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element standby system with imperfect switch reliability.
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3.8 REPAIRABLE SYSTEMS

3.8.1 Introduction

Repair or replacement can be viewed as the same process, that is, replacement
of a failed component with a spare is just a fast repair. A complete description
of the repair process takes into account several steps: (a) detection that a failure
has occurred; (b) diagnosis or localization of the cause of the failure; (¢) the
delay for replacement or repair, which includes the logistic delay in waiting
for a replacement component or part to arrive; and (d) test and/or recalibration
of the system. In this section, we concentrate on modeling the basics of repair
and will not decompose the repair process into a finer model that details all of
these substates.

The decomposition of a repair process into substates results in a non-
constant-repair rate (see Shooman {1990, pp. 348~350]). In fact, there is evi-
dence that some repair processes lead to lognormal repair distributions or other
nonconstant-repair distributions. One can show that a number of distributions
(e.g., lognormal, Weibull, gamma, Erlang) can be used to model a repair pro-
cess [Muth, 1967, Chapter 3]. Some software for modeling system availabil-
ity permits nonconstant-failure and -repair rates. Only in special cases is such
detailed data available, and constant-repair rates are commonly used. In fact,
itis not clear how much difference there is in compiling the steady-state avail-
ability for constant- and nonconstant-repair rates [Shooman, 1990, Eq. (6.106)
ff.]. For a general discussion of repair modeling, see Ascher [1984).

In general, repair improves two different measures of system performance:
the reliability and the availability. We begin our discussion by considering a
single computer and the following two different types of computer systems:
an air traffic control system and a file server that provides electronic mail and
network access to a group of users. Since there is only a single system, a
failure of the computer represents a system failure, and repair will not affect
the system reliability function. The availability of the system is a measure of
how much of the operating time the system is up. In the case of the air traffic
control system, the fact that the System may occasionally be down for short
time periods while repair or replacement goes on may not be tolerable, whereas
in the case of the file server, a small amount of downtime may be acceptable.
Thus a computation of both the reliability and the availability of the system is
required; however, for some critical applications, the most important measure
1s the reliability. If we say the basic system is composed of two computers in
parallel or standby, then the problem changes. In either case, the system can
tolerate one computer failure and stay up. It then becomes a race to see if the
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failed element can be repaired and restored before the remaining element fails.
The system only goes down in the rare event that the second component fails
before the repair or replacement is completed.

In the following sections, we will model a two-element parallel and a two-
element standby system with repair and will comment on the improvements in
reliability and availability due to repair. To facilitate the solutions of the ensu-
ing Markov models, some simple features of the Laplace transform method will
be employed. It is assumed that the reader is familiar with Laplace transforms
or will have already read the brief introduction to Laplace transform methods
given in Appendix B, Section B8. We begin our discussion by developing a
general Markov model for two elements with repair.

3.8.2 Reliability of a Two-Element System with Repair

The benefits of repair in improving system reliability are easy to illustrate in a
two-element system, which is the simplest system used in high-reliability fault-
tolerant situations. Repair improves both a hot standby and a cold standby sys-
tem. In fact, we can use the same Markov model to describe both situations if
we appropriately modify the transition probabilities. A Markov model for two
parallel or standby systems with repair is given in Fig. 3.14. The transition rate
from state so to 57 is given by 2\ in the case of an ordinary parallel system
because two elements are operating and either one can fail. In the case of a
standby system, the transition is given by \ since only one component is pow-
ered and only that one can fail (for this model. we ignore the possibility that
the standby system can fail). The transition rate from state s to so represents
the repair process. If only one repairman is present (the usual case), then this
transition is governed by the constant repair rate u. In a rare case, more than
one repairman will be present, and if all work cooperatively, the repair rate is
>p. In some circumstances, there will be only a shared repairman among a
number of equipments, in which case the repair rate is <u.

In many cases, study of the repair statistics shows a nonexponential distri-
bution (the exponential distribution is the one corresponding to a constant tran-
sition rate)—specifically, the lognormal distribution {Ascher. 1984; Shooman,
1990, pp. 348-350]. However, much of the benefits of repair are illustrated by

=N T—(N+u))Ar 1
where N =2\ for an ordinary system
w At N =X forastandby system
f . i
, u' = for one repairman
N A NA? u' = kp  for more than one
Sy = A 5= I+ 5, = repairman (k > 1)

Figure 3.14 A Markov reliability model for two identical parallel elements and k
repairmen.
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the constant transition rate repair model. The Markov equations corresponding
to Fig. 3.14 can be written by utilizing a simple algorithm:

1. The terms with 1 and Ar in the Markov graph are deleted.

2. A first-order Markov differential equation is written for each node where

the _mm..rmza mam. of .ﬁro equation is the first-order time derivative of the
probability of being in that state at time 1.

3. The right-hand side of each equation is a sum of probability terms for
each _u.ﬂw:o: :::. enters the node in question. The coefficient of each
probability term is the transition probability for the entering branch.

, ~M,\@ will illustrate the use of these steps in formulating the Markov of Fig.

dPy, (1) , ,

— = NPy (1) + 1P (1) (3.62a)
dPg (1) , ,

= NP (t) = (N +p )P, (1) (3.62b)
dPg,(t) .,

— =NPy, (1) (3.62¢)

Assuming that both systems are initially good, the initial conditions are

Py(0) =1, Py (0) = Py, (0)=0

.Oa.&. great ma/ﬁsamo of the Laplace transform method is that it deals simply
@5 :::m_. oo.:a_:o:m. Another is that it transforms differential equations in the
M:wo ao:w_m:m ﬁ:o a set of algebraic equations in the Laplace transform domain
often called the frequency domain), which are wri i

s ritten in terms o
N, t the Laplace
To transform the set of equations (3.62a—c) into the Laplace domain, we

utilize transform theorem 2 (which inco initi iti
: . 2 rporates 1initial conditions) f:
B7 of Appendix B, yielding ons) from Table

SPy(s) = 1= =N'Py(s)+ 1 P, (s) (3.63a)
5P () = 0= NP, (s) = (N + )Py, (5) (3.63b)
5Py, (5) = 0 = NP, (5) (3.63¢)

Writing these equations in a more symmetric form yields
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(s + NP, (5~ p' Py (5) =1 (3.64a)
“N P () + (s + W +NP(s5) =0 (3.64b)
“NP;, (5) + 5P, (5) =0 (3.64¢)

Clearly, Eqs. (3.64a—c) lead to a matrix formulation if desired. However,
we can simply solve these equations using Cramer’s rule since they are now

algebraic equations.

(s+N+p') (3.65a)
\u,f.::,v - TN +AV/+V/\ +.§\vm +7V\H
y\
B (3.65b)
w.ﬁﬁwv = TN +N+N +u)s+ AN]
Pois) - AN (3.65¢)

SISTHONHN +p)s +AN]

We must now invert these equations—transform them from the frequency
domain to the time domain—to find the desired time solutions. There are sev-
eral alternatives at this point. One can apply transform No. 10 from Table B6
of Appendix B to Egs. (3.65a, b) to obtain the mo_::om as a m:_:‘i) two expo-
nentials, or one can use a partial fraction expansion as _::mw::ma _:Am@., (B _.?S
of the appendix. An algebraic solution of these equations using partial :mwcosm
appears in Shooman [1990, pp. 341-342]. and further moE:o: and plotting m:
these equations is covered in the problems at :.3 end of %;.ormvﬁm,a as Ew,: as
in Appendix B8. One can, however, make a simpie comparison of the effects
ol repair by computing the MTTF for the various models.

3.8.3 MTTF for Various Systems with Repair

Rather than ‘compute the complete reliabiity function of the mgm_‘m_ systems
we wish to compare, we can simplify the analysis by comparing the Zwﬂdu
for these systems. Furthermore, the MTTF is given by an :zmmﬁ_ of Em reli-
ability function, and by using Laplace theory we can m:os\ hmmn:o: B8.2, Eqgs.
(B103)~(B106)] that the MTTE is just given by the limit of the Laplace trans-
form expression as s — 0. . ] )

For the model of Fig. 3.14, the reliability expression is the sum of the first
two-state probabilities; thus, the MTTEF is the limit of the sum ol Eqgs. (3.65a,
b) as s —» 0. which yields

Zﬂ%1y+éwZ
NS

(3.66)
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TABLE 3.4 Comparison of MTTF for Several Systems

For A =1,
Element Formula p=10
Single element I/A 1.0
Two parallel elements—no repair 1.5/N 1.5
Two standby elements—no repair 2/ 2.0
Two parallel elements—with repair (3N + p)/2N° 6.5
Two standby elements—with repair (2N + p)/N? 12.0

We substitute the various values of X" shown in Fig. 3.14 in the expression;
since we are assuming a single repairman, p” = u. The MTTF for several sys-
tems is compared in Table 3.4. Note how repair strongly increases the MTTF
of the last two systems in the table. For large p/\ ratios, which are common
in practice, the MTTF of the last two systems approaches 0.5u/A” and u/A°.

3.8.4 The Effect of Coverage on System Reliability

In Fig. 3.12, we portrayed a fairly complex block diagram for a standby sys-
tem. We have already modeled the possibility of imperfection in the switch-
ing mechanism. In this section, we develop a model for imperfections in the
decision unit that detects failures and switches from the on-line system to the
standby system. In some cases, even in the n-ordinary parallel system (hot
standby), it is not possible to have both systems fully connected, and a deci-
sion unit and switch are needed. Another way of describing this phenomenon
is to say that the decision unit cannot detect 100% of all the on-line unit fail-
ures; it only “covers” (detects) the fraction ¢ (0 < ¢ < 1) of all the possible
failures. (The formulation of this concept is generally attributed to Bouricius,
Carter, and Schneider [1969].) The problem is that if the decision unit does
not detect a failure of the on-line unit, input and output remain connected to
the failed on-line element. The result is a system failure, because although the
standby unit is good, there is no indication that it must be switched into use.
We can formulate a Markov model in Fig. 3.15, which allows us to evaluate
the effect of coverage. (Compare with the model of Fig. 3.14.) In fact, we can
use Fig. 3.15 to model the effects of coverage on either a hot or cold standby
system. Note that the symbol D stands for the decision unit correctly detecting
a failure in the on-line unit, and the symbol D means that the decision unit
has not been able to (failed to) detect a failure in the on-line unit. Also, a new
arc has been added in the figure from the good state s; to the failed state s,
for modeling the failure of the decision unit to “cover” a failure of the on-line
element.
The Markov equations for Fig. 3.15 become the following:
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N'At

Sg = XXy 5 = (FaD+x5,), 5, = [E + 55D,

where A’ = 2cA for an ordinary parallel system
N’ = 2(1 - ¢)A for an ordinary parallel system
N = ¢\ for a standby system
N = (1 - )\ for a standby system

u’ = u for one repairman

Figure 3.15 A Markov reliability model for two identical, parallel elements, k repair-
men, and coverage effects.

SPg(s) = 1= =N+ NPy (s) + p' Py, (5) (3.67a)
5P, (s) = 0= NPy (s) — N+ p)Ps,(s) (3.67b)
5P, (s) = 0=N"Py(5) + NPy, (s) (3.67¢)

Compare the preceding equations with Egs. (3.63a~c) and (3.64a—c). Writing
these equations in a more symmetric form yields

(s + N + NP (s) — u' P () =1 (3.68a)
“NPg(s)+(s+p +NP;,(5)=0 (3.68b)
NP (s) = NP5, (s) + 5Py, (s) =0 (3.68¢)

The solution of these equations yields

(s+N+u")
P (s) = 3.69
() SZHNHN N+ )5+ N + N5+ AN (3.69a)
P, (s)= N (3.69b)
nl8)= 2NN FN )5+ N N7+ A7) o
Poy(s) = N5+ AN + N+ AN (3.69¢)

ST+ NN FNHu)s+ (AN + N0 +NN)]

For the model of Fig. 3.15, the reliability expression is the sum of the first
two-state probabilities: thus the MTTF is the limit of the sum of Eqs. (3.69a,
b) as s — 0, which yields
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TABLE 3.5 Comparison of MTTF for Several Systems

For For For
A=1. A=1 A=1,
w=10, p=10, p=10,

Element Formula c=1 ¢=095 ¢=090
Single element /A 1.0 — —
Two parallel elements—no repair: (0.5 + ¢)/N 1.5 1.45 1.40
[ =0, N =2ch,
N =2(1 - )N]
Two standby elements—no repair: (1 + ¢c)/N 2.0 1.95 1.90
(W =0,\" =ch\,
N =1~ )]
(1+20)N+pu

Two parallel elements—with repair:

—t.\ =u 7\ — wm.vf Nv;vz + : - ﬁvx\L

N =2(1 - ¢)\]
Two standby elements—with repair: ﬂm»%.:l 120 797 595
[0 =N =\, AN+ =0l
N = (1~ c)A]
A+u +N
MTTF = 3.70
N+ N7 AN G710

When ¢ = I, N7 = 0, and we see that Eq. (3.70) reduces to Eq. (3.66).
The effect of coverage on the MTTF is evaluated in Table 3.5 by making
appropriate substitutions for N\, N”, and u’. Notice what a strong effect the
coverage factor has on the MTTF of the systems with repair. For two parallel
and two standby systems, ¢ = 0,90—more than half the MTTF. Practical values
for ¢ are hard to find in the literature and are dependent on design. Sieworek
[1992, p. 288] comments, “a typical diagnostic program, for example, may
detect only 80-90% of possible fauits.” Bell [1978, p. 91] states that static
testing of PDP-11 computers at the end of the manufacturing process was able
to find 95% of faults, such as solder shorts, open-circuit etch connections, dead
components, and incorrectly valued resistors. Toy [1987, p. 20] states, “realistic
coverages range between 95% and 99%.” Clearly, the value of ¢ should be a
major concern in the design of repairable systems.

A more detailed treatment of coverage can be found in the literature. See
Bouricius and Carter [1969, 1971]: Dugan [1989, 1996]; Kaufman and Johnson
[1998]; and Pecht [1995].

3.8.5 Availability Models

In some systems, it is tolerable to have a small amount of downtime as the
system is rapidly repaired and restored. In such a case, we allow repair out
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1~ N ar 1 -+ phAr |- A

= 2\ for an ordinary system = yu for one repairman

where A '’

N = A for a standby system p'’ = 2p for two repairmen
r

4 H

“

S
1l

It

p for one repairman = k,p for more than one
k,p for more than one repairman (k, > 1)
repairman (k; > 1)

Figure 3.16 Markov availability graph for two identical pa rallel elements.

of the system down state. and the model of Fig. 3.16 is obtained. Note that
Fig. 3.14 and Fig. 3.16 only differ in the repair branch from state s, to state §;.
Using the same techniques that we used above. one can show that the equations
for this model become

(5 + N )Py (s) — p Py (5) =1 (3.71a)
NP s) (s 1+ NP () = Py(s) =0 (3.71b)
AP () + (s + wWIPL(s)=0 (3.71¢)

See Shooman [1990, Section 6.10] for more information.

The solution follows the same procedure as before. In this case, the sum of
the probabilities for states 0 and ] is not the reliability function but the avail-
ability function: A(7). In most cases, A(t) does not go to 0 as 1 — o0, as is true
with the R(¢#) function. A(r) starts at 1 and. for well-designed systems. decays to
a steady-state value close to 1. Thus a lower bound on the availability function
is the steady-state value. A simple means for solving for the steady-state value
is to formulate the differential equations for the Markov model and set all the
time derivatives to 0. The set of equations now becomes an algebraic set of
equations; however, the set is not independent. We obtain an independent set
of equations by replacing any of these equations by the equation—the sum of
all the state probabilities = 1. The algebraic solution for the steady-state avail-
ability is often used in practice. An even simpler procedure for computing the
steady-state availability is to apply the final value theorem to the transformed
expression for A(s). This method is used in Section 4.9.2.

This chapter and Chapter 4 are linked in many ways. The technique of vot-
ing reliability joins parallel and standby system reliability as the three most
common techniques for fault tolerance. Also. the analytical techniques involv-
ing Markov models are used in both chapters. In Chapter 4, a comparison is
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made of the reliability and availability of parallel, standby. and voting systems;
in addition, some of the Markov modeling begun in this chapter is extended
in Chapter 4 for the purpose of this comparison. The following chapter also
has a more extensive discussion of the many shorteuts provided by Laplace
transforms.

3.9 RAID SYSTEMS RELIABILITY

3.9.1 Introduction

The reliability techniques discussed in Chapter 2 involved coding to detect
and correct errors in data streams. In this chapter, various parallel and standby
techniques have been introduced that significantly increase the reliability of
various systems and components. This section will discuss a newly developed
technology for constructing computer secondary-storage systems that utilize
the techniques of both Chapters 2 and 3 for the design of reliable, compact,
high-performance storage systems. The generic term for such memory sys-
tem technology is redundant disk arrays {Gibson, 1992]; however, it was soon
changed to redundant array of inexpensive disks (RAID), and as technology
evolved so that the quality and capacity of small disks rapidly increased, the
word “inexpensive” was replaced by “independent.” The term “array,” when
used in this context, means a collection of many disks organized in a specific
fashion to improve speed of data transfer and reliability. As the RAID tech-
nology evolved. cache techniques (the use of smail, very high-speed memories
to accelerate processing by temporarily retaining items expected to be needed
again soon) were added to the mix. Many varieties of RAID have been devel-
oped and more will probably emerge in the future. The RAID systemns that
employ cache techniques for speed improvement are sometimes called cached
array of inexpensive disks (CAID) [Buzen. 1993]. The technology is driven
by the variety of techniques avajlable for connecting multiple disks, as well as
various coding techniques, alternative read-and-write techniques, and the flexi-
bility in organization to “tune” the architecture of the RAID system to maich
various user needs.

Prior to 1990, the dominant technology for secondary storage was a group
of very large disks. typically 5-15, in a cabinet the size of a clothes washer.
Buzen [1993] uses the term single large expensive disk (SLED) to refer to
this technology. RAID technology utilizes a large number. typically 50-100,
of small disks the size of those used in a typical personal computer. Each disk
drive is assumed to have one actuator to position reads or writes, and large
and small drives are assumed to have the same [/O read- or write-time. The
bandwidth (BW) of such a disk is the reciprocal of the read-time. If data 1s bro-
ken into “chunks™ and read (written) in parallel chunks to each of the n small
disks in a RAID array, the effective BW increases. There is some “overhead”
in implementing such a parallel read-write scheme, however. in the limit:
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Figure 4.10 Circuit that realizes the four switching functions given in Table 4.5 for
a TMR majority voter and error detector.

Fig. 4.10. The reader should realize that this circuit, with 13 NAND gates m:m w
::wm:wnm, is only for a single bit output. For a 32-bit computer ,.zo&, the circuit
will have 96 inverters and 416 NAND gates. In Appendix B, Fig. B7, we show
that the integrated circuit failure rate, A, is roughly proportional to the square
root of the_number of gates, A ~~/g, and for our example, yz/\.ﬂw. =22.6.
If we assume that the circuit on which we are voting should have 10 times the
failure rate of the voter, the circuit would have 51,076 or about 50,000 gates.
The implication of this computation is clear: One should not m:.ﬁ_@.\ voters
to improve the reliability of small circuits because Em. voter reliability may
wipe out most of the intended improvement. Clearly, it would also Uo.eﬁw.o
to consult an experienced logic circuit designer to see if the m_m.-mm:m circuit
just discussed could be simplified by using other technology, semicustom gate
circuits, available microelectronic chips, and so forth. .

The circuit given in Fig. 4.10 could also be used to solve the chip test prob-
Jem mentioned in Section 4.4.1. If the entire circuit of Fig. 4.10 were on a
single IC, the outputs “circuit A, B, € bad” would allow initial testing and
subsequent monitoring of the IC.
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4.7.1 Introduction

In Chapter 3, we argued that as long as the operating system possesses redun-
dancy, the addition of repair raises the reliability. One might ask at the outset
why N-modular redundancy should be used with repair when ordinary parallel
or standby redundancy with repair is very effective in achieving highly reli-
able and available systems. The answer to this question involves the coupling
device reliability that was explored in Chapter 3. To be specific, suppose that
we wish to compare the reliability of two parallel systems with that of a TMR
system. Both systems fail if two of the elements fail, but in the TMR case,
there are three systems that could fail; thus the probability of failure is higher.
However, in general, the coupler in a parallel system will be more complex
than a TMR voter, so a comparison of the two designs requires a detailed eval-
uation of coupler versus voter reliability. Analysis of TMR system reliability
and availability can be found in Siewiorek [1992, p. 335} and in Toy [1987].

4.7.2 Reliability Computations

One might expect that it would be most efficient to seek a general solution
for the reliability and availability of a system with N-modular redundancy and
repair, then specify that N = 3 for a TMR system, N = 5 for 5-level voting, and
so on. A moment’s thought, however, suggests quite a different approach. The
conventional solution for the reliability and availability of a system with repair
involves making a Markov model and solving it much as was done in Chapter
3. In the process, the Laplace transform was computed, and a partial fraction
expansion was used to find the individual exponential terms in the solution. For
the case of repair, in general the repair rates couple the n states, and solution
of the set of n first-order differential equations leads to the solution of an nth-
order differential equation. If one applies Laplace transform theory, solution
of the nth-order differential equation is “transformed into” a simpler sequence
of steps. However, one step involves the solution for the roots of an nth-order
polynomial.

Unfortunately, closed-form solutions exist only for first- through fourth-
order polynomials, and solution procedures for cubic and quadratic polynomi-
als are lengthy and seldom used. We learned in high-school algebra the formula
for the roots of a quadratic equation (polynomial). A somewhat more complex
solution exists for the solution of a cubic, which is listed in various handbooks
[lyanaga, p. 1396}, and also for a fourth-order equation [lyanaga, p. 1396].

A brief historical note about the origin of closed-form solutions is of interest.
The formula for the third-order equation is generally attributed to Giordamo
Cardano (also known as Jerome Cardan) [Cardano, 1545; Cardan, 1963]; how-
ever, he obtained the solution from Nicolo Tartaglia, and apparently it was dis-
covered by Scipio Ferreo in circa 1505 [Hall, 1957, pp. 480-481]. Ludovico
Ferrari. a pupil of Cardan, developed the formula for the fourth-order equation.
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Neils Henrik Abel developed a proof that no closed-form solution exists for
n 25 [lyanaga, p. 1].

The conclusion from the foregoing information on polynomial roots is that
we should start with TMR and other simpler systems if we wish to use alge-
braic solutions. Numerical solutions are always possible for higher-order equa-
tions, and the mathematical software discussed in Appendix D expedites such
an approach; however, the insight of an analytical solution is generally lacking.
Another approach is to use simplifications and approximations such as those
discussed in Appendix B (Sections B8.2 and B8.3). We will use the tried and
true three-step engineering approach:

1. Represent the main features of the system by a low-order model that is
amenable to closed-form solution.

2. Add further effects one at a time that complicate the model; study the
effect (if necessary, use simplifying assumptions and approximations or
numerical results computed over a range of parameters).

3. Put all the effects into a comprehensive model and solve numerically.

Our development begins by studying the reliability and availability of a
TMR system, assuming that the design is truly TMR or that we are using a
TMR model as step one in our solution approach.

4.7.3 TMR Reliability

Markov Model. We begin the analysis of voting systems with repair by ana-
lyzing the reliability of a TMR system. The Markov reliability diagram for a
TMR system composed of a voter, V, and three digital subsystems xi, x5, and
x3 is given in Fig. 4.11. It is assumed that the xs are identical and have the
same failure rate, N, and that the voter does not fail.

If we compare Fig. 4.11 with the model given in Fig. 3.14 of Chapter 3,
we see that they are essentially the same, only with different parameter values
(transition,_ rates). There are three states in both models: repair occurs from
state §; to s, and state s, is an absorbing state. (Actually, a complete model
for Fig. 4.11 would have a fourth state, s3, which is reached by an additional
failure from state s,. However, we have included both states in state s, since
either two or three failures both represent system failure. As a rule, it is almost
always easier to use a Markov model with fewer states even if one or more of
the states represent combined states. State s, is actually a combined state, also
known as a merged state, and a complete discussion of the rules for merging
appears in Shooman [1990. p. 529]. One could decompose the third state in
T_W 4.11 into $7 = XXXy + X[ X2X3 + X X2X3 and §$3 = X|1X2X3 —uv\ _.wwoh._\:c_mi:m
the model as a more complex four-state model. However, the four-state model
is not needed to solve for the upstate probabilities P, and Py,. Thus the simpler

three-state model of Fig. 4.11 will be used.)
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Figure 4.11 A Markov reliability model for a TMR system with repair,

mm:ﬁoﬂ:MoM:ZW M:ogo_ om, Fig. 4.11, there are three ways to experience a single
So 10 5; and two ways for failures to move the ,
$y 1052 Figure 3.14 of Chapter 3 uses failure ’ i the moder
52. 1 . F 3 us rates of A" and A :

substituting appropriate values, the model could hold fo el o ¥
or Moq one on-line and one standby element. One can
analysis and solution by realizing that the soluti iven i

, t { tion —|
will also hold for the model of Fig. 4.1] if we fogr - 1n . (:02)=(3.66)
from state s, to state $2); A = 2\ (two ways to go fr

and p’ = u (single repairman in both cases i
B6s s ases). Substitut

I two parallel elements

=3\ (three ways to 20
om state s, to state $3);
Ing these values in Egs.

\U,,.:A%v = LHF
ST+ (BN + u)s + 6A2 (4.252a)

3A
E,,,_ Ahv =y
5=+ AMV/ + \Z‘V% + 62 A&NMUV

W.j (s) = J%
) S[S7+ 5N + )5 + 6A7] (4.25¢)

Note that as a check, we sum E
S » We s gs. (4.25a—) and obtain the value 1/s, whi
1s the transform of unity. Thus the three equations sum to 1, as va\\wrﬁ“_%:

an t D a % oo ytain _ cre M__v::w\ A; a _ _N
S To 3
Av_mwA I NA_Q _*Qm uations I/ 50 a :m\. al N
ﬁv\v‘®~ 1 with @tﬁ: m H:m :n—«:w_c:: QC_:N~:. 7\—

. Sh+
Rivip(s) = —— 2520+ p
MK S2+(5A+ )5 + 62 (4.26a)

The denominator polynomial factors into (s +2A

fraction expansion yields J-and (s + 3)). and partial
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3N+ 2N+ 1
A A (4.26b)
Rrwr(8) = === = :

Using transform #4 in Table B6 in Appendix B, we obtain the time function:
(=}

x;;Su Aw + m,v %sf AN + .mv mn? E.Noe

One can check the above result by letting u = 0 (no repair), ,S:ow_ Eoﬁw
Rovr(t) = 3¢™?M — 27 and if p = e, this becomes Rryr = 3p° — 2p°,
T™R) = )

which of course agrees with the result previously computed [see Eq. (4.2)].

Initial Behavior. The complete solution for the nm:m_.u::v\ .3 a HZ.:N NMM%:B
with repair is given in Eq. (4.26¢). 1t 1s useful to practice @5 the mﬂ% i v“ _m
effects of initial behavior, final behavior, m:a MTTF solutions on “ is Z:amr
problem before they are applied later in this chapter to more ooBm%x :Mma om
where the simplification is needed. One can o<m_:m8. the effects m anm o
the initial behavior of the TMR system simply by using En :.mnm%::Aooomow
which is discussed in Appendix B, Section B8.3. We Umm_: with Eq. A u.r_ : ,
where division of the denominator into the numerator using polynomial long

division yields for the first three terms:

! 6N + ON*GA + ) - (4.27a)

wnll
Rrvr($)= — = — s

Using inverse transform no. 5 of Table B6 of Appendix B yields

~ n-1 _~at H+ AAVNN_UV
Nu-or" ¢ T Grar

Setting a =0 yields

: = : (4.27¢)

£ (n-1n! (s

Using the transform in Eq. (4.27¢) converts Eq. (4.27a) 56 the time ?:o:o:,
which is a three-term polynomial in  (the first three terms in the Taylor series

expansion of the time function).
Rimr(f) = 1 = AN+ NN+ p)e - - (4.27d)

We previously studied the first two terms in the Taylor series expansion of
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the TMR reliability expansion in Eq. (4.15). In Eq. (4.27d), we have a three-
term solution, and one can compare Eqs. (4.15) and (4.27b) by calculating an
additional third term in the expansion of Eq. (4.15). The €xpansions in Eq.
(4.15) are augmented by including the cubic terms in the expansions of the
bracketed terms, that is, —4\33 /3 in the first bracket and +\373 /3 in the second
bracket. Carrying out the algebra adds a third term, and Eq. (4.15) becomes

expanded as follows:
Rrmr(3-2) = 1 = 3022 4 5033 (4.27¢)

Thus the first three terms of Eq. (4.15) and Eq. (4.27d) are identical for the
case of no repair, p = 0. Equation (4.27d) is larger (closer to unity) than the
expanded version of Eq. (4.15) because of the additional term +A\°us3 that is
significant for large values of repair rate; we therefore see that repair improves
the reliability. However, we note that repair only affects the cubic term in Eq.
(4.27d) and not the quadratic term. Thus, for very small ¢, repair does not
affect the initial behavior; however, from the above solution, we can see that
it is beneficial for small and modest size L.

A numerical example will illustrate the improvement in initial reliability
due to repair. Let y = 10\; then the third term in Eq. (4.27d) becomes +15)\313
rather than +5X°#* with no repair. One can evaluate the increase due to u = 10\
at one point in time by letting r = 0.1/\. At this point in time, the TMR
reliability without repair is equal to 0.975; with repair, it is 0.985. Further
comparisons of the effects of repair appear in the problems at the end of the
chapter.

The approximate analysis of this section led to a usefuyl evaluation of the
effects of repair through the computation of the power series expansion of the
time function for the mode] with repair. This approximate result avoids the nced
to factor the denominator polynomial in the Laplace transform solution, which
was found to be a stumbling block in obtaining a complete closed solution for
higher-order systems. The next section will discuss the mean time to failure
(MTTF) as another approximate solution that also avoids polynomial factoring.

Mean Time to Failure. As we saw in the preceding chapter, the computa-
tion of MTTF greatly simplifies the analysis, but it is not without pitfalls. The
MTTF computes the “area under the reliability curve” (see also Section 3.8.3).
Thus, for a single element with a reliability function of e, the area under the
curve yields 1/X; however, the MTTF calculation for the TMR system given
in Eq. (4.11) yields a value of 5/6\. This implies that a single element is bet-
ter than TMR, but we know that TMR has a higher reliability than a single
element (see also Siewiorek [1992, p- 294]). The explanation of this apparent
contradiction is simple if we examine the n=0and n =1 curves in Fig. 4.4,
In the region of primary interest, 0 < Az < 0.69, TMR s superior to a single
element, but in the region 0.69 < A7 < o (not a region of primary interest),
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the single element has a superior reliability. Thus, in computing the integral
between f = 0 and t = o, the long tail controls the result. The lesson is that
we should not trust an MTTF comparison without further study unless there is
a significant superiority or unless the two reliability functions have the same
shape. Clearly, if the two functions have the same shape, then a comparison
of the MTTF values should be definitive. Graphing of reliability functions in
the high-reliability region should always be included in an analysis, especially
with the ready availability, power, and ease provided by software on a modern
PC. One can also easily integrate the functions in question by using an analysis
program to compute MTTF.

We now apply the simple method given in Appendix B, Section B8.2 to
evaluate the MTTF by letting s approach zero in the Laplace transform of the
reliability function—Eq. (4.26a). The result is

S+u/N

alBa 4.2
6\ (4-28)

MTTF =

To evaluate the effect of repair, let & = 10A. The MTTF without repair increases
from 5/6\ to 16/6 \—a threefold improvement.

Final Behavior. The Laplace transform has a simple theorem that allows us
to easily calculate the final value of a time function based on its transform.
(See Appendix B, Table B7, Theorem 7.) The final-value theorem states that
the value of the time function f(¢) as t — oo is given by sF(s) (the transform
multiplied by s) as s — 0. Applying this to Eq. (4.26a), we obtain

lim {sRrae) = li s(S+5N+p) 0 4.29)
1 A = lm = L
530 TMR s—0 hu+Am7+§.v,m+©7m

A little thought shows that this is the correct result since all reliability func-
tions go to zero as time increases. However, when we study the availability
function later in this chapter, we will see that the final value of the availability
is nonzero. This value is an important measure of system behavior.

4.7.4 N-Modular Reliability

Having explored the analysis of the reliability of a TMR system with repair,
it would be useful to develop general expressions for the reliability, MTTF,
and initial behavior for N-modular systems. This task is difficult and probably
unnecessary since most practical systems have 3- or 5-level majority voting.
(An intermediate system with 4-level voting used by NASA in the Space Shut-
tle will be discussed later in this chapter.) The main focus of this section will
therefore be the analysis.

Markov Model. We begin the analysis of 3-level modular reliability with
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Em:.nm 4.12 A Markov reliability model for a 5-level majority voting system with
repair.

repair by formulating the Markov model given in Fig. 4.12. We follow the same
approach used to formulate the Markov model given in Fig. 4.11. There are
however, additional states. (Actually, there is one additional state that Esﬁm
together three other states.)

The Markov time-domain differential equations are written in a manner
.mmm_omo:m to that used in developing Egs. (3.62a—c). The notation P, =dP Jdt
is used for convenience, and the following equations are obtained: . .,

NW,.:ANV = Imvzxu,:%: + t\u,: :v AthLv
Po(t)= SNPg (1) = (4N + p)Py (1) + uP,. () (4.30b)
Pyr) = NP ~ BN+ )Py, (1) (4.30¢)
P = NP, (1) (4.30d)

-

Hm_m_dm the r.mm_mom transform of the preceding equations and incorporating
the :d:& conditions P (0) = 1, P, (0) = P, (0) = P, (0) = 0 leads to the
transtormed equations as follows: ) )

(s +5N)P;, (5) — uPy, (5) =1 (4.31a)
=SAP () + (s + 4N + P (s) - pPg (s) =0 (4.31b)
- NP (5) + (54 3N+ w)Py, (5) =0 (431¢)

INPL(s) + 5P (s) = 0 (4.31d)

. Equations (4.31a-d) can be solved by a variety of means for the probabili-
:mm, P, (1), P (1), P, (1), and P, (r). One technique based on Cramer’s rule is
1o formulate a set of determinants associated with the equations. Each of H:m
probabilities becomes a ratio of two of the determinants: a numerator deter-
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minant divided by a denominator determinant. The denominator determinant
is the same for each ratio; it is generally denoted by A and is the determinant
of the coefficients of the equations. (One can develop the form of these equa-
tions in a more elaborate fashion using matrix theory; see Shooman [1990, pp.
239-2431.) A brief inspection of Eqs. (4.31a—d) shows that the first three are
uncoupled from the last and can be solved separately, simplifying the algebra
(this will always be true in a Markov model with repair when the last state is
an absorbing one). Thus, for the first three equations,

s+ 5A —u 0
A=| -5\ s+4h+p —u (4.32)
0 —4\ S+3N+pu

The numerator determinants in the solution are similar to the denominator
determinants; however, one column is replaced by the right-hand side of the
Egs. (4.31a—d); that is,

1 - 0
A={0 s+4N+p —U (4.33a)
0 —4A S+3N+u
s+5N 1 0
Ay=| -5 0 - (4.33b)
0 0 s+3N+u
s+ 5 - 1
Ay=| -5N s+4A+p O (4.33¢)
0 —~4N 0

In terms of this group of determinants, the probabilities are

N

A
L(5) = — 4.34a
Py, (s) A ( )
Ao
Py (s) = A (4.34b)
A;
G (8) = — 4.34c
Py, (s) A ( )
The reliability of the 5-level modular redundancy system is given by
\NMZWQVHw,,.:ANv+wu._c.v+wauﬁmv AAwMV
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Expansion of the denominator determinant yields the following polynomial:
A=57 4+ (12N + 210)s7 + (47A% + 8\ + p?)s + 60N° (4.36a)

Similarly, expanding the other determinants yields the following polynomials:

Ay =57+ (TN +20)s + 12N + 30 + (4.36b)
Ao =5N(s + 3N +p) (4.36¢)
Az = 20\? (4.36d)

Substitution in Egs. (4.34a—c) and (4.35) yields the transform of the reliability
function:

57+ (120 +20)5 + 4707 + 8N + p?
$3 4+ (12N + 20)52 + (47N + 8\ p + p2)s + 6003

Rsymr(s) = (4.37)

As a check, we compute the probability of being in the fourth state Py, (s) from
Eq. (4.31d) as

(4.38)

3ANP(s) 60N}

Panls) = s sA

Adding Eq. (4.37) to Eq. (4.38) and performing some algebraic manipulation
yields 1/s. which is the transform of unity. Thus the sum of all the state prob-
abilities adds to unity as it should and the results check.

Initial Behavior. As in the preceding section, we can model the initial behav-
ior by expanding the transform Eq. (4.37) into a series in inverse powers of s
using polynomial division. The division yields

I 60N 60N3(12N +2u)

Rsmr(s) = ST at 3 (4.39a)
Applying the inverse transform of Eq. (4.27¢) yields
Rsmr(s) = 1 — 1ON 7 + 25N (128 + 2006 -+ (4.39b)

We can compare the gain due to 5-level modular redundancy with repair
to that of TMR with repair by letting g = 10N and ¢ = 0.1/\, as in Section
4.7.3, which gives a reliability of 0.998. Without repair, the reliability would
be 0.993. These values should be compared with the TMR reliability without
repair, which is equal to 0.975, and TMR with repair, which is 0.985. Since it
is difficult to compare reliabilities close to unity, we can focus on the unreli-
abilities with repair. The S-level voting has an unreliability of 0.002; the TMR,
0.015. Thus, the change in voting from 3-level to S-level has reduced the unre-




174 N-MODULAR REDUNDANCY

TABLE 4.6 Comparison of the MTTF for Several Voting and Parallel
Systems with Repair

System MTTF Equation w=0 p=10 p=100

1
TMR with renai S 083 2.5 17.5
with repair o X X N

5MR with repair

60N3 A A I
Two parallel N+ 1.5 6.5 515
w0 paralie lM.vzu' N N N
AN 2 12 102
Two standby =z i N ~

liability by a factor of 7.5. Further comparisons of the effects of repair appear
in the problems at the end of this chapter.

Mean Time to Failure Comparison. The MTTF for 5-level voting is easily
computed by letting s approach 0 in the transform equation, which yields

47N + 8y + p”

G0N (4.40)

MTTFsur =

This MTTF is compared with some other systems in Table 4.6. The table
shows, as expected, that SMR is superior to TMR when repair is present. Note
that two paraliel or two standby elements appear more reliable. Once reduction
in reliability due to the reliability of the coupler and coverage is included and
compared with the reduction due to the reliability of the voter. this advantage
may disappear.

Initial Behavior Comparison. The initial behavior of the systems given in
Table 4.6 is compared in Table 4.7 using Eqgs. (4.27d) and (4.39b) for TMR and
SMR systems. For the case of two ordinary paralle] and two standby systems,
we must derive the initial behavior equation by adding Egs. (3.65a) and (3.65b)
to obtain the transform of the reliability function that holds for both parallel
and standby systems.

SEFN+HN + 0
STHNHEN + s + AN

R(s) = Py () + Py, (s) = (4.41)

For an ordinary parallel system, A" = 2\ and p” = p. and substitution into Eq.
(4.41), long division of the denominator into the numerator, and inversion of
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TABLE 4.7 Comparison of the Initial Behavior for Several
Voting and Parallel Systems with Repair

Initial Reliability Value of ¢
Equation, at which
m%ﬂmB w= 10N R =0.999
TMR with repair L= 30)? + 150007 Poymw
SMR with repair I = 100 ) + 80()? EWN
Two parallel 1= ()2 +4.330\)° m%www
Two standby 1= 050\ + 200007 ,o.xmmw
the transform (as was done previously) yields
Rparane (1) = 1 = (N + N3N+ p)r’ /3 (4.42a)

For a standby system, A" =X and p” = u, and substitution into Eq. (4.41), long
division, and inversion of the transform yields

Ratandvy (1) = 1 = (N /2 + NN + p)1' /6 (4.42b)

Equations (4.42a) and (4.42b) appear in Table 4.7 along with Eqgs. (4.27d) and
(4.39b), where u = 10N has been substituted.

Table 4.7 shows that the length of time the reliability takes to decay from 1
to 0.999, which makes it clearly a high-reliability region. For the TMR system,
the duration is 7 = 0.0192X; for the 5-level voting system, t = 0.057\. Thus the
S-level system represents an increase of nearly 3 over the 3-level system. One
can better appreciate these numerical values if typical values are substituted for
A. The length of a year is 8,766 hours, which is often approximated as 10,000
hours. A high-reliability computer may have an MTTF(1/X) of about 10 years,
or approximately 100,000 hours. Substituting this value for ¢ shows that the
reliability of a TMR system with a repair rate of 10 times the failure rate will
have a reliability exceeding 0.999 for about 1,920 hours. Similarly, a 5-level
voting system will have a reliability exceeding 0.999 for about 5,700 hours.
In the case of the parallel and standby systems, the high-reliability region is
longer than in a TMR system, but is less than in a 5-level voter system.

Higher-Level Voting. One could extend the above analysis to cover higher-
level voting systems; for example, 7-level and 9-level voting. Even though it
is easy to replicate many different copies of a logic circuit on a chip at low
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cost, one seldom goes beyond the 3-level or 5-level voting system, although
the foregoing methods could be used to solve for the reliability of such higher-
level systems.

If one fabricates a very large scale integrated circuit (VLSI) with many cir-
cuits and a voter, an interesting question arises. There is a yield problem with
complex chips caused by imperfections. With so much redundancy, how can
one be sure that the chip does not contain such imperfections that a 5-level
voter system with imperfections is really equivalent to a 4- or 3-level voter
system? In fact, a 5-level voter system with two failed circuits is actually infe-
rior to a 3-level voter. One more failure in the former will result in three failed
and two good circuits, and the voter believes the failed three. In the case of a
3-level voter, a single failure will still leave the remaining two good circuits
in control. The solution is to provide internal test inputs on an IC voter system
so that the components of the system can be tested. This means that extra pins
on the chip must be dedicated to test points. The extra outputs in Fig. 4.10
could provide these test points, as was discussed in Section 4.6.2.

The next section discusses the effect of voter reliability on N-modular redun-
dancy. Note that we have not discussed the effects of coverage in a TMR sys-
tem. In general, the simple nature of a voter catches almost all failures, and
coverage is not significant in modeling the system.

4.8 N-MODULAR REDUNDANCY WITH REPAIR AND
IMPERFECT VOTERS

4.8.1 Introduction

The analysis of the preceding section did not include two imperfections in a
voting system: the reliability of the voter itself and also the concept of cover-
age. In the case of parallel and standby systems, which were treated in Chapter
3, coverage made a considerable difference in the reliability. The circuit that
detected failures of the active system and switched to the standby (hot or cold)
element in a parallel or standby system is reasonably complex and will have
a significant failure rate. Furthermore, it will have the problem that it cannot
detect all faults and will sometimes fail to switch when it should or switch
when it should not. In the case of a voter, the concept and the resulting circuit
is much simpler. Thus one might be justified in assuming that the voter does
not have a coverage problem and so reduce our evaluation to the reliability of
a voter and how it affects the system reliability. This can then be contrasted
with the reliability of a coupler and a paralle] system (introduced in Section
3.5).

4.8.2 Voter Reliability

We begin our discussion of voter reliability by considering the reliability of
a TMR system as shown in Fig. 4.1 and the reliability expression given in
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Eg. (4.19). In Section 4.5, we asked how small the voter reliability, p,, can
be so that the gains of TMR still exceed the reliability of a single circuit.
The analysis was given in Eqgs. (3.34) and (3.35). Now, we perform a similar
analysis for a TMR system with an imperfect voter. The computation proceeds
from a consideration of Eq. (4.19). If the voter were perfect, p, = 1, then the
reliability would be computed as

Rrumg = 3pl - 2p? (4.43a)

If we include an imperfect voter, this expression becomes

Riwir = 3pup; = 2pup; = pu(3p2 ~ 2p7) (4.43b)

If we assume constant-failure rates for the voter and the circuits in the TMR
configuration, then for the voter we have pu=e ™ and for the TMR circuits,
p =e M If we use a three-term approximation for the exponential and sub-
stitute into Eq. (4.43b), one obtains an expression for the initial reliability, as

follows:

yl yw N u
Rrvr = 1 = Ayt + { - ||A vf) X311 —=2N,+ IE - IANVD
2! 3! 21 3!

(3N1)2 ~ (3N,1)°

- 201 -3Nt+
2! 3t

(4.44a)

Expanding the preceding equation and retaining only the first four terms yields

(Aot)?

5~ 3(At)? (4.44b)

%‘:(:N =] lvxcm+

Furthermore, we are mainly interested in the cases where Ay < \; thus we can
omit the third term (which is a second-order term in Av) and obtain

Rrvr =1 = Nt = 3(A1)? (4.44c)
It we want the effect of the voter to be negligible, we let Aot < 3(A1)2,

W < 3Ni (4.45)

One can compare this result with that given in Eq. (3.35) for two parallel Sys-
tems by setting n = 2, yielding
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W <At (3.35)

The approximate result is that the coupler must have a failure rate three times
smaller than that of the voter for the same decrease in reliability.

One can examine the effect of repair on the above results by examining
Eq. (4.27d) and Eq. (4.42). In both cases, the effect of the repair rate does
not appear until the cubic term is encountered. The above comparisons only
involved the linear and quadratic terms, so the effect of repair would only
become apparent if the repair rate were very large and the time interval of
interest were extended.

4.8.3 Comparison of TMR, Parallel, and Standby Systems

Another advantage of voter reliability over parallel and standby reliability is
that there is a straightforward scheme for implementing voter redundancy (e.g.,
Fig. 4.8). Of course, one can also make redundant couplers for parallel or
standby systems, but they may be more complex than redundant voters.

It is easy to make a simple model for Fig. 4.8. Assume that the voters fail
so that their outputs are stuck-at-zero or stuck-at-one and that voter failures
do not corrupt the outputs of the circuits that feed the voters (e.g.. A,, B/, and
C)). Assume just a single stage (A, By, and C)) and a single redundant voter
system (V. V7, and V7). The voter works if two or three of the three voters
work. Thus this is the same formula for TMR systems, and the reliability of
the system becomes

Rrmr X Ryoter = (397 — 2p2) x (3p — 2pd) (4.46)

It is easy to evaluate the advantages of redundant voters. Assume that p, =
0.9 and that the voter is 10 times as reliable: (1 - p.) = 0.1, (1 - p,) = 0.01,
and p, = 0.99. With a single voter, R = 0.99[3(0.9)° - 2(0.9)*] = 0.99 x 0.972
= 0.962. In the case of a redundant voter, we have [3(0.99)° — 2(0.99)°] x
[3(0.9)* — 2(0.9)%} = 0.999702 x 0.972 = 0.9717. The redundant voter is thus
significant; if the voter is less reliable, voter redundancy is even more effective.
Assume that p, = 0.95; for a single voter, R = 0.95 [3(0.9)2 = 2(0.9)°] = 0.95 x
0.972 = 0.923. In the case of a redundant voter, we have [3(0.95)% — 2(0.95)*]
X [3(0.9)% — 2(0.9)*] = 0.99275 x 0.972 = 0.964953.

The foregoing calculations and discussions were performed for a TMR cir-
cuit with a single voter or redundant voters. It is possible to extend these com-
putations 1o the subsystem level for a system such as that depicted in Fig. 4.8.
In addition, one can repair a failed component of a redundant voter; thus one
can use the analysis techniques previously derived for TMR and 5MR systems
where the systems and voters can both be repaired. However, repair of voters
really begs a larger question: How will we modularize the system architecture?
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>mm:3m. one is going to design the system architecture with redundant voters
and voting at a subsystem level. If the voters are o be placed on a single chip
along with the circuits, then there is no separate repair of a voter system—only
repair of the circuit and voter subsystem. The alternative is to make a separate
chip for the N circuits and a separate chip for the redundant voter. The proper
strategy to choose depends on whether there will be scheduled downtime for
the system during which testing and replacement can occur and also whether
the chips have sufficient test points. No general conclusion can be reached; the
system architecture should be critiqued with these issues in mind. ,

4.9 AVAILABILITY OF N-MODULAR REDUNDANCY WITH
REPAIR AND IMPERFECT VOTERS

4.9.1 Introduction

When repair is present in a system, it is often possible for the system to fail
and be down for a short period of time without serious operational effects.
m:mwomm a computer used for electronic funds transfers is down for a short
period of time. This is not catastrophic if the system is designed so that it can
tolerate brief outages and perform the funds transfers at a later time period. If
the system is designed to be self-diagnostic, and if a technician and a replace-
ment plug in boards are both available, the machine can be restored quickly
to operational status. For such systems, availability is a useful measure of sys-
tem performance, as with reliability, and is the probability that the system is
up at any point in time. It can be measured during operation by recording the
downtimes and operating times for several failure and repair cycles. The avail-
ability is given by the ratio of the sum of the uptimes for the system divided
by the sum of the uptimes and the downtimes. (Formally, this ratio becomes
the availability in the limit as the system operating time approaches infinity.)
The availability A(r) is the probability that the system is up at time ¢, which
can be written as a sum of probabilities: ,

A(t) = P(no failures) + P(one failure + one repair)
+ P(two failures + two repairs)
+- -+ P(n failures + n repairs) + - - - (4.47)

. Availability is always higher than reliability, since the first term in Eq. (4.47)
i1s the reliability and all the other terms are positive numbers. Note that only
the mwmﬁ few terms in Eq. (4.47) are significant for a moderate time interval
and ?m:w?oaﬂ terms become negligible. Thus one could evaluate availability
analytically by computing the terms in Eq. (4.47): however, the use of the
Markov model simplifies such a computation. ‘ ‘
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Figure 4.13 A Markov availability model for a TMR system with repair.

4.9.2 Markov Availability Models

A brief introduction to availability models appeared in Section 3.8.5: such cor-
putations will continue to be used in this section, and availabilities for TMR
systems, parallel systems, and standby systems will be computed and com-
pared. As in the previous section, we will make use of the fact that the Markov
availability model given in Fig. 3.16 will hold with minor modifications (see
Fig. 4.13). In Fig. 3.16, the value of \” is either one or two times X, but in the
case of TMR, it is three times A. For the second transmission between sy and
s> for the TMR system, there are two possibilities of failure; thus the transition
rate is 2A. Since there is only one repairman, the repair rate is p.

A set of Markov equations can be written that will hold for two in parallel
and two in standby, as well as for TMR. The algorithm used in the preceding
chapter will be employed. The terms 1 and At are deleted from Fig. 4.13. The
time derivative of the probabilily of being in state sq is set equal to the “flows”
from the other nodes; for example, —-N'Pg, (1) is from the self-loop and pu'Py, (1)
is from the repair branch. Applying the algorithm to the other nodes and using
algebraic manipulation yields the following:

Poy(t) + N Poy(1) = Py (1) (4.482)
P (1) + (N + 1)y, (1) = NPy (1) + 1 Py (1) (4.48b)
Pyt + n” Py (1) = NPy, (1) (4.48¢)
P (0) =1 P (0)=P,(0)=0 (4.48d)

The appropriate values of parameters for this set of equations is given in Table
4.8. A complete solution of these equations is given in Shooman [1990. pp-
344-347]. We will use the Laplace transform theorems previously introduced
to simplify the solution.

The Laplace transforms of Eqs. (4.48a—d) become
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TABLE 4.8 Parameters of Eqs. (4.48a—~d) for Various Systems

System A N w e
Two in parallel A 2\ @ I
Two standby A A w i
TMR 2\ 3A U U
(s + NPy (s) -1 Py, (5) =1 (4.49a)
NPy (s) + 5(s + N+ )Py, () —p"Pu(s)=0  (4.49b)

AP (s) + (s+u")P(s)=0  (4.49¢c)

In the case of a system composed of two in parallel, two in standby, or
TMR, the system is up if it is in state sy or state s,. The availability is thus
the sum of the probabilities of being in one of these two states. If one uses
Cramer’s rule or a similar technique to solve Egs. (4.49a-c), one obtains a
ratio of polynomials in s for the availability:

SN +p 05+ (N ' w”)
SISTH NN+ )5+ AN + N7 + p0'1)]

(4.50)

A(s) = Poy(s) + Py, (s) =

Before we begin applying the various Laplace transform theorems to this
availability function, we should discuss the nature of availability and what sort
of analysis is needed. In general, availability always starts at 1 because the sys-
tem is always assumed to be up at r = 0. Examination of Eq. (4.47) shows that
initially near ¢ = 0, the availability is just the reliability function that of course
starts at 1. Gradually, the next term P(one failure and one repair) becomes
significant in the availability equation; as time progresses, other terms in the
series contribute. Although the overall effect based on the summation of these
many terms is hard to understand, we note that they generally lead to a slow
decay of the availability function to some steady-state value that is reasonably
close to 1. Thus the initial behavior of the availability function is not as impor-
tant as that of the reliability function. In addition, the MTTF is not always a
significant measure of system behavior. The one measure of interest is the final
value of the availability function. If the availability function for a particular
system has an initial value of unity at # = 0 and decays slowly to a steady-state
value close to unity, this system must always have a high value of availability,
in which case the final value is a lower bound on the availability. Examining
Table B7 in Appendix B, Section B8.1, we see that the final value and ini-
tial value theorems both depend on the limit of sF(s) [in our case, SA(s)] as s
approaches 0 and . The initial value is when s approaches . Examination
of Eq. (4.50) shows that multiplication of A(s) by s results in a cancellation of
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TABLE 4.9 Comparison of the Steady-State Availability, Eq. (4.50) for Various
Systems

System Eq. (4.50) w=A w=10N w=T00A
. ] w2\ + )
Two in parallel 52 +Mwﬂmwi 0.6 0.984 0.9998
Two standby _phtl) 0.667 0.991 0.9999
A+ Ap+ p?
TMR PN+ ) 0.4 0.956 0.9994

6A2 + 3Ny + 2

the multiplying s term in the denominator. As s approaches infinity, both the
numerator and denominator polynomials approach s?; thus the ratio approaches
1, as it should. However, to find the final value, we let s approach zero and
obtain the ratio of the two constant terms given in Eq. (4.51).

AV/\:\\ + t\.:\\v

(4.51)
AV/V/\ + V/\\\e\\ + t\.:\\v

A(steady state) =

The values of the parameters given in Table 4.8 are substituted in this equation,
and the steady-state availabilities are compared for the three systems noted in
Table 4.9.

Clearly, the Laplace transform has been of great help in solving for steady-
state availability and is superior to the simplified time-domain method: (a) let
all time derivatives equal 0; (b) delete one of the resulting algebraic equations;
{¢) add the equation’s sum of all probabilities to equal 1; and (d) solve (see
Section B7.5).

Table 4.9 shows that the steady-state availability of two elements in standby
exceeds that of two parallel items by a small amount, and they both exceed
the TMR system by a greater margin. In most systems, the repair rate is much
higher than the failure, so the results of the last column in the table are probably
the most realistic. Note that these steady-state availabilities depend only on the
ratio p/ . Before one concludes that the small advantages of one system over
another in the table are significant, the following factors should be investigated:

o It is assumed that a standby element cannot fail when it is in standby.
This is not always true, since batteries discharge in standby, corrosion
can occur, insulation can break down, etc., all of which may significantly
change the comparison.

e The reliability of the coupling device in a standby or parallel system is
more complex than the voter reliability in a TMR circuit. These effects
on availability may be significant.

e Repair in any of these systems is predicated on knowing when a system
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has failed. In the case of TMR, we gave a simple logic circuit that would
detect which element has failed. The equivalent detection circuit in the
case of a paralle!l or standby system is more complex and may have poorer
coverage.

Some -of these effects are treated in the problems at the end of this chapter.
It is likely, however, that the detailed design of comparative systems must be
modeled to make a comprehensive comparison.

A simple numerical example will show the power of increasing system
availability using parallel and standby system configurations. In Section 3.10.1,
typical failure and repair information for a circa-1985 transaction-processing
system was quoted. The time between failures of once every two weeks trans-
lates into a failure rate A = 1/(2 x 168) = 2.98 x 103 failures/hour, and the
time to repair of one hour becomes a repair rate y = 1 repair/hour. These val-
ues were shown to yield a steady-state availability of 0.997—a poor value for
what should be a highly reliable system. If we assume that the computer system
architecture will be configured as a parallel system or a standby system, we
can use the formulas of Table 4.9 to compute the expected increase in avail-
ability. For an ordinary parallel system, the steady-state availability would be
0.999982; for a standby system, it would be 0.9999911. Both translate into
unavailability values 4 = 1 — A of 1.8 x 1075 and 8.9 x 10-°. The unavail-
ability of the single system would of course be 3 x 10”3, The steady-state
availability of the Stratus system was discussed in Section 3.10.2 and, based
on claimed downtime, was computed as 0.9999905, which is equivalent to an
unavailability of 95 x 1077, In Section 3.10.1, the Tandem unavailability, based
on hypothetical goals, was 4 x 107%. Comparison of these four unavailability
values yields the following: (a) for a single system, 3,000 x 107%; (b) for a
parallel system, 18 x 107%; (c) for a standby system, 8.9 x 10~°: (d) for a Stra-
tus system, 9.5 x 107%; and (e) for a Tandem system, 4 x 107°. Also compare
the Bell Labs’ ESS switching system unavailability goals and demonstrated
availability of 5.7 x 107 and 3.8 x 107%. (See Table 1.4.) Of course, more
definitive data or complete models are needed for detailed comparisons.

4.9.3 Decoupled Availability Models

A simplified technique can be used to compute the steady-state value of avail-
ability for parallel and TMR systems. Availability computations really involve
the evaluation of certain conditional probabilities. Since conditional probabil-
ities are difficult to deal with, we introduced the Markov model computation
technique. There is a case in which the dependent probabilities become inde-
pendent and the computations simplify. We will introduce this case by focusing
on the availability of two parallel elements.

Assume that we wish to compute the steady-state availability of two par-
allel elements, A and B. The reliability is the probability of no system fail-
ures in interval O to f, which is the probability that either A or B is good,
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P(Ag + Bg) = P(Ay) + P(B,) — P(A,B,). The subscript “g” means that the ele-
ment is good, that is, has not failed. Similarly, the availability is the prob-
ability that the system is up at time 7, which is the probability that either
A or B is up, P(Ay, + Byy) = P(Aup) + P(Byy) = P(ApB,). The subscript
“up” means that the element is up, that is, is working at time t. The prod-
uct terms in each of the above expressions, P(A¢By) = P(A,)P(B,|A,) and
P(AypBup) = P(Ay)P(Byp|Ayy) are the conditional probabilities discussed pre-
viously. If there are two repairmen—one assigned to component A and one
assigned to component B—the events (B,]A,) and (BuplAyp) become decou-
pled, that is, the events are independent. The coupling (dependence) comes
from the repairmen. If there is only one repairman and element A is down
and being repaired, then if element B fails, it will take longer to restore B to
operation; the repairman must first finish fixing A before working on B. In the
case of individual repairmen, there is no wait for repair of the second element
if two items have failed because each has its own assigned repairman. In the
case of such decoupling, the dependent probabilities become independent and
P(Bg|A,) = P(By) and P(Byp|Ayp) = P(By,). This represents considerable sim-
plification; it means that one can compute P(B,), P(Ap). P(B), and P(Ayp)
separately and substitute into the reliability or availability equation to achieve
a simple solution. Before we apply this technique and illustrate the simplicity
of the solution, we should comment that because of the high cost, it is unlikely
that there will be two separate repairmen. However, if the repair rate is much
larger than the failure rate, u >> A, the decoupled case is approached. This is
true since repairs are relatively fast and there is only a small probability that
a failed element A will still be under repair when element B fails. For a more
complete discussion of this decoupled approximation, consult Shooman [1990,
pp. 521-529].

To illustrate the use of this approximation, we calculate the steady-state
availability of two parallel elements. In the steady state,

A(steady state) = P(A,,) + P(By,) ~ P(A;)P(B,) (4.52)

The steady-state availability for a single element is given by

A, =—F (4.53)
A+ I3

One can verify this formula by reading the derivation in Appendix B, Sec-
tions B7.3 and B7.4, or by examining Fig. 3.16. We can reduce Fig. 3.16 to a
single element model by setting A = 0 to remove state s, and letting A" = \ and
" = p. Solving Eqgs. (3.71a, b) for P, (t) and applying the final value theorem
(multiply by 5 and let s approach 0) also yields Eq. (4.53). If A and B have
identical failure and repair rates, substitution of Eq. (4.53) into Eq. (4.52) for
both A, and By, yields
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_ 2w [ g u|:ay+5 :
S N+p >+t|9+5w (4.54)

> 58

If we compare this result with the exact one in Table 4.9, we see that the
numerator is the same and the denominator differs only by a coefficient of two
in the A? term. Furthermore, since we are assuming that p >> A, the difference
is very small.

We can repeat this simplification technique for a TMR system. The TMR
reliability equation is given by Eq. (4.2), and modification for computing the
availability yields

A(steady state) = [P(A,)])°[3 — P(A,,)] (4.55)
Substitution of Eq. (4.53) into Eq. (4.59) gives

2 9
7 21 U 3N+ ,
HW’I =
At+pu A+ pu A+pu A+u (4.56)

A(steady state) =

There is no obvious comparison between Eq. (4.56) and the exact TMR avail-
ability expression in Table 4.9. However, numerical comparison will show that
the formulas yield nearly equivalent results.

The development of approximate expressions for a standby system requires
some preliminary work. The Poisson distribution (Appendix A, Section AS5.4)
describes the probabilities of success and failure in a standby system. The sys-
tem succeeds if there are no failures or one failure; thus the reliability expres-
sion is computed from the Poisson distribution as

R(standby) = P(O failures) + P(1 failure) = e ™ + A ze™ ™ (4.57)

If we wish to transform this equation in terms of the probability of success p
of a single element, we obtain p = ¢ and At = — In p. (See also Shooman
[1990, p. 147].) Substitution into Eq. (4.57) yields

R(standby) = p(1 - In p) (4.58)

Finally, substitution in Eq. (4.58) of the steady-state availability from Eq. (4.53)
yields an approximate expression for the availability of a standby system as
follows:

_*
>+t

w

1—In{ ——
8 v,+t

A(steady state) = (4.59)

Comparing Eq. (4.59) with the exact expression in Table 4.9 is difficult
because of the different forms of the equations. The exact and approximate
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expressions are compared numerically in Table 4.10. Clearly, the approxima-
tions are close to the exact values. The best way to compare availability num-
bers, since they are all so close to unity, is to compare the differences with
the unavailability 1 — A. Thus, in Table 4.10, the difference in the results
for the parallel system is (0.99990197 — 0.99980396)/(1 — 0.99980396) =
0.49995, or about 50%. Similarly, for the standby system, the difference in
the results is (0.999950823 — 0.999901)/(1 - 0.999901) = 0.50326, which is
also 50%. For the TMR system, the difference in the results is (0.999707852
—0.999417815)/(1 — 0.999417815) = 0.498819—again, 50%. The reader will
note that these results are good approximations, all approximations yield a
slightly higher result than the exact value, and all are satisfactory for prelimi-
nary calculations. It is recommended that an exact computation be made once a
design is chosen; however, these approximations are always useful in checking
more exact results obtained from analysis or a computer program.

The foregoing approximations are frequently used in industry. However, it
is important to check their accuracy. The first reference known to the author
of such approximations appears in Calabro [1962. pp. 136-139].

4.10 MICROCODE-LEVEL REDUNDANCY

One can employ redundancy at the microcode level in a computer.
Microcode consists of the elementary instructions that control the CPU or
microprocessor—the heart of modern computers. Microinstructions perform
such elementary operations as the addition of two numbers, the complement of
a number, and shift left or right operations. When one structures the microcode
of the computing chip, more than one algorithm can often be used to realize
a particular operation. If several equivalent algorithms can be written, each
one can serve the same purpose as the independent circuits in the N-modular
redundancy. If the algorithms are processed in parallel, there is no reduction in
computing speed except for the time to perform a voting algorithm. Of course,
if all the algorithms use some of the same elements, and if those elements are
faulty, the computations are not independent. One of the earliest works on
microinstruction redundancy is Miller [1967].

4.11 ADVANCED VOTING TECHNIQUES

The voting techniques described so far in this chapter have all followed a sim-
ple majority voting logic. Many other techniques have been proposed, some
of which have been implemented. This section introduces a number of these
techniques.

4.11.1 Veting with Lockout

When N-modular redundancy is employed and N is greater than three, addi-
tional considerations emerge. Let us consider a 4-level majority voter as an

TABLE 4.10  Comparison of the Exact and Approximate Steady-State Availability Equations for Various Systems

Approximate,
Eqgs. (4.54), (4.56),

Approximate,

w = 1OOA

Exact, u = 100N
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