

cneprrn'3

Hazard ldentification

.4 problemwell stated is aproblem half solved,
_ Charles F. Ke*Ti1g

.ludge a mrm by his questions rather thet by his answers.
- VoltaiiE

On September 17, 2008, four anployees of the Saipem compqtl4
were killed and four others were injured during installation of the
Medgaz Trans-Mediterranean pipeline in international wders
hetween Algeria and Spain- The employees were killed when the
uutomated ltydraulic pipe handling system released sections of ttre
pipeline, ca^W' pipeline cornponeni to, ftll:'on the ptatfofi
where the employees were working. Immediatety prior to the
accident a povverfailure had caused operittions to stap. fo fix thA
ltroblem, the enployees reset tlrc computer system mantory otd
contiruted with operations. 77rc employees did not realize thd the
preloaded Erasable ProgramTnabte Read-Onty Menory (E1ROM)
of the Progrannatte togic Controller (pLC) had been unfigured
to open all clmtpi aft* memory reset. i the clmtps opened,
the pipeline cotrynen* were released :felt on the enployees.
The rqort noted that the prrctice of allmving,pe*imtel on the
platform &ring heardous operations contributed to tlrc accident.
Following tIre eaiQry,the PLC logie ias modified to remove
EPROM tnltrnoriesfrom the systent otd to reqgiire eonfirmation of
hazardous sequences by the operator.I'2

67,

68 Software and System Safety

Hazard identification is arguably the most important part of the safety
analysis effort. One could think of the hazard identification step as defining
the problem to be solved. If one does not properly identiff the problem
then it becomes difficult to assess the risk or postulate solutions.
Identifying hazards can be a difficult process, and software further
complicates this effort through additional complexity and system
interactions. Hazard identification usually starts early in the development
process, and then continues through development as new information
becomes available on the system and its operation. This chapter will
discuss key elements in the hazard identification process and will present
software safefy lessons leamed in identifuing hazards.

3.1 Hazar d Identifi cation Basics

The first step in identiffing hazards is to understand the system or
operation, including the resources of value to be protected. The system
includes hardware, software, processes, humans interacting with the
system, and system environments. All of the components of the system
should be identihed. The boundaries of that system must be understood,
including the interfaces between subsystems and external entities. In
addition, a design description should be provided. That design description
should include the followins at a minimum:

o Functional descriptions, indicating the intent of the functions

. Operational descriptions, indicating what the system is supposed to
do in all major phases of operation

r Subsystems and components that comprise the system

o Process inputs and outputs

. Support equipment and tools

. Supporting data

Additional items may need to be reviewed to understand the software
design and functionality. Some of those items include the following:

Hazardldentification 69

List and description of Computer Software Configuration Items
(CSCI): A CSCI is an aggregation of software that is designated
for configuration management and treated as a single entity in the
configuration management process. These are logical groupings of
computer software units.

List and description of Computer Software Components (CSC): A
CSC is a functionally or logically distinct part of a computer
software configuration item, typically an aggregate of two or more
software units.

List and description of Computer Software Units (CSU): A CSU is
the smallest grouping of software.

Data dictionaries and documentation of design entity athibutes:
name, function, dependencies, etc.

Documentation describing CSCI, CSC, and CSU interfaces.

Diagrams: architecture diagrams, data flow diagrams, class
diagrams, functional block diagrams, etc.

Documentation of system usage: scenarios, use cases, trade
studies, etc.

Heritage and Commercial Off-The-Shelf (COTS) software
documentation. ,

Development and test environment documentation.

External data element documentation.

. Descriptions of hardware-software hybrid devices, such as
complex electronics, including functions, interfaces, etc.

Understanding the software functionality is a critical step in software
'..rlc'ty. Often this means breaking down the system description into small
,'rrtrlrgft components to analyze functionality. By understanding that system
rhe analyst can begin to discover potential system issues caused by
:uli1y41g and computing systems.

Once analysts understand the system then they can begin considering
r,. hlt can go wrong and identif,iing hazards. There are several approaches
lirirl can help visualize hazards. One approach is to use hazardous element
. irccklists based on Drevious exoerience. Checklists are available from a

F
:F'=
,i

a

a

a

a

.=F

70 Software and System Safety

number of sources.3 These checklists can take different forms. such as the
following:

o General Hazard. Checklists: electrical, explosives, leaks,
acceleration, contamination, etc.

. Energy Source Checklists: fuels, propellants, batteries,
pyrotechnics, nuclear, etc.

Space Function Checklists: crew ingress and egress, launch
escape, fairing separation, etc.

General Operations Checklists: welding, cleaning, extreme
temperatures, etc.

Another approach to identifying hazards is to use past experience to
help drive the analysis. This approach works best when developing systems
that are similar to those operated in the past. This approach can include
review ofprevious hazard analyses, and can include operational experience
and studies of mishaps and accidents. Design practices, regulations, and
standards can also assist in the development of analyses. By understanding
an accepted practice one can look for ways in which the new system can
fail. These standards include safety criteria, such as the proper way to use
relief valves. Regulations can be a good source of potential standards
because many prescriptive rules, such as Federal Aviation Administration
regulations, came about as a result of an accident or incident.

Still another way to identiS hazards is to consider individual failure
states.3 Examples of failure states might include the following:

r Failure to operate (including failure to start or stop operation)
. Operates incorrectly or erroneously

. Operatesinadvertently

. Operates at the wrong time

o Receives or sends erroneous or conflicting data

With respect to software, analysts should first consider the multiple
ways software can contribute to a system hazard. Note that the term
sofhuare-related hazard cause is used because, as discussed above,
software itself does not cause a hazard, but rather it is software operating

Hazardldentification 71

within the system that creates the potential for harm. Table 3-1 provides an
example of various ways software can contribute to a hazard.

Once the software contributions to system hazards have been
considered, specific software error types must also be analyzed. This
allows the analyst to identifu conditions leading to potential software
causes, such as those described in Table 3-1. Table 3-2 provides examples
ofspecific errors to be considered.

Table 3-1. Example Software Contributions to System Hazards.a

Description Examples

Failure to detect a
hardware, software,
or environmental
problem

Failure to perform a
function

Executing a function
out of sequence

Executing a function
at the wrong time or
when the system is in
the wrong state

Executing a function
incompletely

Executing the wrong
function or the right
function to wrong
system

Failure to provide
information to
operators

Providing misleading
or incorrect
information to
operators

Models and
simulations provide
incorrect output

High tank pressure not detected in a chemical
reactor, allowing pressure to increase without
automated or manual shutdowns.

Software fails to shut down a pump when tank fill
level reaches a maximum, resulting in a toxic
chemical tank overflow.

FIRE command issued before the ARM command
resulting in premature missile launch.

Landing gear retract command is issued while the
aircraft is still on the ground resulting in damage
to the aircraft.

System startup commanding stops before all valves
are completely opened, resulting in a buildup of
pressure in a fuel oil line and line rupture.

The system commands power off when the power
on command is sent. Command issued to shut
down electrical circuit but wrong circuit is shut
down, cutting power to critical systems.

Failure to issue instructions to train operators to stop
resulting in collision with another train.

Aircraft cockpit displays provide incorrect altitude
information when flying in mountainous terrain,
creating the potential for controlled flight into
terrain.

Thermodynamic models underpredict reactor tank
temperature rise resulting in tank overpressure
upon startup of a new process.

72 Software and System Safety

Table 3-2. Specific Software-related Errors and Faults.s

Hazard ldentification

Table 3-2. Specific Software-related Errors and Faults (continued)

Description Examples

72.

Description Examples

Calculation or computation
errors (incorrect algorithms,
overflow, underflow, etc.)

Data errors (improper data,
data stuck on some value,
large data rates, no data,
data out of order. data
corrupt, uninitialized data or
variables, etc.)

Logic errors (improper
command, command out of
sequence, failure to issue
command, inadvertent mode
cnange, too many
parameters passed,
command sent to the wronq
system, command sent
when system is in the wrong
mode, etc.)

User interface errors
(incorrect, unclear, or
missing messaging, poor
design and layout, multiple
events occuning
simultaneously, inabil ity to
start or exit processing
safely, failure to prevent
rmproper user command)

Software development or
test environment enors
(improper use of tools,
change in operating system
or COTS module)

The software may perform calculations
incorrectly because of mistaken
requirements or inaccurate coding of
requirements. The algorithm may result in
a divide by zero condition.

The software may receive out of range or
rncorrect input data, no data, wrong data
type or size, or untimely data; as a result
software could produce incorrect or no
output data; or both. A sensor or actuator
could always read zero, one, or some
other value. The software may be unable
to handle large amounts of data or many
user inputs simultaneously.

The software may receive bad data but
continue to run a process, thereby doing
the right thing under the wrong
ctrcumstances. The software may not
invoke a routine. A module may be
exercised in the wrong sequence, or a
system operator may interrupt a process
leading to an out of sequence command.
System operators may interrupt
processes causing a problem in timing
sequences, or processes may run at the
wrong times.

A message may be incorrect or unclear.
leading.to the system operator making a
wrong decision. An unclear graphical user
interface may lead to an operator making
a poor decision. A system operator may
be unable to start or stop a test of a flight
safety system once the automated
routines have started,

Turning on the compiler option to optimize or
debug the code in production software
may lead to a software fault. Upgrades to
an operating system may lead to a
software fault.

Hardware-related errors
(unexpected shutdown ot
the computing system,
memory overwrites, data
transmission errors due to
hardware failure, bus
hardware failures, etc.)
Virus and other malicious
attacks

Process failures (software
development, assurance,
configuration management,
etc.)

Loss of power to the CPU or a power
transient may damage circuits.

Malware may infect a computer leading to
loss of control of a system.

Failure to follow development standards
leads to improper coding of requirements
and computing system errors.

Software contributes to hazards generally through errors of omission
(failing to do something it was supposed to do) or errors of commission
(doing something at the wrong time or in the wrong order, or d.oing
something that should not have been done). of these, errors of omission are
probably the most prevalent, leading to missing safety requirements. some
crrors may be latent and not evident until the system has been operating for.
a long period of time, when a specific set of conditions fiiggers a problem.
Not all software errors lead to safety issues however, and multiple
conditions in addition to software errors typically contibute to accidents.
fherefore, it is important to first understand how software can contribute to
system hazards before analyzing software and computing system errors.

System safety is more than an examination of components; system
safety requires an exploration of the interaction and interrelationships
between components and subsystems. Therefore, interfaces must be
cxamined. Software interfaces can include those between software
rnodules, software and hardware, hardware and humans, and so on. In
cnvisioning the ways things can go wrong it is worth considering how data
are transferred across those interfaces. For example, some considerations
include:6

: i 1
ra;,:
r. i

74 Software and System Safety

o The software's response to out ofrange and unexpected values
o The software's response to not receiving values
o The software's response to data arriving when it should not
. Software always following the same path through the code

(assuring that the software response is deterministic)
o The software's response to inputs that are not bounded in time. and

its response to interrupts

o Task priorities are known, understood, and adhered to
o The software's response to data arriving faster or in higher volume

than can be used

Note that all methods of hazard identification have limitations. For
example, checklists are never complete, and old hazard reports based on
similar systems will rarely capture all of the potential problems in a new
system because of changes in design and operation. Therefore, to assure
completeness, analysts should use multiple approaches in identifying
hazards.

Once the hazards have been identified, those hazards must be
described. This description is the first chance an analyst has to articulate
the problem. Hazard descriptions are important because the description of
the problem will help in defining a solution. A poor description will cause
confusion and may lead to an organization solving the wrong problem. If
descriptions are too complex they may not be understood when reviewed at
a later time. A good hazard description contains three key elements:7

c Source: an activity or a condition that serves as the root cause
o Mechanism: a means by which the source can bring about the harm
o Outcome.' the harm itself that mieht be suffered

The order of the source-mechanism-outcome elements is not imporiant
but they should all be included. These elements correspond to the three
components of ahazard. The point here is that ahazard scenario should be
developed to identiSr the situation of concern. Examples of hazard
descriptions include the following:

Hazardldentification 75

r user display goes dark leading to inability of operator to stop
pipeline fuel pump resulting in gasoline pipe rupture and personnel
injury.

' operator inadvertently issues a startup command leading to over
pressurization of an oxygen tank resulting in a tank failure and
personnel injury.

o Software fails to issue an automated command leading to valve
failing to open resulting in loss of reactor cooling.

It is difficult in complicated systems to describe a system hazard in a
single statement because there are multiple causes that can lead to the
undesired outcome. A separate causal Analysis may be conducted to
determine those individual causal factors and circumstances that bring
about the undesirable result. Many hazard, reports will show a hazard.
statement followed by a number of causes. For exampre, a hazard
statement may discuss pipeline rupture during transport of toxic liquids
resulting in personnel injury, environmental damage, and facility damage.
causes could include metal fatigue, pump overspeed, external impacts,
software inadvertently closing valves, and so on.

Identi$ring software-related hazard causes can be a difficult process
because of the complexity of the system and because software is used in so
many parts of the system. For example, software may be used in
calculations of critical parameters or to convert data units before the data
are provided to a user display. Therefore, it often helps to think it terms of
functionality. Top down functional decomposition can be a tremendous
help in determining critical functions. Two common terms used, are must
work and must not work functions. Must work functions are those aspects
of the system that have to work in order to function correctly. The concern
of must work functions is reliability, and independent frrnctionality is often
used to maintain fault tolerance. Must not work functions are aspects of the
system that should not occur if the system is functioning correctly. If they
do occur, they could lead to a hazardous situation or other undesired
outcome. Fault tolerance of must not work functions is achieved through
devices used to prevent an inadvertent or unauthorized event, called
inhibils. In the hazard identification process, it often makes sense to

Software and System Safety

identi$r loss of critical functionality (must work functions) and inadvertent
activation (must not work functions). Be aware that some functions are
considered "must work" when the system is in one state but may be
considered "must not work" in other states. For example, the function to
retract the airplane landing gear must work while the aircraft is in flight but
must not work while the airplane is on the ground. In addition, functions
may conflict and therefore cannot be considered in isolation. Must work
and must not work functions will be discussed further in chapter 5.

Hazard identification must consider all operating phases and states.
The focus of most hazard analyses tends to be on hazards during operation,
such as when a chemical plant is at steady-state operation. However, there
are hazards associated with starting up a new process, shutting down a
process' maintenance actions during operation, and so on. Not all hazards
apply to all phases of operation. For example, hazards related to the
software-controlled startup of a reactor with the first introduction of
chemicals may be different than hazards related to automated monitoring
of corrosive aspects of those chemicals over time. Hazard. identification
must also consider who or what is at risk. Some hazards may apply to
maintenance personnel while others may affect the uninvolved public or
hardware assets. The same source and mechanism may also apply to more
than one asset at risk - a propellant leak may lead to fire and explosion that
can injure on-site workers and result in environmental damage.

It is important to remember that hazard,identification, particularly with
software and computing systems, is an iterative process. Software
functionality will change throughout the development life cycle. Therefore,
the hazard analysis must be revisited to assure that software causes and
specific software errors have been properly addressed.

3.2 Software-Related Accidents and Lessons Learned: Hazard
Identification

There are a number of ways that an organization can fail to properly
identiff hazards and hazard causes. The following describes a number of
lessons learned in the form of assessment flaws and commonly overlooked
hazard causes. Accidents are used to illustrate how those flaws in the

Hazardldentification 77

hazard identification process could lead to an undesirable outcome. The
hazard identification lessons leamed cover the followine areas:

System Considerations

Hardware and Environment Considerations

Personnel and Organizational Considerations

Hazard Identification Process Considerations

Software-Specifi c Considerations

3.2.1 System Considerations

Hazard identification must not only consider components and subsystems.
Hazard identification must also address the unique aspects of the system.

The hazard analysis should go beyond analysis of singre failures:
Skyservice 6315

Accidents typically occur when a number of things go wrong, not just a
single failure. A single component or human action should not cause a
failure, and these conditions certainly should be eliminated. But, while
individual causes are important, analysts should also assess multiple causes
and conditions, not just failures. software-related accidents most often
occur because of misunderstandings of software's interaction with the rest
of the system. Therefore, an organization should think in terms of scenarios
when trying to identify hazards, identifying both direct causes and indirect
contributors. often there is confusion between a failure analysis and safety
analysis. Failure analyses tend to be "bottom up,,' answering the question,
"What will happen when a failure or condition occurs?', However, hazud
analyses that are organized by failures of systems or components may
identify failures that are not truly safety problems. Therefore, analyses can
lead to overdesign of the system, providing controls for failures that do not
lead to an accident. Worse, by only designing for failures, the hazard
analysis might miss conditions that could cause an accident where no
component has failed, such as conditions with software or human
interactions. In fact, software systems allow organizations to build systems
that are so complex that operators may not fully understand subsystem

a

a

a

a

a

78 Software and System Safety

interactions. Therefore, both "top down" and .obottom up,, approaches
should be used.

On February 15,2001, Skyservice flight 6315, an Airbus 4330, was
flying from Medan, Indonesia to Jeddah, Saudi Arabia when the aircraft
experienced an engine failure. The pilots shut down the engine per the
appropriate checklist, and they discharged a fire bottle to extinguish a
potential fire. The pilots then diverted to Sri Lanka and successfully
completed a landing with no injuries to passengers. Although the pilots
performed admirably, they did experience some control difficulties when
diverting the aircraft. Following the loss of the engine, the pilots tried to
engage the autothrottles. However, the autothrottles refused to engage,
preventing the pilots from using the auto thrust functionality. This situation
added to the pilot workload and created some confusion because it was
contrary to their training. The Transportation Safety Board of canada
(TSB) found in its investigation that the engine failed as a result of stress
corrosion fractures of the second-stage turbine blades. This was the second
engine failure to occur on this aircraft, the first being l0 days earlier; both
failures were the result of stress corrosion. The failure of the auto thrust
was the result of an error in the Flight Management, Guidance, and
Envelope computer (FMGEC) software. Auto thrust engagement was
controlled by the FMGEC, which received relevant signals from each
engine full authority digital engine control (FADEC). If the FMGEC
detected an engine-out situation, it was supposed to authorize the auto
thrust on the operating engine. However, the failed engine was apparently
windmilling after the failure, and the FMGEC interpreted this rotation to
mean that the engine was still operating. The FMGEC software logic was
such that if it thought both engines were operating, but one was not
responding properly, auto thrust could not be authorized. Airbus
reconsidered the logic following this incident.s

Hardware, software, human, process, and environmental common
cause conditions should be considered: Oconee Nuclear Station

A common cause failure is a failure of two or more components,
subsystems, or structures due to a single specific event which bypasses or
invalidates redundancy or independence. An example might be a computer
system that has a backup server to protect data; a flood could be a common

Hazardldentification T9

cause that disables both the primary and the backup computer system if
they are located in the same building. common cause failures should be
considered inhazard, identification to assure that risk is not underestimated.
An organization should consider not only hardware and environment
colnmon cause but also software and process common cause errors" which
are frequently overlooked.

on November 7, 2008, reactor unit 3 of oconee Nuclear station in
oconee count5i, south carolina experienced an automatic scram, or reactor
trip. The reactor protection system operated as expected. The reactor trip
was the result of failure of control Rod Drive (cRD) processors. The cRD
processors controlled rod movement, the operator control panel interface,
voltage monitoring of single rod power supplies, rod position indication,
and power supply voltage monitoring. In normal operation, the cRD
received a daily time code from the plant communications system to
synchronize the date and time for multiple systems. The reactor unit 3
cable room receiver obtained the time code and then sent this signal to the
CRD. On the day of the incident, the date stamp sent from the
communications system was decoded by the Unit 3 receiver with zeros for
the day of year for unknown reasons. while zeros were allowed for the
time, the cRD was unable to decode zeros for day of year (the expected
range was I to 366). This problem affected all cRD processors. As a result
of the inability of the software to process an out of range value, both the.
primary Pl and redundant p2 processors completely stopped. without the
processors, the reactor went into a fail safe mode, and the automatic scram
was initiated. In addition, the cRD operator control panel lost all input.
The software was updated to include range checking on the day of year
field following this incident.e

Hazards during the transition between phases and states, incruding
new process startup, should be considered:,SB^S Typhoon

Many accidents occur in the transition between operational phases, ratler
than when the system is up and running in "steady state" mode. For
example, airplane crashes occur most often during takeoff or landing,
which are transitions between the flight phases. Accidents can occur during
startup or shutdown, especially in new or untried processes, often from a

#
€!
?i

80 Software and System Safety

combination of factors not expected in normal operation. starting up a new
process or upgrading an existing system can be especially hazardous
because changes to desig'or operations may be made in real time ro meet
schedule pressures, potentially introducing new hazards.

On February 26, 2011, the supply ship SBS Typhoon inadvertently
made contact with two other ships in Aberdeen Harbour, united Kingdom,
the safety vessel zos scout and the supply vessel ocean searcher,causing
structural damage and deck equipment damage. only minor injuries were
reported. sBS Typhoor? was conducting functional trials of a newly
installed Dynamic positioning (Dp) system when the accident occurred.
The DP system was an upgrade to the existing Dp system, which had been
susceptible to single-point failures. Just prior to the accident, the crew was
preparing to use the new Dp system when the chief officer had moved the
"manuallDP/joystick" mode selector to "Dp,' mode. In this mode the
system should have issued commands for propulsion depending on inputs
from the crew along with position and envrronmental sensor information.
However, when the chief officer changed to Dp mode, the system
unexpectedly applied full ahead pitch to the controllabre pitch propellers
(cPP). The chief officer tried to change the mode back to manual, but the
ship continued to move ahead. The ship stopped when the chief officer
pressed the emergency clutch disengage button, after sBS Typhoon had,
struck Vos Scout and Ocean Searcher-

The investigation into the,SB,s ryphoon accident was conducted by the
Marine Accident Investigation Branch (MAIB). The investigation found.
that, prior to delivery, the replacement Dp system had completed a Factory
Acceptance Test (FAT) in accordance with the manufacturer,s FAT
procedure checklist. However, during that FAT the technician conducting
the test did not configure the system properly. when the system was
installed in sB^9 Typhoon another technician failed to identi& that the
configuration was in error because, according to the report, he did not refer
to the specification for the correct configuration and he made an incorrect
assumption that if the system passed FAT it must have been correctly
configured. Because of the improper configuration, the Dp system
interpreted inputs from the chief officer as full pitch ahead, resulting in the
uncontrolled and unexpected movement of the vessel. The investigation
report noted that the test of the new system was poorly planned and

Hazardldentification 81

rnanaged. The investigation report stated that, "No consideration was given
by any of the involved parties to the risks of connecting an unproven
control system to rotating propulsion plant. No trial prerequisites were
considered, so no effective control measures were imposed." For example,
the emergency stop systems were not tested prior to the operation, and
those systems did not operate effectively when needed.lo

The software and system must start up and shut down in known, safe
states: Yakima Blade Mill; Afghanistan Friendly Fire

When starting software and computing systems, the hardware should be in
a state understood by the operators. For example, filI valves may be
automatically opened on a storage tank when the software starts, and
analysts should determine whether this is a desired state. Shutdowns should
be orderly and controlled, and the system should be designed so that abrupt
shutdowns (which may occur with power intemrptions) do not hinder the
safety of the system.

On January 8, 1997, an employee of Central Pre-Mix Concrete in
Yakima, Washington was fatally injured when the blade mill in which he
was working inadvertently started up. In this operation, sand and gravel
were transported by over-the-road trucks from an off-site pit to the plant
for washing and screening. The finished product was sold, or used to
supply the company's ready mix operation located adjacent to the wash
plant. The mill was used to pre-condition aggregates and was over 22 feet
long, 7 feet wide, and l0 feet high. The blades on the mill were 3 feet in
diameter. The mill was controlled by a PLC. At the time of the accident the
employee was thawing frozen material inside the blade mill and replacing
broken and worn paddle tips. Other workers were replacing a faulty
breaker while this employee worked inside the mill. In the week prior to
the accident an internal heat problem had caused a breaker to trip, resulting
in loss of power to the plant components. The faulty breaker controlled a
number of smaller breakers, including those for PLC power. The faulty
breaker was replaced and reset while the employee was in the mill, and
resetting the breaker caused the PLC to power up. Unfortunately, the PLC
was programmed to start up in a mode that ran the blade mill. The PLC
logic had been modified in October 1996 to address issues associated with

*
.E
t-

*
:t

J
=
::t

:3
.:;
.,€
.i
=:::.
. t

. 1
. +
:-

, , jo
:
:
i

:
1:. : :

"
;.=

82 Software and System Safety

power losses so that the mill would not entirely shut down during power
surges and loss. However, this modification resulted in power being
unintentionally returned to components after any restart, whether for power
failure or for maintenance. The employee was fatally injured from the
impact of the large blades after the inadvertent startup.rr

on December 20,2001, u.S. Army Special Forces soldiers were killed
and 20 others injured in a "friendly fire" incident during the war in
Afghanistan. At the time of the accident the Special Forces unit had called
for an air strike on a Taliban outpost near Kandahar. To assist in the air
strike the combat controller used a precision Light'weight Global
Positioning System (GPS) Receiver, also known as a ..plugger." The
plugger calculated the latitude and the longitude of the enemy position,
which could then be relayed to the aircraft. Minutes prior to the air strike,
the controller had used the plugger to obtain the coordinates of the Taliban
outpost and had relayed that position to the bomber. Then, just before the
B-52 was to arrive to drop a satellite-guided bomb, the batteries died on the
plugger. The controller quickly replaced the batteries, but unbeknownst to
him the plugger started up again not with the coordinates of the Taliban
position but with the coordinates of his own location. He relayed the
position a second time to the B-52, as was required before a strike, but this
time with the wrong coordinates. The bomb was then dropped, striking the
Special Forces unit.r2

3.2.2 Hardware and Environment Considerations

It can be difficult to identif,i all hardware and environmental hazards that
can be associated with computing systems. The following are examples of
some frequently overlooked hazards.

Hazards related to induced environments shourd be considered:
Galileo Spacecraft

Induced environments are those stresses put on the system as it operates.
Induced environments can include shock, vibration roads, impact loads,
pressure, and heating. These induced environments can create additional
hazards that must be addressed. For software and computing systems some
unique considerations include noise related to electronic inputs, radiation

Hazardldentification 83

cffects from other hardware, and system effects that could cause computer

hardware damage such as those above.
On October 18, 1989, the Galileo spacecraft was dispatched from the

Space Shuttle Atlantis on its mission to explore Jupiter. In system level

testing prior to the mission, the spacecraft software identifred multiple

Attitude and Articulation Conhol Subsystem (AACS) checksum errors that

were not indicative ofactual elrors. A checksum is a fixed size data value

computed from a block ofdata; a checksum is used to detect errors during

data transmission or storage. These anomalous checksum elrors were

caused by both AACS memories placing data on the data bus at the same

time (bus contention). The bus contentions were caused by electromagnetic

coupling within the AACS intra-subsystem harness while simultaneously

accessing both AACS memories. The data were inducing noise on the

address lines which caused the software to think that there were memory

conflicts. The investigation noted that the problem probably should have

been caught in subsystem testing, but the simulators used in the subsystem

tests were of limited fidelity and therefore were unable to find the problem.

The report suggested that the impact of simulator limitations should be

thoroughly understood and documented.l3

llazards related to natural environments should be considered:

Birgenair 301

Natural environments can be the source of a number of problems that must

be considered. Natural environments can include humidity, wind, radiation,

temperature, lightning and even flora and fauna. Although most natural

environments may be known, the ability of systems to withstand these

environments may be overestimated. Consideration should be given not

only to extreme environments but combinations of normal environmental

conditions. Natural environments can have direct and indirect effects on

computing systems.
On February 6, 1996, Birgenair flight 301, a chartered Boeing 757-

225, crashed into the sea shortly after takeoff from Puerto Plata's Gregorio

Luper6n International Airport in the Dominican Republic. All 189 persons

on board died in the crash. During takeoff the captain noted that the Air

Speed lndicator (ASI) was not working properly. The captain decided to

.a'
t{

84 Software and System Safety

continue the flight because the co-pilot's ASI was functional. while
climbing, the ASI read 350 knots, causing the autopilot and autothrottle to
react by increasing the pitch-up attitude and reducing power to try to slow
the aircraft (the actual speed at this time was about 220 knots). The crew
then started to observe contradictory warnings from the flight control
system, receiving rudder warning and excessive airspeed advisories
followed by a stick shaker waming. The crew finally realized that the ASI
readings were unreliable, and that the autopilot was slowing them to a stall
condition. The crew disconnected the autopilot and applied fulr thrust, but
the actions were not enough to prevent the airplane,s impact with the
water. It is believed that the incorrect air speed readings were the result of
obstructed Pitot tubes. The aircraft had been left outdoors for at least 20
days prior to flight. It is believed that in that time an insect called the black
and yellow mud dauber wasp had nested inside the pitot tubes, preventing
them from functioning properly. without the pitot tubes the flight software
could not perform accurate calculations of air speed. The accident report
stated that the probable cause was the crew's failure to recognize the
activation of the stick shaker as a warning of imminent entrance to the stall,
and the failure ofthe crew to execute the procedures for recovery from the
onset of loss of control. The nonfunctioning pitot tubes were identified as a
contributing factor. ra

The analysis should address whether the software properly handles
spurious signals and missing data: Northwest Airlines ll42; Limerick
Generating Station

Spurious signals and lost data can occur throughout operations, often due
to mechanical failures, electrical failures, and poor data transmission.
Recovery from such transients should be addressed. For example, a
transient input such as a voltage spike could result in modified or
unexpected system inputs, or missing data could result in an unexpected
mode change' and the software must detect and recover from such inputs.

on April 27, 1995, Northwest Airrines flight l r42 experienced an
uncommanded roll during a flight from Detroit, Michigan to Baltimore,
Maryland. No one was injured in the incident, and the pilots were able to
maintain conkol and land safely following the incident. on April 2g, rgg5,
the same airplane, operating as Northwest Airlines flight 1r5, also

Hazardldentification 85

cxperienced an uncommanded roll following takeoff from Minneapolis-St.

Paul International Airport. Again, no injuries were reported and the crew

was able to control the aircraft and land safely. The airplane was an Airbus

A320-2I1 aircraft which used a flight control system that featured fly-by-
wire technology. Inputs from the flight crew were transmitted

clectronically rather than mechanically to flight control surface actuators.
-lhe

aircraft was equipped with two sidesticks in the cockpit for control.
-lhe

sidestick movements were detected with potentiometers linked to the

llight control computers. Testing after the incident showed evidence of

short-duration voltage spikes when the sidestick was in the neutral

position. The voltage spikes were the result of loss of contact between the

wiper and the track inside the potentiometer. The loss of contact was in

turn due to a build-up of lubricating grease in the track. This voltage spike

was interpreted by the Elevator Aileron Computer (ELAC) as a command

for an airplane roll. Longer duration spikes would have triggered a fault,

and the system would have switched to the backup ELAC. A service

bulletin was written to modiff the software to identifu a voltage spike as an

invalid command to minimize the likelihood of an uncommanded roll. In

addition, a service bulletin was written to add a resistor to the sidestick

potentiometer to reduce the magnitude of the voltage spike.ls

On April 20,1999, reactor Unit I at the Limerick Generating Station in

Limerick County, Pennsylvania experienced a loss of feedwater. As a

result the reactor was scrammed and the reactor was shut down. The plant

safety system responded as designed to a loss of feedwater flow. The loss

of feedwater was the result of a series of events. A breaker that supplied
position indications to the inlet valves of the Deep Bed Condensate

Demineralizer System (DBCDS) experienced spurious tripping. The logic

in the DBCDS PLC interpreted the spurious signal as a loss of position

indication on the valves, and the PLC was programmed to close all outlet

flow control valves in this condition. Closing all outlet valves led to an

increase in differential pressure across the deep bed demineralizers, which

should have led to the opening of bypass valves to relieve the pressure.

However, the pressure rise was so rapid that the bypass valves could not

open, and the valves experienced a thermal overload. With no water flow,
all three reactor feed pumps tripped and ceased to function. The loss of the
pumps led to a drop in the reactor water level, critical to protection of the

..=
. :. ;

86 Software and System Safety

reactors. The water level eventually fell to a point where an automatic
scram was initiated and all control rods were inserted. After this incident
the breakers causing the spurious signal were replaced and the PLC logic
was modified to allow the outlet flow control valves to remain open in the
event of spurious inputs.l6

The analysis should address how the software recovers from power
outages and power transients: Scandinavian SK 682

Power loss and electronic circuit failures should not result in an unsafe
system state. The software should assure that the system reverts to a safe
state, and the software should be designed so that the system recovers to a
safe state when power is restored.

On July 13,2003, Scandinavian Airlines flight SK 682 traveling from
Rome to Copenhagen was forced to make an emergency descent due to a
sudden drop in cabin pressure. The crew followed correct emergency
procedures and made a successful emergency diversion to Zurich. No
significant injuries occurred to passengers or flight crew. The Swiss Air
Accident Investigation Bureau stated that the loss of cabin pressure was
due to an internal short circuit in a computer which led to a shutdown in
the air conditioning system. The short circuit was due to a combination of
power transients that culminated in the failure of the circuit. This short
circuit led to an incorrect ground discrete signal being sent to the Aircraft
Condition and Reporting System Management Unit (ACARS MU) auto
shutdown function. This incorrect signal was received by ACARS
software, which then commanded the left and right air-conditioning system
pressure regulator valves and flow control valves to be closed, resulting in
the cabin pressure drop. The report stated that, "This failure occurred due
to an insufficient risk analysis being performed prior to the MD-80
ACARS MU Mini ACMS fAircraft Condition Monitoring System] wiring
installation."lT

Margins must be adequate on memory, CPU usage, etc.: Browns Ferry
Nuclear Power Plant Unit 3

Unexpected data rates or throughput have caused numerous problems.
Margins should be defined and evaluated throughout development and
operation. The system and software should be designed to prevent

Hazardldentification 87

performance degradation caused by factors such as memory overload and
counter overflow. Testing and monitoring for memory leaks should be
conducted to identify the potential for unexpected behavior. Load testing
should be performed to determine if the system can be overloaded with
data.

On August 19,2006, operators at Browns Ferryr nuclear power plant in
northern Alabama manually scrammed Unit 3 after the loss of both reactor
recirculation pumps. The operators were following proper procedures; loss
of the pumps meant that water flow to cool the reactors was reduced,
potentially leading to reactor instability. lnvestigation into the incident
fbund that Variable Frequency Drive (VFD) controllers for the pumps were
unresponsive. In addition, the condensate demineralizer primary controller
(essentially a water softener for the nuclear plant) had failed at the same
time as the VFDs. The condensate demineralizer primary controller was a
programmable logic control system connected to the Ethernet-based plant
computer system network. The VFDs were also connected to this same
network. The VFD and the condensate demineralizer controller utilized
company proprietary software and were microprocessor based.
lnvestigators at the plant determined that the root cause of the shutdown
was excessive traffic on the network. Investigators believed that the
condensate demineralizer controller malfunctioned and began spewing
cxcessive data over the network. The excessive traffic essentially locked up
the system, resulting in unresponsive controllers; these conditions were
repeated in tests following the shutdown. As stated by the U.S. Nuclear
Regulatory Commission, "all network devices must allocate time and
fesources to read and interpret each broadcasted data packet, even if the
packet is not intended for that particular device. Excessive data packet
traffic on the network may cause connected devices to have a delayed
response to new commands or even to lockup, thereby, disrupting normal
network operations." The company instituted network firewalls to limit
traffic following the incident.r8

Memory management should be addressed: Mars Rover Spirit

Memory modifications may occur due to radiation-induced etrors, uplink
c[rors, configuration errors, human errors, or other causes. Inadvertent

88 Software and System Safety

memory modification can produce unexpected results. computing systems
should be designed to detect inadvertent memory modification and recover
to a known safe state.

The National Aeronautics and Space Administration (NASA) Mars
Exploration Rovers, Spirit and opporhrniry, landed on Mars on January 4
and 25,2004, respectively. on January 21, 2004, Spirit abruptly ceased
communications with mission control. when contact was re-established,
mission control found that spirit courd not complete any task that
requested memory from the flight computer. Examination of the probrem
showed that the file system was consuming too much memory, causing the
computer to reset repeatedly. The root cause of the failure was traced to
incorrect configuration parameters in two operating system software
modules that controlled the storage of files in memory. Effects of
overburdened memory were not recognized or tested during ground tests.
Mission operations personnel recovered Spirit by manually reallocating
system memory, deleting unnecessary files and directories, and
commanding the computer to create a new file system. Although the rover
was recovered, the malfunction took 14 days to diagnose and fix, thereby
compromising mission objectives. A post-anomaly review showed that
memory management risks were not understood. In addition. schedule
pressures prevented extensive testing and understanding of software
functions.le

3.2.3 Personnel and Organizational Considerations

The effects of personnel and organizational issues may be overlooked in
the hazard identification process. The following are examples of lessons
learned in human and, organizational hazard causes.

Hazards related to human-software interfaces should be considered:
Air Inter 148; Regina Ethane Release

Humans interact with hardware and software in a variety of ways.
Therefore, hazards related to human-software interactions must be
considered. In determining whether the system is robust, consideration
should be given to the followins factors:

Hazardldentification 89

r The system demands must be compatible with human limitations
o People can perform tasks reliably under adverse conditions
o Humans are kept informed of the system conditions
o Humans can readily take actions in abnormal situations
r The system can recover from human error

['he human-computer interface must also be carefulry considered. In
particular, the Graphical User Interface (GUI) can be a significant source
of hazards. Thought should be given to the amount of information provided
to an operator to avoid information overload. some specific considerations
include the following:

r Computer systems should minimize the potential for inadvertent
actuation of hazardous operations.

. only one operator at a time should control safetv-critical comDuter
system functions.

r Software should provide confirmation of valid command entries.
data entries, or both, to the operator.

o Software should provide feedback to the operator that indicates
command receipt and status of the operation commanded.

o safety-critical commands which require several seconds or longer
to process should provide a status indicator to inform the operator
that processing is occurring.

o Software should provide the operator with real-time status reports
of operations and system elements.

o All messages, including error messages, should be unambiguous,
and unique error messages should exist for each type oferror.

o The system should ensure that a single failure or error cannot
prevent the operator from taking actions to put the system in a safe
state.

o The system should not inadvertently bypass operator control of
safetv-critical functions.

90 Software and System Safety

on January 20, 1992, Air Inter flight 14g crashed in the vosges
Mountains while circling to land at Strasbourg-Entzheim Airport in France.
A total of 87 people of the 96 on board were killed in the crash. The
aircraft, an Airbus A320, was equipped with an autopilot system that was
new to the pilots flying the aircraft. The accident invesrigation found that
the airplane crashed because the pilots had left the autopilot in the incorrect
mode and had set an improper descent angle. The autopilot was equipped
with Heading mode and vertical Speed mode. on approach the pilots
mistakenly entered a value of "-33" for a 3.3 degree angle of descent and
put the system in vertical Speed mode when it should have been in
Heading mode. In Heading mode this incorrect input would have
corresponded to 800 feet/minute rate of descent, but in vertical speed
mode it meant a descent rate of 3300 feet/minute. The mountains were in
clouds above 2000 feet, so it is unlikely that the flight crew would have
recognized their rapid descent. The aircraft was not equipped with a
Ground Proximity warning System (Gpws) so the crew did not receive
any warning before the aircraft impacted the mountains. It was not known
why the crew did not recognize their errors, but recommendations
following the crash included modifications to capture and warn the pilots
ofsuch errors.'o

on May 10, 1994, a release of ethane occurred in the cochin pipe
Lines Ltd. System near Regina, Saskatchewan, canada. The ethane release
led to a fire that destroyed communication links between the Regina
Division terminal and the Amoco canada petroleum company Ltd. control
center in Fort Saskatchewan, Alberta. The fire was allowed to self-
extinguish. The TSB determined that the probable cause was a lack of
preventative maintenance on a densitometer pump that resulted in bearing
wear and damage to the containment shell which then ruptured. The pump
ensured that an adequate flow ofproduct passed through the densitometer;
the pump had not been inspected or maintained for five years. At the time
ofthe ethane release, alarm messages had been issued at the control center
in Fort Saskatchewan, but these were interpreted as problems with a pLC.
such PLC problems had been seen in the past, so the alarms were ignored.
In addition, the Supervisory control and Data Acquisition (scADA)
system was not operating properly. A display window of the pipeline
Model Application System (PMAS) software componenr was not scrollins

Hazardldentification 91

forward as new alarms were generated, and the audibre alarm function of
the scADA system had been disabled. The pMAS was designed to assist
in leak detection, running mathematical simulations of the pipeline. The
PMAS displayed trend data critical for identi$ring leaks and other
problems. Because the display window was not scrolling forward properly,
trend data were not available and the operators were unaware of a problem.
The reason for the loss of scrolling could not be determined. The SCADA
alarm system had been disabled because many changes were being made to
the system and operating conditions at the time of the accident, and those
changes would have led to many nuisance alarms.zl

Irazards related to schedule and cost pressures should be considered:
v-22

Schedule and cost overruns may lead to a number of conditions with
potentially hazardous consequences, including the following:

o Reduced testing
o Shortcuts in the development process
r Reduced system functionality
o stressed employees who make mistakes or who may reave the

effort entirely

o Programs deployed with unknown problems

NASA has found that a number of mission failures resulted in part from
highly complex systems developed on short timelines. cost and schedule
are always factors in the development of complex systems, but they must
be balanced with safety.

on December ll, 2000, four Marines were killed in the crash of a V-
22 akcraft. near camp Lejeune, North carorina. According to published
reports, the left-hand nacelle titanium hydraulic line developed a leak
during flight. As a result, the hydraulic line reservoir was depleted, and the
Y-22 expeienced a total loss of the hydraulic system. The pilots responded.
to the master alert and primary flight contror system annunciation by
depressing the flight control alert and resetting the flight controls. when
the primary flight conkol reset button was pressed in accordance with

-ff-"i".
92 Software and System Safety

established procedures, a software anomaly caused significant pitch and
thrust changes in both prop rotors. These fluctuations resulted in decreased
airspeed; reduced altitude; and incorrect pitch, roll, and yaw motions that
eventually accompanied increasing rates of descent and angle of aftack.
Essentially, the vehicle swerved out of control, stalled, then crashed. The
crew had pressed the reset button to reset the primary flight control logic g
to 10 times in an attempt to reset the system and regain control during the
emergency. However, each primary flight control system reset aggravated
the situation until the aircraft entered a stall condition. The software
anomaly was found in a previously overlooked path in the flight control
laws associated with the propeller rotor governor. This anomaly allowed
large torque and RPM changes to be introduced when multiple failure
conditions existed. These anomalies, athibuted to software, were due in
part to inadequate testing. In its report to the secretary of Defense in its
review of the Y -22 program, the GAo noted that, "our review of the y-22
program, which is already in low-rate initial production, revealed that the
Department planned to proceed with a full-rate production decision without
knowing whether new technology could meet Marine corps requirements;
whether the design would work as required; or whether the design could be
produced within cost, schedule, and quality targets. This knowledge is
lacking in part because of inadequate test and evaluation. specifically,
developmental testing was deleted, deferred, or simulated in order ro meet
cost and schedule goals."22'23

Hazards related to organization and management issues should be
addressed: Ever Excel

organization and management issues have been identified as factors in
many accidents. Even well-designed systems and seemingly effective
hazard controls can fail under political, economic, and operational
pressures. In addition, changes in management can lead to an increase in
risk as critical functions and oversight are modified or eliminated. An
organization's safety culture therefore plays a key role in assuring that risk
is reduced to an acceptable level. A failure to consider these factors may
result in an incomplete analysis and a misunderstanding of the risk. Some
specific considerations include, but are not limited to, poor planning,
improper goals and objectives, poor comm'nication among team members,

Hazardldentification 93

rnadequate record keeping, insufficient human resources, poor risk decision
rrraking, poor scheduling, failure to investigate incidents, hazard controls
r clying only on procedures, and inadequate test scheduling and resources.

On April2I,2010, the chief engineer on the container ship Ever Excel
tlicd when he became trapped between the top of the ship's passenger lift
rrnd the edge of the lift shaft. According to the MAIB, at the time of the
:rccident the ship was undergoing a routine compliance inspection in
Kaohsiung, Taiwan. The second engineer was unable to open the lift shaft
tloors to complete the inspection. The chief engineer tried to solve the
problem and entered the lift car, climbed through an escape hatch, climbed
.n top ofthe lift car, and closed the hatch. The second engineer incorrectly
trelieved that the chief engineer had set the controls to manual mode to take
control of the lift car. Therefore, the second engineer released the
cmergency stop button then turned the reset key attached to the lift door.
tly closing the emergency hatch door the chief engineer had disabled the
llrst safety barrier, an interlock that would not allow the lift to operate with
the door open. The second engineer removed the second safety barrier, the
cmergency stop, by releasing the emergency stop and resetting the system.
As a result, the lift returned to its normal automatic operating mode, and
the lift automatically moved upwards, trapping and asphyxiating the chief
cngineer. The MAIB report noted that the crew had failed to follow
rnanufacturer-suggested procedures in performing lift maintenance. The
leport also stated that the crew was unable to release the chief engineer
after the accident and damaged the lift because they had not practiced
cmergency operation of the lift. In addition, the report identified a weak
safety culture in the organization, stating, "It was evident that completing
the task was considered more important than working safely." The report
went on to state that communications were poor, risk assessments were not
completed, there was little feedback provided to the crew on safe
procedures, the company did not make use of previous accident and
incident reports, and auditing was ineffective.2a

94 Software and System Safety

Hazards related to communications and training shourd be
considered: Knoxville pipeline Rupture

Accidents can result because people may not be provided with critical
information, the information might be sent at the wrong time, the
information could be provided to the wrong person, or the recipient may
misunderstand what is being communicated. Miscommunication is more
likely when distractions and irrelevant information are present, such as
under a stressful emergency situation. The potentiar for poor
communication must be addressed and mitigated. Training is critical to
help anticipate and respond to abnormal conditions. Training is also critical
to assure that operators understand computer systems and displays. poor
training can result in a failure to respond properly to both nominal and off-
nominal conditions.

On February 9, 1999, a pipeline operated. by Colonial pipeline
company carrying diesel fuel ruptured in Knoxville. Tennessee.
Approximately 53,550 gallons of diesel fuel were released from the
rupture. At the time of the leak the pipeline controller was using a SCADA
system to operate the l0-inch diesel piperine, and he had just completed a
delivery of fuel. The SCADA system recorded a ross in pressure of 19 psi
but did not issue an alarm because this pressure drop was not significant
enough to trigger an alarm. The controller started another delivery when he
noticed that the meter indicated no flow and did not show a normal
pressure rise. The controller decided to restart the pipeline without frst
communicating with senior officials. After 4.5 hours the local fire
department reported the leak to the operator and the controller shut down
the diesel flow. The NTSB stated that the probable cause of the accident
was pipe rupture due to environment-induced cracking and low fracture
toughness of the pipe. contributing to the severity of the accident was the
failure of the controller to determine from the scADA system data that a
leak had occurred, and his actions to restart the pipeline. After the accident
the company updated its operating procedures and training with regard to
pipeline anomalies. The company arso improved its automated leak
detection svstem.25

Hazard ldentification 95

1.2.4 H,a'zard Identification Process Considerations

I'he hazard identification process itself may be flawed, leading to a
lrazardous condition. The following are examples of concems in the hazard
i dentification process.

I'he hazard analysis rnust be updated as the design changes: Joseph M.
liarley Nuclear Plant

l:ngineering by its very nature is an activity that requires change. As the
tlcvelopment life cycle proceeds, the design often changes and new hazards
irre uncovered and some hazards may no longer be relevant. If the hazard
rrnalysis is not updated as development proceeds then resoruces may be
cxpended on previously identified hazards that may no longer be relevant,
rrnd new hazards may not be discovered as the design matues. An
organization should update haznd analyses at all major reviews and when
significant system changes occur.

On May 28,2000, reactor Unit 1 at the Joseph M. Farley Nuclear plant
near Dothan, Alabama experienced an automatic scram when the steam
generator level reached a low level set point. All safety systems functioned
as designed during the event, according to the report. The root cause ofthe
cvent was traced to a software change made in 1995. The 1995 software
change was made to the Digital Electrohydraulic Control (DEHC) system
to reduce the vulnerability of that system to momentary electrical spikes
and transients. Originally, the software automatically reset the valve
position to zero following a turbine trip from electrical transients if the
system was operating in manual mode. In the 1995 change, that function
was removed so that the valves remained in their previous position
tollowing power outages. However, this change was not properly
documented. In the event in 2000, operators manually shut down a turbine,
and they expected that the turbine would coast to a stop. However, the
turbine slowed to 20 RPM and stabilized. The operators decided to cycle
the turbine governor valves to 3% open and then close them again to stop
the turbine. To cycle the valves manually, the operators switched the
DEHC system from Operator-Auto mode to Turbine Manual Mode.
According to procedures, this mode should only have been selected if
Operator-Auto mode failed for some reason, but personnel did not follow

96 Software and System Safety

this procedural guidance. The operators opened the valves 3yo then they
manually shut down the turbine. Because of the previous software change,
the valves remained open at 3%o even though the operators thought they
were completely closed. The ultimate outcome was that the steam flow was
greater than the feed flow, and this mismatch led to the reactor shutdown.

The investigation found that the cause of the Joseph M. Farley Nuclear
Plant incident was personnel effor as a result of r) a varve cycring
operation performed with inappropriate procedural guidance with regard to
the operating modes of the system , and 2) a prior software change made to
the turbine control system with inadequate documentation describing the
design change and its operational impact. without the documentation,
personnel preparing operator procedures and training did not recognize that
system operation was affected by the change. without such procedures and
training, operations personnel made inappropriate decisions that led to the
scram. corrective actions included improved documentation, procedures,
and training.26

The hazard analysis must be updated as the processes or procedures
change: Collaroy

As systems become operational, changes are often made in processes and
procedures. operational modifications may not only change the nature of
the known hazards, but they can also introduce new hazards. The hardest to
control are those procedural changes that are gradual. Smail changes may
be made to the operation as more is leamed until the resulting processes
(and associated hazards) are much different than those originally
envisioned. If the reasons behind the original procedures are not
documented, then changes may be made to processes or procedures
without understanding the potential to increase risk. Note that operational
changes can include change to personnel, contractors, and management
structure.

On March 4,2005, the ferry Collaroy operated by the Sydney Ferries
corporation collided with a wharf in Sydney cove, Australia. There were
no passengers on board at the time, and the crew was not injured. The ferry
received minor damage, but the backboards at the wharf were extensively
damaged. The collision occurred when the master of the vessel was not
able to stop the ferry. The primary control of the propulsion system failed,

Hazardldentification 97

and backup systems were inoperative as well, leading to loss of control.
Warning systems were also inoperative. Collaroy was equipped with a
propulsion conffol system that relied on four PLCs. Two PLC units were
assigned to each propeller such that there was always one main PLC and
one backup. The system was designed such that if one of the PLCs failed
the control system automatically switched over to the backup unit. At the
time of the loss of control, one of the PLCs had failed because of a failed
electronic circuit in a logic card on the PLC. The system should have then
reverted to the backup PLC. However, the Australian Offrce of Transport
Safety Investigations team discovered that the backup PLCs were not
tumed on. Because the backup systems were not turned on there was no
waming alarm of a PLC failure. Without a backup system, the propulsion
control was lost upon failure of the primary PLC. The ferry company
informed the investigators that prior to the accident they had experienced
faults in the PLC electronic card circuitry. These faults occurred because of
repeated cycling from being turned on and off, which heated up the
circuits. These faults resulted in loud warning alarms, which became a
nuisance to the crew. Therefore, the crew modifred the procedures, using
an alternate PLC startup procedure. But according to the investigation
report this alternate procedure may have fooled the crew into thinking that
the backup units were on when they had not started. The report called for
improved risk assessments of the propulsion control system and additional
crew training for emergency situations.2T

The hazard analyses should consider software requirements as a
cause: Mars Polar Lander

System failures can often be traced to incorrect and incomplete
requirements and specifications. Often key requirements needed for safety
are omitted because of misunderstandings in how the system operates. A
significant effort should be in place to assure that requirements are clear,
correct, complete, consistent, and testable. Requirements come from many
sources, and may be technical or process safety requirements; technical
requirements describe what the software is supposed to do while process
requirements speak to the way in which software is developed. Technical
requirements can be functional requirements, data requirements, and

98 Software and System Safety

interface requirements. Technical software safety requirements should
include the modes of operation under which they are valid, and any modes
in which they are not applicable. The assumptions used in the requirements
and design should also be clearly stated; a design that is based upon
unrealistic or optimistic assumptions may be high risk. Requirements
analysis such as traceability analyses and criticality analyses strouto be part
of an effective requirements management process.

The Mars Polar Lander (MpL) spacecraft was raunched on a mission to
the planet Mars on January 3, lggg. Upon arrivar at Mars, communications
ended according to plan as the vehicle prepared to enter the Martian
atmosphere. communications were scheduled to resume after the Lander
and the probes were on the surface. However, repeated efforts to contact
the vehicle failed, and eventually the program managers declared the
spacecraft to be lost. The cause of the MpL loss was never fully identified,
but the most likely scenario was that the probrem invorved deproyment of
the three landing legs during the randing sequence. Each leg was fifted with
a Hall Effect magnetic sensor that was designed to generate a voltage when
the leg contacted the surface of Mars. A command from the flight software
was to shut down the descent engines when touchdown was detected by
this sensor. The MPL investigators believed that when the landing legs
deployed from the spacecraft, software interpreted spurious signals from
the motion of the vehicle as valid touchdown events. The software, upon
receiving these signals, then prematurery shutdown the engines at 40
meters above the surface of Mars, and the spacecraft crashed into the
surface of Mars.

Prior to launch designers knew of a possible failure mode whereby the
sensors would falsely detect that the vehicle had touched down. However,
the software requirements did not account for this failure mode and
therefore the software did not ignore spurious signals prior to landing.
Although the MPL failure report noted that the verification and validation
program was well planned and executed, the report also stated analysis was
often substituted for testing to reduce costs. such analysis may have lacked
adequate fidelity to identi$r this system failure scenario. Also, the
touchdown sensing software was not tested with the Lander in the flight
configuration. The MPL investigators specifically recommended that
system software testing include stress testing and fault injection in a

Hazardldentification 99

\uitable simulation environment to determine the limits of capabilitv and
'carch for hidden flaws.28

.1.2.5 Software-Specifi c Considerations

l'here are a number of concems specific to the use of software that should
hc considered in hazard identification. The following are examples of those
s o ftware-specifi c concerns.

Analyses should consider what happens if the software locks up:
Bellingham Pipeline Rupture

Software freezing and locking up the computer can lead to unexpected
consequences. The hardware should be in or revert to a known, safe state if
this occurs. For example, an analysis may determine that drain valves
could automatically close when the software locks up, leading to
overfilling conditions in a chemical processing system. Consideration must
be given to fault management of such situations. Watchdog timers are
sometimes used to trigger a system reset if the main program fails to
perform some action. Note that non-safety-critical code may cause the
computer to lock up, and that can still be a concern if safety-critical
software resides on the same processor and therefore becomes unusable
because the system is not functional.

On June I0,1999, a l6-inch-diameter pipe carrying gasoline ruptured
in Bellingham, Washington. The ruptured pipeline, owned by Olympic
Pipe Line Company, released approximately 237,000 gallons of gasoline
into a nearby creek, according to the NTSB. That gasoline then ignited,
burning approximately l% miles along the creek. Three people died in the
fire, including two l0-year-old boys playing alongside the creek. One
home and the Bellingham water treatment plant were also damaged in the
accident.

The NTSB investigated the accident and determined that the probable
cause of the rupture was damage to the pipe during a modification project
performed n 1994. This damage weakened the pipeline, making it
susceptible to rupture under increased pressure in the pipe. The NTSB also
stated that inspections of the pipeline during the project were inadequate

100 Software and System Safety

and did not identift and repair damage. The report noted that in-linepipeline inspection data should hurr" piompted the company to excavateand examine that section of pipeline, iut the company failed to performsuch work after reported anomalies. The scADA system computers arsoplayed a role in the accident. The SCADA system was used for operationof the pipeline, for example to open and crose valves remotely as requiredor to operate pumps as needed. Just prior to the accident the operator waspreparing to initiate derivery of gasoline to ARCo's Harbor Island terminalin Seattle, diverting derivery from another facility. During the process ofswitching derivery destinations, the pressure in the pipeline began toincrease, which is a normal condition bu, on" that required the operator tostart a pump to reduce pressure. However, when the operator tried to startthat pump, the SCADA system failed to execute the start command issuedby the operator. The operator soon found that the SCADA system wasunresponsive to any commands, something that had n"u"r, happenedbefore' The report stated that, "Had the contro'er been able to start thepump at woodinville, it is probable that the pressure uacmf woutd havebeen a'eviated and the pipeline operated routinely for the barance of thefuel delivery'" Instead, thepressure in the pipe increased, and the increasedpressure likely caused the damaged pipe torupture.
The cause of computer system failure was likely a change made to thesystem database just prior to the accident. The NTSB u""id";;;;rr statedthat the scADA system administrator entered new records into the livedatabase at the time of the accident. The system administrator however didnot check the records or test the system soft*ur" to see if those changesintroduced any problems. The computing system problem could not bereplicated after the accident ana tneretore"the cause of the anomary couldnot be definitively identified. The reporr stated, ..The Safety Boardconcludes that, had the scADA database revisions that were performedshortly before the accident been performed and thoroughry tested on anoff-line system instead of the p.i-ury on-rine scADA system, errorsresulting from those revisions may hav" been identified and repaired beforethey could affect the operation of the pipeline.,,2e

Hazard ldentification 1Ol

Mode transition shourd be considered: Tarom 3g1; west Navion
Drilling Ship

Transitioning to the correct software mode is often a critical part of the
system operation. There are a number of different definitions in the
literature, but for the purposes of this book a mode is one of several
alternative conditions or methods of operation of a device. Modes can be
thought of as mutualy exclusive sets of behavior. For example, software
on a weather satellite may have one mode for launch, another for on-orbit
science operations, and another safehold mode when anomalous conditions
are identified, each mode with different functions and responses to input. If
a mode change is required as part of the operation, then the analyst should
show failure to transition modes or inadvertent mode change ai a hazud,
sub-cause. The analyst should also specifu the ..triggers', thaiwilr allow the
software to make that mode change, and provide the level of faurt tolerance
on those triggers and their independence. For exampre, sensor limits may
result in a predefined switch from automatic to manual mode in an
airplane's guidance system. In addition, computing systems shourd clearly
indicate to the operator when mode changes have occurred, and they
should be designed to prevent confusion over which mode the system is in.
If the mode change is performed at the wrong time or without notification
to the operator then the results may be catastrophic.

On September 24, 1994, Tarom flight 3gl traveling from Bucharest,
Romania to Paris-Orly Airport in France stalled and went into a dive while
preparing to land. The pilots were able to recover and land the aircraft
safely. The accident investigation found that the direct causes of the
accident were actions by the pilots and a rack of understanding of the
automated flight system. As the aircraft approached the runway Le pilot
noticed that the aircraft was not captured by the grideslope automatically.
Therefore, he disconnected the autopilot and kept the autothrottre in
operation' The pilot selected a flap position of 20o, and the crew
encountered a nose-up effect resulting from increased thrust. In this flapposition the aircraft speed was slightly above the rever where the system
invoked automatic speed protection. This meant that the autoflight system
changed from vs mode to Lw cHG mode without informing the pilots.
In LW cHG mode, artitude change was controlled automatically. In this

102 Software and System Safety

mode the autothrottle commanded maximum thrust and command.ed a
pitch up to meet that thrust if the altitude selected on the Flight control
unit (FCU) was greater than that of the aircraft. The pilots had entered an
altitude of 4000 feet as the altitude to reach in the event of an aborted
approach, and because the aircraft was at 2000 feet, the autothrottle
commanded an increase in thrust and pitched the aircraft up to climb to
4000 feet. The pilot then accidentally trimmed the aircraft to its electrical
stop at l3o nose up, which resulted in an out of trim situation. The aircraft
climbed rapidly and eventually stalled. when the angle of attack sensors
were disturbed, the autothrottle automatically disabled and the flight crew
was able to regain control of the aircraft. The investigation report noted
that the approach was too rapid due to a late start in the descent. which
contributed to the accident. other contributors included inadequate crew
resource management, premature selection of the go-around altitude and
improper configuration of the slats and flaps (which led to activation of the
speed protection), and the crew's difficulty in understanding the functions
of the autothrottle and overspeed protection.30

On November 10, 2001, the Dynamic positioning (Dp) system on the
west Navion drilling ship inadvertently changed modes from automatic to
manual heading control mode. The Dp system determined the position of
the ship and allowed it to be properly positioned over a welr during
operations using navigation satellites and sea-bed transponders to guide it.
A helicopter had just landed on the ship and was being refueled at the time
of this inadvertent mode change. Neither the pilot of the helicopter nor the
ship's crew was aware that this mode change had occurred. The system
provided no indication in manual mode that the ship was changing heading.
The only indication to the crew that the system was in manual mode was
the absence of a heading window on one of the Dp screens. The ship began
to drift following the mode change, and the force of the ship,s movement
combined with high winds caused the helicopter to fall over on its side.
The co-pilot of the helicopter was standing next to the aircraft when it
toppled over, and he was severely injured by flying debris as the
helicopter's main rotors broke apart upon impact with the helideck. The
helicopter was significantly damaged in the accident. According to the
U.K. Air Accidents Investigation Branch (AAIB) report, it is believed that
a software error had occurred that led to the loss of heading control,

Hazardldentification 103

although the investigation could not pinpoint the exact cause. Because the
mode change could have been easily implemented with a single operator
action via a "one touch" switch, the possibility existed of an operator
accidentally initiating a mode change. A similar incident had occurred on
October 12, 2001, where the DP had a loss of heading mode change.
However, the company had not fully investigated the incident and had not
identified the root cause. The company had been considering installation of
a "double touch" switch to prevent inadvertent mode changes on the Dp
system following the october 12 incident, but that modification had not
been completed prior to the accident on November 10.31

consideration should be given to the order of commands and out of
sequence inputs, commands, and events: CryoSat Satellite

The sequence of commands and inputs can be critical for safety. For
example, two-step commanding is a necessary part of the control strategy
where human interaction is required. However, the order of commands can
matter (e.g., a FIRE command issued before an ARM command should be
ignored). The system should be designed to reject out of sequence
commands if they could introduce a hazard. Also, the analyst should
consider whether command timeouts are needed - if the ARM command is
issued, there should be some time limit after which an operator cannot
issue FIRE in order to prevent the operator from forgetting about that ARM
command. Note that in some emergency or contingency operations two
step commanding may not be appropriate - this shouldbe analyzed on a
case-by-case basis. In addition, ifinput from a sensor arrives early,late, or
not at all the software should be able to identify and safely handle this
situation. For example, the software could be desisned to set the earliest
and latest time when data are allowed.

On October 8, 2005, a Russian-built Rockot launch vehicle, carrying
the cryoSat satellite, blasted off from Russia's northwestem plesetsk
cosmodrome. Analysis of the telemetry data indicated that the first stage
performed nominally. The second stage performed nominally until main
engine cut-off was to occur. The second stage main engine failed to shut
down at the proper time, and continued to operate until depletion of the
remaining fuel. As a consequence, the second stage did not separate from

F
et'
€

:g
'i

104 Software and System Safety

the third stage, and the third stage engine did not ignite. This lack of engine
capability resulted in unstable flight, causing the vehicle flight angles to
exceed allowable limits. The on-board computer automatically ended the
mission at 308 seconds into flight. For the second stage shutdown to
succeed, pressurization of the low-pressure tank of the third stage had to
have been completed before issuance of the shutdown command. The
failure analysis showed that the command to shut down the second stage
engine was generated correctly. However, the completion time for the
pressurization sequence was erroneously specified; therefore,
pressurization completed after the shutdown command was generated.
This failure case had not been identified in development and was not
tested. No builfin tests existed for the pressurization time.32,33

Analysts must understand the required performance in terms of speed,
accuracy, and precision: Saint-Clet pipe Rupture

A failure to understand required computing system performance may lead
to an unsafe condition. For example, performance issues could prevent
timely receipt of commands, or there may be a misunderstanding of how
often critical information must be updated on a display in order for an
operator to make a safety decision. one particular issue that must be
considered is data latency. Latency is the time interval during which new
information will not change the outputs. This latency interval is affected by
the hardware and software design, and may be important if critical
information is being updated but the sampling rate is too slow to accept the
new information and do something with it. Data age should also be
considered - not all input values are valid forever, and data age limits
should be assessed.

on December 7, 2002, Trans-Northern piperines Inc. was delivering
petroleum products from the Montreal, euebec refining basin to the
offawa, ontario terminal storage facility when a pipe ruptured and
approximately 32 cubic meters of low sulfur diesel was released to the
Saint-clet, Quebec drainage area. There were no injuries reported. The
TSB investigated the accident and found that the rupture occurred because
an automatic cornwall rake-off valve (ToV) closed in an uncommanded
operation. The closure of the valve created a pressure surge in the line,
leading to rupfure of the pipe. The pipe that ruptured had pre-existing

Hazardldentification 105

, r'acks, likely from unauthorized third-party construction activity near the

1,rpe. The TSB stated that had the system been equipped with flow control
rr. ovolpressure protection the pipeline may not have ruptured. The TOV
t losure and the subsequent high pressure resulted from the command
r'cnter operator's attempts to maximize flow rates into the station. He had
\ct system parameters to operate near the pressure where the TOV would
e lose automatically and therefore only minor pressure perturbations were
rrceded for the valve to close. Contributing to the accident was the
configuration of the SCADA system computers used to operate the system.
According to the TSB the SCADA system was gathering system events
tlata at 5-second intervals, but recording events data for trending purposes
only at l5-second intervals; therefore, key events were not being recorded.
I'his meant that the operator may not have seen momentary spikes in the
pressure and therefore could not identify hazardous conditions. "The
cliscrepancy between SCADA data and observed data means that the
SCADA system indicates that operations are conducted in a safe malrner
while, in fact, the pipeline is being exposed to higher operating stresses that
increase the risks of pipe rupture."34

Task prioritization, resource contention, and timing should be
considered: Mars Pathfinder

Where a multitasking system is employed, tasks must be scheduled and
resources must be allocated to tasks based on the scheduling frequency
required for the tasks, the criticality of the tasks, and the resources used by
the tasks. This must be done in such a. way that the response priority is
based on risk - the higher the risk the higher the priority. The analyst
should determine whether the prioritization scheme can be unexpectedly
bypassed or resource contention could be an issue. The analyst should also
identify where timing is critical for tasks, and determine the time needed to
complete the task. For example, the analyst should determine what happens
if data arrives early, late, or not at all. The analyst should ask what could
cause time-dependent data commands to be delayed. Timing may also
affect error response - some delays may be needed to assure graceful mode
transition. Analysts should also identifu whether "deadlocks" exist (two or
more processes each waiting for the other to release a resource) or whether

106 Software and System Safety

there are any conditions where a module could comrpt or interfere with
other modules or system performance, such as "thrashing" (two or more
processes accessing a shared resource). Race conditions should also be
considered; a race condition is a sequencing fault where independent tasks
execute or initialize data out ofsequence.

The Mars Pathfinder spacecraft was launched on Decemb er 4, r996,by
NASA on a Delta II launch vehicle. Its mission was to land and deploy the
first roving probe on another planet. Mars pathfinder landed on Jury 4,
1997, and its rover, sojoumer, began exproration soon thereafter. on
September 27, 1997, all communication was lost with Sojourner. Then the
system began encountering periodic total system resets, resulting in lost
data and a failure to receive ground commands. The problems were due to
a software fault known as priority inversion. In priority inversion, a high
priority task is waiting for a resource from a lower priority task. on Mars
Pathfinder and sojourner, data and commands to control the devices had to
pass through an information bus in the computer. In order to prevent
communication conflicts, the data and commands had to take turns.
Because some data and commands were more important than others, a
priority system was set up of low, medium, and high priority tasks. when a
specific task was running the system blocked other tasks from taking over.
At one point in the mission a low-priority meteorological task was running,
and a medium-priority communications task tried to intemrpt. The system
performed the correct task prioritization, but at the same time the system
also prevented the high-priority information bus task from running because
the lower-priority tasks had not completed. After a predetermineJtime had
passed, a watchdog timer went off informing the system that the high-
priority bus task had not been running for a while. The system assumed
that an error had occurred and initiated a total system reset. The NASA
flight team was able to replicate the problem on the ground and uploaded a
software patch that solved the problem. NASA had seen similar behavior in
pre-flight testing, but the phenomenon was never reproduced, so engineers
had assumed it was due to a hardware glitch.3s

The software-software interfaces shourd be evaruated: srs-49

Inputs and outputs to software modures should be defined in design
documentation. In addition, parameters necessary for status, error handring,

Hazardldentification 107

.rrrcl error recovery should be specifred. Interfaces should be designed to
,rrinimize failure propagation through design features such as exception
lrrrnding and parameter validation. Consideration should be given to
prrrameter type mismatch, parameter order mismatch, and parameter
rrrrrnber mismatch.

On March 14,7990, the INTELSAT VI communications satellite was
lrnrnched on a commercial Titan 3 launch vehicle. However. the second
:tage failed to separate from the satellite during flight, and the satellite was
.tranded in the wrong orbit. NASA launched the Space Shuttle Endeavor
,,rr mission STS-49 on May 7 , 1992, to salvage the mission by installing a
rrcw second stage motor to enable the satellite to achieve its proper orbit.
lo do so the Space Shuttle had to first rendezvous with the INTELSAT
satellite. The first attempts by the Space Shuttle to rendezvous with the
stranded satellite failed. A problem was identified with the software used to
calculate the trajectories to perform the rendezvous; the investigators found
l precision mismatch in a software library function. Rounding errors in
computer software can originate because computers can only represent
numbers using a limited number of significant digits. Many computers
have the capacity of representing numbers as single or double precision. A
single precision can represent data to about 7 decimal places, and a double
precision to about 15 decimal places (at the cost of increased computing
resources). In the case of STS-49, the software routine used to calculate
rendezvous firings, called the Lambert Targeting Routine, failed to
converge on an acceptable solution that would allow a rendezvous. This
failure occurred because of a mismatch in precision of state-vector
variables and the limits used to bound the calculation. The state-vector
variables described the position and velocity of the Space Shuttle, and
these variables were double precision, while the limit variables were single
precision. While the difference was small, the errors introduced by this
mismatch were just enough to prevent the algorithm from converging. The
flight and ground crews were able to devise a workaround to successfully
complete the rendezvous, and the software problem was fixed for later
flights.36

E*

, : .
108 Software and System Safety

The analysis should address unused or'odead" code: Ariane 5

Often organizations will reuse software for various projects. The reused

software could contain code that is logically excluded from execution so

that it will not execute for the new use ("dead" code) and unused but active

code (code that can be accessed but is not intended to be used). The use of

software containing dead and unused code can introduce unnecessary

complexity, and that code could be inadvertently executed. Where possible

dead code and unused code should be avoided. but in some cases additional

risk may be introduced in modifying the software to eliminate that code.

Therefore, the operator should perform an analysis to identify any dead and

unused code and then identifu risks and mitigations.

On June 4, 1996, the Ariane 5 launch vehicle veered off course and

broke up approximately 40 seconds into launch. The vehicle started to

disintegrate because of high aerodynamic loads resulting from an angle of

attack greater than 20 degrees. This condition led to separation of the

boosters from the main stage, in turn triggering the self-destruct system of

the launcher. This improper angle of attack was caused by full nozzle

deflections of the solid boosters and the Vulcain main engine. The on-

board computer software commanded these nozzle deflections based on

data received from the active Inertial Reference System. Ultimately, these

improper deflections resulted from specification and design errors in the

Inertial Reference System software, including improper error handling. The

specific error was in a single line of code that attempted to load a 64-bit

number into a 16-bit location, causing overflow. Reused software from the

Ariane 4 program, including the exception handling code used in the

Inertial Reference System, contributed to the failure. The source of the

fault occurred in a function that was not required for Ariane 5, but rather

was a function carried over from the Ariane 4 software that should not

have been used by the system. Therefore, protections were not

implemented against an excessive horizontal velocity component input to

this function, according to the accident report. No end-to-end tests were

conducted to veri$ that the Inertial Reference System and its software

would behave correctly when subjected to the countdown sequence, flight

time sequence, and trajectory of Ariane 5.37'38

Hazardldentification 109

Hazards related to computer viruses, malware, worms' and other

attacks should be considered: Davis-Besse Nuclear Power Plant;

Spanair 5022

A computer virus is a computer program that can copy itself and infect a

computer by attaching itself to an existing program. Malware is software

that can secretly access a computer, but cannot copy itself. A computer

worm is a type of malware that is self-replicating but does not attach itself

to an existing program. All these intrusions and others can cause

unexpected and unwanted computer operation, including disruption of

network traffic, comrption of critical files, data loss, and so on. The result

can be loss of safety-critical functions, inadvertent commanding, incorrect

display messaging, and so on. Computer security tools such as anti-virus

and anti-malware software must be used, and processes and procedures

must be in place to prevent inadvertent infection of computers.

On January 25, 2003, the Davis-Besse nuclear power plant near

Sandusky, Ohio was infected with the Slammer woffn. This worm caused a

traffic overload on the Davis-Besse computer network. Because of the

overload the Safety Parameter Display System (SPDS) was unavailable for

almost five hours. The SPDS monitored critical safety systems at the power

plant, including coolant systems, core temperature sensors, and external

radiation sensors. Those systems were necessary for safe operation of the

plant. In addition, the congestion created by the worm affected the Plant

Process Computer, another monitoring system. At the time of the incident

the plant was offline to fix a problem in the plant's reactor head, and

therefore the worm presented no safety concerns. In addition, analog

backup systems were available if needed. However, had the plant been in

operation then plant personnel may have been overburdened and additional

safety concerns may have arisen. The worm had entered the Davis-Besse

network fust through a contractor's unsecured network, then through a T-1

line acting as a bridge between the contractor and the Davis-Besse
corporate network. The T-l line was later found to bypass the plant's

firewall, which had been programmed to block a worrn from entering.3e
On August 20,2008, Spanair flight 5022, a McDonnell Douglas DC-

9-82, crashed on takeoff from Barajas Airport in Madrid on a flight to Gran
Canaria, Spain. A total of 154 people on board died, and 18 others were

i
r : ,.l.
*

110 Software and System Safety

seriously injured. The investigation found that the takeoff took place with
the flaps and slats retracted. This was an improper configuration for
takeoff, and likely led to the crash. Standard operating procedures included
checklists to prepare for takeoff, including setting the wing configuration.
It was not clear why the pilots did not complete this checklist, but they may
have been intemrpted when they had to retum the airplane prior to flight to
fix a malfunctioning sensor. The pressures to meet schedure may have led
to a failure to strictly follow procedures. The investigation found that the
electronic system to notify the crew of an improper configuration, the
Takeoff waming system (Tows), did not activate. A synthetic voice
should have notified the crew that the flaps and slats were not properly
configured. Although the cause of the Tows failure could not be
determined, authorities suspected that the Tows may not have activated
because the central computer was infected with malware. The malware
could have entered the system through a third-parry device such as a
Universal Serial Bus (usB) flash drive or through a remote virtual private
Network (VPN) connection.ao, ar

Hazard' analyses must consider errors rerated to improper carcurations
and algorithms: GEOSAT Follow-On (GFO) Spacecraft

Errors in calculations and computations can create unexpected results.
calculations can be incorrect for many reasons, incruding inaccurate
requirements and poor implementation. Safety anaryses should assure that
algorithms and calculations are correct.

The GEOSAT Follow-on (GFo) spacecraft was launched on February
10, 1998, from vandenberg Air Force Base in california on a Taurus
rocket. GFO was a United States Navy program to launch a series of
satellites to maintain continuous ocean observation. once the spacecraft
separated from the launch vehicle it began to tumble instead of achieving
the correct attitude. Analysis of the motion equations programmed into the
vehicle found that the momentum and torque were being applied in the
wrong direction in the Attitude control system (ACS). In the development
process a sign on a coefficient had been inverted, leading to the forces
being applied in the wrong direction. This ACS sign error was corrected by
uplinking modified ACS control loop parameters in a flight software data
table. The satellite recovered and was operational following the fix.13

Hazardldentiflcation 111

Hazard analyses must not only consider software but also data: SAS
Charter Flight

Often the safety effort concentrates on the software but does not include
the external data provided to that software. External data can come from
many sources, and easily-modifiable configuration data are commonly
used in software systems. Examples include day-of-launch guidance
parameters for a rocket, track layout and car identification information
used in a railway command and control system, or piping configuration
information used in a chemical plant control system. Data errors include
omission of important information, duplicated entries, incorrect labeling,
data type errors, value errors, and so on. Data should be subjected to
systematic analyses as part of the overall hazard analysis efforts, the
implication of data errors must be understood, and the data should be
verified.a2'a3

On December 7,2003, a charter flight operated by SAS was
accelerating on the runway for takeoff from Gdteborg/Landvetter Airport
in the Gothenburg region of Sweden when the co-pilot noticed that the
aircraft's nose was lifting spontaneously without him moving the control
column. The co-pilot reported the situation to the commander. The
commander took control and aborted the takeoff, then taxied the airplane to
the aircraft terminal building. Had the flight continued the crew may have
had difficulty controlling the aircraft in flight.

At the terminal building SAS personnel reviewed available information
and found that the aircraft loadsheet which specified the placing of
passengers did not correspond to where the passengers were actually
sitting. The loadsheet stated that the passengers were evenly distributed,
but in fact most passengers were near the back of the airplane. This
distribution meant that the center of gravity of the aircraft was
inappropriate for safe flight, and the aircraft was "tail heavy."

The incident report from the Swedish Accident Investigation Board
stated that the inaccurate loadsheet was the result of shortcomings with the
company's computerized systems. Prior to the incident the aircraft had
arrived from Salzburg with a full load of 180 passengers. However, at
Gdteborg 59 passengers disembarked while 121 passengers remained; no
new passengers were taken on board. The computerized system used by

F
€E
+J
g

iji

*E
:SE

€'E
:j
,.,:'
,,1
:,.'it
: :?
l.j,
a z- :

a
: t
i

a-a

:

112 Software and System Safety

SAS for creating the loadsheet was called passenger and Load control
(PALCO). During passenger check-in, passenger seating information was
normally sent to PALCO, and then pALCo generated a loadsheet for the
pilots to use to determine center of gravity. Information for this flight was
supposed to have been sent from Salzburg to pALCo for the follow_on
flight from Gdteborg. However, this seating information never arrived at
Goteborg because the check-in system at Salzburg was not linked to
PALCO. without such information, pALCo used the default value for
passenger seating, assuming an even passenger distribution. pALCo did
put a message on top of the loadsheet that said ..EVENLY
DISTRIBUTED," but the crew failed to notice this message, in part
because no crew procedures had been implemented to rook for such a
message. In addition, pALCo sent a warning to the passenger check
information screens in Gdteborg, but since no passengers boarded the
airqaft at Gciteborg no one saw this warning. Therefore, the crew initiated
takeoff with information on passenger seating and aircraft center of gravity
that did not reflect reality. After the incident the pALCo system software
was revised to provide an additional warning if seating information is
missing. In addition, the software required a two-step user confirmation
process before the loadsheet can be printed.a

Hazard, analyses must consider rogic errors: TransAsia Airways 536

Logic errors can create a number of potential safety issues, including
commands issued out of sequence, failure to issue command, inadvertent
mode change, command sent to the wrong system, comrnand sent when
system is in the wrong mode, and so on. Many times such rogic errors are
actually the result of properly designed behavior executed in unexpected
conditions and environments. Analyses and peer reviews should be
conducted to try to anticipate and mitigate such logic enors.

on october 18, 2004, TransAsia Airways flight 536 overran the
runway upon landing at Taipei sungshan Airport in Taiwan. The aircraft
was damaged, but none of the crew or passengers were injured in the
accident. The accident investigation found that the root cause of the
accident was the failure of the pilots to set the thrust lever on engine 2 to
the IDLE position. During landing the Flight waming computer (Fwc)
normally delivered a message just prior to touch down which indicated that

Hazard ldentification 113

the crew should move the throttle control levers to the IDLE position to
take manual control of the thrust for landing. The pilots had set the
autobrake mode to the MED position prior to landing, intending to use the
automated system to decelerate the aircraft after touchdown. In this case
the crew received the waming to set thrust levers to the IDLE position, but
only set thrust lever on engine I to this position. The on board computer
was configured to only extend the ground spoilers when both thrust levers
were set to IDLE; therefore, the ground spoilers were not extended to help
slow the aircraft down. In addition, the software logic only engaged the
autobraking system when the spoilers were extended; therefore, the
autobrake function was not activated, unbeknownst to the crew. Also, the
warning to the crew to move the thrust lever 2 to the IDLE position
stopped after four warnings due to other actions by the crew. The report
noted that there was no other way other than this warning for the crew to
know that the thrust lever was in the wrong position, so the pilots did not
have enough information to troubleshoot the problem.as

3.3 Summary

Hazard identification may be one of the most diffrcult tasks in the system
safety process. But hazard identification is critical to the system safety
effort, because one cannot analyze or reduce risks if those risks have not
been identified. With respect to software, analysts should frst consider the
ways that software can contribute to a system hazard. Then, software-
specific errors should be considered. Because software may be used in
many different kinds of functions, analysts should take care to look for all
the ways that software can impact safety. Analyses should include support
software, software used in monitoring functions, and models and
simulations. Hazard identification requires persistence in gathering
information based on similar systems designed and operated in the past,
and creativity in trying to look for ways a new system can act in
unexpected and potentially catastrophic ways. This is especially true where
software and computing systems are used.

:-,i
:?:-

114 Software and System Safety

References

1. Saipern" "Saipem Sustainabilify Report 200g," 200g.
2. International Marine Contractors Association. IMCA

December 2008.
Safety Flash 18/08,

18 .

19.

20.
2r .

Hazardldentification 115

U.S. Nuclear Regulatory Commission, "Effects of Ethemet-Based, Non-Safety
Related Controls on the Safe and Continued Operation of Nuclear Power
Operations," NRC Inforrnation Notice: 2007 -15, Apnl 17 , 2007 .
Reeves, G. and T. Neilson. "The Mars Rover Spirit FLASH Anomaly." paper

presented at the IEEE Aerospace Conference, Big Sky, Montana, March 2005.
Job,M., Air Disaster, Volume 3, Aerospace Publications, 1998.
Transportation Safety Board of Canada, "Ethane Release and Fire, Amoco
Canada Peholeum Company Ltd., Regina Diversion Terminal, Mile Post 445,
Cochin Pipeline, Regina, Saskatchewan, 10 May 1994," Report Number
P94H0018, May 19, 1995.
Mnrray, B., "Corps Cites Software Failure in Osprey Crash." Federal Computer
W'eek, 9 April, 2001.
U.S. General Accounting Offrce, "Defense Acquisitions: Readiness of the Marine
Corps' V-22 Aircraft for Fill-Rate Production," GAO-01-369R, February 20,
2001.
U.K. Marine Accident Investigation Branch, "Report on the investigation into the
fatal accident to the chief engineer in the lift shaft on board Ever Excel in
Kaohsiung, Taiwan on 21 April 2010," ReportNo 6120ll, May 2011.
U.S. National Transportation Safety Board, "Hazardous Liquid Petroleum
Products Pipeline Rupture, Colonial Pipeline Company, Knoxville, Tennessee,
February 9, 1999," Report No. NTSB/?AB-0l-01, March 28, 2001.
U.S. Nuclear Regulatory Commission, Licensee Event Report 348/2000-006, June
27.2000.
Office of Transport Safety Investigations, "Collision of the Manly Feny Collaroy
Number 3 West Wharf, Circular Quay, 4 March 2005," OTSI File Ref: 03545,
November 25,2005.
National Aeronautics and Space Administration, Jet Propulsion Laboratory,
Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions, JpL D-
18709,2000.

29. U.S. National Transportation Safety Board, "Pipeline Rupture and Subsequent
Fire in Bellingham, Washington, June 10, 1999," Pipeline Accident Report
NTSB/PAR-02/02, October 8, 2002.

30. Bureau Enqu6tes-Accidents @EA, France), Report on the incident on 24
September 1994 during approach to Orly (94) to the Airbus A310 registered yR-

LCA operated by TAROM, YR-A940924A, February 2000.
31. U.K. Air Accidents Investigation Branch, Report on the accident to Eurocopter

AS332L Super Puma, G-BKZE otr-board the West Navion Drillng Ship 80 nm
west of the Shetland Islands on l0 November 2001, Aircraft Accident Report
3/2004,May 2004.

32. Briggs, H., "CryoSat Rocket Fault LaidBare;' BBC News, October 27 , 2005-
33. EUROCKOT Launch Services GmbH, "CryoSat Failure Analyzel- KOMpSAT-

2 Launch in Spring 2006," Eurocket Press Release, December 21, 2005.
34. Transportation Safety Board of Canada, "Refined Product Pipeline Rupture,

Trans-Northern Pipelines Inc. 273.l-millimetre-diameter Mainline Kilomete post

3. Ericson, C.A., Hazard Analysis Techniques for System Safety, John Wiley &
Sons,2005, pp. 483495.

4- National Aeronautics and Space Administration, software safety Guidebook,
NASA-GB-87 1 9. 13, March 3 l, ZOO4.

5. Federal Aviation Administration, Guide to Reusable Launch and Reentry vehicle
Sofiware and Computing System Safety,version 1.0, July 2006.

6' Lutz, R.R', "Targeting Safety-Rerated Errors During Software Requirements
Analysis," .{ Sys t ems an d Softw ar e, y oI. 34, Issue j, lg9 6, pp. 223 _23 0.

7' Swallom, D.w., "source-Mechanism-outcome: A Simpre, yet Effective Hazard
Description Model," proceedings of the 24e International System Safbty
Conference, 2006.

8- Transportation safety Board ofcanada, "power Loss - No. 2 Engine Skyservice
Airlines Inc. Airbus 4330-300 C-FBUS columbo, Sri Lanka 15 February 200r,,,
Report Number A0l F0020, March 25. 2003 .

9' U's. Nuclear Regulatory commission, Licensee Event Report 2gi/200g-00r,
January 7,2009.

10. u.K. Marine Accident Investigation Branch, "sBS Typhoon, contact in Aberdeen
Harbour, 26 February 201l,', Report No. l3l2}ll,August 2011.

1 1. u.s. Mine Safety and Hearth Administration, Accident rnvestigation Report: Fatal
Machinery Accident, yakima - pre-Mix #6, centrar pre-Mix concrete bo-puoy,
Yakima, Yakima County, Washington, January g, lggT, Mine ID No. AS_OOSS:.
1997.

12. Loeb, v., "Friendly Fire Deaths Traced to Dead Battery, Tariban Targeted, but
U.S. Forces Killed," Washington poil, March 24,2002.

13. National Aeronautics and Space Administration, ..Design Development Test and
Evaluation (DDT&E) considerations for safe and Reliable Hurnan Rated
Spacecraft Systems," Volume 2, NASA/TM_200g_ 2lSI26,Apri1 200g.

14. Flight Safety Foundation, "Erroneous Airspeed Indications cited in Boeing 757
Control Loss," Accident prevention, Vol. 56, No. 10, October 1999.

15. u.s. National rransportation Safety Board, ..Uncommanded
roll during crurse,

Airbus 4320-21l, April 28, 1995, Report Number CHI}5IA342, lgg5.
16. u.s. Nuclear Regulatory commission, Licensee Event Report 352/r999-003,May

19,1999.
17. Aircraft Accident Investigation Bureau (Switzerland), Final Report by the Aircraft

Accident Investigation Bureau concerning the incident to the McDonnell Douglas
Dc-9-82 aircraft, LN-RML operated by SAS Scandinavian Airlines System unlder
flight number SK 682 on l3 July 2003, Report No. 1g65, Septemb er 9,2005.

22.

z) -

A A

25.

26.

28.

w116 Software and System Safety

63'57 Near saint-clet, Quebec 07 December 2002,,,Report Number p02H0052,
May 10,2005.

35' Durkin, T', "The vx-Files: what the Media courdn,t Te' you About MarsPathfinder,,'Ro bot Science & Technolog,t,Issue l, 199g.
36' Goodman' J., "Lessons Leamed from Seven space shuttle Missions, NASA/.R_2007 -213 _697, I antary 2007 .
37. Lions, J. L-, Ariane,: Ftight 501 Failure Report by the Inquiry Board, EwopeanSpace Agency, I 996.
38' o'Halloran, corin,^et ar., "Ariane 5: Learning from Failure.,, proceedings of the

;;;Intemational
System Safery Conferen"e, A.rgust at San Diego, Cahfornia,

39' Poulsen, K., "slammer worm crashed ohio Nuke plant Network,,, securityFoczs, August 19,2003.
40' comision De Investigacion De Accidentes E Incidentes De Aviacion civil(.IAIAC), "Accident Involving Aircraft McDonne' Douglas Dc-g-g2 (MD-g2),registration EC_HF., Operated by Spanair, at Madrid_Barajas Airport on 20August 2009," Interim Report A_O3}l2}}g,August 4, 2009.
41' Meredith, L', 'Malware

Implicated in Fatal spanair plane crash,,,TechNewsDaily, August 20, 2010.
42' Faulkner, A., "Is It Data or Is It Software,,, lgs Intemational System safetyConference, Huntsville, AL, September 2001.
43' Faulker, A', and N. Storey, "Data: An often-Ignored component of safety-Related Systems," MoD Equipment Assurance Symposium (ESAS02),2;2.
44' Accident Investigation Board (sweden), ,.Uncommanaed

rotation, Incidentinvorving aircraft LN-RpL at Gothenburg/Landvetter Airport, o co'nty, Sweden,on 7 December 2003," Report RL 2005:20e, September 29, 2005.
45' Aviation safety council (Taiwan), 'GE 536 'ccurrence Investigation Report:Runway Ovemrn Drrring Landing On Taipei Sungshan Airport, TRANSASIAAIRWA'S FLI.HT 536, A320_232,e_Z23tO, October tB,-2004,. n"po.t No.ASC_AOR_06_03 _002. 20a6.

cHnprrn 4

Hazard Risk Assessment

Progress always involves rislrs. You can't steal second base and
keep yourfoot onfirst.

.Frederick B. Wilcox

The only virtue of being an aging risk manager is that you hqve a
large collection of your own mistakes that you know not to repeat.

- Donald Van Deventer

On February 25, 2009, Turkish Airlines flight l95I crashed while
attempting to land at Amsterdam Schiphol Airport on aflight from
Istanbul, Turkqt. Nine people were killed in the accident. The
investigation by the Dutch Safety Board found that as the aircraft
was landing the left radio altimeter suddenly indicated a value of
negative 8 feet. This erroneous value was passed onto the
autothrottle computing system. The autothrottle was part of the
automatic flight system and included a computer used to regulate
engine thrust by moving thrust levers. The outothrottle received
radio height to perform its function primarily from the Iefi radio
altimeter. If the left radio altimeter height reading was determined
to be unusable, a warning should hqve been issued ond the
computer should then have used the right radio altimeter input.
However, in this case the soffiuare did not respond appropriately,
and the computer used the etroneous signal to perform subsequent
actions. The safety board found that the sofhuare responded to
negative input values as "non computed data," and such input
automatically qctivated the "retard flare" mode of the system. In
this mode the engine thrust was reduced to idle, causing the

117

