FUNÇÕES E SEUS GRÁFICOS

RICARDO BIANCONI

1. Introdução

Vamos tartar de funções. Para isso, precisaamos especificar alguns conceitos.

Intervalos de números reais: Intervalos são conjuntos de números reais de uma das seguintes formas, onde $a, b \in \mathbb{R}$, a < b:

- (a) intervalo fechado e limitado, $[a, b] = \{x \in \mathbb{R} : a \le x \le b\};$
- (b) intervalos fechados e ilimitados, $[a, \infty[= \{x \in \mathbb{R} : a \leq x\},] \infty, a] = \{x \in \mathbb{R} : x \leq a\};] \infty, \infty[= \mathbb{R};$
- (c) intervalo aberto e limitado, $]a,b[= \{x \in \mathbb{R} : a < x < b\};$
- (d) intervalos abertos ilimitados, $]a, \infty[] = \{x \in \mathbb{R} : a < x\},] \infty, a[] = \{x \in \mathbb{R} : x < a\};] \infty, \infty[] = \mathbb{R}$ (é, ele aparece de novo aqui!).

Coordenadas no plano: Escolhemos um ponto O do plano e duas retas x e y, perpendiculares entre si e concorrentes no ponto O. Fixamos uma unidade de medida e "graduamos" as retas x e y, de modo que o ponto O esteja no ponto O (zero) de ambas. Essas retas são os chamados eixos x e y, e O é a origem.

Pares ordenados: Cada ponto P do plano pode ser representado por um par ordenado de números reais (a,b), onde $a \in x$ e $b \in y$ são as coordenadas dos pés ds perpendiculares de P às retas x e y, respectivamente.

Geogebra: usamos o programa Geogebra para desenhos de gráficos e construç oes geométricas nesta disciplina.

2. Funções

Começamos com algumas generalidades sobre funções.

2.1. Funções: Domínio, Imagem e Gráfico. Usamos a letra f (e outras, se necessário) para nomes genéricos de funções.

Date: 2023.

Definição 1. Uma função f é uma relação que associa a cada elemento x de um conjunto de números reais (o domínio de f, $\mathrm{Dom}(f)$) um único número real, f(x). O contradomínio de f é o conjunto dentro do qual os valores de f vão estar; no caso em questão, tomamos o conjunto \mathbb{R} . Dentro do contradomínio de f fica a imagem de f, $\mathrm{Im}(f)$, que é o conjunto de valores f(x), para todos $x \in \mathrm{Dom}(f)$. Representamos essa informação por $f: \mathrm{Dom}(f) \to \mathbb{R}$. Se hover uma expressão explícita para calcular f, escrevemos

$$f: \mathrm{Dom}(f) \to \mathbb{R}$$

 $x \mapsto f(x)$

Observação 1. O domínio de uma função f pode ser determinado pela prórpia função (por exemplo, não podemos dividir por zero, ou não podemos extrair a raiz quadrada de um número negativo), ou pode vir do problema a ser resiolvido (por exemplo, os elementos de Dom(f) são medidas de comprimento, restritas a algum lugar limitado).

Exemplo 1. O domínio da função $f(x) = \sqrt{x}$ é $Dom(f) = [0, \infty[$.

Exemplo 2. Se a função f for a altura de um retângulo inscrito em uma circunferência de raio R > 0, em função da medida de sua base, então Dom(f) =]0, 2R[(excluímos os extremos do intervalo para descartar altura zero).

Definição 2. O gráfico de uma função $f : \text{Dom}(f) \to \mathbb{R}$ é o conjunto $\text{Graf}(f) = \{(x,y) \in \mathbb{R}^2 : x \in \text{Dom}(f), \ y = f(x)\}.$

Observação 2. O gráfico de f será uma curva no plano, cuja projeção no eixo x será Dom(f) e, para cada $x_0 \in \text{Dom}(f)$ existirá um único elemento $y_0 \in \mathbb{R}$, tal que a reta vertical $x = x_0$ corta Graf(f) no ponto (x_0, y_0) .

2.2. Funções Pares e Ímpares. Algumas simetrias das funções (ou de seus gráficos) podem ser exploradas para simplificar contas. Duas simetrias são úteis: uma em relação ao eixo y, e outra em rela cão à origem (0,0).

Definição 3. Sejam I, um intervalo em \mathbb{R} , simétrico em relação ao zero (por exemplo, $I = \mathbb{R}$, ou I = [-a, a], a > 0), e $f : I \to \mathbb{R}$ uma função.

- (1) A função f é uma função par se f(-x) = f(x), para todo $x \in I$.
- (2) A função f é uma função impar se f(-x) = -f(x), para todo $x \in I$.

Exemplo 3. A função $f(x) = x \ (x \in \mathbb{R})$ é impar, e a função $f(x) = x^2$ é par.

Observação 3. O gráfico de uma função par é simétrico em relação ao eixo y, e o de uma função ímpar é simétrico em relação ´Ã origem.

Observação 4. Se $f, g: I \to \mathbb{R}$ forem duas funções, definidas no intervalo I como acima:

- 3
- (i) se f e g forem funções ímpares, então seu produto fg será par.
- (ii) se f for par e g ímpar, então fg será ímpar.

Observação 5. Dada uma função qualquer $f: I \to \mathbb{R}$, definida no intervalo I como acima, então:

- (i) a função g(x) = (f(x) + f(-x))/2 é uma função par;
- (ii) a função g(x) = (f(x) f(-x))/2 é uma função ímpar;
- (iii) f(x) = g(x) + h(x).
- 2.3. Deslocamentos horizontais e verticais de um gráfico.
 - 3. Exemplos Diversos
- 3.1. Funções Lineares.
- 3.2. A Função Módulo, ou Valor Absoluto.

$$f(x) = |x| = \begin{cases} x, & \text{se } x \ge 0 \\ -x, & \text{se } x < 0 \end{cases}$$

3.3. Funções Polinomiais. As funções polinomiais são da forma $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$. Seu domínio é \mathbb{R} .

Polinômios quadráticos (de grau 2): estes são polinômios $f(x) = ax^2 + bx + c$, com $a \neq 0$. Seu gráfico é uma parábola (veja o texto sobre seções cônicas). Seja $\Delta = b^2 - 4ac$. Se $\Delta > 0$, f(x) = 0 tem duas soluções distintas,

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}; \ x_2 = \frac{-b - \sqrt{\Delta}}{2a};$$

se $\Delta=0,\ f(x)=0$ tem uma única solução x=-b/2a. Se $\Delta<0,$ não existe solução em $\mathbb{R}.$

Isso, porque podemos escrever $f(x) = ax^2 + bx + c = a[(x+b/2a)^2 + (4ac-b^2)/(2a)^2]$ e, daí, f(x) = 0 fica

$$\left(x + \frac{b}{2a}\right)^2 = \frac{\Delta}{(2a)^2},$$

e,
se $\Delta \geq 0,$ podemos extrais a raiz quadrada dos dois lados e obtemos

$$x + \frac{b}{2a} = \frac{\sqrt{\Delta}}{2a}$$
, e $x + \frac{b}{2a} = -\frac{\sqrt{\Delta}}{2a}$,

3.4. Funções Trigonométricas. Começamos com a noção de medida de ângulo em radianos. Considere uma circunferência de raio 1, e centrada na origem O. Associamos ao ponto (1,0) (um doa pontos da circunferência no eixo x) o ângulo 0 (zero). Percorremos essa circunferência no sentido anti-horário, e medimos o comprimento percorrido. Se for no sentido horário, medimos o comprimento percorrido e mudamos o sinal (de positivo para negativo). Essa é a medida θ de ângulo em radianos.

Para cada $\theta \in \mathbb{R}$, existe um único ponto P = (x, y) nessa circunferência. Definimos $\cos \theta = x$ e sen $\theta = y$.

Observe que $Dom(sen) = Dom(cos) = \mathbb{R}$ e Im(sen) = Im(cos) = [-1, 1]; sen é função ímpar, e cos é função par.

Observação 6. Ressaltamos algumas propriedades do seno e do cosseno:

- (a) $\cos(\theta + 2n\pi) = \cos\theta$; $\sin(\theta + 2n\pi) = \sin\theta$, $n \in \mathbb{Z}$;
- (b) $\cos^2 \theta + \sin^2 \theta = 1$;
- (c) sen(A + B) = sen A cos B + sen B cos A;
- (d) sen(A B) = sen A cos B sen B cos A;
- (e) $\cos(A+B) = \cos A \cos B \sin A \sin B$;
- (f) $\cos(A B) = \cos A \cos B + \sin A \sin B$;

A partir dessas funções, podemos definir as funções tangente, secante e cossecante

$$\operatorname{tg} \theta = \frac{\operatorname{sen} \theta}{\operatorname{cos} \theta}, \operatorname{Dom}(\operatorname{tg}) = \left\{ x \in \mathbb{R} : x \neq \frac{\pi}{2} + n\pi, n \in \mathbb{Z} \right\}, \operatorname{Im}(\operatorname{tg}) = \mathbb{R};$$

$$\operatorname{sec} \theta = \frac{1}{\operatorname{cos} \theta}; \operatorname{Dom}(\operatorname{sec}) = \left\{ x \in \mathbb{R} : x \neq \frac{\pi}{2} + n\pi, n \in \mathbb{Z} \right\},$$

$$\operatorname{Im}(\operatorname{sec}) =] - \infty, -1] \cup [1, \infty[$$

$$\operatorname{cossec} \theta = \frac{1}{\operatorname{sen} \theta}, \operatorname{Dom}(\operatorname{cossec}) = \left\{ x \in \mathbb{R} : x \neq n\pi, n \in \mathbb{Z} \right\},$$

$$\operatorname{Im}(\operatorname{sec}) =] - \infty, -1] \cup [1, \infty[$$

O número $\pi=3,1415926535897932384626433832795...$ (com imprecisão na última casa decimal) 'e um número irracional. A aproximação $\pi\simeq 3,1416$ (ou mesmo, 3,14) pode ser razoável para várias aplicações.

3.5. Funções Potências. Dado $a \in \mathbb{R}$, $a \neq 0$, definimos a função $f(x) = x^a$, definida para todo x > 0.

Por exemplo,
$$f(x) = x^{1/2} = \sqrt{x}$$

3.6. Funções Exponenciais e Logarítmicas.

- 3.6.1. Funções exponenciais. Seja $a \in \mathbb{R}$, a > 0 e $a \neq 1$. A função exponencial de base a é a função $f(x) = a^x$, $x \in \mathbb{R}$. Observe que sua imagem, $\text{Im}(f) =]0, \infty[$.
- 3.6.2. O número e. O número real denotado pela letra e tem um papel especial nas funç oes exponenciais e logarítmicas:

O número e=2,718281828459045235360287471353... (com arredondamento para mais na última casa decimal apresentada) é irracional. Ele pode ser definido de diversas maneiras. Por enquanto, apenas destacamos sua existência. Ao tratarmos de limites e derivadas, ele vai reaparecer.

3.6.3. Funções logarítmicas. As funções logaritmo são as respostas ao seguinte problema: Dados dois números reais $x \in \mathbb{R}$ e a > 0, $a \neq 1$, pede-se o expoente y, tal que $a^y = x$. Tal y é o logaritmo de x na base a, denotado $\log_a x$.

Observe que para existir y, o número x tem que ser positivo, x > 0. Assim, $\text{Dom}(\log_a) =]0, \infty[$.

A imagem será $\operatorname{Im}(\log_a) = \mathbb{R}$.

Quando a base do logaritmo for o número e, denotamos $\log_e x$ por $\ln x$ (de logaritmo natural, ou Neperiano, de x), ou, em alguns livros mais antigos, por $\log x$ (sem escrever a base).

Nova versão, com gráficos, em breve.