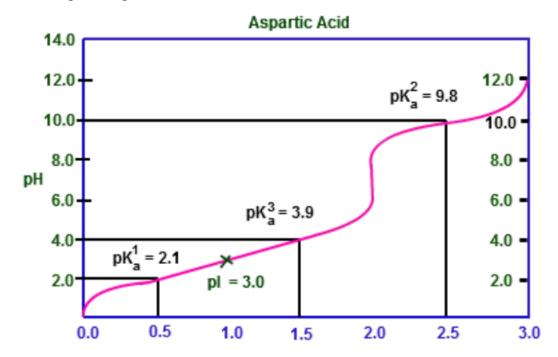
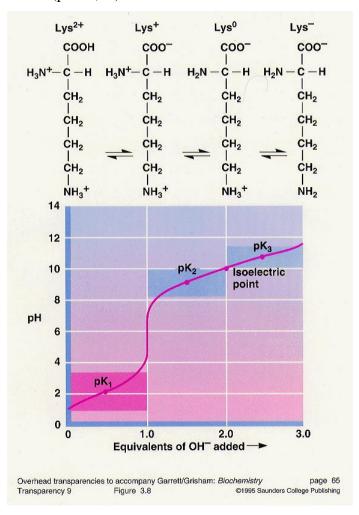

LISTA 2 DE EXERCÍCIOS


Aminoácidos

Monitor Leandro Teodoro


1)
a) F. todos os aminoácidos do corpo são levogiros. Os aminoácidos dextrogiros não são absorvidos pelo corpo, exceto alguns que desenvolvem funções importantes en órgãos como o cérebro, nos processos de neurotransmissão. Referência <u>AQUI</u> .
b) V.
c) F. Pro, Val e Met são aminoácidos apolares.
d) F. Apenas o triptofano tem cadeia aromática.
e) V.
f) V.
g) V. PS:. Onde a soma das cargas é neutra.
h) V.
i) V.
j) V.
1) V.
2) Pois não existe, nessa forma, protonação ou desprotonação para ocorrer.

5) Ácido aspártico (pI = 3)

Lisina (pI = 9,75)

AMINO ACID				
groups	COO- I H ₃ N - C - H I H	COO ⁻ I H ₃ N - C - H I CH ₃	COO- H ₃ N - C - H CH CH ₃ CH ₃ Valine	
Nonpolar, aliphatic R groups	COO- H ₃ N - C - H - CH ₂ - CH ₂ - CH - CH ₃ CH ₃	COO- H ₃ N - C - H - CH ₂ - CH ₂ - CH ₂ - CH ₃	COO- H ₃ N-C-H I H-C-CH ₃ CH ₂ CH ₃	
	COO- + I H ₃ N - C - H I CH ₂ OH	C00-	Soleucine	
R groups	Serine	I CH ₃ Threonine	SH Cysteine	
Polar, uncharged R groups	H ₂ N CH ₂ H ₂ C — CH ₂	COO- H ₃ N - C - H CH ₂ C + C	COO- H ₃ N - C - H CH ₂ - CH ₂ - CH ₂ - C	
	Proline	Asparagine	_	

AMINO ACID					
Positively charged R groups	COO ⁻ H ₃ N - C - H CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ H CH ₂ H CH ₂ H CH ₃ Lysine	COO^{-} $H_3N - C - H$ CH_2 $CH_$	COO ⁻ H ₃ N - C - H CH ₂ - C - NH+ C - N Histidine		
Negatively charged R groups	H ₃ N – C	00- Н На Н ₂	COO ⁻ 1 1 1 1 1 1 1 1 1		
Nonpolar, aromatic R groups	COO- I H ₃ N-C-H CH ₂	H ₃ N - C - H CH ₂ OH	. 1		

Peptide properties

7)

Sequence: ADYKV

Length: 5

Mass: 594.3004

Isoelectric point (pI): 6.69

Net charge: 0

Hydrophobicity: +13.67 Kcal * mol -1

Extinction coefficient1: 1490 M-1 * cm-1

Extinction coefficient2: 1490 M-1 * cm-1