specification. Some mmﬁog.
ate human—computer abstractions and completeness criteria are presented in this
chapter, but the essential requirements needed for other such abstractions can and
should be developed.

For human—computer interface queues in general, the requirements specifi-
cation will include

Specification of the events to be queued

Specification of the type and number of queues to be provided (such as alert
or routine)

Ordering scheme within the queue (priority versus time of arrival)

Operator notification mechanism for items inserted in the queue

Operator review and disposal commands for queue entries

Queue entry deletion

A second important abstraction for the human—computer interface is a trans-
action, which may have multiple events associated with it. Multiple-cvent trans-
actions require additional completeness criteria such as those to deal with pre-
emption in the middle of a transaction.

Often, requirements are needed for the deletion of requested information. An
air traffic controller, for example, may request certain graphic information such
as the projected path of a trial maneuver for a controlled aircraft. A complete re-
quirements specification needs to state when the trial maneuver graphics m.__o:E
disappear. Some actions by the operator should leave this trial maneuver display
untouched (such as retrieving information from the aircraft’s flight plan to evalu-
ate the trial maneuver) while other actions should delete the transient information
without requiring a separate clearing action (such as operator signoff).

In general, Jaffe identifies three questions that must be answered in the
requirements specification for every data item displayable to a human:

368

Chapter 15. Software Hazard and Requirements Analysis

1. What events cause this item to be displayed?

2. Can and should the display of this item ever be updated once it is displayed?
If so, what events should cause the update? Events that trigger updates
may be

- External observables

« The passage of time

« Actions taken by the viewing operator

« Actions taken by other operators (in multiperson systems)
3. What events should cause this data display to disappear?

In addition to data, the computer may control the labels (such as menus or
software-labeled keys or buttons) associated with operator actions. Not only can
these labels change, but the software may be responsible for such things as high-
lighting a recommended action or deleting labels for actions that are unavailable
or prohibited under current conditions. Failure to specify all circumstances un-
der which data items or operator-action entry labels should change is a common
cause of specification incompleteness for the human-—computer interface and a
potential source of hazards.

Specific criteria for these human—computer interface requirements are inte-
grated into appropriate sections of this chapter.

15.4.2 State Completeness

The operational states will, of course, be specific to the system. But in gen-
eral, these states can be separated into normal and non-normal processing modes
(where modes are just groups of states having a common characteristic), and
completeness criteria can be applied to the transitions between these modes.

o The system and software must start in a safe state. Interlocks should be
initialized or checked to be operational at system startup, including startup
after temporarily overriding interlocks.

Transitions from normal operation to non-normal operation are often associ-
ated with accidents. In particular, when computers are involved, many accidents
and failures stem from incompleteness in the way the software deals with startup
and with transitions between normal processing and various types of partial or
total shutdown.

o The internal software model of the process must be updated to reflect the
actual process state at initial startup and after temporary shutdown.

Unlike other types of software, such as data processing software, an im-
portant consideration when developing software for process control is that the
process continues to change state even when the computer is not executing. The
correct behavior of the computer may depend on input that arrived before startup;
what to do about this input must be included in the specification. Serious acci-
dents have occurred because software designers did not consider state changes

15.4. Completeness Criteria for Requirements Analysis

while the system was in a manual mode and the computer was temporarily off-
line. In one such accident in a chemical plant, described in Chapter 1, the com-
puter was controlling the valves on pipes carrying methanol between the plant
and a tanker, and a pump was stopped manually without the computer knowing
it. A similar accident occurred in a batch chemical reactor when a computer was
taken off-line to modify the software [158]. At the time the computer was shut
down, it was counting the revolutions on a metering pump that was feeding the
reactor. When the computer came back on-line, it continued counting where it
had left off, which resulted in the reactor being overcharged.

a All system and local variables must be properly initialized upon startup,
including clocks.

There are two startup situations: (1) initial startup after complete process
shutdown and (2) startup after the software has been temporarily off-line but the
process has continued under manual control. In both the initial startup and after
temporary computer shutdown, the internal clock as well as other system and
local variables will need to be initialized. In addition, the second case (where only
the computer has been shut down) requires that the internal model of the process
used by the software be updated to reflect the actual process state; the variables
and status of the process, including time, will probably have changed since the
computer was last operational.

A number of techniques are used for this resynchronization. Message serial-
ization (numbering the inputs), for example, is a commonly used technique that
can detect “lost” information and indicate potential discontinuities in software
operations. Another technique often used involves checking elapsed time between
apparently successive inputs by means of a self-contained timestamp in each in-
put (requiring clock synchronization) or via reference to a time-of-day clock upon
the receipt of each input.

a The behavior of the software with respect to inputs received before startup,
after shutdown, or when the computer is temporarily disconnected from
the process (off-line} must be specified, or it must be determined that this
information can be safely ignored, and this conclusion must be documented.

If the hardware can retain a signal indicating the existence of an input after.
computer shutdown and prior to startup, the program has two startup states—the
input is present or is not present—and at least two separate requirements must be
specified: one for startup when there is indication of a prior input signal and one
when there is not.

In the case of inputs that occur before program startup, the time of that input
ot the number of inputs is not obscrvable by the software, but one or some of the
inputs may be available to the computer after startup. Which inputs are retained
is hardware dependent: Some hardware may retain the first input that arrived,
some the most recent, and so on. To avoid errors, systems where the ordering
of incoming data is important must include requirements to handle pre-startup
mputs.

36

9

AR e

370

Chapter 15. Software Hazard and Requirements Analysis

o The maximum time the computer waits before the first input must be specified.

Any specification for a real-time system should also include requirements to
detect a possible disconnect occurring prior to program startup vQﬁow: the com-
puter and the sensors or the process. After program startup, there should be some
finite limit on how long the program waits for an input before it tries various alter-
native strategies—such as alerting an operator or shifting to an open-loop control
mechanism that does not use the absent input. This criterion is very similar to
a maximum-time-between-events criterion (discussed later), but it applies to the
absence of even the first input of a given type. Even if the maximum time between
events is checked, the special case of the first such interval after startup is often
omitted or handled incorrectly. There may (and in general will) be a series of in-
tervals dy, da, . . . during which the program is required to attempt various ways
of dealing with the lack of input from the environment, Eventually, however, there
must be some period after which, in the absence of input, the conclusion must be
that a malfunction has occurred.

a Paths from fail-safe (partial or total shutdown) states must be specified. The
time in a safe but reduced-function state should be minimized.

a Interlock failures should result in the halting of hazardous functions.

The software may have additional non-normal processing modes such as
partial shutdown or degraded operation. More completeness criteria for some of
these mode transitions are described later.

The normal processing states may also be divided into subsets or modes
of operation, such as an aircraft taking off, in transit, or landing. For safety
analysis, the states may be partitioned into hazardous and nonhazardous modes
with different completeness criteria applied to each.

o There must be a response specified for the arrival of an input in any state,
including indeterminate states.

Completeness considerations require that there be a software response to the
arrival of an input in any state, including the arrival of unexpected inputs for that
state. For example, if an output is triggered by the receipt of a particular input
when a device is in state oN, the specification must also handle the case where
that input is reccived and the device is in state oFF. In addition, not being in
state ON is not equivalent to being in state OFF, since the state of the device may
be indeterminate (to the computer) if no information is available about its state.
Therefore, a requirement is needed also to deal with the case when the input is
received and the computer does not know if the device is ON or OFF.

Many software problems arise from incomplete specification of state as-
sumptions. As an example, Melliar-Smith reports a problem detected during an
operational simulation of the Space Shuttle software. The astronauts attempted
to abort the mission during a particular orbit, changed their minds and canceled
the abort atlempt, and then decided to abort the mission after all on the next or-
bit. The software got into an infinite loop that appears to have occurred because
the designers had not anticipated that anyone would ever want to abort twice on

15.4. Completeness Criteria for Requirements Analysis

the same flight [235]. Another example involves an aircraft éom@ozm management
system that attempts to keep the load even and the plane flying level by balanced
dispersal of weapons and empty fuel tanks [235]. One of the early EOEmEm was
that even if the plane was flying upside down, the computer would still drop a
bomb or a fuel tank which then dented the wing and no:..wa off. In yet another
incident, an aircraft was damaged when the computer raised :.w landing gear
in response to a test pilot’s command while the aircraft was standing on the run-
way [235]. . .

In some cases, there really is no requirement to respond to a given input
except in a subset of the states. But an input arriving unexpectedly is often an
indication of a disconnect between the computer and the other components of the
system that should not be ignored. For example, 2 ::.moﬁ. mnﬁnc.sow am.@on from a
radar that previously was sent a message to shut moé.: wm an Ea_ow.:.ud that &o
radar did not do so, perhaps because its detection logic is .E&?:QE:E.@ :.. in
fact, the unexpected input is of no significance, the En::d.BmEm mwno_momso.c
should still document the fact that all cases have been nosm.ammma and that this
case truly can be ignored (perhaps by specifying a “do nothing” response to the
input).

15.4.3 Input and Output Variable Completeness

The inputs and outputs represent the information the sensors can provide to the
software (the controlled variables) and the commands that the mon.;\mao can pro-
vide to the actuators (o change the manipulated variables). These input and out-
put variables and commands must be rigorously defined in the documentation.
At the black-box boundary, only time and value are observable by the soft-
ware. Therefore, the triggers and outputs must be defined oz_.v\ as constants or as
the value and time of observable events or conditions. Events include program in-
puts, prior program outputs, program startup (a unique observable event for each
execution of a given program), and hardware-dependent n.<m=a such as power-
out-of-tolerance interrupts. Conditions may be expressed in terms o,m the value
of hardware-dependent attributes accessible by the software such as time-of-day
clocks or sense switches. '

o All information from the sensors should be used somewhere in the specifi-
cation.

If information from the sensors is not used E.Em ﬂnEREnEm, :_QM 1s .Mma\
likely to be an important omission from the specification. In owrnn wor mm 1 :m:
input can be sent to the computer, there should be some specification of what
should be done with it.

o Legal output values that are never produced should be checked for potential
specification incompleteness.

As with inputs, an important requirement for softwarc vmrmsg Emw :»Mm
been forgotten if there is a legal value for an output that is never produced.

3

7

1

e

372

Chapter 15, Software Hazard and Requirements Analysis

For example, if an output can have values open and close and the requirements
specify when to generate an 0PEN command but not when to generate CLOSE, the
specification is almost certainly incomplete. Checking for this property may help
to locate specification omissions.

15.4.4 Trigger Event Completeness

The behavior of the control subsystem (in our case, the computer) is defined with
respect to assumptions about the behavior of the other parts of the system—the
conditions in the other parts of the control loop or in the environment in which
the controller operates. A robust system will detect and respond appropriately to
violations of these assumptions (such as unexpected inputs). By definition, then,
the robustness of the software built from the specification depends upon the com-
pleteness of the specification of the environmental assumptions—there should
be no observable events that leave the program’s behavior indeterminate. These
events can be observed by the software only in terms of trigger events, and thus
completeness of the environmental assumptions is related to the completeness of
the specification of the trigger events and the response of the computer to any
potential inputs.

Documenting all environmental assumptions and checking them at runtime
may seem expensive and unnecessary. Many assumptions are based on the phys-
ical characteristics of input devices and cannot be falsified even by unexpected
physical conditions and failures. For example, an input line connected to a 1200-
baud modem cannot fail in a way that causes the data rate to exceed 1200 baud.
The interrupt signal may stick high (on), but for most modern hardware, that
will stop data transfer, not accelerate it. If the environment in which the pro-
gram executes ever changes. however, the assumption may no longer be valid;
the 1200-baud modem may be upgraded to 9600 baud, for example. Similarly, if
the software is ever reused, the environment for the new program may differ from
that of the earlier use. Examples were provided in Chapter 2 of problems arising
from the reuse of software in environments different from that for which it was
originally built.

In addition to being documented, critical assumptions—those where the im-
proper performance of the software can have severe consequences—should be
checked at runtime. Examples abound of accidents resulting from incomplete re-
quirements and nonrobust software. For example, an accident occurred when a
military aircraft flight control system was intentionally limited in the range of
control (travel) by the software because it was (incorrectly) assumed that the air-
craft could not get into certain attitudes.

Even when real-time response is not required, it is important that the soft-
ware or hardware log violations of assumptions for off-line analysis. A hole in
the ozone layer at the South Pole was not detected for six years because the ozone
depletion was so severe that a computer analyzing the data had been suppressing
it, having been programmed to assume that deviations so extreme must be sensor

15.4. Completeness Criteria for Requirements Analysis

crrors [96]. Detecting errors early, before they lead to accidents, is obviously a
desirable goal.

15.4.4.1 Robustness Criteria

o To be robust, the events that trigger state changes must satisfy the Jollowing:
L. Every state must have a behavior (transition) defined for every possible
input.
2. The logical oRr of the conditions on every transition out of any state
must form a tautology.
3. Every state must have a software behavior (transition) defined in case
there is no input for a given period of time (a timeout).

A tautology is a logically complete expression. For example, if there is a
requirement on a transition that the value of an input be greater than 7, then
a tautologically complete specification would also include transitions from that
state when the input is less than 7 and equal to 7.

These three criteria together guarantee that if there is a trigger condition
for a state to handle inputs within a range, there will some transition defined to
handle data that is out of range. There will also be a requirement for a timeout
that specifies what to do if no input occurs at all.

The use of an OTHERWISE clause (in specification languages that permit this)
is not appropriate for safety-critical systems. Jaffe writes:

It was always tempting to guarantee the appropriate level of completeness at
any given point by just adding an “otherwise, do nothing” requirement. But
the more complex the situation, the more likely it is that there will be some
interesting case concealed within the “otherwise.” It is better to explicitly
delineate exactly what cases provide the “otherwise” condition and then
check for tautological completeness [135).

15.4.4.2 Nondeterminism

Another restriction can be placed on the transition events (o require deterministic
behavior:

o The behavior of the state machine should be deterministic (only one possible
transition out of a state is applicable at any time).

Consider the case where the conditions on two transitions are that (1) the
value of the input is greater than zero and (2) the value of the input is less
than 2. If the input value is 1, then both transitions could be taken, leading to
nondeterministic behavior of the software with respect to the requirements. The
problem is eliminated by forcing all transitions out of a state to be disjoint (two
transition conditions can never be true at the same time).

Although a specification does not have to be deterministic to be safe, non-
determinism greatly complicates safety analysis and may make it impractical to

373

Chapter 15. Software Hazard and Requirements Analysis

perform thoroughly. Moreover, software to control the operation of many haz-
ardous systems should be repeatable and predictable. Deterministic behavior aids
in guaranteeing hard real-time deadlines; in analyzing and predicting the behavior
of software; in testing the software; in debugging and troubleshooting, Eo:m:::m
reproducing test conditions and replicating operational events; and in allowing
the human operator to rely on consistent behavior (an important factor in the de-
sign of the human—-machine interface).

15.4.4.3 Value and Timing Assumptions

Ensuring that the triggers in the requirements specification satisfy the previous
four criteria is necessary, but it is not sufficient for trigger event completeness.
The criteria ensure that there is always exactly one transition that can be taken out
of every state, but they do not guarantee that all assumptions about the environ-
ment have been specified or that there is a defined response for all possible input
conditions the environment can produce. Completeness depends upon the amount
and type of information (restrictions and assumptions such as legal range) that is
included in the triggers. The more assumptions about the triggers included, the
more likely that the four above criteria will ensure that the requirements include
responses to unplanned events.

Many assumptions and conditions are application dependent, but some types
of assumptions are essential and should always be specified for all inputs to
safety-critical systems. In real-time systems, the times of inputs and outputs are

as important as the values. Digital flight control commands to ailerons, for exam-
ple, may be dangerous if they do not arrive at exactly the right time: Flutter and
instability (which can and do lead to the loss of the aircraft) result from improp-
crly timed control movements, where the difference between proper and improper
timing can be a matter of milliseconds [135]. Therefore, both value and time are
required in the characterization of the environmental assumptions (triggers) and
in the outputs.

Essential Value Assumptions

Value assumptions state the values or range of values of the trigger variables
and events. An input may not require a specification of its possible values. A
hardwired hardware interrupt, for example, has no value, but it may still trigger
an output. When the value of an input is used to determine the value or time of an
output, the acceptable characteristics of the input must be specified, such as range
of acceptable values, set of acceptable values, or parity of acceptable values.

o All incoming values should be checked and a response specified in the event
of an out-of-range or unexpected value.

As noted carlier, even where an assumption is not essential, it should be
specified and checked whenever possible (whenever it is known) because the re-
ceipt of an input with an unexpected value is a sign that something in the en-

15.4. Completeness Criteria for Requirements Analysis

vironment is not behaving as the designer anticipated. Checking simple value
assumptions on inputs is comparatively incxpensive. Since failure of such as-
sumptions is an indication of various reasonably common hardware malfunctions
or of misunderstanding about software requirements, it is difficult to envision an
application where the specification should not require robustness in this regard—
incoming values should have their values checked, and there should be a specified
response in the event an unexpccted value is received.

Some input values represent information about safety interlocks. These al-
ways need to be checked for values that may indicate failure and appropriate
action taken.

Essential Timing Assumptions

The need for and importance of specifying timing assumptions in the software
requirements stem from the nature and importance of timing in process control,
where timing problems are a common cause of runtime failures. Timing is often
inadequately specified for software. Two different timing assumptions are essen-
tial :W the requirements specification of triggers: timing intervals and capacity or
load.

Timing Intervals. While the specification of the value of an event is usual but
optional, a timing specification is always required: The mere existence of an ob-
servable event (with no timing specification) in and of itself is never sufficient—at
the least, inputs must be required to arrive after program startup (or to be handled
as described previously).

o All inputs must be fully bounded in time, and the proper behavior specified
in case the limits are violated or an expected input does not arrive.

Trigger specifications include either the occurrence of an observable signal
(or signals) or the specification of a duration of time without a specific signal.
Both cases need to be fully bounded in time or a capacity requirement is neces-
sary.

The arrival of an input at the black-box boundary has to include a lower
bound on the time of arrival and will, in general, include an upper bound on the
interval in which the input is to be accepted. Requirements dealing with input
arriving outside the time interval and the nonexistence of an input during a given
interval (a duration of time without the expected signal) also have to be defined.
The robustness criteria will ensure that a behavior is specified in case the time
limits are violated.

The acceptable interval will always be bounded from below by the time of
the event that brought the machine to the current state. Some other lower bound
may be desirable, but the limit must always be expressed in terms of previous,
observable events.

3 Load here refers to a rate, whereas capacity refers to the ability to handle that rate.

Chapter 15. Software Hazard and Requirements Analysis

Even requirements such as “The event / shall occur at 11:00 a.m.” are am-
biguous. The value of the time of 7 is the value of the reference clock:observed
“simultaneously” with the occurrence of /. Conceptually, the clock is ticking at
the rate of one tick per unit of temporal precision. In general, I will occur be-
tween two ticks of any clock, no matter how frequent the ticks. Therefore, to say
that it must occur exactly at 11:00 a.m. is meaningless unless the specification
also states what clock is to be used. Even then, the time cannot be known more
precisely than the granularity of the clock. Concrete discussion of specific clocks
should be avoided in a software requirements specification; all that is really nec-
essary to know is the required precision of the clock. Translating this precision
into an attribute of the input results in a requirement with bounding inequalities
rather than an equality, such as 10:59 A.M. < time({) < 11:01 AM. (commonty
written as fime(I) = 11:00 A.M. £ 1 min), which specifies an accuracy of plus or
minus a minute on the timing.

a A trigger involving the nonexistence of an input must be fully bounded in
time.

For requirements that involve the nonexistence of a signal during a given
interval, both ends of the interval must be either bound by or calculable from
observable events. Informally, there must be an upper bound on the time the pro-
gram waits before responding to the lack of a signal. There must also be a specific
time to start timing the lack of inputs or an infinite number of intervals (and thus
outputs) will be specified. For example, a requirement of the type “If there is no
input I for 10 seconds, then produce output O” is not bound at the lower end of
the interval and is therefore ambiguous. Should the nonexistence interval start at
time ¢, at 7 + €, t + 2¢, . .. ? An example of a complete specification might be
“If there is no input I; for 10 seconds after the receipt of the previous input /I,
then produce output O.” The observable event need not occur at either end of the
interval—the ends need only be calculable from that event, such as “There is no
input for 5 sec preceding or following event E.”

Capacity or Load. In an interrupt-driven system, the count of unmasked input
interrupts received over a given period partitions the computer state space into at
least two states: normal and overloaded. The required response to an input will
differ in the two states, so both cases must be specified.

Failures of critical systems due to incorrectly handled overload conditions
are not unusual. A bank in Australia reportedly lost money from the omission of
proper behavior to handle excessive load in an automated teller machine (ATM)
[266]. When the central computer was unable to cope with the Joad, the ATMs
dispensed cash whether or not the customer had adequate funds to cover the with-
drawal. Failure to handle the actual load, although annoying to customers, would
not by itself have caused as much damage as that resulting from the lack of an
explicit (and reasonable) overload response behavior. Much more serious con-
sequences resulted from the failure of a London ambulance dispatching system
in 1992 under an overload condition |68]. According to reports, neither of these

15.4. Completeness Criteria for Requirements Analysis

systems had been tested under a full load, and each, obviously, had inadequate
responses to a violation of the load assumptions.

Although inputs from human operators or other slow system components
may normally be incapable of overloading a computer, various malfunctions can
cause awnnmm?ﬁ spurious inputs and so they also need a load limit specified. In
one accident, an aircraft went out of control and crashed when a mechanical mal-
function in a fly-by-wire flight control system caused an accelerated environment
that the flight control computer was not programmed to handle [88]. Robustness
requires specifying how to handle excessive inputs and specifying a load limit for
such inputs as a means of detecting possible external malfunctions,

o A minimum and maximum load assumption must be specified for every
interrupt-signaled event whose arrival rate is not dominated (limited) by
another type of event.

In general, inputs to process control systems should have both minimum

and maximum load assumptions for all interrupt-signalled events whose arrival
rate is not dominated by another type of event, If interrupts cannot be disabled
.Qoow& out) on a given port, then there will always be some arrival rate for an
interrupt signaling an input that will overload the physical machine. Either the
machine will run out of CPU resources as it spends execution cycles responding
to the interrupts, or it will run out of memory when it stores the data for future
processing. Both hardware selection and software design require an assumption
about the maximum number of inputs N signaled within an interval of time d, so
this information should be in the requirements specification.
. Multiple load assumptions are meaningful although not necessarily required
in any given case. For example, the load could be 4 per second but not more
than 7 in any two seconds nor more than 13 in four seconds, and so on. One
load assumption is required; multiple assumptions may derive from application-
specific considerations. Multiple loads can also be assumed for a given input
based on additional data characteristics, such as not more than 4 inputs per second
when the value of input 7 is greater than 8, but not more than 3 per second when
1 is greater than 20.

a A minimum-arrival-rate check by the software should be required for each
physically distinct communication path. Software should have the capacity
to query its environment with respect to inactivity over a given communica-
tion path.

. .> load assumption with N equal to 1 is the same as an assumption on the
minimum time between successive inputs. Robustness requires the specification
of a minimum arrival rate assumption for most, if not all, possible inputs since
indefinite, total inactivity by any real-world process is unlikely. Robust software
should be able to query its environment about inactivity over a given communi-
cation path. Requirements of this type lead to the use of sanity and health checks
in the software, as described in Chapter 16.

378

Chapter 15. Softwa¥e Hazard and Requirements Analysis

Where interrupts can be masked or disabled, the situation is more compli-
cated. If disabling the interrupt can result in a “lost” cvent (depending on the
hardware, the duration of the lockout, and the characteristics of the dévice at the
other end of the channel), the need for a load assumption will depend on how
the input is used. If the number of inputs / is completely dominated by (depen-
dent on) the number of inputs of a different type, then a load assumption for [is

not needed. o
Even if a particular statistical distribution of arrivals over time is assumed

and specified, a load limit assumption is still required. Assuming that the arrival
distribution fits a Poisson distribution, for example, does not preclude the pos-
sibility, no matter how improbable, of it exceeding a given capacity. If capacity
is exceeded, there must be some specification of the ways that the system can
acceptably fail soft or fail safe.

o The response to excessive inputs (violations of load assumptions) must be
specified.

The requirements for dealing with overload generally fall into one of five
classes:

1. Requirements to generate warning messages.

2. Requirements to generate outputs to reduce the load (messages to external
systems to “slow down”).

. Requirements to lock out interrupt signals for the overloaded channels.

. Requirements to produce outputs (up to some higher load limit) that have

reduced accuracy or response time requirements or some other characteristic

that will allow the CPU to continue to cope with the higher load.

Requirements to reduce the functionality of the software or, in extreme

cases, to shut down the computer or the process.

F

W

The first three classes are handled in an obvious way. The behavior in the
fourth and fifth classes (commonly called performance degradation and function
shedding) should be graceful—that is, predictable and not abrupt.

o If the desired response to an overload condition is performance degrada-
tion, the specified degradation should be graceful and operators should be
informed.

Abrupt or random (although bounded) degradation often needs to be
avoided. Certainly for operator feedback, predictability is preferable to variabil-
ity, at least within limits, even if the cost is a slight increase in average response
time {84]. For safety considerations, however, as discussed in Chapters 6 and 17,
when the program changes to a degraded performance mode or the computer is
compensating for extreme or non-normal conditions, the operator should always
be informed. Additional action may be required, such as disabling or requesting
resets of busy interfaces or recording critical parameters for subsequent analysis.

15.4. Completeness Criteria for Requirements Analysis

g Iffunction shedding or reconfiguration is used, a hysteresis delay and other
checks must be included in the conditions required to return to normal pro-
cessing load.

Once a state of degraded performance has been entered, a specification of
the conditions required to return to a normal processing mode, including a hys-
teresis delay, is necessary. After detecting a capacity violation, the system must
not attempt to return to the normal state too quickly; the exact same set of cir-
cumstances that caused it to leave may still exist. For example, assume that the
event that caused the state to change is the receipt of the nth occurrence of in-
put / within a period d, where the load is specified as limited to n — 1. Then, if
the system attempts to return to normal within a period x < d, the very next oc-
currence of an / might cause the state to change again to the overload state. The
system could thus ping-pong back and forth. A hysteresis factor simply ensures
that the transition to normal operation is not too close in time to the inputs that
caused the overload.*

Besides a hysteresis delay, system robustness requires specification of a se-
ries of checks on the temporal history of mode exit and resumption activities to
avoid constant ping-ponging.

15.4.5 Output Specification Completeness

As with trigger events, the complete specification of the behavior of an output
event requires both its value and its time.

o Safety-critical outputs should be checked for reasonableness and for haz-
ardous values and timing.

Checking to make sure that output values are legal or reasonable is straight-
forward and helpful in detecting software or other errors. In general, this should
always be done for safety-critical outputs and may be desirable for other outputs.
Hazardous values can be determined by a top-down hazard analysis that traces
system hazards to the software, as described previously.

There is no limit to the complexity of timing specifications for outputs, but,
at the least, specification of bounds and minimum and maximum time between’
outputs is required, as it is for inputs. In addition, there are some special require-
ments for the specification of the outputs: environmental capacity, data age, and
latency.

Environmental Capacity Considerations

The rate at which the sensors produce data and send it to the computer is the
concern in input capacity. Output capacity, on the other hand, defines the rate at

4 Hysteresis intervals are also useful for specifying conditions other than timing that cause
transitions between states, especially transitions to non-normal processing modes.

380

Chapter 15. Software Hazard and Requirements Analysis

act to data produced by the computer. If

ich the actuators can accept and re .
e ¢ than the output environments can
+

the sensors can generate inputs at a faster rau .
“absorb” or process outputs, an output overload might occur.

o For the largest interval in which both input and output loads are assumed

and specified, the absorption rate of the output environment must equal or
exceed the input arrival rate.
sical limitations in

imitations may be required because of phy
Output load limitations may q imitations

the actuators (such as a limit on the number of m&.cmaﬁam a val ok
per second), constraints on process behavior Anxom.mmzo wear on moEmﬁ.:m.HEm t
increase maintenance costs), or safety oo:maﬁmmoum (such as a restriction on
how often a catalyst can be safely added to a ormn:oﬂ. process).

Differences in input and output capacity result in the need to handle three

cases:

1. The input and output rates are both within limits, and the “normal” response

can be generated. . "
2. The input rate is within limits, but the output rate will be exceeded if a

normally timed output is produced, in which case some sort of special action

is required. ,
3. The input rate is excessive, in which case some abnormal response is neces-
sary (graceful degradation).
multiple periods for which
output capacity might
r might have a

‘When input and output capacities differ, there must be
discrete load assumptions are specified. For omwB@_mg.Em
be 10 per second but only 40 per minute, while the input senso
peak rate of 12 per second but a sustained rate of only 36 per minute.

a Contingency action must be specified when the output absorption rate limit
will be exceeded.

Over the short term, the program can buffer or shield the output m:w:oanE
from excessive outputs. Over the long term, wo€o<mm the program might never
catch up unless, for the largest interval in which both input and o.E?: ommwo:_mm_w
are assumed and specified, the absorption rate of the output EZ:@EQ: equals
or exceeds the input arrival rate. Contingency action must be specified for cases
where these assumptions do not hold.

o Update timing requirements or other solutions to potential overload prob-

lems, such as operator event queues, need to be specified.

When the human—machine interface is synchronous—that is, each computer

response is matched to a human action—the operator n.m::Q be .o<on_omamm, and
he or she is never in doubt about which response pertains to which action. Even
when the interaction is asynchronous, operafor o<2_om.a may so.ﬁ be a problem.
In some displays, such as an air traffic controller’s Z.Em:on display. E:o:.Om
the data can be added, deleted, or changed in parallel with other r:Ema\Bmo:En
interface activities without intcrfering with operator performance. In this case, the

15.4. Completeness Criteria for Requirements Analysis

human monitors the display for patterns and relationships and determines what is
significant and what constitutes an event requiring operator attention.

In other asynchronous interactions, however, the human—machine interface
may need to make operators explicitly aware of events rather than merely high-
light potentially interesting data on a parallel display. Examples of such events
include alarms and orders or requests from other operators. This type of asyn-
chronous interaction can result in operator overload, but putting load limits on
the outputs may not be practical. A general solution to the discrete event over-
load problem is an event bucket—generally, one or more queues of event data
waiting for operator review and acknowledgment. The information defining the
event may be inserted into the event queue and a standard signal used to sig-
nify that an event has been detected and quened. A particular operator position
may have several predefined and operator-defined events that can be added to its
queues.

o Automatic update and deletion requirements for information in the human—
computer interface must be specified.

Events placed in queues may be negated by subsequent events. The require-
ments specification should include the conditions under which such entries may
be automatically updated or deleted from a queue. Some entries should be deleted
only upon explicit operator request; however, workload may be such that the
entries must be queued until the operator can acknowledge them. For example,
when an air traffic control operator asks for the count of aircraft whose velocity
exceeds a certain speed, the response may be queued and should not disappear
until the operator acknowledges receipt.

Some gueued events may become irrelevant to the operator, such as infor-
mation about a warning to an air traffic controller that an aircraft is too close to
the ground or to ground-based hazards such as tall antennas (called a minimum
safe altitude warning or MSAW), The warning itself may be shown on the situa-
tion display, but additional information that cannot be displayed may be put into
a queue. If the portion of the queue that contains the MSAW-related information
is not currently visible to the operator, it may be removed from the queue auto-
matically when the MSAW is removed from the situation display. If that portion
of the queue is currently visible, the queued information should not be removed:
Operators generally find it distressing when information disappears while they
are looking at it or while they are temporarily glancing away.

There could be safety implications as well. Suppose that there are MSAWs
for two separate aircraft, but the queue display can accommodate only one event
at a time. The operator might glance back at the display, not realizing that the first
event has been removed and replaced by the second. The operator would then
read the recommended course for the second aircraft and transmit it to the first
aircraft, not realizing that the event data he or she is reading is not the same data
seen a second or two before.

381

Chapter 15. Software Hazard and Requirements Analysis

o The required disposition for obsolete queue events must include specifica-
tion of what to do when the event is currently being displayed and when it
is not. b

In general, obsolete event data currently being displayed cannot be automat-
ically deleted or replaced. It may be modified to show obsolescence and removed
when the operator indicates to do so or when the overall display is modified in
such a way that the obsolete event display becomes invisible (for example, the
queue is advanced and the obsolete information is scrolled off the display).

Data Age

Another important aspect of the specification of output timing involves data ob-
.mo_mwow:om. In practical terms, few, if any, input values are valid forever. Even
if nothing else happens and the cntire program is idle, the mere passage of time
renders much data of dubious validity eventually. Although the computer is idle,
the real world in which the computer is embedded (the process the computer is
controlling) is unlikcly to be. Control decisions must be based on data from the
current state of the system, not on obsolete information.

o m—.m inputs used in specifying output events must be properly limited in the
time they can be used (data age). Output commands that may not be able to
be executed immediately must be limited in the time they are valid.

Data obsolescence considerations require that all input and output events
.@m properly bounded in time: The input is only valid to trigger an output O if
it occurred within a preceding duration of time D. As an example of the pos-
sible implementation implications of such a requircment, MARS, a distributed
fault-tolerant system for real-time applications, includes a validity time for every
message in the system after which the message is discarded [165].

Frola and Miller [88] describe an accident related to the omission of a data
age factor. A computer issued a CLOSE WEAPONS BAY DOOR command on a B-1A
aircraft at a time when a mechanical inhibit had been put on the door. The cLOSE
oogmsa was generated when someone in the cockpit pushed the close door
switch on the control panel during a test. The command was not executed (be-
cause of the mechanical inhibit), but remained active. Several hours later, when
the maintenance was completed and the inhibit removed, the door unexpectedly
closed. The situation had never been considered in the requirements definition
phase; it was fixed by putting a time limit on all output commands.

The information used in response to queries from operators may also be-
come obsolete before the operator can receive it. The requirements specification
needs to state if a query response sitting in the operator’s queue should be auto-
matically updated as the situation changes or flagged as possibly obsolete.

u Incomplete hazardous action sequences (transactions) should have a finite
time specified after which the software should be required to cancel the
sequence automatically and inform the operator.

15.4. Completeness Criteria for Requirements Analysis

Data age requirements also apply to human—computer interface action se-
quences. Some transactions require multiple actions, for example, a FIRE com-
mand that is followed by a CONFIRM MISSILE LAUNCH request from the computer
and then a CONFIRM action from the operator. Once the FIRE command has been
issued, some limit should be imposed on how long it remains active (before it
is automatically canceled) without confirmation from the operator. Such a time
limit may be important if the incomplete control sequence places the system in
a higher risk state: Once such a sequence is started, it may take fewer actions or
failures to create a hazard, and thus the exposure should be minimized or at least

controlled.

o Revocation of a partially completed action sequence may require (1) specifi-
cation of multiple times and conditions under which varying automatic can-
cellation or postponement actions are taken without operator confirmation
and (2) specification of operator warnings to be issued in the event of such

revocation.

In some cases, the partially completed sequence should not be discarded
without a warning to the operator. In other cases, a partially completed complex
transaction should be set aside for subsequent, manual reactivation that is sim-
pler than complete reinitialization. The “safing” sequence and the time periods
allowed may themselves vary with the current state. On combat aircraft, for ex-
ample, weapon selection or activation actions that are a prerequisite for weapon
launch should not be automatically revoked easily. On the one hand, when pilots
are busy in combat, they should not be further burdened with alarms notifying
them that their preliminary weapon selection will be revoked automatically in
x seconds unless overridden. On the other hand, partial selection and activation
states should not be allowed to continue indefinitely. A compromise is to let the
times vary as a function of conditions detectable by the computer. If the operator
is clearly present and engaged in combat activities, the automatic revocation se-
quence might be postponed indefinitely until conditions change. A wheels down
and engine idle or off condition might be the basis for a much shorter delay.

Latency

Since a computer is not arbitrarily fast, there is a time interval during which the
receipt of new information cannot change an output even though it arrives prior
to the actual output action. The duration of this Jatency interval is influenced by
both the hardware and the software design. An executive or operating system that
permits the use of interrupts to signal data arrival may have a shorter latency
interval than one that uses periodic polling, but underlying hardware constraints
prevent the latency from being eliminated completely. Thus, the latency interval
can be made quite small, but it can never be reduced to zero.

The acceptable length of the latency interval is determined by the process
that the software is controlling. In chemical process control, a relatively long
latency period might be acceptable, while an aircraft may require a much shorter

